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These are notes for a talk given in the IRTG College Seminar on abelian varieties and
Fourier-Mukai transforms in Berlin on December 10, 2014. The outline mainly follows
Chapter 9 of Polishchuk’s book [5], whereas most proof details are taken from the classic
textbook of Mumford [4]. The lecture notes of Milne [3] and van der Geer/Moonen [1]
provided additional inspiration.

1 The group Pic0 of an abelian variety

1.1 Set-up

Any line bundle L on an abelian variety X over some algebraically closed field k defines a map

φL : X(k)→ Pic(X), x 7→ [t∗xL ⊗ L∨].

Remark. Since t∗0L ⊗ L∨ ∼= OX and by the theorem of the square,

t∗x+yL ⊗ L ∼= t∗xL ⊗ t∗yL  t∗x+yL ⊗ L∨ ∼= (t∗xL ⊗ L∨)⊗ (t∗yL ⊗ L∨),

the map φL is a homomorphism of abelian groups.

Recall that Irfan introduced the set

K(L)(k) := kerφL = {x ∈ X(k) | t∗xL ∼= L}.

Definition. Pic0(X) := {[L] ∈ Pic(X) | φL ≡ 0} = {[L] ∈ Pic(X) | ∀x ∈ X(k) : t∗xL ∼= L}.

From now on, simplify notation by writing L for the isomorphism class of a line bundle L in Pic(X) or
Pic0(X).

1.2 Properties of Pic0(X)

Lemma 1. Let L ∈ Pic0(X) and denote by m, p1, p2 : X ×X → X the addition and the two natural
projections. Then

(a) m∗L ∼= p∗1L ⊗ p∗2L,

(b) If Y is a scheme and f, g : Y → X are morphisms, then (f + g)∗L ∼= f∗L ⊗ g∗L.

(c) If n ∈ Z, then n∗XL ∼= L⊗n.
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Proof. (a) Let x ∈ X(k). Then

(m∗L⊗p∗1L∨⊗p∗2L∨)|X×{x} ∼= t∗xL⊗L∨ ∼= OX and (m∗L⊗p∗1L∨⊗p∗2L∨)|{0}×X ∼= L⊗L∨ ∼= OX ,

since the maps in question are given explicitly by

m, p1, p2 : X ∼= {x} ×X ↪→ X ×X → X, m(y) = x+ y, p1(y) = x, p2(y) = y,

m, p1, p2 : X ∼= X × {x} ↪→ X ×X → X, m(y) = x+ y, p1(y) = y, p2(y) = x.

By the seesaw principle (as in Irfan’s talk), this implies m∗L ⊗ p∗1L∨ ⊗ p∗2L∨ ∼= OX×X .

(b) Consider the compositions Y f×g−−→ X ×X m,p1,p2−−−−−→ X. Then by (a),

(f + g)∗L = (f × g)∗m∗L ∼= (f × g)∗p∗1L ⊗ (f × g)∗p∗2L = f∗L ⊗ g∗L.

(c) Induction.

Lemma 2. Let L ∈ Pic0(X) be non-trivial. Then H i(X,L) = 0 for all i ≥ 0.

Proof. • If H0(L) 6= 0, then L has a non-trivial section s, so (−1X)∗L has the non-trivial section
(−1X)∗s. But by Lemma 1, (−1X)∗L ∼= L∨, so both L and L∨ have a non-trivial section. Hence
L ∼= OX , contradiction.

• Let i > 0 be the smallest positive integer such that H i(X,L) 6= 0. The maps

X
id×0−−−→ X ×X m−→ X, x 7→ (x, 0) 7→ x

give in cohomology
H i(X,L)→ H i(X ×X,m∗L)→ H i(X,L),

the composition being the identity. Using the first statement of Lemma 1, the Künneth formula
tells

H i(X ×X,m∗L) ∼= H i(X ×X, p∗1L ⊗ p∗2L) ∼=
i⊕

j=0

Hj(X,L)⊗H i−j(X,L).

