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1 Introduction and Recapitulation
This talk follows the exposition of [1], section 9.4. We want to understand,
maybe in a more geometric way, when two abelian varieties are derived
equivalent. Sadly the constructions and arguments just work for the abelian
case. The general line goes as follows: we start with a derived equivalence of
abelian varieties ΦE : Db(A)→ Db(B) given as a Fourier-Mukai transform
with kernel E . Gabriel proved us (Proposition 4.1 in [1]) that dim(A) =
dim(B) = g. We call ER = E∨[g] and ΦER

is a quasi-inverse of ΦE . We pass
to a derived equivalence FE :Db(A× Â)→Db(B× B̂) as in the diagram.

Db(A× Â)
FE //

id×ΦPA

��

Db(B× B̂)

Db(A×A)
µA∗

��

Db(B×B)

(id×ΦPB
)−1

OO

Db(A×A)
ΦE×ΦER

// Db(B×B).

µ∗B

OO

The map ΦE 7→ FE respect composition. We will show that, for some
reason, the situation in A× Â and B× B̂ is much more geometric, actually
the equivalence FE is induced by an isomorphism fE :A× Â ∼→B× B̂. The
construction goes backwards for some special isomorphisms f ∈ Iso(A ×
Ã,B × B̃) which allows us to translate the question wether two abelian
varieties are derived equivalence in a question of geometric nature. The
hard bone of this talk is to prove that FE is given by an isomorphism as we
explained. For this we will use Corollary 5.23 in [1] that Daniele proved for
us.
Corollary 1.1. (5.23 in [1]) Let Φ :Db(X)→Db(Y ) be a derived equivalence
such that for every close point x ∈X there is a close point f(x) ∈ Y with

Φ(k(x))' k(f(x)).
Then f :X → Y defines an isomorphism and Φ is given by the composition
of f∗ and the twist by some line bundle M ∈ Pic(Y ), i.e.,

Φ ' (M ⊗ (·)) ◦ f∗.
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The strategy will be the following:

• Prove that for some close point x0 ∈A× Â, FE(k(x0)) is a close point
in B× B̂.

• Show that the property of sending close points to close points can be
extended to a neighborhood of x0.

• Use the abelian group structure to extend it to the whole variety.

Finally we will try to understand which isomorphisms can occur. We
will make extensive use of the following two propositions.

Proposition 1.2. (5.10 in [1]) The composition

Db(X) ΦP−−→Db(Y ) ΦQ−−→Db(Z)

is isomorphic to the Fourier-Mukai transform ΦR :Db(X)→Db(Z) where

R= πXZ∗(π∗XY P ⊗π∗Y ZQ).

Proposition 1.3. (Exercise 5.13 in [1]) A special case of before is when Pi ∈
Db(Xi×Yi) for i= 1,2 and R∈Db(X1×X2) then the composition

Db(Y1)
ΦP1−−→Db(X1) ΦR−−→Db(X2)

ΦP2−−→Db(Y2)

is equal to ΦS :Db(Y1)→Db(Y2) where

S = ΦP1 ×ΦP2(R) ∈Db(Y1×Y2).

2 Main Result
Lemma 2.1. Let ΦP :Db(X)→Db(Y ) be a Fourier-Mukai equivalence. Sup-
pose there is a close point x0 ∈X such that

ΦP(k(x0))' k(y0)

for some close point y0 ∈ Y . The there is an open neighborhood x0 ∈ U ⊂X
and a morphism f : U → Y0 with f(x0) = y0 and such that

ΦP(k(x))' k(f(x))
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for all x ∈ U .

Proof. First thing to notice is that the assumption says that the fiber over
x0 of the morphism Supp(P)→X is zero dimensional, since by [1], Lemma
3.29, Supp(P)∩ ({x0}×Y ) = Supp(P |{x0}×Y ) and

ΦP(k(x0))'Rp2∗(P |{x0}×Y )' P |{x0}×Y .

Let us assume for our proposes that the morphism Supp(P) → X is sur-
jective, proper and the fibers are connected (Lemmas 6.11 and 6.4 in [1]).
Then Chevalley’s upper semi-continuity theorem (see EGA IV 13.1.5) says
us that

y 7→ dim(Xy)
is upper semi-continuous. Hence, for some open neighborhood U of x0 one
has that the fibers are points, i.e., for any x ∈ U the complex ΦP(k(x)) is
concentrated in a point. Notice that Hom(ΦP(k(x)),ΦP(k(x))[i]) = 0 for
i < 0.

