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29.10.14

1 Introduction

This is more or less a summary of the first chapter of Mumford’s book on abelian varieties [1]. At
parts I have expanded the explanations to suit my taste, especially in the first two sections. But
mostly I skipped intricate, yet often enlightening calculations that Mumford spared no effort to
type in full detail. Hopefully, this approach gives a quick (but understandable!) overview of what
his first chapter contains.

We begin by showing that a compact complex Lie group X is a complex torus. This takes up
the next two sections. Then we turn to studying the cohomology of the exponential sequence on
X to be able to explicitly describe the line bundles on X.

2 A compact complex Lie group is commutative

Let X be a compact complex manifold of dimension g with the structure of a Lie group. We will
denote by V the tangent space of X at the identity e.

We take as a black box the following two crucial results.

Fact 2.1. For every v ∈ V there exists a unique homomorphism of groups γv : C → X such that
the unit tangent at 0 gets mapped to v, that is (dγv)0( d

dt ) = v.

Fact 2.2. Define a map exp : V → X in the following way: exp(v) = γv(1), using the notation
above. Then, this so called exponential map is holomorphic.

It is clear that (d exp)0 : V → V is just the identity map. But then, using the inverse function
theorem we conclude that there is a neighbourhood of 0 ∈ V which maps (complex) isomorphically
onto its image in X.

Using these tools we will prove

Theorem 2.3. X is commutative.

This is equivalent to showing for any x ∈ X, the conjugation defined by

Cx : X → X : y 7→ xyx−1
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is the identity. We will use the exponential map to ‘linearize’ this operation. Here is how one could
do this:

Fact 2.4. Let T : X1 → X2 be a homomorphism of Lie groups. Let expi : Vi → Xi denote the
exponential map for i = 1, 2. Then T (exp1(v)) = exp2((dT )e(v)).

Proof. Let γ : C→ X1 be the unique homomorphism with tangent vector v at e. Then T ◦γ : C→
X2 is a homomorphism with tangent vector (dT )e(v). By uniqueness of such homomorphisms, the
result follows.

However this fact would allow us to work only with the image of the exponential map and all
we could do would be to show that the image of exp lies in the center of X. It turns out that this
is enough by the following:

Fact 2.5. Let G be a connected topological group and U a non-empty neighbourhood of the identity.
Then G is generated by U . In particular, G is commutative if and only if there is a neighbourhood
of the identity lying in the center of G.

Proof. To simplify notation replace U with U ∩ U−1. Let H be the group generated by U . Then
H =

⋃
n≥1 U

n. But Un =
⋃
u∈U u · Un−1, and hence it is open by induction. Consequently, so is

H.

On the other hand, all the cosets of H are also open, being translates of H. Since H is in the
complement of all non-trivial cosets, it is closed. G is connected, so H = G.

Now since exp(V ) contains a neighbourhood of the identity, we only need to show that ∀v ∈ V
and ∀x ∈ X that Cx(exp(v)) = exp(v). Combining this observation with Fact 2.4, we conclude:

X is commutative ⇐⇒ ∀v ∀x exp((dCx)e(v)) = exp v.

Therefore, commutativity of X will follow from the following:

Lemma 2.6. ∀x ∈ X the automorphism (dCx)e : V → V is the identity.

Proof. We consider all these automorphisms simultaneously. Consider the map

X 3 x φ7→ (dCx)e ∈ Aut(V ) ⊂ End(V ) ' Cg
2

.

The only holomorphic maps from a compact complex manifold to an affine space are the constant
ones. So in showing the map above is holomorphic, the constancy will imply

(dCx)e = (dCe)e = IdV

as foretold.

Showing φ is holomorphic follows from general principles. We have a holomorphic map

C : X ×X → X : (x, y)→ xyx−1 ,
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and we can restrict the holomorphic differential

dC : T (X ×X)→ TX

to X × V ↪→ TX × TX ' T (X × X). Therefore the map (x, v) 7→ (dCx)e(v) is holomorphic.
Using coordinates on V and the induced coordinates on the endomorphism ring of V , we see that
x 7→ (dCx)e is holomorphic as well.

3 A compact complex Lie group is a complex torus

Throughout this section we will show exp : V → X establishes X as a complex torus. For this, we
need to show that exp is a surjective homomorphism with a discrete kernel. So we begin:

Theorem 3.1. exp : V → X is a homomorphism.