Since H0(L) = 0 by the first bullet and H i−j(X,L) = 0 for j ≥ 1 by the choice of i, this yields
H i(X ×X,m∗L) = 0. So the identity of H i(X,L) factors through 0.

Proposition 3. Let L be a line bundle on the abelian variety X. Then:

(a) imφL ⊆ Pic0(X).

(b) If K(L)(k) is finite, then imφL = Pic0(X).

Proof. (a) Let x ∈ X(k) and y ∈ X(k). Using the theorem of the square,

t∗y(t∗xL ⊗ L∨) = t∗x+yL ⊗ t∗yL∨ ∼= t∗xL ⊗ t∗yL ⊗ L∨ ⊗ t∗yL∨ ∼= t∗xL ⊗ L∨.

(b) PickM∈ Pic0(X) and supposeM /∈ imφL.
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A useful line bundle. On X ×X, define the Mumford line bundle

Λ(L) := m∗L ⊗ p∗1L∨ ⊗ p∗2L∨,

where m denotes the addition and p1, p2 are the natural projections. Put N := Λ(L)⊗ p∗1M∨ and
let x ∈ X(k). Then, similar to the proof of Lemma 1,

N|{x}×X ∼= t∗xL ⊗ L∨ and N|X×{x} ∼= t∗xL ⊗ L∨ ⊗M∨,

The first projection. SinceM /∈ imφL, the line bundle t∗xL⊗L∨⊗M∨ is not trivial for all x ∈ X(k),
because otherwiseM∼= t∗xL ⊗ L∨. Now Lemma 2 states that

H i(X × {x},N|X×{x}) ∼= H i(X, t∗xL ⊗ L∨ ⊗M∨) = 0, i ≥ 0.

By Grauert’s theorem [2, Corollary III.12.9], for any i ≥ 0 and x ∈ X(k), the sheaf Rip2∗N is
locally free and

Rip2∗N ⊗ κ(x) ∼= H i(X × {x},N|X×{x}).
So Rip2∗N = 0 for any i ≥ 0. Applying the Leray spectral sequence

Hj(X,Rip2∗N )⇒ H i+j(X ×X,N )

yields H i(X ×X,N ) = 0, i ≥ 0.

The second projection. If x /∈ K(L)(k), then N|{x}×X ∼= t∗xL ⊗ L∨ is not isomorphic to OX . In
particular, by Lemma 2,

H i({x} ×X,N|{x}×X) ∼= H i(X, t∗xL ⊗ L∨) = 0, i ≥ 0.

Similar to the situation above, Grauert’s theorem states now that for any i ≥ 0 and x ∈ X(k),
Rip1∗N is locally free and

Rip1∗N ⊗ κ(x) ∼= H i({x} ×X,N|{x}×X).

This vanishes for x /∈ K(L)(k), so the support of Rip1∗N is contained in K(L)(k), which is a finite
set by hypothesis. This forces the Leray spectral sequence

Hj(X,Rip1∗N )⇒ H i+j(X ×X,N )

to degenerate to ⊕
x∈K(L)(k)

(Rip1∗N )x ∼= H i(X ×X,N ) = 0, i ≥ 0.

Thus Rip1∗N vanishes everywhere for all i ≥ 0. Using the Grauert isomorphism, this implies for
x ∈ K(L)(k)

0 = p1∗N ⊗ κ(x) ∼= H0({x} ×X,N|{x}×X) ∼= H0(X, t∗xL ⊗ L∨) = H0(X,OX),

contradiction.

