
DEFINITION OF ABELIAN VARIETIES AND
THE THEOREM OF THE CUBE

ANGELA ORTEGA
(NOTES BY B. BAKKER)

Throughout k is a field (not necessarily closed), and all varieties are over k. For a
variety X/k, by a basepoint we’ll mean a k-rational point x0 ∈ X(k).

1. Definition and examples

Definition 1. An abelian variety X/k is a complete variety X with the structure of a
group (in the category of varieties). Thus there exists:

(1) an identity basepoint e ∈ X(k);
(2) a multiplication map m : X ×X → X satisfying the associative property;
(3) an inverse map i : X → X interacting with m in the usual way

A homomorphism of abelian varieties is a morphism of varieties respecting the group
structure.

Remark 2. A more precise definition is that the functor of points of X is given a fac-
torization through the forgetful functor Groups→ Sets. A homomorphism of abelian
varieties is a natural transformation of the corresponding Groups-valued functors of
points.

Example 3. (1) An elliptic curve E/k is an abelian variety. E can be realized
as a plane cubic E ⊂ P2, and addition is given by the usual condition that
x+ y + z = 0 if they are colinear.

(2) If Z2g ∼= Λ ⊂ Cg is a lattice, then the complex torus Cg/Λ is a complex (in
fact Kähler) manifold with the structure of a group; when it happens to be the
C-points of a variety, that variety is an abelian variety.

(3) We saw last time that in fact every compact complex group manifold is a torus.
(4) If C/k is a curve, the Jacobian Jac(C) is a projective abelian variety, defined

over k. In fact, we’ll see later that all abelian varieties are projective.
(5) For X/C a smooth complete variety, there is a natural map H1(X,Z) →

H0(X,Ω1
X) given by integration along a cycle, and the albanese is defined as

Alb(X) := H0(X,Ω1
X)∨/H1(X,Z)

For X = C a complex curve, this is just the Jacobian.

Our first aim is to prove an algebraic analog of Example 3.(3) above.

Lemma 4. For X,Y, Z varieties with X complete, x0, y0, z0 basepoints, and f : X ×
Y → Z a morphism such that f(X × y0) = z0, there is a morphism g so that

X × Y
f //

p

��

Z

Y

g

;;

commutes, where p is projection onto the second factor.
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Proof. Define g(y) = f(x0, y). The condition that two morphisms be equal is a closed
condition on the source1, so we need only show f = g ◦ p on a nonempty open set. Let
z0 ∈ U ⊂ Z be an open affine, and let F = Z rU , G = p(f−1(F )) ⊂ Y . X is complete
so G ⊂ Y is the closed set of Y -coordinates that don’t arise among the points of X×Y
that get sent to U . In particular, y0 ∈ Y r G =: V which is an open set. Moreover,
for all closed points y ∈ V , X × y gets mapped to U under f by construction. As X is
complete, it must be sent to a point, i.e. g(y). �

Corollary 5. If X,Y are abelian varieties and f : X → Y is any morphism, then
f(x) = h(x) · f(e) for a homomorphism h : X → Y .

Proof. We may as well assume f(e) = e. Define F : X × X → Y by F (x, y) =
f(xy) · f(y)−1 · f(x)−1. This sends X × e to e, and now apply the lemma. �

Corollary 6. An abelian variety X is commutative.

Proof. Apply Corollary 5 to the inversion map i : X → X. �

From now on, we’ll therefore write the group law additively, and denote by 0 the
identity. Note that we’re really using the completeness of X here; there are many
noncommutative connected group schemes (like GLn = Spec k[X][det(X)−1]), but they
have to be non-complete.

2. Cohomology and base-change

This is a really important theorem, and its application to proving the theorem of the
cube is as good a time as any to learn it. The seemingly technical heart of the result
is the following theorem:

Theorem 7. Let f : X → Y be a morphism of noetherian schemes with Y = SpecA
affine and F a coherent sheaf on X flat over Y . Then there is a finite complex

K• = [0→ K0 → K1 → · · · → Kn−1 → Kn → 0]

of finitely-generated locally free A-modules such that there is an isomorphism of functors

Hp(X ×Y SpecB,F ⊗A B) ∼= Hp(K• ⊗A B)

on the category of A-algebras for each p ≥ 0.

The key part of this is the finiteness and the finite-generation. Indeed, just taking
the Ĉech complex associated to some affine cover of X would give us a complex of flat
A-modules universally computing the cohomology, but typically this won’t be finite or
finitely-generated.

Let’s see the consequences of this theorem. As a matter of notation, for a point y ∈ Y ,
denote by X(y) = X ×Y Spec k(y) and F (y) = F ⊗OY

k(y) the fibers over y. For a
scheme X/k we define hp(X,F ) = dimkH

p(X,F ), so for example hp(X(y), F (y)) =
dimk(y)H

p(X(y), F (y)).

Corollary 8. In the above situation, for all p ≥ 0,
(1) y 7→ hp(X(y), F (y)) is upper semicontinuous;
(2) y 7→ χ(X(y), F (y)) is locally constant.

