The dual abelian variety
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These are notes for a talk given in the IRTG College Seminar on abelian varieties and
Fourier-Mukai transforms in Berlin on December 10, 2014. The outline mainly follows
Chapter 9 of Polishchuk’s book [5]|, whereas most proof details are taken from the classic
textbook of Mumford [4]. The lecture notes of Milne [3| and van der Geer/Moonen |[1]
provided additional inspiration.

1 The group Pic’ of an abelian variety
1.1 Set-up
Any line bundle £ on an abelian variety X over some algebraically closed field k defines a map
br: X (k) = Pic(X), x> [tiL® LY.
Remark. Since t{L£ ® LY = Ox and by the theorem of the square,
B LOLEGLOGL ~ i LOL = (HLRLY)® (LR LY),

the map ¢, is a homomorphism of abelian groups.

Recall that Irfan introduced the set
K(L)(k):=kerop, ={x e X(k)|t.L=L}.
Definition. Pic’(X) := {[£] € Pic(X) | ¢z = 0} = {[£] € Pic(X) |Vz € X (k) : 1L = L}.
From now on, simplify notation by writing £ for the isomorphism class of a line bundle £ in Pic(X) or
Pic?(X).
1.2 Properties of Pic’(X)

Lemma 1. Let L € PicO(X) and denote by m,p1,p2 : X x X — X the addition and the two natural
projections. Then

(a) m*L = pi LR psL,
(b) If Y is a scheme and f,g:Y — X are morphisms, then (f + g)*L = f*L @ g*L.

(c) If n € Z, then n’ L = L.
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Proof. (a) Let x € X (k). Then
(M LOPILY @P5LY )| xxfay ZHLOLY = Ox  and  (m*LOpLY@p3LY)[joyxx = LOLY = O,

since the maps in question are given explicitly by

m,pr,p2: X E{r} x X =X xX =X, my)=z+y, py) p2(y)

=, Y,
m,p,p2: X 22X x{z} > X xX =X, my)=cz+y, py) =y, py) ==

By the seesaw principle (as in Irfan’s talk), this implies m*L£ @ piLY @ p5LY =2 Oxy x.
(b) Consider the compositions Y IX9, % s x PP ¥ Then by (a),
(f+9) L= (fxgmL=(fxg)PILR(f xg)'PoL=fLRGL.

(¢) Induction. O
Lemma 2. Let £ € Pic®(X) be non-trivial. Then H*(X,L) =0 for all i > 0.

Proof. o If HO(L) # 0, then £ has a non-trivial section s, so (—1x)*£ has the non-trivial section

(=1x)*s. But by Lemmal[l] (—1x)*£ = £V, so both £ and £" have a non-trivial section. Hence
L = Oy, contradiction.

e Let i > 0 be the smallest positive integer such that H*(X, £) # 0. The maps

XL XX X, 20 (2,0) 2

give in cohomology ‘ . )
H (X, L) — H(X x X,m*L) - H'(X, L),

the composition being the identity. Using the first statement of Lemma [T} the Kiinneth formula

tells '
HY(X x X,m*L) = H(X x X,piLopsL) = P H/ (X, L)@ H (X, L).
j=0
Since HY(L) = 0 by the first bullet and H*=(X,£) = 0 for j > 1 by the choice of i, this yields
HY(X x X,m*L) = 0. So the identity of H(X, L) factors through 0. O

Proposition 3. Let L be a line bundle on the abelian variety X. Then:
(a) im ¢y C Pic®(X).

(b) If K(L)(k) is finite, then im ¢ = Pic®(X).

Proof. (a) Let x € X (k) and y € X (k). Using the theorem of the square,

(L L) =t LRGL ZHLOGLO LY @ty LY = LR LY.

