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0 Reminders
We are going to recall some facts of the previous two talks which we will use.

0.1 The Poincaré bundle
Let A be an abelian variety over an algebraically closed field k of dimension g and let L ∈ Pic(A)
be ample. Consider the Mumford line bundle

Λ(L) = m∗L ⊗ p∗1L−1 ⊗ p∗2L−1 ∈ Pic(A×A),

where pi : A × A → A, for i = 1, 2, are the natural projections. Let A∨ ' A/K(L) be the dual
abelian variety and denote by π : A → A∨ the canonical projection. Using descent data on Λ(L)
for the flat morphism

(id×π) : A×A→ A×A∨,
we constructed a line bundle P on A×A∨, called the Poincaré bundle, such that (id×π)∗P = Λ(L),
and satisfying the following properties:

1. P|eA×A∨ ' OA∨ .

2. For all ξ ∈ A∨, Pξ := P|A×ξ ∈ Pic0(A).

3. The map ξ → Pξ is a group isomorphism λ : A∨
∼−→ Pic0.

4. P satisfies a universal property.

Last time, property 4 was stated but not proved. We will prove it here. (See Section 3 for the
precise statment and proof of the universal property of the Poncaré bundle.)

0.2 Some exact functors between derived categories
Let X be a smooth algebraic variety over an algebraically closed field k. We denote by D(X) the
bounded derived category of coherent sheaves on X.
Any morphism f : X → Y between varieties as above induces two exact functors between their
bounded derived categories:
The direct image functor

Rf∗ : D(X)→ D(Y )

and the inverse image functor
Lf∗ : D(Y )→ D(X)

which is left adjoint to Rf∗.
Also, an object E ∈ D(Y ) defines both the derived tensor product

⊗LE : D(Y )→ D(Y )

and the derived Hom, which is its right adjoint

RHomf : D(X)→ D(Y ).

We will use these standard derived functors to introduce a new large class of exact functors between
D(X) and D(Y ), namely the so called Fourier-Mukai transforms.



1 Fourier-Mukai transforms
We will assume that all our varieties are defined over an algebraically closed field k of characteristic
0.

Definition 1.1. Let X and Y be smooth and complete algebraic varieties and let K ∈ D(X×Y ).
We define the Fourier-Mukai transform with kernel K to be the functor

φK : D(X)→ D(Y )

given by
F 7→ Rp2∗(Lp

∗
1F ⊗L K)

where p1 : X × Y → X and p2 : X × Y → Y are the natural projections.

We do a couple of remarks:

Remark 1.2. Note that the Fourier-Mukai transform φK is a composition of exact functors and
hence it is exact. (Recall that being an exact functor between triangulated categories means that
it takes triangels to triangles.)

Remark 1.3. Note the analogy with classical integral transforms with kernel: These are given by

f(x)→ g(y) =

∫
x

f(x)k(x, y)dx.

Here, the function of two variables k(x, y) is called the kernel of the integral transform.
Indeed, taking the derived push forwrad Rp2∗ correponds to integrating, the derived pullback
Lp∗1 corresponds to viewing the function f(x) as a function of two variables x, y, and tensoring
corresponds to taking the product.
If we look at the classical Fourier transform, which is the integral transform with kernel k(x, y) =
e2πixy, one of its most important properties is that it is invertible. This can be seen analogous to
the fact that the Fourier Mukai transform with kernel the Poincaré bundle gives us an equivalence
between the derived category of coherent sheaves of an abelian variety and that of its dual. (See
Section 2.)

Many of the usual functors between derived categories are of Fourier-Mukai type, as can be
seen in the following examples.

Example 1.4. The derived direct image Rf∗ of a morphism f : X → Y is naturally isomorphic
to φOΓf

, the Fourier-Mukai transform with kernel the structure sheaf of the graph Γf ⊂ X × Y of
f . Indeed, look at the following commuting diagram:

X

X × Y

X Y

Γf

p1 p2

fid

We have

φOΓf
(·) = Rp2∗(Lp

∗
1(·)⊗L OΓf

)

= Rp2∗(Lp
∗
1(·)⊗L RΓf ∗(OX))

P.F
= Rp2∗RΓf ∗(OX ⊗

L LΓ∗fLp
∗
1(·))

= Rf∗(·)
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where we have used the derived version of the Projection Formula P.F (see the talk on exact
functors).