No one can ever remember which semicontinuity means which thing, so the above
says that cohomology can jump up on special fibers.

1The set where they’re equal is the base-change of the diagonal (and has a natural scheme structure).
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Proof. Let dp : Kp → Kp+1 be the differential in the complex guaranteed by the
theorem. The key idea is that

hp(X(y), F (y)) = dimk(y) ker(dp ⊗ k(y))− dimk(y) im(dp−1 ⊗ k(y))

= dimk(y)K
p ⊗ k(y)− dimk(y) im(dp ⊗ k(y))− dimk(y) im(dp−1 ⊗ k(y))

and the first term on the right in the last line is locally constant, while the last two are
semicontinuous. Indeed, for any map of sheaves ϕ : E → F on Y, the set

{y ∈ Y | rkk(y)(ϕ⊗ k(y)) < r}

is the zero set of the map
∧r ϕ :

∧r E →
∧r F and is closed. In fact, this even gives a

natural scheme structure to this set.
The euler characteristic is the alternating sum of dimk(y)K

p⊗ k(y), which is clearly
locally constant as the Kp are locally free. �

Corollary 9. Now assume Y is reduced and connected. The following are equivalent:
(1) y 7→ hp(X(y), F (y)) is constant;
(2) Rpf∗F is locally free and the natural map

(Rpf∗F )(y)
∼=−→ Hp(X(y), F (y))

is an isomorphism.

Proof. The backward implication is clear. For the forward direction, we need to know
that for E a coherent sheaf on Y , if rkE(y) is constant then it is locally free (this
of course uses the reducedness!). By the proof of Corollary 9, if hp(X(y), F (y)) is
constant, then

dimk(y) im(dp ⊗ k(y)) and dimk(y) im(dp−1 ⊗ k(y))

are both constant, which implies im dp, im dp−1, ker dp, and ker dp−1 are all locally free.
This gives a splitting of our complex at the pth place:

Kp−1

��

// Kp

��

// Kp+1

��
ker dp−1 ⊕K ′p−1 (

0 ∼=
0 0
0 0

)// im dp−1 ⊕H ⊕K ′p(
0 0 ∼=
0 0 0

) // im dp ⊕K ′p+1

Now the theorem says H universally computes the pth cohomology. Right off the bat
that means H ∼= Rpf∗F , and base-changing to y,

Hp(X(y), F (y)) ∼= H ⊗ k(y) ∼= (Rpf∗F )(y)

by the canonical maps. �

Corollary 10 (Seesaw theorem). For X a complete variety and L a line bundle on
X × T , the set

T1 = {t ∈ T | L|X×t is trivial}
is closed in T and LX×T1

∼= p∗2M for a line bundle M on T1 (with the reduced scheme
structure).

Proof. First, observe

Lemma 11. A line bundle M on a complete variety X is trivial if and only if h0(M) >
0 and h0(M−1) > 0.
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Proof. The forward direction is clear. If there is a section OX → M and a section
OX →M−1, then their tensor product is a map OX → OX , which must be a constant
since neither section was the zero section. But then neither section is ever zero, and
hence they are isomorphisms. �

Now by the lemma,

T1 = {t ∈ Y | h0(L|X×t) > 0} ∩ {t ∈ Y | h0(L−1|X×t) > 0}

which by Corollary 8 is closed. Replace T by T1 with the reduced scheme structure, so
we can assume L is trivial on every fiber of the projection p : X × T → T . Then by
Corollary 9, M = p∗L is a line bundle. Now, it follows from the fact that the natural
map p∗M → L is an isomorphism on every fiber that in fact its an isomorphism. �

Theorem 12 (Theorem of the cube). Let X,Y be complete varieties, Z any variety,
and x0, y0, z0 basepoints. Any line bundle L on X ×Y ×Z whose restriction to each of
X × Y × z0, X × y0 × Z, x0 × Y × Z is trivial is itself trivial.

Let’s first give a proof over C using the exponential sequence, at least in the case Z is
also compete. For simplicity, assume none of X,Y, Z have torsion in their cohomology,
though it won’t matter. Then the Künneth theorem tells us that the natural map

H∗(X,Z)⊗H∗(Y,Z)⊗H∗(Z,Z)
p∗1∪p∗2∪p∗3−−−−−−→ H∗(X × Y × Z,Z) (1)

is an isomorphism, where pi is the projection to the ith factor (we let pij be the
projection to the i and j factors). Let ιi be the inclusion of the ith factor and ιij the
inclusion of the i and j factors using the basepoints. Concretely,

ι1 : X × y0 × z0 → X × Y × Z, ι12 : X × Y × z0 → X × Y × Z

If you think about the isomorphism (1) in degree 2, it means that for any class α ∈
H2(X × Y × Z,Z),

α = α12 + α13 + α23 − α1 − α2 − α3

where αij (respectively αi) is α inserted in the i and jth slots (respectively p∗iα inserted
in the ith slot) via the Künneth formula, so α12 = ι∗12α ⊗ 1, α1 = ι∗1α ⊗ 1 ⊗ 1. In
particular, this means if ι∗ijα = 0 for all i, j, then α = 0 (this is what it means to be
“quadratic”).