(b) Pick M € Pic’(X) and suppose M ¢ im ¢ .
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A useful line bundle. On X x X, define the Mumford line bundle
ML) :==m*LopiL @psLY,

where m denotes the addition and p1, pa are the natural projections. Put N := A(£) ® pf MY and
let z € X (k). Then, similar to the proof of Lemma

N|{:E}><th;‘c®£v and N|Xx{x}%t;£®£\/ ®M\/’

The first projection.  Since M ¢ im ¢z, the line bundle t* L& LY ® MY is not trivial for all z € X (k),
because otherwise M = £ ® LY. Now Lemma [2] states that

HY(X x {a}, Nxxay) 2 H(X, L LY @ MY) =0, i>0,
By Grauert’s theorem [2, Corollary II1.12.9], for any i > 0 and = € X(k), the sheaf Ripy, N\ is
locally free and . '
Ripo N @ ki(z) = H'(X x {z}, N|x x(a})-
So Ripy, N = 0 for any i > 0. Applying the Leray spectral sequence
HI(X,Ripy N) = HT (X x X,N)

yields HY(X x X,N) =0,i>0.

The second projection. If = ¢ K(L)(k), then Ny x = t5L ® LY is not isomorphic to Ox. In
particular, by Lemma [2]
H' ({2} x X, Nayxx) 2 H(X, (L0 L) =0, i>0.

Similar to the situation above, Grauert’s theorem states now that for any ¢ > 0 and =z € X (k),
Rip1 N is locally free and

Ripr. N @ k(z) = H' ({z} x X, N(zpxx).

This vanishes for x ¢ K(£)(k), so the support of Rip;, A is contained in K (£)(k), which is a finite
set by hypothesis. This forces the Leray spectral sequence

H (X, Rip1 N) = H (X x X,N)
to degenerate to

B ®pN),=H(XxXN)=0, i>0.
2K (L)(k)

Thus Rip; N vanishes everywhere for all i > 0. Using the Grauert isomorphism, this implies for
x € K(L)(k)

0=prN®~(x) = H' ({2} x X,N|mxx) 2 H(X, 3L ® LY) = H'(X,0x),
contradiction. O
On the level of abelian groups, the second part of Propostion [3] constructs an isomorphism
X (k)/K(L)(k) 2= Pic®(X),

provided that K(L£)(k) is finite (this is e. g. satisfied if £ is ample). The aim is now to construct a
scheme K (L) so that the quotient X/K (L) becomes an abelian variety, namely the dual abelian variety
of X. In this case, ¢, becomes an isogeny with (finite) kernel K (L).
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2 Construction of the dual abelian variety

Lemma 4. Let X be a complete variety, Y an arbitrary scheme, L a line bundle on X XY and
p: X XY =Y the projection onto the second factor. Then L is isomorphic to the pullback of a line
bundle on'Y wvia p if and only if p« L is a line bundle and the natural map p*p.L — L is an isomorphism.

Proof. (<) Trivial. (=) If £ = p* M for some line bundle M on Y, then by the projection formula,
DL = pup'M Z2 M QR p.Oxxy. Since X is complete, p.Oxxy = Oy, giving an isomorphism of p,L
with the line bundle M. Applying p* gives the natural map p*p,L — L. O

Proposition 5. Let X be a complete variety, Y an arbitrary scheme, L a line bundle on X XY . Then
there exists a unique closed subscheme Y1 CY such that for every scheme Z, a morphism f : Z —'Y
factors through Y1 if and only if the line bundle (id X f)*L on X x Z is the pullback of some line bundle
on Z wvia the projection onto the second factor.

Remark. Y7 is the maximal closed subscheme of Y over which L is trivial: For each y € Y7, the restricted
line bundle L]y, is trivial, and Y7 is minimal among the closed subschemes with this property.

Proof. Uniqueness. If Y71, Ys are two such closed subschemes, then they factor through each other.

Localizing. Let {U;} be an open covering of Y. If the proposition holds for X x U; — U; and L|x v,
then we can glue the obtained closed subschemes together, as they have to be equal on the intersections
Vi N'Vj. Hence the statement is local on Y.

Shrinking Y. The set S := {y € Y | L|x ) is trivial} is closed. Moreover, £|xxs is the pullback of
some line bundle on S (Angela’s talk). Fix y € S. By Lemma |4, the natural map p*p.L — L is thus
an isomorphism over X x {y}, where p denotes the projection onto the second factor. On the open
subset Y \ 5, the empty scheme satisfies the conditions of the proposition. So Y may be shrinked to
some Spec A, which is a neighborhood of some point in y € S so that p*p,L — L is an isomorphism on
X X Spec A.