Example 1.5. Let K be a sheaf on X × Y flat over X (e.g. K a line bundle on X × Y ). We can
think of K as a family of sheaves parametrized by X. In this case, we can compute the image of
the structure sheaf at a closed point x ∈ X as φK(k(x)) = Kx×Y .
Indeed, we have

φK(k(x)) = Rp2∗(Lp
∗
1k(x)⊗L K)

= Rp2∗(Ox×Y ⊗L K)

= Kx×Y .

Note that p∗ for smooth p is exact, hence p∗ of a skyscraper sheaf in the derived and regular
senses are identical. Also, flatness of K over X ensures that the tensor product is exact, so its
higher derived functors vanish. Hence, the above string of equalities holds. We see that k(x) thus
behaves like a delta function at x.

Example 1.6. Let E ∈ D(X). The functor

E ⊗L (·) : D(X)→ D(X)

is of Fourier-Mukai type. Its Kernel is ∆∗E where ∆: X → X×X denotes the diagonal embedding
morphism.
Indeed, we have

φ∆∗E(·) = Rp2∗(Lp
∗
1(·)⊗L ∆∗E)

P.F
= Rp2∗∆∗E ⊗L (·) = E ⊗L (·).

In particular, the Serre functor, which is the exact equivalence

SX(·) = (·)⊗L ωX [dimX],

where ωX denotes the canonical line bundle of X, is of Fourier-Mukai type.

The next proposition shows that being of Fourier-Mukai type is closed under compositions.

Proposition 1.7. Let X, Y and Z varieties as above. Let K ∈ D(X × Y ) and L ∈ D(Y × Z).
Then we have an isomorphism of functors

φL ◦ φK ' φK∗L : D(X)→ D(Z)

where
K ∗ L = Rp13∗(Lp

∗
23L⊗L Lp∗12K).

The projections pij are the natural ones appearing in the following commuting diagram:

X × Y × Z X × Y

Y × Z Y

p12

p23

Proof. See [Huy06][Prop. 5.10].

Definition 1.8. The operation K ∗ L is called the convolution of the kernels K and L.

Remark 1.9. More generally, an object K ∈ D(X × Y ) defines a family of functors

φK : D(X × S)→ D(Y × S)

where S is any scheme. If we let

3



X × Y × S

X × S Y × S

ps1 ps2

be the natural projections, then

φK(F) := Rps2∗(Lp
∗
s2(F)⊗L K).

We still have a natural isomorphism of functors

φL ◦ φK ' φK∗L : D(X × S)→ D(Z × S).

Naturality here means that they commute with derived pullback functors associated to morphisms
g : S → S′.

2 Equivalence of categories D(A) ' D(A∨)

Let A be an abelian variety of dimension g, A∨ its dual abelian variety and P the Poincaré bundle
over A×A∨. We start with an adjunction formula:

Lemma 2.1. For every scheme S, the functor

φP−1[g] : A× S → A∨ × S

is left adjoint to
φP : A× S → A∨ × S.

Proof. Let F ∈ D(A∨ × S) and G ∈ D(A× S). We have

HomD(A∨×S)(F , φP) = HomD(A∨×S)

(
F , Rps2∗(Lp∗s1G ⊗L P)

)
Lp∗`Rp∗' HomD(A×A∨×S)

(
Lp∗s2F , Lp∗s1G ⊗L P

)
⊗L`Rhom' HomD(A×A∨×S)

(
Lp∗s2F ⊗L P−1, Lp∗s1G

)
S.D' HomD(A×A∨×S)

(
Lp∗s1G, Lp∗s2F ⊗L P−1[2g]

)∨
Lp∗`Rp∗' HomD(A×S)

(
G, Rps1∗(Lp∗s2F ⊗L P−1[2g])

)∨
S.D' HomD(A×S)

(
Rps1∗(Lp

∗
s2F ⊗L P−1[2g]),G[g]

)
' HomD(A×S)

(
Rps1∗(Lp

∗
s2F ⊗L P−1[g]),G

)
.

Here, S.D stands for Serre duality.

Thw next proposition describes the cohomology of the Poincaré bundle. The equivalence of
categories will be a direct consequence of this computation. Hence we do it very explicitely.

Proposition 2.2. Let A,A∨ and P as before and write p2 : A×A∨ → A∨ for the second projection.
Then we have

Rnp2∗P =

{
0 if n 6= g

k(eA∨) if n = g

where k(eA∨) denotes the skyscraper sheaf at eA∨ ; and

Hn(A×A∨,P) =

{
0 if n 6= g

k if n = g
.
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Note that this gives us the derived direct image Rp2∗(P).