The long exact sequence associated to the exponential sequence

0→ Z→ O → O∗ → 0

gives us an exact sequence

H1(X × Y × Z,O)
exp−−→ H1(X × Y × Z,O∗) c1−→ H2(X × Y × Z,Z)

Given a line bundle L on X × Y × Z thought of as an element of the middle group,
ι∗ijc1(L) = c1(ι

∗
ijL) = 0 for all i, j, so c1(L) = 0 and L = exp(A) for some A ∈

H1(X × Y × Z,O). But

H1(X,O)⊕H1(Y,O)⊕H1(Z,O)
p∗1+p∗2+p∗3−−−−−−→ H1(X × Y × Z,O)

is an isomorphism, and the hypotheses imply that ι∗i exp(A) = exp(ι∗iA) = 0 for each
i. Thus,

L = exp

(∑
i

ι∗iA

)
= 0

Here’s a sketch of the algebraic proof:
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Sketch of proof. By the seesaw theorem, its enough to show that L is trivial when
restricted to x× Y × z for all x× z ∈ X ×Z, for then L is a pullback from X ×Z, but
it is trivial on X × y0 × Z. We can prove this using the theorem in the case that X is
a curve using the following:

Lemma 13. For any two x, x′ ∈ X, there is an irreducible curve on X passing through
x, x′.

Proof. This is obvious by Bertini for X projective, but by Chow’s lemma this is enough.
�

So now assume X is a curve; after normalizing we can assume X is smooth. Secretly
we can conclude because considering L as a family of line bundles on X parametrized
by Y × Z, we have

Y × Z → Jac(X)

but by the hypotheses and Lemma 4, this factors through the projection to Y , i.e. L
is a pullback from X × Y , and therefore must be trivial, again by the hypotheses.

If you don’t want to use the existence of the Jacobian, there is a work-around, but
I’m afraid you’ll have to look in Mumford for that. �

3. Consequences for abelian varieties

First note the following immediate corollary of the theorem of the cube:

Corollary 14. For X,Y, Z as in Theorem 12, let L be any line bundle on X × Y ×Z.
Then

L ∼= p∗12L⊗ p∗13L⊗ p∗23L⊗ p∗1L−1 ⊗ p∗2L−1 ⊗ p∗3L−1

Proof. Both sides have the same restriction to X × Y × z0 etc. �

For X an abelian variety, denote by mij : X ×X ×X → X the sum of the i and jth
coordinates (i.e. mij = m ◦ pij where m : X ×X → X is the addition map), by m123

the sum of all three coordinates, and for consistency mi = pi.

Corollary 15. Let X be an abelian variety and L a line bundle on X. Then

m∗123L
∼= m∗12L⊗m∗13L⊗m∗23L⊗m∗1L−1 ⊗m∗2L−1 ⊗m∗3L−1

Proof. Apply the last corollary to m∗123L. �

Corollary 16. Let X be any variety, Y an abelian variety, f, g, h : X → Y morphisms,
and L a line bundle on Y . Then

(f + g + h)∗L ∼= (f + g)∗L⊗ (f + h)∗L⊗ (g + h)∗L⊗ f∗L−1 ⊗ g∗L−1 ⊗ h∗L−1

Proof. Pull back the previous corollary along f × g × h : X → Y × Y × Y . �

For X an abelian variety, let n : X → X be the multiplication by n map, which can
be inductively defined by n+ 1 = m◦ (n× id). We also denote by −1 = i the inversion.
The following two results are the most memorable results of this section:

Theorem 17. For X an abelian variety and L a line bundle on X,

n∗L ∼= L
n2+n

2 ⊗ (−1)∗L
n2−n

2

Proof. The theorem is true for n = 0, 1,−1, and if its true for n its true for −n as well.
By Corollary 16 applied to f = n, g = 1, h = −1, we have

n∗L ∼= (n+ 1)∗L⊗ (n− 1)∗L⊗O ⊗ n∗L−1 ⊗ L−1 ⊗ (−1)∗L−1

Computing this out using the theorem for all the terms except (n+ 1)∗L, we conclude
by induction that the result is true for n > 0. �
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For any k-point x ∈ X(k), there is a translation map tx : X → X given by tx(y) =
y + x.

Theorem 18 (Theorem of the square). For any line bundle L on an abelian variety
X and any two k-points x, y ∈ X(k),

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL

Proof. Apply Corollary 16 to f = id, and g, h the constant maps with images x, y,
respectively. �

This theorem says that for any line bundle L, the map

ϕL : X → Pic(X), x 7→ t∗xL⊗ L−1

is a homomorphism. Technically at the moment Pic(X) is just the set of line bundles
on X defined over k, and the map is only defined set theoretically on the k-points of
X, but we’ll see soon that this is actually a homomorphism of abelian varieties.
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