Applying proper base change. We want to equip S with a scheme structure. By proper base change
(again Angela’s talk), there is a finite complex

P:0—=>FP—P— =P,
of finitely generated projective A-modules and an isomorphism of functors
HY(X Xgpec 4 Spec —, L &4 —) = H(P®s—)
for all ¢ on the category of A-algebras. Let M := coker(P) — P;'). Then for any A-algebra B,
(PY ®4B) — (P ®4B) - M ®4 B —0

is exact, and thus is
0 — Homp(M ®4 B,B) - Py®4 B — P, ®4 B.

Using the above isomorphism of functors,

Hom (M, B) = Homp(M ®4 B,B) = H*(P ®4 B) = H°(X xy Spec B, L ®4 B).
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Let m C A be the maximal ideal corresponding to the point y € S. Then, as A/m-vector spaces,
dim M/mM = dim Hom 4 /n (M ®4 A/m, A/m)
= dim Homy4 (M, A/m)
= dim H%(X % {y}, Ll x xfy3)
— dim HO(X x {y}, Ox(y)
=1.
Consequently, Nakayama’s lemma implies that M is generated by a single element in an open neigh-

borhood of y. Shrinking Y further, we can assume M = A/I for some ideal I in A. Define Y7 to be
the closed subscheme of Y corresponding to I.

Checking the “only if” part. Denote by £; the restriction of £ to X x Y;. Then p,L; is the sheafification
of Homa(A/I,A/I)= A/I on Y; = Spec A/I, hence it is a line bundle. In view of Lemma {4 consider
the natural map A : p*p.L£1 — L. Both sides are invertible sheaves, so the stalks at x € X x Y7 are
isomorphic if and only if (p*p«L1)z ® K(x) = (L£1)z ® k(z) is surjective. Now

HomA(A/Iv A/I) — HomA(M7 A/m) = HO(X X {y}VC‘XX{y}) = HO(X X {y}voXx{y})'

is surjective, so A is an isomorphism at all x € X x {y}. Let V denote the projection onto Y of the
union of the supports of ker A and coker A. Then V is a closed subset of Y not containing y. We can
shrink Y even further so that V is actually empty. Now Lemma [4 states that £; is the pullback of
some line bundle on Y;. This shows the “only if” direction of the proposition: If f : Z — Y factors as
Z %Y, < Y, then (id x f)*£ = (id xg)*L1.

Universal property. Assume that (id x f)*£ = p* M for some line bundle M on Z. The statement is
local on Z, thus suppose Z = Spec C, where C becomes an A-algebra via f. We can shrink Z further
in order to assume that M is trivial. As X is complete, p,(id X f)*L = p,Oxxz = Oz. Translated into
algebra, this is an isomorphism of C-modules Homy(A/I,C) = C, so A — C factors throguh A/I. O

Let X be an abelian variety over k, and let £ be a line bundle on X. Apply Proposition [5] to the
Mumford line bundle A(£) on X x X. This yields a closed subscheme X; C X with the universal
property as described above. For each x € X (k), by definition of the Mumford bundle, A(L)|x {2} =
t*L ® LY. Thus

K(L)(k) = {x € X(k) | A(L)|x x{a is trivial} = X;(k),

and we can view K (L) as a scheme whose k-rational points are K (L)(k).
Proposition 6. K (L) is a subgroup scheme of X.

Proof. Let f': Z — K(L) be a morphism of schemes. Composing with K (L) < X gives a morphism
f:Z — X. By Proposition |5, (id x f)*A(L) = ¢ M, where g2 : X X Z — Z is the natural projection
onto Z. Let Lz := ¢fL, where q1 : X x Z — X. Let further

tr: X xZ—=>XxZ, (x,2)=(x+ f(2),2)
be the translation by f. Then
tiLz = (dx f)'m"L = (id x f)"A(L) @ (id x f)*pI L @ (id x f)*'p5.L
EMOGLR L,
— (M ® [ L) ® Ly,
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Conversely, if f : Z — X is any morphism such that t3£z ® LY, is the pullback of a line bundle on Z
via g2, Proposition [5| states that f factors through K(L).