Proof. We divide the proof in three steps:

i Claim: For all n, we have Supp (Rnp2∗(P)) ⊂ {eA∨}.

Proof. Let ξ 6= eA∨ ∈ A∨. Then P|A×ξ is a non trivial line bundle on A with class in Pic0. We
know that such sheaves have zero cohomology. Hence, applying Cohomology and base Change
Theroem [Har77][Theorem 12.11, Chapter III], we get canonical isomorphisms

Rnp2∗P ⊗ k(ξ) ' Hn(A× ξ,P|A×ξ) = 0

for all n. Moreover, we also get from the Theorem that the higher direct images Rnp2∗P are
locally free in a neighberhood of ξ. Hence, the equation above implies that the stalk is also 0.
Since this is valid for all ξ 6= eA∨ , our claim follows.

ii Claim: {
Rnp2∗P = 0 for all n 6= g

Hn(A×A∨,P) = 0 for all n 6= g.

Proof. Since eA∨ is a zero dimensional subscheme of A∨, [Har77][Theorem 2.7 and Lemma
2.10, Chapter III] imply that

Hi(A∨, Rnp2∗P) = 0 for all i ≥ 1.

Now, applying the Leray spectral sequence

Ep,q2 = Hp(A∨, Rqp2∗P)⇒ Hp+q(A×A∨,P)

we get

Hn(A×A∨,P) ' H0(A∨, Rnp2∗P). (1)

Now, p2 is a projective morphism of dimension g, hence it follows from [Har77][Corollary 11.2,
Chapter III] that

Rnp2∗P = 0 for all n > g.

Hence, by 1, we het
Hn(A×A∨,P) = 0 for all n > g.

If we consider the morphisms (1,−1), (−1, 1) : A∨×A∨ → A∨×A∨, from last talk, we get that
P−1 ' (1,−1)∗P ' (−1, 1)∗P. It follows that P and P−1 have the same cohomology. Hence,
by Serre duality we get

Hn(A×A∨,P) ' H2g−n(A×A∨,P−1)∨ ' H2g−n(A×A∨,P)∨.

Therefore
Hn(A×A∨,P) = 0 for all n < g

and by 1 and the fact that Supp(Rnp2∗P) ⊂ eA∨ we conclude that

Rnp2∗P = 0 for all n < g as well.

This finishes the proof of the claim.

iii Claim: Rgp2∗P = k(eA∨).
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Proof. Since Supp(Rnp2∗P) ⊂ eA∨ te question now becomes local. Let R = OA∨,eA∨ be the
local ring at eA∨ . This is a regular ring of dimension g. We perform the base change for

Spec(R)→ A∨.

It is known that Rp2∗P|Spec(R), seen as R-modules, are of finite length. Hence, by the proper
base change Theorem in [Pol03][Appendix C], these are calculated by a finite complex

K• : 0→ K0 → · · · → Kg → 0

of free finitely generated R-modules with

Hi(K•) = 0 for 0 ≤ i < g.

We calculate Hg(K•) ' Rgp2∗P|Spec(R):
We have an exact sequence

0→ K0 → · · · → Kg → Hg(K•)→ 0.

On the other hand, dualizing and applying the same argument we get an exact sequence

0→ K∨g → · · ·
d→ K∨0 → K → 0

where K∨i = HomR(Ki, R) and K = coker(d). Last talk, it was shown that coker(d) ' R/I
where I is the ideal corresponding to the maximal subsecheme S of A∨ such that P|S×A is
trivial. But this is eA∨ and hence R/I = R/meA∨ = k. Hence, we get that K∨• is a free
resolution of k. Dualizing, we obtain

0→ K0 → · · · → Kg → Ext′(k,R)→ 0

and thus
Rgp2∗P|Spec(R) ' Hg(K•) ' Ext′(k,R) ' k.

This finishes the proof of the Proposition.

Theorem/Corollary 2.3. The natural adjunction morphism

idD(A∨) → φP ◦ φP−1[g]

is an isomorphism.

Proof. We have
φP ◦ φP−1[g] ' φP−1[g]∗P .