On the level of abelian groups, the second part of Propostion 3 constructs an isomorphism

X(k)/K(L)(k) ∼= Pic0(X),

provided that K(L)(k) is finite (this is e. g. satisfied if L is ample). The aim is now to construct a
scheme K(L) so that the quotient X/K(L) becomes an abelian variety, namely the dual abelian variety
of X. In this case, φL becomes an isogeny with (finite) kernel K(L).
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2 Construction of the dual abelian variety

Lemma 4. Let X be a complete variety, Y an arbitrary scheme, L a line bundle on X × Y and
p : X × Y → Y the projection onto the second factor. Then L is isomorphic to the pullback of a line
bundle on Y via p if and only if p∗L is a line bundle and the natural map p∗p∗L → L is an isomorphism.

Proof. (⇐) Trivial. (⇒) If L ∼= p∗M for some line bundle M on Y , then by the projection formula,
p∗L ∼= p∗p

∗M ∼= M⊗ p∗OX×Y . Since X is complete, p∗OX×Y ∼= OY , giving an isomorphism of p∗L
with the line bundleM. Applying p∗ gives the natural map p∗p∗L → L.

Proposition 5. Let X be a complete variety, Y an arbitrary scheme, L a line bundle on X ×Y . Then
there exists a unique closed subscheme Y1 ⊆ Y such that for every scheme Z, a morphism f : Z → Y
factors through Y1 if and only if the line bundle (id×f)∗L on X×Z is the pullback of some line bundle
on Z via the projection onto the second factor.

Remark. Y1 is the maximal closed subscheme of Y over which L is trivial: For each y ∈ Y1, the restricted
line bundle L|X×{y} is trivial, and Y1 is minimal among the closed subschemes with this property.

Proof. Uniqueness. If Y1, Y2 are two such closed subschemes, then they factor through each other.

Localizing. Let {Ui} be an open covering of Y . If the proposition holds for X × Ui → Ui and L|X×Ui ,
then we can glue the obtained closed subschemes together, as they have to be equal on the intersections
Vi ∩ Vj . Hence the statement is local on Y .

Shrinking Y . The set S := {y ∈ Y | L|X×{y} is trivial} is closed. Moreover, L|X×S is the pullback of
some line bundle on S (Angela’s talk). Fix y ∈ S. By Lemma 4, the natural map p∗p∗L → L is thus
an isomorphism over X × {y}, where p denotes the projection onto the second factor. On the open
subset Y \ S, the empty scheme satisfies the conditions of the proposition. So Y may be shrinked to
some SpecA, which is a neighborhood of some point in y ∈ S so that p∗p∗L → L is an isomorphism on
X × SpecA.

Applying proper base change. We want to equip S with a scheme structure. By proper base change
(again Angela’s talk), there is a finite complex

P : 0→ P0 → P1 → · · · → Pn

of finitely generated projective A-modules and an isomorphism of functors

H i(X ×SpecA Spec−,L ⊗A −) ∼= H i(P ⊗A −)

for all i on the category of A-algebras. Let M := coker(P∨1 → P∨0 ). Then for any A-algebra B,

(P∨1 ⊗A B)→ (P∨0 ⊗A B)→M ⊗A B → 0

is exact, and thus is
0→ HomB(M ⊗A B,B)→ P0 ⊗A B → P1 ⊗A B.

Using the above isomorphism of functors,

HomA(M,B) ∼= HomB(M ⊗A B,B) ∼= H0(P ⊗A B) ∼= H0(X ×Y SpecB,L ⊗A B).
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Let m ⊆ A be the maximal ideal corresponding to the point y ∈ S. Then, as A/m-vector spaces,

dimM/mM = dim HomA/m(M ⊗A A/m, A/m)

= dim HomA(M,A/m)

= dimH0(X × {y},L|X×{y})
= dimH0(X × {y},OX×{y})

= 1.

Consequently, Nakayama’s lemma implies that M is generated by a single element in an open neigh-
borhood of y. Shrinking Y further, we can assume M = A/I for some ideal I in A. Define Y1 to be
the closed subscheme of Y corresponding to I.