Now let f,g: Z — X be morphisms of schemes such that t}ﬁ 7z ® LY, and tgLz ® LY are pullbacks of
line bundles on Z via ¢o. That is, f, g are points of X (Z) that lie in K(£)(Z). By a slightly enhanced
version of the theorem of the square (which follows from Lemma ,

gLz @ LY =Ly @ LY @1 Ly ® LY,
so f+ g liesin K(L)(Z) as well. As a consequence, K(L£)(Z) is a subgroup of X (Z). O
Remark. If £ is ample, then K (L£)(k) is finite (Irfan). In this case, K (L) is a finite group scheme of X.

Theorem 7. Let X be an abelian variety over a field k, £ an ample line bundle on X. Then the
quotient scheme X/K (L) exists and is an abelian variety over k with the same dimension as X.

Idea of proof. X is an (abelian) group scheme, K (L) a finite subgroup scheme. By |4, p. 118], this
implies that X/K (L) is a group scheme of the same dimension as X. If char k = 0, then X is automat-
ically a variety, as group schemes in char( are smooth |1, Theorem 3.20]. For positive characteristic,
the proof requires more work (see |1, Theorem 6.18]). O

Definition. This quotient is the dual abelian variety XV of X.

Remark. By construction, XV (k) = Pic’(X) and the quotient morphism X (k) — XV (k) is ¢,. In this
way, ¢, may be thought of as an isogeny from X to XV, whose restriction to k-rational points is the
Hold’? ¢£

3 Properties of the dual abelian variety

3.1 Functoriality and the Poincaré bundle

Theorem 8 (Universal property of the dual abelian variety). Let X be an abelian variety over k. Then
there is a uniquely determined line bundle P on X x XV, called the Poincaré bundle, such that

(a) Plxxqy € Pic®(X x {y}) for ally € XV,
(b) Plioyxxv is trivial,

and if Z is a scheme with a line bundle R on X x Z such that R|x (.} € Pic(X x {z}) for all z € Z
and R|{oyxz is trivial, then there is a unique morphism f: 7 — XV such that (id x f)*P = R.

In other words, (X, P) represents the functor
Z = {LePic(X x Z) | L]xxyzy € Pic®(X x {2}) for all z € Z and L|(oyxz is trivial},
and the Poincaré bundle P corresponds to idxv .

Remark. This shows the uniqueness of XV as well.

Chunks of the proof. Let £ be an ample line bundle on X.
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Strategy. If K(L£) acts on the second factor of X x X, then there is a quotient map 7 : X x X — X x XV,
which is given on k-rational points by id x¢. By |4, p. 112], there is an equivalence of categories

{K(£)-line bundles on X x X} < {line bundles on X x X"}, M 7*M

The strategy is now to show that the Mumford line bundle A(L) is a K (£)-bundle, hence corresponds
to a line bundle P on X x XV such that 7*P = A(L).

P satisfies (a) and (b). This line bundle P satisfies the following: If y = ¢, (z) € X for some z € X (k),
then
Plxsqyy = (d x02) Plx ey = ML) xxy = LD LY = dr(2) € Pic’(X)

by Proposition . Since A(L)|foyxx = L ® LY = O, the line bundle Pl xv is trivial as well.

The universal property.  Assume that Z is a normal variety. Consider the line bundle M := pf, R@pi; PV
on X x Zx XV, where pia : X x Zx XV 5+ X xZandpiz: X x Zx XV — X x XV are the natural
projections. If z € Z, y € XV, then M|xy21xqy} = Rlxxfz} @ PY|xxy}- The subset

T:={(2,9) € Z x XV | Mlxy{z}x{yy 18 trivial} = {(2,9) € Z x XV | Rlxx{z} = Plxxiy}}

is Zariski-closed in Z x XV. Moreover, it is the graph of a set-theoretic map Z — XV, because the
map XV — Pic’(X),y — Plxx{y} is a bijection. In particular, the natural projection I' — Z is
bijective on points. In characteristic zero, this means that it must be birational of degree one, and
hence an isomorphism by Zariski’s Main Theorem (see e.g. |2, Corollary I11.11.4]). Hence we get a
unique morphism Z =T — XV, where the last arrow is given by projection.

