DEFINITION OF ABELIAN VARIETIES AND THE THEOREM OF THE CUBE

ANGELA ORTEGA
(NOTES BY B. BAKKER)

Throughout k is a field (not necessarily closed), and all varieties are over k. For a variety X / k, by a basepoint we'll mean a k-rational point $x_{0} \in X(k)$.

1. Definition and examples

Definition 1. An abelian variety X / k is a complete variety X with the structure of a group (in the category of varieties). Thus there exists:
(1) an identity basepoint $e \in X(k)$;
(2) a multiplication map $m: X \times X \rightarrow X$ satisfying the associative property;
(3) an inverse map $i: X \rightarrow X$ interacting with m in the usual way

A homomorphism of abelian varieties is a morphism of varieties respecting the group structure.

Remark 2. A more precise definition is that the functor of points of X is given a factorization through the forgetful functor Groups \rightarrow Sets. A homomorphism of abelian varieties is a natural transformation of the corresponding Groups-valued functors of points.

Example 3. (1) An elliptic curve E / k is an abelian variety. E can be realized as a plane cubic $E \subset \mathbb{P}^{2}$, and addition is given by the usual condition that $x+y+z=0$ if they are colinear.
(2) If $\mathbb{Z}^{2 g} \cong \Lambda \subset \mathbb{C}^{g}$ is a lattice, then the complex torus \mathbb{C}^{g} / Λ is a complex (in fact Kähler) manifold with the structure of a group; when it happens to be the \mathbb{C}-points of a variety, that variety is an abelian variety.
(3) We saw last time that in fact every compact complex group manifold is a torus.
(4) If C / k is a curve, the $\mathrm{Jacobian} \operatorname{Jac}(C)$ is a projective abelian variety, defined over k. In fact, we'll see later that all abelian varieties are projective.
(5) For X / \mathbb{C} a smooth complete variety, there is a natural map $H_{1}(X, \mathbb{Z}) \rightarrow$ $H^{0}\left(X, \Omega_{X}^{1}\right)$ given by integration along a cycle, and the albanese is defined as

$$
\operatorname{Alb}(X):=H^{0}\left(X, \Omega_{X}^{1}\right)^{\vee} / H_{1}(X, \mathbb{Z})
$$

For $X=C$ a complex curve, this is just the Jacobian.
Our first aim is to prove an algebraic analog of Example 3.(3) above.
Lemma 4. For X, Y, Z varieties with X complete, x_{0}, y_{0}, z_{0} basepoints, and $f: X \times$ $Y \rightarrow Z$ a morphism such that $f\left(X \times y_{0}\right)=z_{0}$, there is a morphism g so that

commutes, where p is projection onto the second factor.

[^0]Proof. Define $g(y)=f\left(x_{0}, y\right)$. The condition that two morphisms be equal is a closed condition on the source ${ }^{1}$, so we need only show $f=g \circ p$ on a nonempty open set. Let $z_{0} \in U \subset Z$ be an open affine, and let $F=Z \backslash U, G=p\left(f^{-1}(F)\right) \subset Y$. X is complete so $G \subset Y$ is the closed set of Y-coordinates that don't arise among the points of $X \times Y$ that get sent to U. In particular, $y_{0} \in Y \backslash G=: V$ which is an open set. Moreover, for all closed points $y \in V, X \times y$ gets mapped to U under f by construction. As X is complete, it must be sent to a point, i.e. $g(y)$.

Corollary 5. If X, Y are abelian varieties and $f: X \rightarrow Y$ is any morphism, then $f(x)=h(x) \cdot f(e)$ for a homomorphism $h: X \rightarrow Y$.

Proof. We may as well assume $f(e)=e$. Define $F: X \times X \rightarrow Y$ by $F(x, y)=$ $f(x y) \cdot f(y)^{-1} \cdot f(x)^{-1}$. This sends $X \times e$ to e, and now apply the lemma.