Checking the “only if” part. Denote by L1 the restriction of L to X×Y1. Then p∗L1 is the sheafification
of HomA(A/I,A/I) ∼= A/I on Y1 = SpecA/I, hence it is a line bundle. In view of Lemma 4, consider
the natural map λ : p∗p∗L1 → L1. Both sides are invertible sheaves, so the stalks at x ∈ X × Y1 are
isomorphic if and only if (p∗p∗L1)x ⊗ κ(x)→ (L1)x ⊗ κ(x) is surjective. Now

HomA(A/I,A/I)→ HomA(M,A/m) = H0(X × {y},L|X×{y}) ∼= H0(X × {y},OX×{y}).

is surjective, so λ is an isomorphism at all x ∈ X × {y}. Let V denote the projection onto Y of the
union of the supports of kerλ and cokerλ. Then V is a closed subset of Y not containing y. We can
shrink Y even further so that V is actually empty. Now Lemma 4 states that L1 is the pullback of
some line bundle on Y1. This shows the “only if” direction of the proposition: If f : Z → Y factors as
Z

g−→ Y1 ↪→ Y , then (id×f)∗L = (id×g)∗L1.

Universal property. Assume that (id×f)∗L ∼= p∗M for some line bundle M on Z. The statement is
local on Z, thus suppose Z = SpecC, where C becomes an A-algebra via f . We can shrink Z further
in order to assume thatM is trivial. As X is complete, p∗(id×f)∗L ∼= p∗OX×Z ∼= OZ . Translated into
algebra, this is an isomorphism of C-modules HomA(A/I,C) ∼= C, so A→ C factors throguh A/I.

Let X be an abelian variety over k, and let L be a line bundle on X. Apply Proposition 5 to the
Mumford line bundle Λ(L) on X × X. This yields a closed subscheme X1 ⊆ X with the universal
property as described above. For each x ∈ X(k), by definition of the Mumford bundle, Λ(L)|X×{x} ∼=
t∗xL ⊗ L∨. Thus

K(L)(k) = {x ∈ X(k) | Λ(L)|X×{x} is trivial} = X1(k),

and we can view K(L) as a scheme whose k-rational points are K(L)(k).

Proposition 6. K(L) is a subgroup scheme of X.

Proof. Let f ′ : Z → K(L) be a morphism of schemes. Composing with K(L) ↪→ X gives a morphism
f : Z → X. By Proposition 5, (id×f)∗Λ(L) = q∗2M, where q2 : X × Z → Z is the natural projection
onto Z. Let LZ := q∗1L, where q1 : X × Z → X. Let further

tf : X × Z → X × Z, (x, z) 7→ (x+ f(z), z)

be the translation by f . Then

t∗fLZ = (id×f)∗m∗L = (id×f)∗Λ(L)⊗ (id×f)∗p∗1L ⊗ (id×f)∗p∗2L
∼= q∗2M⊗ q∗1L ⊗ q∗2f∗L,
= q∗2(M⊗ f∗L)⊗ LZ .
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Conversely, if f : Z → X is any morphism such that t∗fLZ ⊗ L∨Z is the pullback of a line bundle on Z
via q2, Proposition 5 states that f factors through K(L).
Now let f, g : Z → X be morphisms of schemes such that t∗fLZ ⊗L∨Z and t∗gLZ ⊗L∨ are pullbacks of

line bundles on Z via q2. That is, f, g are points of X(Z) that lie in K(L)(Z). By a slightly enhanced
version of the theorem of the square (which follows from Lemma 1),

t∗f+gLZ ⊗ L∨Z ∼= t∗fLZ ⊗ L∨Z ⊗ t∗gLZ ⊗ L∨Z ,

so f + g lies in K(L)(Z) as well. As a consequence, K(L)(Z) is a subgroup of X(Z).

Remark. If L is ample, then K(L)(k) is finite (Irfan). In this case, K(L) is a finite group scheme of X.

Theorem 7. Let X be an abelian variety over a field k, L an ample line bundle on X. Then the
quotient scheme X/K(L) exists and is an abelian variety over k with the same dimension as X.