Proof. Fix v, w ∈ V , then we wish to show exp(v+w) = exp(v) exp(w). Since the map γ(v+w)(t) =
exp(t(v+w)) is uniquely characterized as the homomorphism C→ X with tangent vector v+w over
e, we need only show that φ(t) := exp(tv) exp(tw) = γv(t)γw(t) has the same characterizations.

Since γv, γw are homomorphisms and X is commutative φ is a homomorphism. It remains to
show (dφ)0( d

dt ) = v + w. Let X × X m→ X be the group multiplication. Then φ = m ◦ (γv, γw).
Now the required result will follow from two basic differential geometric results below. The first
one implies

d(γv, γw)0(
d

dt
) = ((dγv)0(

d

dt
), (dγw)0(

d

dt
)) = (v, w)

and the second one implies

(dm)(e,e)(v, w) = (dm(·, e))e(v) + (dm(e, ·))e(w) = v + w.

Here we used the fact that m(·, e) = m(e, ·) = IdX . The chain rule gives

(dφ)0 = (dm)(e,e) ◦ d(γv, γw)0

and we are done modulo the results below.

The facts below are meant as a reminder for those who know them, and as an exercise for those
who do not.

Fact 3.2. Let f1 : M → N1 and f2 : M → N2 be morphisms between (complex) manifolds. Then
the map (f1, f2) : M → N1 ×N2 has differential d(f1, f2) = (df1,df2) : TM → TN1 × TN2.

Fact 3.3. Let g : N1 × N2 → L be a morphism of (complex) manifolds. Fix a point (p1, p2) ∈
N1 ×N2 and the inclusions:

i1 : N1
∼→ N1 × {p2} ↪→ N1 ×N2

i2 : N2
∼→ {p1} ×N2 ↪→ N1 ×N2 .
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Then the differential of g at (p1, p2) can be expressed in terms of the differentials of g restricted
along these sections. To be more precise, we define the partial derivatives:

∂1g(p1,p2) := (d(g ◦ i1))p1
∂2g(p1,p2) := (d(g ◦ i2))p2 .

Now, for any (v, w) ∈ TN1,p1 × TN2,p2 we have the following equality:

(dg)(p1,p2)(v, w) = ∂1g(p1,p2)(v) + ∂2g(p1,p2)(w).

The fact that exp is a homomorphism between V and X has the following immediate conse-
quence:

Corollary 3.4. The map exp : V → X is surjective with discrete kernel.

Proof. We remarked on the fact that exp(V ) contains a neighbourhoodW of the identity. Moreover,
a neighbourhood of the identity generates all of X. The subgroup generated by W must lie in the
subgroup exp(V ), hence exp(W ) = X.

The discreteness of the kernel U := ker exp follows from the fact that exp is locally an isomor-
phism around 0 ∈ V and e ∈ X, this isolates 0 from other points in the kernel. We may translate
this neighbourhood to any other point u ∈ U and clearly exp remains an isomorphism in this
neighbourhood, isolating u.

Now we finish the proof that X is a complex torus. But first the relevant definitions.

Definition 3.5. A subgroup Λ of an R-vector space V that is generated (as a group) by an R-basis
of V is called a lattice.

Definition 3.6. If Λ ↪→ Cg is a lattice, then a complex Lie group isomorphic to the quotient Cg/Λ
is called a complex torus.

Corollary 3.7. The kernel U defined above is a lattice. Hence X is a complex torus.

Proof. First, we need to show there exists an R-linearly independent set of generators for U . This
follows from the discreteness of U , we have deferred the rather lengthy proof to Fact 3.8.

Secondly, we need to show that this linearly independent set of generators in fact forms a basis
for V . Indeed, if they generated a proper subspace V ′ ⊂ V of V then the quotient X = V/U =
V/V ′ × V ′/U can not be compact.

The following can be skipped without breaking continuity, it is meant for the curious.

Fact 3.8. A subgroup Λ in a real vector space V is discrete if and only if there is a linearly
independent set of generators for Λ.

Proof. Without loss of generality, we will assume Λ⊗Z R ' V .
( ⇐= ) Using the basis-generators for Λ we get an isomorphism of V to RdimV which maps Λ to
the integral lattice ZdimV lying in RdimV .
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( =⇒ ) To begin our induction on dimension, assume V ' R1. We will show that Λ is generated
by a single element.