Hence, by 1.6 it suffices to show that the convolution P−1[g] ∗ P is isomorphic to R∆∗OA∨ , the
derived push forward of the structure sheaf of A∨ under the diagonal morphism ∆: A∨ → A∨×A∨.
We look at the following diagrams:

A×A∨ ×A∨ A×A∨ A×A∨ ×A∨ A∨ ×A∨

A×A∨ A A×A∨ A∨

p13

p2

p12 p1

p23

p2

(id×d) d ∆

6



where d : A∨ ×A∨ → A∨ is the difference morphism (a, ā) 7→ a− ā.
We have

P−1[g] ∗ P = Rp23∗(Lp
∗
13P−1[g]⊗L Lp∗12P)

= Rp23∗(d× id)∗P[g] by the theorem of the cube

= Ld∗Rp2∗P[g] by change of coordinates on A
∨ × A

∨, (a, ā) 7→ (a, d(a, ā))

= Ld∗OeA∨ by the previous Proposition

= R∆∗OA∨ .

Remark 2.4. The isomorphism above also holds for families, i.e. for every scheme S, we have a
natural isomorphism of functors

idD(A∨×S) → φP ◦ φP−1[g]

where now φP and φP−1[g] are functors on families.

Remark 2.5. Similarly, we can show that there is a natural isomorphism of functors

φP−1[g] ◦ φP ' idD(A×S) .

It follows that there is an equivalence of categories

D(A∨ × S) ' D(A× S).

3 Universal property of the Poncaré bundle
We will use our previous results to prove the universal property of the Poincaré bundle.

Theorem 3.1. Let A be an abelian variety over an algebraically closed field k of characteristic
0. The dual abelian variety A∨ represents the functor from the category of schemes over k to the
category of sets given by

S → {L ∈ Pic(A× S) | L|A×{s} ∈ Pic0(A) ∀ s ∈ S, L|{eA}×S ' OS}

so that P ∈ Pic(A × A∨) corresponds to the identity morphism A∨ → A∨. i.e. a familiy L as
above corresponds to a morphism S

f→ A∨ such that L ' (id×f)∗P.

Proof. Let S be a scheme and L a line bundle on A×S such that for all s ∈ S, L|A×{s} ∈ Pic0(A)
and L|{eA}×S ' OS .
We want to construct a morphism f : S → A∨ such that L ' (id×f)∗P. For this, we will evaluate
φP(L) ∈ D(A∨ × S). Now, for all s ∈ S, we have

L|A×{s} = PA×{ξ} := Pξ for some ξ ∈ A∨.

Using id ' φP ◦ φP−1[g], we get

O−ξ[−g] ' φP(Rp1∗(Lp
∗
2O−ξ[−g]⊗L P−1[g])

' φP(P−1|A×{−ξ})
' φP(Pξ).

Hence,

φP(L)|A∨×{s} ' φP(L|A∨×{s})
' O−ξ[−g].
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Therefore, we have that that φP(L) = F [−g] for some coherent sheaf F on A∨ × S such that for
all s ∈ S,

F|A∨×{s} ' O−ξ (2)

for a point ξ ∈ A∨.
Hence, F is finitely generated as an OS-modules.
On the other hand, one can show (see [Pol03][Chapter11]) that F is also flat over S.
We conclude that F is a locally free OS-module and by 2, we get that F is a line bundle supported
on the graph of a morphism

f̃ : S → A∨.

If we denote the graph morphism S → A∨ × S also by f̃ , then the conclusion above means that
we can write

F ' f̃∗K

for some line bundle K on S. Consider the following commuting diagram

A× S A×A∨ × S A× S

S A∨ × S S

(id×f̃) p1

ps p2

f̃

id

id

Set
f = [−1]A∨ ◦ f̃ .

We compute

φP−1(F) = Rp1∗(Lp
∗
2F ⊗L P−1)

' Rp1∗(Lp
∗
2f∗K ⊗L P−1)

' Rp1∗(R(id×f̃)∗Lp
∗
sK ⊗L P−1)

P.F' Rp1∗(R(id×f̃)∗(Lp
∗
sK ⊗L L(id×f)∗P−1))

' Lp∗sK ⊗L L(id×f̃)∗P−1

' p∗sK ⊗ (id×f̃)∗P−1

' p∗sK ⊗ (id×f)∗P.

On the other hand we have the isomorphism

φP−1(F) ' φP−1[g] ◦ φP(L) ' L.

Hence,
L ' φP−1(F) ' (id×f)∗P ⊗ p∗2K

and restricting both sides to {eA} × S we get K ' OS . Our claim follows.
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