Idea of proof. X is an (abelian) group scheme, K(L) a finite subgroup scheme. By [4, p. 118], this
implies that X/K(L) is a group scheme of the same dimension as X. If char k = 0, then X is automat-
ically a variety, as group schemes in char 0 are smooth [1, Theorem 3.20]. For positive characteristic,
the proof requires more work (see [1, Theorem 6.18]).

Definition. This quotient is the dual abelian variety X∨ of X.

Remark. By construction, X∨(k) = Pic0(X) and the quotient morphism X(k)→ X∨(k) is φL. In this
way, φL may be thought of as an isogeny from X to X∨, whose restriction to k-rational points is the
“old” φL.

3 Properties of the dual abelian variety

3.1 Functoriality and the Poincaré bundle

Theorem 8 (Universal property of the dual abelian variety). Let X be an abelian variety over k. Then
there is a uniquely determined line bundle P on X ×X∨, called the Poincaré bundle, such that

(a) P|X×{y} ∈ Pic0(X × {y}) for all y ∈ X∨,

(b) P|{0}×X∨ is trivial,

and if Z is a scheme with a line bundle R on X × Z such that R|X×{z} ∈ Pic0(X × {z}) for all z ∈ Z
and R|{0}×Z is trivial, then there is a unique morphism f : Z → X∨ such that (id×f)∗P = R.

In other words, (X∨,P) represents the functor

Z 7→ {L ∈ Pic(X × Z) | L|X×{z} ∈ Pic0(X × {z}) for all z ∈ Z and L|{0}×Z is trivial},

and the Poincaré bundle P corresponds to idX∨ .

Remark. This shows the uniqueness of X∨ as well.

Chunks of the proof. Let L be an ample line bundle on X.
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Strategy. IfK(L) acts on the second factor ofX×X, then there is a quotient map π : X×X → X×X∨,
which is given on k-rational points by id×φL. By [4, p. 112], there is an equivalence of categories

{K(L)-line bundles on X ×X} ↔ {line bundles on X ×X∨}, M 7→ π∗M

The strategy is now to show that the Mumford line bundle Λ(L) is a K(L)-bundle, hence corresponds
to a line bundle P on X ×X∨ such that π∗P = Λ(L).

P satisfies (a) and (b). This line bundle P satisfies the following: If y = φL(x) ∈ X∨ for some x ∈ X(k),
then

P|X×{y} = (id×φL)∗P|X×{x} = Λ(L)|X×{x} = t∗xL ⊗ L∨ = φL(x) ∈ Pic0(X)

by Proposition 3. Since Λ(L)|{0}×X ∼= L ⊗ L∨ ∼= OX , the line bundle P|{0}×X∨ is trivial as well.

The universal property. Assume that Z is a normal variety. Consider the line bundleM := p∗12R⊗p∗13P∨
on X × Z ×X∨, where p12 : X × Z ×X∨ → X × Z and p13 : X × Z ×X∨ → X ×X∨ are the natural
projections. If z ∈ Z, y ∈ X∨, thenM|X×{z}×{y} = R|X×{z} ⊗ P∨|X×{y}. The subset

Γ := {(z, y) ∈ Z ×X∨ | M|X×{z}×{y} is trivial} = {(z, y) ∈ Z ×X∨ | R|X×{z} ∼= P|X×{y}}

is Zariski-closed in Z × X∨. Moreover, it is the graph of a set-theoretic map Z → X∨, because the
map X∨ → Pic0(X), y 7→ P|X×{y} is a bijection. In particular, the natural projection Γ → Z is
bijective on points. In characteristic zero, this means that it must be birational of degree one, and
hence an isomorphism by Zariski’s Main Theorem (see e.g. [2, Corollary III.11.4]). Hence we get a
unique morphism Z ∼= Γ→ X∨, where the last arrow is given by projection.