Take v to be the smallest positive number in Λ. Then we claim that Λ = Z〈v〉. First note that
such a v exists because λ is discrete. Pick any w ∈ Λ, wlog w > 0, then find the largest n ∈ Z+

such that w − nv ≥ 0. Necessarily v > w − nv as well. By minimality of v this forces w = nv.

Now for the general case dimV > 1. Choose 0 6= v ∈ Λ and consider the quotient W of V
defined by

0→ R〈v〉 → V →W → 0 .

The quotient map is open, thus the image of Λ in W , say ΛW , is discrete. Using the induction
hypothesis we may conclude ΛW is generated by dimV − 1 elements. Let Λv = R〈v〉 ∩ Λ, this is
generated by a single element by our base case. Then

0→ Λv → Λ→ ΛW → 0

implies that Λ can be generated by dimV elements. But the R-span of Λ equals V , consequently
these generators are R-linearly independent.

4 Cohomology

4.1 Group Cohomology

Let G be a group and ModG be the category of G-modules. To M ∈ ModG we associate MG :=
{m ∈M | ∀g ∈ G, gm = m}. This gives a functor F : M 7→MG ∈ Ab which is left exact and the
right derived functors RFn n ≥ 0 are called the cohomology functors of G and are often denoted
by Hn(G, ·). Sometimes we will refer to it as Hn

gp(G, ·) to avoid possible confusion.

For a given M we will work with an explicit chain complex that calculates the cohomology
groups Hn(G,M). Let Cn(G,M) := {f : Gn → M | f is a function}, where Gn = G × · · · × G
is the n-fold product. These have a natural G-module structure, where G acts on the image of a
function.

The coboundary maps δ : Cn−1(G,M)→ Cn(G,M) are defined as follows, ∀u1, . . . , un ∈ Gn:

δ(f)(u1, . . . , un) = u1f(u2, . . . , un)+

n−1∑
i=1

(−1)if(u1, u2, . . . , uiui+1, . . . , un)+(−1)nf(u1, . . . , un−1)

Note the empty product is a singleton set, containing the empty set. So C0(G,M) ' M . For
m ∈ M and u ∈ G we have δ(m)(u) = um−m. Notice that the minus sign denotes the inversion
in M and in the cases we consider in the following sections, this inversion will be division rather
than subtraction.

We will often refer to cocycles. The elements of the module

Zn(G,M) := ker(δ : Cn → Cn+1)

are called n-cocycles. When n = 1 let us be explicit. Let e ∈ C1, then e is a 1-cocycle if and only
if

δ(e)(u1, u2) = u1e(u2)− e(u1u2) + e(u1) = 0, ∀u1, u2 ∈ G.
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In other words, a function e : G → M is a 1-cocycle if and only if it satisfies the following
transformation rule:

e(u1u2) = u1e(u2) + e(u1).

Recall that we will be using the multiplicative notation in the future for M = H∗, e will take
values from the group as a subscript and moreover because our group G = U will be abelian the
group operation will be denoted by +. So the 1-cocycle condition will in later sections look like
this

eu1+u2
= u1eu2

· eu1
.

We then have the coboundaries. These are the images of the coboundary map,

Bn(G,M) = Im(δ : Cn−1 → Cn).

Then the cohomology groups are defined as

Hn
gp(G,M) = Zn(G,M)/Bn(G,M).

There is a cup product here and to every short exact sequence of G-modules the associated long
exact sequence of cohomology. This gives us the whole of cohomology theory. But we will not
develop these here.

Let us make two basic observations. First, H0(G,M) = MG as it should. Secondly, if G acts
trivially on M then B1 = 0 and the 1-cocycle condition translates to being a homomorphism of
groups. That is, if G acts trivially on M then H1(G,M) = Hom(G,M).

4.2 Cohomology of X

We make a list of results that we will use about the cohomologies of X and the lattice U . Here, we
treat X as a complex manifold and U as a group, this is how the cohomologies are to be interpreted.
We will refer to the cohomologies as (graded) algebras together with their cup product. The entire
graded algebra will be denoted by H∗(·, ·) as is usual. The exterior algebra on an abelian group
M is denoted by

∧∗
M , multiplication is just the wedge product.

I ) We have an isomorphism of algebras H∗(X,Z)
∼→

∧∗
H1(X,Z).