Corollary 6. An abelian variety X is commutative.
Proof. Apply Corollary 5 to the inversion map $i: X \rightarrow X$.
From now on, we'll therefore write the group law additively, and denote by 0 the identity. Note that we're really using the completeness of X here; there are many noncommutative connected group schemes (like $\mathrm{GL}_{n}=\operatorname{Spec} k[X]\left[\operatorname{det}(X)^{-1}\right]$), but they have to be non-complete.

2. Cohomology and Base-Change

This is a really important theorem, and its application to proving the theorem of the cube is as good a time as any to learn it. The seemingly technical heart of the result is the following theorem:

Theorem 7. Let $f: X \rightarrow Y$ be a morphism of noetherian schemes with $Y=\operatorname{Spec} A$ affine and F a coherent sheaf on X flat over Y. Then there is a finite complex

$$
K^{\bullet}=\left[0 \rightarrow K^{0} \rightarrow K^{1} \rightarrow \cdots \rightarrow K^{n-1} \rightarrow K^{n} \rightarrow 0\right]
$$

of finitely-generated locally free A-modules such that there is an isomorphism of functors

$$
H^{p}\left(X \times_{Y} \operatorname{Spec} B, F \otimes_{A} B\right) \cong H^{p}\left(K^{\bullet} \otimes_{A} B\right)
$$

on the category of A-algebras for each $p \geq 0$.
The key part of this is the finiteness and the finite-generation. Indeed, just taking the Cech complex associated to some affine cover of X would give us a complex of flat A-modules universally computing the cohomology, but typically this won't be finite or finitely-generated.

Let's see the consequences of this theorem. As a matter of notation, for a point $y \in Y$, denote by $X(y)=X \times_{Y} \operatorname{Spec} k(y)$ and $F(y)=F \otimes_{\mathcal{O}_{Y}} k(y)$ the fibers over y. For a scheme X / k we define $h^{p}(X, F)=\operatorname{dim}_{k} H^{p}(X, F)$, so for example $h^{p}(X(y), F(y))=$ $\operatorname{dim}_{k(y)} H^{p}(X(y), F(y))$.
Corollary 8. In the above situation, for all $p \geq 0$,
(1) $y \mapsto h^{p}(X(y), F(y))$ is upper semicontinuous;
(2) $y \mapsto \chi(X(y), F(y))$ is locally constant.

No one can ever remember which semicontinuity means which thing, so the above says that cohomology can jump up on special fibers.

[^1]Proof. Let $d^{p}: K^{p} \rightarrow K^{p+1}$ be the differential in the complex guaranteed by the theorem. The key idea is that

$$
\begin{aligned}
h^{p}(X(y), F(y)) & =\operatorname{dim}_{k(y)} \operatorname{ker}\left(d^{p} \otimes k(y)\right)-\operatorname{dim}_{k(y)} \operatorname{im}\left(d^{p-1} \otimes k(y)\right) \\
& =\operatorname{dim}_{k(y)} K^{p} \otimes k(y)-\operatorname{dim}_{k(y)} \operatorname{im}\left(d^{p} \otimes k(y)\right)-\operatorname{dim}_{k(y)} \operatorname{im}\left(d^{p-1} \otimes k(y)\right)
\end{aligned}
$$

and the first term on the right in the last line is locally constant, while the last two are semicontinuous. Indeed, for any map of sheaves $\varphi: E \rightarrow F$ on Y , the set

$$
\left\{y \in Y \mid \operatorname{rk}_{k(y)}(\varphi \otimes k(y))<r\right\}
$$

is the zero set of the map $\bigwedge^{r} \varphi: \bigwedge^{r} E \rightarrow \bigwedge^{r} F$ and is closed. In fact, this even gives a natural scheme structure to this set.

The euler characteristic is the alternating sum of $\operatorname{dim}_{k(y)} K^{p} \otimes k(y)$, which is clearly locally constant as the K^{p} are locally free.