Uniqueness of P. A priori, P is only unique up to tensoring with pullbacks of line bundles on X∨ via
the projection p2 : X ×X∨ → X∨. But since X∨ ∼= {0} ×X∨ → X ×X∨ p2−→ X∨ is the identity, one
obtains (P ⊗ p∗2L)|{0}×X∨ ∼= P|{0}×X∨ ⊗ L. This implies that L is trivial by condition (b).

Remark. Due to the uniqueness of P, it is normalized in the sense that by construction, both P|X×{0}
and P|{0}×X∨ are trivial.

3.2 Dual morphisms and double-duals

Let f : X → Y be a homomorphism of abelian varieties. Denote by PX and PY the Poincaré bundles
on X × X∨ and Y × Y ∨, respectively. Consider the line bundle M := (f × idY ∨)∗PY on X × Y ∨.
By the properties of the Poincaré bundle, M|X×{y} ∈ Pic0(X × {y}) and M|{0}×Y ∨ is trivial. Hence
by Theorem 8,M defines a unique morphism f∨ : Y ∨ → X∨ with the propery that (idX ×f∨)∗PX ∼=
(f × idY ∨)∗PY .

Definition. If f : X → Y is a homomorphism of abelian varieties, then f∨ : Y ∨ → X∨ is called the
dual morphism of f .

Remark. If a point in Y ∨ corresponds to a line bundle L ∈ Pic0(Y ), then its image under f∨ is given
by the pullback f∗L.
Example. The dual morphism of the multiplication-by-n map nX : X → X is (nX)∨ = nX∨ . This is
basically due to Lemma 1 (c).
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Lemma 9. Let f : X → Y be a homomorphism of abelian varieties, L a line bundle on Y . Then
φf∗L = f∨ ◦ φL ◦ f .

Proof. For x ∈ X(k) holds f∨(φL(f(x))) = f∗t∗f(x)L ⊗ f
∗L∨ = t∗xf

∗L ⊗ f∗L∨.

Proposition 10. If f : X → Y is an isogeny of abelian varieties, then so is f∨. Moreover, ker f∨ is
the kernel of the pullback map f∗ : Pic(Y )→ Pic(X), and this is the Cartier dual of ker f .

Proof. See [4, p. 143].

Definition. Let X be an abelian variety.

• The morphism X → X∨ corresponding to the Poincaré bundle on X×X∨ seen as a family of line
bundles on X∨ parametrized by X, is called the canonical identification of X with its double-dual
X∨∨.

• A morphism f : X → X∨ is called symmetric if f = f∨ ◦ canX .

• A polarization of X is a symmetric isogeny f : X → X∨ such that f = φL on X for some ample
line bundle L.

• A prinicipal polarization of X is a polarization which is an isomorphism, i. e. the isogeny is of
degree one.

Remarks. • canX : X → X∨∨ is an isomorphism of abelian varieties, see for instance [4, p.132].

• If L is a line bundle on X, then φL is symmetric. Conversely, any symmetric morphism is of the
form φL for some line bundle L on X [1, Proposition 11.2].

• An ample line bundle defines a principal polarization if and only if K(L) = 0.

4 Further topics

4.1 Elliptic curves

Let E be an elliptic curve over k with origin ∞. Then ∞ is a divisor on E. If x ∈ E(k), then
t−1x (∞) = x, so t∗xOE(∞) ⊗ OE(−∞) ∼= OE(x −∞). But the divisor ∞ is of degree one and hence
ample, thus Pic0(E) = imφ∞ by Proposition 3. This proves:

Lemma 11. Pic0(E) = {[OE(x−∞)] | x ∈ E(k)}.

Remark. Another characterization is the following: Let D =
∑

i niPi be a divisor on E. Then
OE (D − (

∑
i ni)∞) = OE(D − deg(D)∞) ∈ Pic0(E), so Pic0(E) = {[OE(D)] | degD = 0}, i. e.