We claim that due to this last statement ΦP(k(x)) is of the form k(y)[m]
for some integer m. Let’s call F• the complex ΦP(k(x)), Hi the correspond-
ing cohomology sheaves and m0,m1 the biggest (resp. smallest) number
such that Hi , 0. One can check that there is a sequence of morphisms

F•[m0]→Hm0 →Hm1 →F•[m1]

whose composition is non trivial which contradicts the fact thatHom(F ,F [i]) =
0 for i < 0 unless m1 = m0. Thus, F is a sheaf, concentrated at one point
and one can check that is indecomposable. The only candidate is k(y)[m].
See [1], Lemma 4.5. Finally by semi-continuity the shift has to be constant
around x0 ∈ U . The fact that f is a morphism follows from the proof of
Corollary 5.23 in [1] that Daniele proved last time.

There are some comments to be made.

• Subjectivity follows from the fact that if x lies in the complement
of p1(Supp(P)) then the derived tensor product P ⊗L p∗1k(x) would
be trivial which means that ΦP(k(x)) ' 0 contradicting the fact that
ΦP is an equivalence. See Lemma 6.4 in [1] for a complete proof.
For connectedness of the fibers we use first Lemma 3.29 in [1] say-
ing in our case that supp(P) ∩ ({x}×Y ) = Supp(P |{x}×Y ). Now if
Supp(P |{x}×Y ) has disconnected support then ΦP(k(x)) ' F•1 ⊕ G•2
with F1 and F2 having disjoint supports. But this contradicts the fact
that Hom(Φ(k(x)),Φ(k(x))) is a field.

• The existence of the non trivial composition

F•[m0]→Hm0 →Hm1 →F•[m1]
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is not hard to check. the middle map follows from the fact that for a
finite module M over a local noetherian ring (A,m) where Supp(M) =
{m} there is always an injection k(m) ↪→ M and a surjection M �
k(m). Indeed we can define Hm0 � k(x) ↪→Hm1 . For the first is given
by the roof

F• : . . . // Fm0−1 // Fm0 dm
// Fm0+1 // . . .

F̃• :

qis

OO

��

. . . // Fm0−1

��

OO

// Ker(dm) //
?�

OO

����

0

��

OO

// . . .

Hm0 [−m0] : . . . // 0 // Hm0 // 0 // . . .

and we can see that is the identity in cohomology. And the same
construction works for the last arrow.

• In the last semi-continuity argument. The question is if

Hi(P |{x0}×Y ) = 0

then for some neighborhood V of x0

Hi(P |{x}×Y ) = 0.

Consider the following situation.

{x}×Y

π′

��

jx // X ×Y
π

��
x

ix // X.

Where ix is a close immersion and π the projection into the first factor.
Then

Li∗x (Rπ∗P)'Rπ′∗ (Lj∗xP) ,

which can be translated in to the fact that restricting and then taking
cohomology is equivalent to taking cohomology and then restricting.
There is semi-continuity for complexes of coherent sheaves so our state-
ment holds since one can use semi-continuity in the left hand side. The
local version of this is proven in a survey on semicontinuity theorems,
[2], Lemma 1.7.
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Proposition 2.2. (Orlov, 2002) Let ΦE :Db(A)→Db(B) be an equivalence.
Then the associated equivalence FE :Db(A× Â)→Db(B× B̂) is of the form

FE ' (NE ⊗ (·)) ◦ fE∗

with NE ∈ Pic(B× B̂) and fE : A× Â→ B× B̂ an isomorphism of abelian
varieties.
Proof. As we discussed we are going to prove that F send close points to
close points. We divide the proof in three steps.

1) First we show FE(k(e)� k(ê))' k(e)� k(ê). Recall that Daniele com-
pute the image of a close point (a,α) ∈A× Â under µA∗ ◦ (id×ΦPA

),

µA∗(Id×φP(A(k(a,α))) =OΓ−a ⊗ (OA �Pα) .

In particular if (a,α) = (e, ê) then

µA∗(Id×φP(A(k(e, ê))) =O4A
.

Let G = (ΦE ×ΦER
)(O4A

). We want to prove that G =O4B
. But by

our triple composition formula 1.3, ΦG is equal to the composition

Bb(B) ΦE−−→Db(A)
ΦO4A−−−−→Db(A)

ΦER−−−→Db(B)

but ΦO4A
= id hence ΦG ' id and G =O4B

. Thus,

FE(k(e, ê))' k(e, ê).