Corollary 9. Now assume Y is reduced and connected. The following are equivalent:
(1) $y \mapsto h^{p}(X(y), F(y))$ is constant;
(2) $R^{p} f_{*} F$ is locally free and the natural map

$$
\left(R^{p} f_{*} F\right)(y) \stackrel{\cong}{\rightarrow} H^{p}(X(y), F(y))
$$

is an isomorphism.
Proof. The backward implication is clear. For the forward direction, we need to know that for E a coherent sheaf on Y, if $\operatorname{rk} E(y)$ is constant then it is locally free (this of course uses the reducedness!). By the proof of Corollary 9, if $h^{p}(X(y), F(y))$ is constant, then

$$
\operatorname{dim}_{k(y)} \operatorname{im}\left(d^{p} \otimes k(y)\right) \text { and } \operatorname{dim}_{k(y)} \operatorname{im}\left(d^{p-1} \otimes k(y)\right)
$$

are both constant, which implies $\operatorname{im} d^{p}, \operatorname{im} d^{p-1}, \operatorname{ker} d^{p}$, and $\operatorname{ker} d^{p-1}$ are all locally free. This gives a splitting of our complex at the p th place:

Now the theorem says H universally computes the p th cohomology. Right off the bat that means $H \cong R^{p} f_{*} F$, and base-changing to y,

$$
H^{p}(X(y), F(y)) \cong H \otimes k(y) \cong\left(R^{p} f_{*} F\right)(y)
$$

by the canonical maps.
Corollary 10 (Seesaw theorem). For X a complete variety and L a line bundle on $X \times T$, the set

$$
T_{1}=\left\{t \in T|L|_{X \times t} \text { is trivial }\right\}
$$

is closed in T and $L_{X \times T_{1}} \cong p_{2}^{*} M$ for a line bundle M on T_{1} (with the reduced scheme structure).
Proof. First, observe
Lemma 11. A line bundle M on a complete variety X is trivial if and only if $h^{0}(M)>$ 0 and $h^{0}\left(M^{-1}\right)>0$.

Proof. The forward direction is clear. If there is a section $\mathcal{O}_{X} \rightarrow M$ and a section $\mathcal{O}_{X} \rightarrow M^{-1}$, then their tensor product is a map $\mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$, which must be a constant since neither section was the zero section. But then neither section is ever zero, and hence they are isomorphisms.

Now by the lemma,

$$
T_{1}=\left\{t \in Y \mid h^{0}\left(\left.L\right|_{X \times t}\right)>0\right\} \cap\left\{t \in Y \mid h^{0}\left(\left.L^{-1}\right|_{X \times t}\right)>0\right\}
$$

which by Corollary 8 is closed. Replace T by T_{1} with the reduced scheme structure, so we can assume L is trivial on every fiber of the projection $p: X \times T \rightarrow T$. Then by Corollary $9, M=p_{*} L$ is a line bundle. Now, it follows from the fact that the natural map $p^{*} M \rightarrow L$ is an isomorphism on every fiber that in fact its an isomorphism.
Theorem 12 (Theorem of the cube). Let X, Y be complete varieties, Z any variety, and x_{0}, y_{0}, z_{0} basepoints. Any line bundle L on $X \times Y \times Z$ whose restriction to each of $X \times Y \times z_{0}, X \times y_{0} \times Z, x_{0} \times Y \times Z$ is trivial is itself trivial.

Let's first give a proof over \mathbb{C} using the exponential sequence, at least in the case Z is also compete. For simplicity, assume none of X, Y, Z have torsion in their cohomology, though it won't matter. Then the Künneth theorem tells us that the natural map

$$
\begin{equation*}
H^{*}(X, \mathbb{Z}) \otimes H^{*}(Y, \mathbb{Z}) \otimes H^{*}(Z, \mathbb{Z}) \xrightarrow{p_{1}^{*} \cup p_{2}^{*} \cup p_{3}^{*}} H^{*}(X \times Y \times Z, \mathbb{Z}) \tag{1}
\end{equation*}
$$

is an isomorphism, where p_{i} is the projection to the i th factor (we let $p_{i j}$ be the projection to the i and j factors). Let ι_{i} be the inclusion of the i th factor and $\iota_{i j}$ the inclusion of the i and j factors using the basepoints. Concretely,

$$
\iota_{1}: X \times y_{0} \times z_{0} \rightarrow X \times Y \times Z, \quad \iota_{12}: X \times Y \times z_{0} \rightarrow X \times Y \times Z
$$