II ) The first Z cohomology of X is just the Z dual of its first homology group, but this latter is
the abelianization of π1(X). Therefore, H1(X,Z) = H1(X,Z)∨ ' Hom(π1(X),Z). Since X
is a torus, π1(X, e) is naturally identified with the lattice U . But using the fact H1(U,Z)

∼→
Hom(U,Z) we get H1(X,Z)

∼→ H1(U,Z).

III ) Hence there is an isomorphism of algebras H∗(X,Z)
∼→

∧∗
Hom(U,Z)

IV ) Moreover, there exists an isomorphism of algebras H∗(X,Z)
∼→ H∗(U,Z).

V ) We can explicitly state the resulting isomorphism H∗(U,Z)
∼→

∧∗
Hom(U,Z). Let f : Un →

Z be a n-cocycle, denote the cohomology class of f by [f ]. Then to f we can associate an
alternating form

A(f)(u1, . . . , un) :=
∑
σ∈Sn

sgn(σ)f(uσ(1), . . . , uσ(n)).

It turns out that the map H∗(U,Z)
∼→

∧∗
Hom(U,Z) is simply [f ] 7→ A(f).
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Let T = HomC(V,C) and T = HomC−antilinear(V,C). Let ı : V → V be the R-linear anti-
involution which corresponds to the multiplication by i. It is easy to check that HomR(V,C) is
isomorphic to the direct sum T

⊕
T , with the isomorphism given by µ 7→ 1

2i (iµ+ µ ◦ ı, iµ− µ ◦ ı).

VI ) There is an isomorphism of algebras H∗(X,C)
∼→

∧∗
(T ⊕ T ).

VII ) There is an isomorphism of algebras H∗(X,OX)
∼→

∧∗
T .

VIII ) The morphism between the cohomology rings H∗(X,C)→ H∗(X,OX) corresponding to the

inclusion C→ OX commutes, through the isomorphisms, with the projection
∧∗

(T ⊕T )
pr−→∧∗

T .

Before we state the final item on our list, observe that we have a series of inclusions

Hom(U,Z) ↪→ HomR(V,R) ↪→ HomR(V,C).

The first inclusion follows from the fact that U contains a basis for V and so we may R-linearly
extend a homomorphism U → Z to get an R-linear homomorphism V → R. Composing, we have
a natural inclusion

Hom(U,Z) ↪→ T ⊕ T .

IX ) The morphism between the cohomology rings H∗(X,Z) → H∗(X,C) corresponding to the
inclusion Z → C commutes, through the isomorphisms, with the inclusion

∧∗
H1(U,Z) ↪→∧∗

(T ⊕ T ).

5 Line bundles on complex tori

Lemma 5.1 (∂̄-Poincaré lemma).
Using the Euclidean topology on Cn the higher cohomology of the sheaf of holomorphic functions
OCn vanishes. That is:

Hp(Cn,OCn) = 0 for p > 0.

Sketch. Resolve O using the differential forms, this is an acyclic resolution, thus capable of giving
the cohomology. Now the generalized Poincaré lemma as is usually stated, as in here [2, p.46-47],
simply proves the exactness of this resolution.

Corollary 5.2. All holomorphic line bundles on Cn are trivial.

Proof. We will use the exponential sequence

0→ Z→ OCn → O∗Cn → 0

to calculate Hp(Cn,O∗Cn) for p > 0. Since the affine space is contractible, all the higher Z coho-
mologies vanish, that is Hp(Cn,Z) = 0 for p > 0. Combined with the Poincaré Lemma above, the
long exact sequence corresponding to the exponential sequence yields Hp(Cn,O∗Cn) = 0 for p > 0.
Since H1(Cn,O∗Cn) ' Pic(Cn) as groups, we are done.
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Notation. Following the lead of Mumford, from now on we will denote the exponential map
exp : V → X with π instead. Things would get ugly otherwise.

Recall we had 0 → U → V
π→ X → 0 where U ' Z2g is a lattice in V and g = dimCX. In

order to study the line bundles of X we will pull them back to V where they will be isomorphic to
a trivial bundle with a U action on it.