2) By the previous lemma there is an open neighborhood (e, ê) ∈ U ⊂
A× Â such that for any close point (a,α) ∈ U ,

F (k((a,α))) = k((b,β))

and the map (a,α) 7→ (b,β) is a morphism.

3) We want to extend this to the whole variety A × Â. Is a general
fact of abelian varieties that every (a,α) ∈ A× Â can be written as
(a1,α1)+(a2,α2) with (ai,αi) ∈ U (for all (a,α) ∈A×Â, t−(a,α) : U →
A× Â is an open immersion so the image intersects (−1)(U)). Let
(bi,βi) ∈ B × B̂ be the image points of (ai,αi) under F and Mi the
line bundles on B corresponding to βi. We define

G := (ΦE ×ΦER
)(µA∗(id×ΦPA

)(k(a,α)))
' (ΦE ×ΦER

)((O�L)⊗OΓ−a).

Where as in the example that Daniele gave us µA : A × A → A ×
A,(a1,a2) 7→ (a1 + a2,a2), Γ−a is the graph of t−a and L is the line
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bundle corresponding to α that can be written as L1⊗L2 where Li =
PA×{αi}.
Recall that Ana Maria showed us that ΦP(k(α)) = PA×{α} and by
the universal property of the Poincaré bundle this is exactly the line
bundle corresponding to α, moreover the map α 7→ PA×{α} is a group
isomomorphism between Â and Pic0.
One can check (by 1.2 or 1.3) that the induced Fourier-Mukai trans-
form ΦG :Db(B)→Db(B) is isomorphic to the composition

Db(B) ΦE−−→Db(A) (L⊗(·))◦t−a∗−−−−−−−−→Db(A)
ΦER−−−→Db(B).

Hence,

ΦG = ΦER
◦ (L1⊗L2⊗ (·)) ◦ t−a1−a2∗ ◦ΦE

= (ΦER
◦ (L1⊗ (·)) ◦ t−a1∗ ◦ΦE) ◦ (ΦER

◦ (L2⊗ (·)) ◦ t−a2∗ ◦ΦE) .

But (Li⊗ (·))◦ t−ai∗ = Φ(O�Li)⊗OΓ−ai
and we have our formula for the

priple composition;

ΦER
◦ (Li⊗ (·)) ◦ t−ai∗ ◦ΦE = ΦΦE×ΦER

((O�Li)⊗OΓ−ai
)

but by hypothesis

ΦE ×ΦER
((O�Li)⊗OΓ−ai

) = (Mi⊗ (·)) ◦ t−bi∗.

Thus,

ΦG = (ΦER
◦ (L1⊗ (·)) ◦ t−a1∗ ◦ΦE) ◦ (ΦER

◦ (L2⊗ (·)) ◦ t−a2∗ ◦ΦE)
= (M1⊗ (·)) ◦ t−b1∗ ◦ (M2⊗ (·)) ◦ t−b2∗
= (M1⊗M2⊗ (·)) ◦ t−b1−b2∗

which means that

FE(k(a,α)) = k(b1 + b2,β1 +β2).

This finishes the proof.

Corollary 2.3. For any abelian variety A there exist, up to isomorphisms, a
finite number of derived equivalent abelian varieties B.
Proof. If B is an abelian variety such that Db(A) 'Db(B), then A× Â '
B × B̂. Then B is a factor of A× Â and an abelian variety has a finite
number of direct factors up to automorphisms. See Theorem 18.7 in [3].
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Corollary 2.4. (Corollary 9.44 in [1]) Let ΦE :Db(A)→Db(B) be an equiva-
lence with induced isomorphism fE :A× Â→B× B̂. Then fE(a,α) = (b,β)
if and only if

Φ(b,β) ◦ΦE ' ΦE ◦Φ(a,α).

Where Φ(a,α) = (L⊗ (·)) ◦ ta∗ (resp. Φ(b,β)) and L is the line bundle corre-
sponding to α.

This corollary give us a characterization of isomorphisms that can come
from a derive equivalence. We want to find all of them.

Any isomorphism f :A× Â→B× B̂ can be written as

f =
(
f1 f2
f3 f4

)

and we can associate to f the isomorphism f̃ :B× B̂→A× Â given by

f̃ =
(

f̂4 −f̂2
−f̂3 f̂1

)
.