If you think about the isomorphism (1) in degree 2, it means that for any class $\alpha \in$ $H^{2}(X \times Y \times Z, \mathbb{Z})$,

$$
\alpha=\alpha_{12}+\alpha_{13}+\alpha_{23}-\alpha_{1}-\alpha_{2}-\alpha_{3}
$$

where $\alpha_{i j}$ (respectively α_{i}) is α inserted in the i and j th slots (respectively $p_{i}^{*} \alpha$ inserted in the i th slot) via the Künneth formula, so $\alpha_{12}=\iota_{12}^{*} \alpha \otimes 1, \alpha_{1}=\iota_{1}^{*} \alpha \otimes 1 \otimes 1$. In particular, this means if $\iota_{i j}^{*} \alpha=0$ for all i, j, then $\alpha=0$ (this is what it means to be "quadratic").

The long exact sequence associated to the exponential sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O} \rightarrow \mathcal{O}^{*} \rightarrow 0
$$

gives us an exact sequence

$$
H^{1}(X \times Y \times Z, \mathcal{O}) \xrightarrow{\exp } H^{1}\left(X \times Y \times Z, \mathcal{O}^{*}\right) \xrightarrow{c_{1}} H^{2}(X \times Y \times Z, \mathbb{Z})
$$

Given a line bundle L on $X \times Y \times Z$ thought of as an element of the middle group, $\iota_{i j}^{*} \mathrm{c}_{1}(L)=\mathrm{c}_{1}\left(\iota_{i j}^{*} L\right)=0$ for all i, j, so $\mathrm{c}_{1}(L)=0$ and $L=\exp (A)$ for some $A \in$ $H^{1}(X \times Y \times Z, \mathcal{O})$. But

$$
H^{1}(X, \mathcal{O}) \oplus H^{1}(Y, \mathcal{O}) \oplus H^{1}(Z, \mathcal{O}) \xrightarrow{p_{1}^{*}+p_{2}^{*}+p_{3}^{*}} H^{1}(X \times Y \times Z, \mathcal{O})
$$

is an isomorphism, and the hypotheses imply that $\iota_{i}^{*} \exp (A)=\exp \left(\iota_{i}^{*} A\right)=0$ for each i. Thus,

$$
L=\exp \left(\sum_{i} \iota_{i}^{*} A\right)=0
$$

Here's a sketch of the algebraic proof:

Sketch of proof. By the seesaw theorem, its enough to show that L is trivial when restricted to $x \times Y \times z$ for all $x \times z \in X \times Z$, for then L is a pullback from $X \times Z$, but it is trivial on $X \times y_{0} \times Z$. We can prove this using the theorem in the case that X is a curve using the following:

Lemma 13. For any two $x, x^{\prime} \in X$, there is an irreducible curve on X passing through x, x^{\prime}.

Proof. This is obvious by Bertini for X projective, but by Chow's lemma this is enough.

So now assume X is a curve; after normalizing we can assume X is smooth. Secretly we can conclude because considering L as a family of line bundles on X parametrized by $Y \times Z$, we have

$$
Y \times Z \rightarrow \operatorname{Jac}(X)
$$

but by the hypotheses and Lemma 4 , this factors through the projection to Y, i.e. L is a pullback from $X \times Y$, and therefore must be trivial, again by the hypotheses.

If you don't want to use the existence of the Jacobian, there is a work-around, but I'm afraid you'll have to look in Mumford for that.