Uniqueness of P. A priori, P is only unique up to tensoring with pullbacks of line bundles on XV via
the projection py : X x XV — XV. But since XV = {0} x X¥ — X x XV 2 XV is the identity, one
obtains (P ®@ p3L)|101xxv = Plioyxxv ® L. This implies that £ is trivial by condition (b). O

Remark. Due to the uniqueness of P, it is normalized in the sense that by construction, both 73|XX{0}
and P|soyxxv are trivial.

3.2 Dual morphisms and double-duals

Let f: X — Y be a homomorphism of abelian varieties. Denote by Px and Py the Poincaré bundles
on X x XV and Y x YV respectively. Consider the line bundle M := (f x idyv)*Py on X x YV.
By the properties of the Poincaré bundle, M|x ., € Pic’(X x {y}) and Moyxyv is trivial. Hence
by Theorem [8] M defines a unique morphism f¥ : YV — XV with the propery that (idx x fV)*Px =
(f xidyv)*Py.

Definition. If f : X — Y is a homomorphism of abelian varieties, then f¥ : YV — XV is called the
dual morphism of f.

Remark. If a point in YV corresponds to a line bundle £ € Pic?(Y), then its image under fV is given
by the pullback f*L.

Example. The dual morphism of the multiplication-by-n map ny : X — X is (nx)" = nxv. This is
basically due to Lemma [1| (c).
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Lemma 9. Let f : X — Y be a homomorphism of abelian varieties, L a line bundle on Y. Then
¢pc=f"o¢cof.
Proof. For x € X (k) holds f¥(¢.(f(2))) = [}, L& [*LY =t3f* L& fLY. O

Proposition 10. If f : X — Y is an isogeny of abelian varieties, then so is f¥. Moreover, ker fV is
the kernel of the pullback map f* : Pic(Y') — Pic(X), and this is the Cartier dual of ker f.

Proof. See |4l p. 143|. O
Definition. Let X be an abelian variety.

e The morphism X — XV corresponding to the Poincaré bundle on X x XV seen as a family of line
bundles on XV parametrized by X, is called the canonical identification of X with its double-dual
XV,

e A morphism f: X — XV is called symmetric if f = f¥ o cany.

e A polarization of X is a symmetric isogeny f : X — XV such that f = ¢, on X for some ample
line bundle L.

e A prinicipal polarization of X is a polarization which is an isomorphism, i. e. the isogeny is of
degree one.

Remarks. e cany : X — XYV is an isomorphism of abelian varieties, see for instance [4, p.132].

e If £ is a line bundle on X, then ¢, is symmetric. Conversely, any symmetric morphism is of the
form ¢, for some line bundle £ on X |1, Proposition 11.2].

e An ample line bundle defines a principal polarization if and only if K (L) = 0.

4 Further topics

4.1 Elliptic curves

Let E be an elliptic curve over k with origin co. Then oo is a divisor on E. If x € E(k), then
t;1(00) = z, 50 t:0p(0) ® Op(—x) =2 Op(z — 00). But the divisor oo is of degree one and hence
ample, thus Pic’ (E) = im ¢ by Proposition 3| This proves:

Lemma 11. Pic’(E) = {[Op(x — 00)] | # € E(k)}.

Remark. Another characterization is the following: Let D = > .n;P; be a divisor on E. Then
Op (D — (3_;ni)o0) = Op(D — deg(D)oo) € Pic’(E), so Pic’(E) = {[Og(D)] | degD = 0}, i. e.
Pic?(E) consists of isomorphism classes of line bundles of degree zero.

Proposition 12. Let (E,00) be an elliptic curve over k. Then K(Og(c0)) = {oc}. In particular,
POy (e0) : B — EY is an isomorphism sending x € X (k) to Op(x — 00).