We will first describe how a group action on the line bundle could be realized. Let L→ X be
a line bundle. For u ∈ U let φu : V → V : v 7→ u+ v. Now consider the following diagram:

φ∗u(π∗L) → π∗L → L
↓ ↓ ↓
V

φu→ V
π→ X

By definition of pull back, the two small squares are cartesian. It follows that the larger rectangle
is also cartesian. This means there is a canonical isomorphism π∗L = (π ◦ φu)∗L ' φ∗u(π∗L),
respecting the horizontal and vertical arrows. Therefore we could replace the diagram above with
the following:

π∗L
au→ π∗L → L

↓ ↓ ↓
V

φu→ V
π→ X

The map au gives a group homomorphism a : U → Aut(π∗L) : u 7→ au.

There is another way to see these automorphisms of the pull-back bundle. As a set we simply
have π∗L = {(l, v) | l ∈ Lπ(v) and v ∈ V }. Then the action of au looks innocent, taking (l, v) 7→
(l, u+ v). However, there is some subtlety involved in this action as we will see.

5.1 Pic(X) and H1
gp(U,H

∗)

Observe that the quotient of π∗L→ V with respect to U results in L→ X again, this is immediate
from the last description of the action a. Although π∗L is isomorphic to the trivial bundle, the
quotient L need not be! To better see what this action of U is doing, we fix a trivialization
ρ : π∗L→ C× V .

Letting bu := ρ ◦ au ◦ ρ−1 : C× V → C× V transfers the action of U on L to an action of the
trivial bundle. (Warning : These are not actions of a fiber bundle in the usual sense, since the base
is not preserved.)

The action of U through b can be described as follows: For each u ∈ U there is a holomorphic
function eu : V → C∗ such that bu : (t, v) 7→ (eu(v)t, u + v). Here is how to see this. Afterall, we
know that b is just translation on the base. Moreover, bu maps individual fibers isomorphically,
hence the we need a multiplicative factor eu(v) which must be holomorphic.

What remains to understand is how eu+u′ relates to eu and eu′ . This can be calculated imme-
diately, but we will introduce some notation for future convenience.

Let H = H0(V,OV ) and H∗ = H0(V,O∗V ). There is the standard action of U on these spaces,
acting by translating the domain, that is by u : f 7→ uf := f ◦φu. Then e : U → H∗ defined above
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has the following transformation rule:

eu+u′ = ueu′ · eu

Throughout the rest of this subsection we will show that this approach establishes an isomor-
phism of groups Pic(X)

∼→ H1
gp(U,H

∗).

Let Z1 be the 1-cocycles of U in H∗, that is functions f : U → H∗ such that δ(f) = 0. The
transformation rule of e above translates to δ(e) = 0. Therefore we have established a map

{(L, ρ) | L ∈ Pic(X), ρ : π∗L
∼→ C× V } Ψ−→ Z1, Ψ : (L, ρ) 7→ e.

A few words must be said to describe the set on the left hand side because we are abusing notation
a bit. L ∈ Pic(X) is not a line bundle but an isomorphism class of line bundles. We should
similarly treat ρ to be an equivalence class of trivializations. Here is how: Suppose ρ and ρ′ are
trivializations of L and L′, if there exists an isomorphism ν : L

∼→ L′ such that ρ = ρ′ ◦ π∗(ν)
then we consider (L, ρ) and (L′, ρ′) to be equivalent. Now, the set on the left hand side must be
considered as the equivalence classes of pairs for it to even make sense.

We will now show that Ψ is a bijection. That is, given e ∈ Z1 we can construct a line bundle on
X and a trivialization of its pullback. The first of these statements requires nothing new. Tracing
our steps back, it’s immediate to see that such an e induces a U action on the trivial bundle C×V .
The quotient will be a line bundle L ∈ Pic(X). As for the trivialization, the argument is not
difficult but cumbersome, so we will merely sketch the idea.

Around any v ∈ V choose a small neighbourhood W such that U translates of W are disjoint.
Each point of L corresponds to a U orbit of C× V . By our choice of W there exists precisely one
representative on C×W for each point of L|π(W ). Mapping each orbit to its equivalence class gives
a trivialization of π∗L|W , say ρW . These trivializations glue, without calculation simply due to
the nature of the construction, to give a global trivialization ρ : π∗L

∼→ C× V . This trivialization
has been uniquely determined by e, hence we establish a bijection:

{(L, ρ) | L ∈ Pic(X), ρ : π∗L
∼→ C× V } ←→ Z1

There is a natural group structure on Z1 and through this bijection we may inherit this structure
on to the left hand side. Then one might ask how this group structure looks like on the pairs (L, ρ).
Let us fix an isomorphism µ : (C × V ) ⊗ (C × V )

∼→ C × V taking the constant 1 ⊗ 1 section to
constant 1 section. Then the group action looks like this: (L, ρ) · (L′, ρ′) = (L ⊗ L′, µ ◦ (ρ ⊗ ρ′)).
In particular, the first component respects the group structure of Pic(X).