3. Consequences for abelian varieties

First note the following immediate corollary of the theorem of the cube:
Corollary 14. For X, Y, Z as in Theorem 12, let L be any line bundle on $X \times Y \times Z$. Then

$$
L \cong p_{12}^{*} L \otimes p_{13}^{*} L \otimes p_{23}^{*} L \otimes p_{1}^{*} L^{-1} \otimes p_{2}^{*} L^{-1} \otimes p_{3}^{*} L^{-1}
$$

Proof. Both sides have the same restriction to $X \times Y \times z_{0}$ etc.
For X an abelian variety, denote by $m_{i j}: X \times X \times X \rightarrow X$ the sum of the i and j th coordinates (i.e. $m_{i j}=m \circ p_{i j}$ where $m: X \times X \rightarrow X$ is the addition map), by m_{123} the sum of all three coordinates, and for consistency $m_{i}=p_{i}$.
Corollary 15. Let X be an abelian variety and L a line bundle on X. Then

$$
m_{123}^{*} L \cong m_{12}^{*} L \otimes m_{13}^{*} L \otimes m_{23}^{*} L \otimes m_{1}^{*} L^{-1} \otimes m_{2}^{*} L^{-1} \otimes m_{3}^{*} L^{-1}
$$

Proof. Apply the last corollary to $m_{123}^{*} L$.
Corollary 16. Let X be any variety, Y an abelian variety, $f, g, h: X \rightarrow Y$ morphisms, and L a line bundle on Y. Then

$$
(f+g+h)^{*} L \cong(f+g)^{*} L \otimes(f+h)^{*} L \otimes(g+h)^{*} L \otimes f^{*} L^{-1} \otimes g^{*} L^{-1} \otimes h^{*} L^{-1}
$$

Proof. Pull back the previous corollary along $f \times g \times h: X \rightarrow Y \times Y \times Y$.
For X an abelian variety, let $n: X \rightarrow X$ be the multiplication by n map, which can be inductively defined by $n+1=m \circ(n \times \mathrm{id})$. We also denote by $-1=i$ the inversion. The following two results are the most memorable results of this section:
Theorem 17. For X an abelian variety and L a line bundle on X,

$$
n^{*} L \cong L^{\frac{n^{2}+n}{2}} \otimes(-1)^{*} L^{\frac{n^{2}-n}{2}}
$$

Proof. The theorem is true for $n=0,1,-1$, and if its true for n its true for $-n$ as well. By Corollary 16 applied to $f=n, g=1, h=-1$, we have

$$
n^{*} L \cong(n+1)^{*} L \otimes(n-1)^{*} L \otimes \mathcal{O} \otimes n^{*} L^{-1} \otimes L^{-1} \otimes(-1)^{*} L^{-1}
$$

Computing this out using the theorem for all the terms except $(n+1)^{*} L$, we conclude by induction that the result is true for $n>0$.

For any k-point $x \in X(k)$, there is a translation map $t_{x}: X \rightarrow X$ given by $t_{x}(y)=$ $y+x$.

Theorem 18 (Theorem of the square). For any line bundle L on an abelian variety X and any two k-points $x, y \in X(k)$,

$$
t_{x+y}^{*} L \otimes L \cong t_{x}^{*} L \otimes t_{y}^{*} L
$$

Proof. Apply Corollary 16 to $f=\mathrm{id}$, and g, h the constant maps with images x, y, respectively.

This theorem says that for any line bundle L, the map

$$
\varphi_{L}: X \rightarrow \operatorname{Pic}(X), \quad x \mapsto t_{x}^{*} L \otimes L^{-1}
$$

is a homomorphism. Technically at the moment $\operatorname{Pic}(X)$ is just the set of line bundles on X defined over k, and the map is only defined set theoretically on the k-points of X, but we'll see soon that this is actually a homomorphism of abelian varieties.

[^0]: Date: December 11, 2014.

[^1]: ${ }^{1}$ The set where they're equal is the base-change of the diagonal (and has a natural scheme structure).