Of course here we are implicitly identifying the dual of Â with A and the
same for B.

Definition 2.5. By U(A×Â,B×B̂) we denote the subgroup of isomorphisms
f :A× Â→B× B̂ such that f−1 = f̃ .

Corollary 2.6. The isomorphism fE associated to ΦE is contained in U(A×
Â,B× B̂).
Proof. By 2.4 and the fact that ΦE 7→ FE is a group homomorphism we
have

FE ◦F(a,α) = FfE(a,α) ◦FE .

Daniele showed us that

F(a,α) ' L�L∨0 ⊗ (·) :Db(A× Â)→Db(A× Â)

where L0 = P |{a}×Â. Hence, the previous equality says that

(NE ⊗ (·)) ◦ fE∗ ◦
(
L�L∨0 ⊗ (·)

)
'
(
M �M∨0 ⊗ (·)

)
◦ (NE ⊗ (·)) ◦ fE∗

by projection formula and, since fE is an isomorphisms, this is equivalent to

fE∗
(
L�L∨0

)
'M �M∨0

which is exactly f̂E(β,−b) = (α,−a) and on the other hand fE(a,α) = (b,β).
Thus, f̃E(b,β) = (a,α) which means that f̃E = f−1

E .
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Proposition 2.7. (Orlov, Polishchuk. See [4] and [5]) Consider two abelian
varieties A and B. Any f ∈ U(A× Â,B× B̂) is of the form f = fE for some
equivalence ΦE :Db(A→Db(B)).

The following corollary answer our question or at leas translate the ques-
tion of wether two abelian varieties are derived equivalent in something that
has to do with the geometry of A× Â and B× B̂.

Corollary 2.8. Two abelian varieties A,B are derived equivalent is and only
if there is an isomorphism f :A× Â→B× B̂ with f−1 = f̃ . In other words
Db(A)'Db(B) is and only if U(A× Â,B× B̂) , ∅.

3 Cohomological Fourier-Mukai
The following discussion follows the exposition of section 5.2 in [1]. Let F• ∈
Db(X) be a bounded complex of coherent sheaves over a smooth projective
variety X over C. We associate the element

[F•] :=
∑
i

(−1)i
[
F i
]
∈K(X)

where K(X) is the Grothendieck group. Recall that
[
E0]+

[
E2] =

[
E1] in

K(X) if there is an exact sequence

0→E0→E1→E2→ 0.

Recall that every coherent sheaf admits a finite locally free resolution,
which means that every element of K(X) can be written as linear combina-
tions of classes of locally free sheaves. This allow us to define a ring structure
on K(X) with multiplication

[E1] · [E2] = [E1⊗E2]

for locally free sheaves. We define the map

Db(X) → K(X)
F• 7→ [F•] .

Notice that [F•[k]] = (−1)k [F•] and [F•1 ⊕F•2 ] = [F•1 ] + [F•2 ]. And also
one can check that

[F•] =
∑

(−1)i
[
Hi(F•)

]
.

In particular two isomorphic objects in Db(X) land in the same object under
this map. Also the derived tensor is just the normal tensor of complexes for
complexes of locally free sheaves which means the map [·] :Db(X)→K(X)
respect the additive and multiplicative structure on both sides. Now let
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f : X → Y be any projective morphism. Then the pull-back defines a ring
homomorphism f∗ :K(Y )→K(X). On the other hand for a coherent sheaf
we define the generalized direct image as

f!(F) :=
∑

(−1)i
[
Rif∗(F)

]
.

And it defines a group homomorphism f! :K(X)→K(Y )
The derived pull-back and push-forward are compatible with this two

homomorphisms, i.e., the following diagrams commute

Db(Y )
Lf∗ //

[·]
��

Db(X)

[·]
��

Db(X)
Rf∗ //

[·]
��

Db(Y )

[·]
��

K(Y )
f∗

// K(X), K(X)
f!

// K(Y ).

We can define, in analogy to what we have done, the K-theoretic Fourier-
Mukai transform. Let e ∈ K(X × Y ) be some class in the Grothendieck
group, then we define

ΦKe :K(X) → K(Y )
E 7→ p!(e⊗ q∗E)

and the compatibilities mentioned before give us the commutativity of
the following diagram:

Db(X) ΦE //

[·]
��

Db(Y )

[·]
��

K(X)
ΦK

[P]

// K(Y ).
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