The next question to ask is this: How do the 1-cocylces corresponding to the same line bundle
with different trivializations differ? Let B1 ⊂ Z1 be the images of the 0-cycles, that is the 1-
coboundaries.

Fact 5.3. The difference between Ψ(L, ρ) and Ψ(L′, ρ′) lies in B1 if and only if L ' L′.

Proof.

( ⇐= ) Identify L and L′. Let γ = ρ′ ◦ ρ−1. This is a base preserving automorphism of
C × V , therefore it corresponds to scaling each fiber by a nonzero value. In other words, there is
an m ∈ H∗ such that γ(t, v) = (m(v)t, v).
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Let b = ρ ◦ a ◦ ρ−1 and b′ = ρ′ ◦ a ◦ ρ′−1
be the induced actions on the trivial bundle, recall

a : U → hom(π∗L) is the action on the pull back bundle. Therefore, b = γ−1 ◦ b′ ◦ γ. Then, by
simply expanding out this expression, one can calculate that e = e′ · δ(m).

( =⇒ ) Conversely, if e = e′ ·δ(m) then we define γ(t, v) = (m(v)t, v) and deduce b = γ◦b′◦γ−1.
But γ is a base preserving automorphism of the trivial bundle, hence the U actions induced by b
and b′ will be compatible, yielding isomorphic quotients. That is L ' L′.

We may summarize the results of this section with the following

Fact 5.4. We have a commutative diagram, with the lower horizontal arrow a group isomorphism:

{(L, ρ)} Ψ→ Z1

↓ ↓
Pic(X)

∼→ H1
gp(U,H

∗) ,

where the left vertical arrow forgets the trivialization of the pullback.

5.2 Chern classes

Recall that there are natural isomorphisms H2(X,Z) ' H2
gp(U,Z) '

∧2
Hom(U,Z). Moreover, we

may bi-linearly extend any element
∧2

Hom(U,Z) to give an alternating 2-form in
∧2

HomR(V,R) ⊂∧2
HomR(V,C). The image of

∧2
Hom(U,Z) ↪→

∧2
HomR(V,C) is the set of alternating two forms

taking integer values on U × U .

The connecting homomorphism of the exponential map Pic(X)
ch→ H2(X,Z) associates to a line

bundle its Chern class (this is one way to define the first Chern class of a line bundle). If we make

the canonical identifications H2(X,Z) '
∧2

Hom(U,Z) ⊂
∧2

HomR(V,C), we ask which 2-forms
are realized as the Chern classes of line bundles.

We will use Im ch = ker(H2(X,Z) → H2(X,OX)). Recall that for the sequence of injections
Z→ C→ OX the cohomology yields:

H2(X,Z) −→ H2(X,C) −→ H2(X,OX)
↓ ↓ ↓∧2

Hom(U,Z)
R−linear extension−→

∧2
(T

⊕
T̄ )

projection−→
∧2

T̄

Here the vertical arrows are isomorphisms and the diagram is commutative. Let E ∈
∧2

Hom(U,Z)
be a 2-form, which is necessarily real valued. Then, one could check by hand that E is killed by the
projection map to

∧2
T̄ if and only if ∀x, y ∈ V the form E satisfies E(x, y) = E(ix, iy). This gives

a complete description of the 2-forms that are Chern classes. We put together these observations
in the following:

Fact 5.5. Any two form E ∈
∧2

HomR(V,C) is a Chern class if and only if

1. E is integral valued on the lattice, that is E(U × U) ⊂ Z. This characterizes the image of
H2(X,Z) ↪→ H2(X,C).
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2. ∀x, y ∈ V we get E(x, y) = E(ix, iy). This ensures E is in the kernel of the map

H2(X,Z)→ H2(X,OX) .

The two forms satisfying E(x, y) = E(ix, iy) are special in the sense that they correspond to
Hermitian forms on V .

Definition 5.6. A function h : V × V → C that is C-linear in the first entry and that satisfies
h(x, y) = h(y, x) is called a Hermitian form on V .