Proof. Let f : Z — E for some scheme Z and put £ := Og(co). Suppose that (id x f)*A(L) is the
pullback of some line bundle on Z via the projection ps onto the second factor. Performing the same
computations as in the proof of Proposition @, t’}pfﬁ ® piLY is the pullback of some line bundle M on
Z via the projection po : £ X Z — Z. This means that

Opxz((p1 + f o p2) oo — pjoo) = poM.
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Pushing the line bundle on the left forward via ps gives the trivial line bundle. Thus in view of Lemmald]
M is trivial. This gives an isomorphism

Orxz((p1 + fop2)*o0) = Opxz(pioo),

yielding two sections s, sg vanishing on the divisors (p1 + fp2)*oo and pjoo, respectively. Pushing these
sections forward via py gives to sections of pa, M = Oz that do not vanish anywhere on Z. Hence s;
and so differ only by an invertible function on Z. In particular, the vanishing loci coincide. That is, f
is constant with value oo, so f factors through {oco}. O

Proposition 13. Let (E,00) be an elliptic curve. The Poincaré bundle P on E x E is given by
P = Opxp(A —pjoo —phoo), where A is the diagonal divisor and p1,p2 : E x E — E are the canonical
projections.

Proof. Omitted, see |5, Section 9.4]. O]

Remark. This Poincaré bundle differs from A(Og(c0)) by the automorphism id x(—1)g.

4.2 Quotients by abelian subvarieties

Proposition 14. Let X be an abelian variety, Y C X an abelian subvariety. Then there is an abelian
variety Z and a surjective homomorphism f : X — Z such that Y = ker f.

Proof. Let i : Y — X denote the embedding. This gives a dual morphism ¢ : XV — Y. If £ is an
ample line bundle on X, then ¢, = i¥ o ¢y 01 by Lemma, @ Since ¢ppy 1 Y — YV is surjective, this
implies that i¥ is surjective.

Let W be the abelian variety given by the connected component of 0 in keri¥ C XV. Dualizing the
embedding W < XV gives a morphism X"V — WV, composing this with the canonical identification

Vv
cany yields a morphism ¢ : X — WV. Since the composition W < XV “» YV is the zero map,
Y Ckerg.
Let X &5 Z = WY be the Stein factorization of g, where Z — WV is finite and f has connected
fibers. Now Z is an abelian variety, f is a homomorphism and ker f is an abelian subvariety of X
containing Y. But as dimY = dim X — dim W = dimker f, necessarily ¥ = ker f. O

Proposition 15. Let f: Y — X be a finite morphism of abelian varieties. Then there is a homomor-
phism g : X = Y such that g o f is the multiplication-by-n map on Y for somen € N.

Proof. If £ is an ample line bundle on X, then f*£ is an ample line bundle on Y, as f is finite. By Irfan’s
results, K (f*L£) is finite, so it is annihilated by some positive integer n, i. e. K(f*£) C Y[n]. Thus the
map 7:YY =Y, (¢r|y)(y) — ny is well-defined and by Lemma@ ny =mo¢r, = mofYoprof. O

Corollary 16 (Poincaré’s complete reducibility theorem). Let X be an abelian variety and Y C X an
abelian subvariety. Then there is an abelian subvariety Z C X such that Y + 7 = X and Y N Z is
finite.

Proof. According to there is a homomorphism p : X — Y such that p|y = ny for some n € N.
Define Z to be the connected component of 0 in ker p. Then Y N Z C ker p|y, which is finite as p|y is
an isogeny. So Y x Z — X, (y, z) — y + z has finite kernel as well and since dimY x Z > dim X it is
an isogeny too and hence surjective. O
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Corollary 17. Let f: Y — X be an isogeny of abelian varieties of degree n. Then there is an isogeny
g: X =Y such thatgo f =ny and fog=nx.

Proof. The kernel ker f is a finite group scheme of order n, hence we can proceed as in the proof
of Proposition to obtain a map g : X — Y such that go f = ny. Since ny is surjective and
dim X = dimY, g is an isogeny as well. Moreover, fogo f = fony =nx o f, therefore go f = nyx,
as f is flat and surjective and hence an epimorphism of schemes. O
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