Given a Hermitian form H on V , let g and ω be real valued functions such that H = g + iω.
Then, ω is a 2-form satisfying ω(x, y) = ω(ix, iy) and g(x, y) = ω(ix, y). So we may recover the
Hermitian form H from its imaginary part ω. Therefore we may say that the Chern classes of line
bundles on X are in one to one correspondance with Hermitian forms on V whose imaginary part
on U × U is integer valued.

5.3 Appel-Humbert Theorem

Having determined the Chern classes of line bundles, we are inclined to ask; If we fix a Chern class
E then what extra data do we need to specify a line bundle on X with Chern class E?

After a couple of intricate but explicit cohomology calculations, chasing around various con-
necting homomorphisms and identifications one arrives at the following result. (Warning : When
in doubt use the following rule of thumb. Any e that is exponentiated refers to Euler’s number.
But an e appearing with a subscript is a cocycle.)

Lemma 5.7 (Mumford, p. 19). Let H be a Hermitian form whose imaginary part, which we will
denote by E, takes integral values on U × U . Let α : U → C∗1 := {z ∈ C | ‖z‖ = 1} be a function
with the following transformation rule:

α(u+ u′) = eiπE(u,u′)α(u)α(u′) ∀u, u′ ∈ U.

There exists such an α. Moreover, if we define e : U → H∗ in the following way,

eu(z) = α(u)eπH(z,u)+ 1
2πH(u,u)

we get a 1-cocycle. If we denote the line bundle associated to this 1-cocycle with L(H,α) then the
Chern class of L(H,α) is E.

Note that if e and e′ are 1-cocycles obtained from the data (H,α) and (H ′, α′) respectively,
then their product e · e′ will be obtained from (H + H ′, α · α′). In particular, this implies that
L(H,α) ⊗ L(H ′, α′) ' L(H + H ′, α · α′) because the main result of Section 5.1 was that tensor
product and multiplication of 1-cocycles are compatible.

When H = 0 the corresponding α is just a group homomorphism α : U → C∗1. From now on H
will always denote a Hermitian form corresponding to a Chern class, and pairs (H,α) will denote
pairs compatible as in the lemma above. Then we have an exact sequence of groups:

0→ Hom(U,C∗1)→ {(H,α)} → {H} → 0
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Let us denote by µ the map {(H,α)} → Pic(X) : (H,α) 7→ L(H,α). If we denote by Pic0(X)
the group of line bundles with Chern class 0, then composing µ with the inclusion of Hom(U,C∗1)
gives a map λ : Hom(U,C∗1) → Pic0(X). Finally, we have the good old isomorphism between
{H} ∼→ Chern Classes = ker(H2(X,Z)→ H2(X,OX)), let us denote this map by ν. We have the
following important theorem, whose proof we will omit.

Theorem 5.8 (Appel-Humbert). The following diagram with exact rows is commutative with
isomorphic vertical arrows:

0 → Hom(U,C∗1) → {(H,α)} → {H} → 0
λ ↓ µ ↓ ν ↓

0 → Pic0(X) → Pic(X) → ker(H2(X,Z)→ H2(X,OX)) → 0

6 Consequences

Fix a compatible pair (H,α) as before. Let N = {v ∈ V | H(v, ·) ≡ 0} be the degeneracy locus of
H. Let U ′ = U ∩N be the sublattice of U lying in the degeneracy loci and denote by X ′ = N/U ′

the corresponding subtorus of X = V/U .

Here is a brief selection of results that follow from the infrastructure we have established so
far. Their proofs still require quite a lot of work, but now the statements are understandable.

1. If L(H,α) induces a morphism from X then it has to factor through X/X ′. In particular, if
H is degenerate then the line bundle L(H,α) can not be ample.

2. If H is not positive definite, then L(H,α) has no non-zero sections.

3. Assume H is positive definitive. Let [E] be a matrix expressing the 2-form E associated to
H with respect to a minimal set of generators of the lattice U . Then:

h0(X,L(H,α)) =
√

det[E]

4. H is positive definitive if and only if L(H,α)⊗3 is very ample.

5. X ‘is’ an algebraic variety if and only if it ‘is’ a projective variety.

6. If dimC V ≥ 2 then for almost all lattices U ∈ V , there are no non-zero Hermitian forms
whose imaginary part is integral valued on U × U . Hence, in light of the previous results,
almost all complex tori X = V/U of dimension ≥ 2 are not algebraic.
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