Pic0(E) consists of isomorphism classes of line bundles of degree zero.

Proposition 12. Let (E,∞) be an elliptic curve over k. Then K(OE(∞)) = {∞}. In particular,
φOE(∞) : E → E∨ is an isomorphism sending x ∈ X(k) to OE(x−∞).

Proof. Let f : Z → E for some scheme Z and put L := OE(∞). Suppose that (id×f)∗Λ(L) is the
pullback of some line bundle on Z via the projection p2 onto the second factor. Performing the same
computations as in the proof of Proposition 6, t∗fp

∗
1L⊗ p∗1L∨ is the pullback of some line bundleM on

Z via the projection p2 : E × Z → Z. This means that

OE×Z((p1 + f ◦ p2)∗∞− p∗1∞) ∼= p∗2M.
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Pushing the line bundle on the left forward via p2 gives the trivial line bundle. Thus in view of Lemma 4,
M is trivial. This gives an isomorphism

OE×Z((p1 + f ◦ p2)∗∞) ∼= OE×Z(p∗1∞),

yielding two sections s1, s2 vanishing on the divisors (p1+fp2)
∗∞ and p∗1∞, respectively. Pushing these

sections forward via p2 gives to sections of p2∗M ∼= OZ that do not vanish anywhere on Z. Hence s1
and s2 differ only by an invertible function on Z. In particular, the vanishing loci coincide. That is, f
is constant with value ∞, so f factors through {∞}.

Proposition 13. Let (E,∞) be an elliptic curve. The Poincaré bundle P on E × E is given by
P = OE×E(∆−p∗1∞−p∗2∞), where ∆ is the diagonal divisor and p1, p2 : E×E → E are the canonical
projections.

Proof. Omitted, see [5, Section 9.4].

Remark. This Poincaré bundle differs from Λ(OE(∞)) by the automorphism id×(−1)E .

4.2 Quotients by abelian subvarieties

Proposition 14. Let X be an abelian variety, Y ( X an abelian subvariety. Then there is an abelian
variety Z and a surjective homomorphism f : X → Z such that Y = ker f .

Proof. Let i : Y ↪→ X denote the embedding. This gives a dual morphism i∨ : X∨ → Y ∨. If L is an
ample line bundle on X, then φL|Y = i∨ ◦ φL ◦ i by Lemma 9. Since φL|Y : Y → Y ∨ is surjective, this
implies that i∨ is surjective.
Let W be the abelian variety given by the connected component of 0 in ker i∨ ⊆ X∨. Dualizing the

embedding W ↪→ X∨ gives a morphism X∨∨ → W∨, composing this with the canonical identification
canX yields a morphism g : X → W∨. Since the composition W ↪→ X∨

i∨−→ Y ∨ is the zero map,
Y ⊆ ker g.
Let X f−→ Z → W∨ be the Stein factorization of g, where Z → W∨ is finite and f has connected

fibers. Now Z is an abelian variety, f is a homomorphism and ker f is an abelian subvariety of X
containing Y . But as dimY = dimX − dimW = dim ker f , necessarily Y = ker f .

Proposition 15. Let f : Y → X be a finite morphism of abelian varieties. Then there is a homomor-
phism g : X → Y such that g ◦ f is the multiplication-by-n map on Y for some n ∈ N.

Proof. If L is an ample line bundle onX, then f∗L is an ample line bundle on Y , as f is finite. By Irfan’s
results, K(f∗L) is finite, so it is annihilated by some positive integer n, i. e. K(f∗L) ⊆ Y [n]. Thus the
map π : Y ∨ → Y, (φL|Y )(y) 7→ ny is well-defined and by Lemma 9, nY = π ◦φL|Y = π ◦ f∨ ◦φL ◦ f .

Corollary 16 (Poincaré’s complete reducibility theorem). Let X be an abelian variety and Y ⊆ X an
abelian subvariety. Then there is an abelian subvariety Z ⊆ X such that Y + Z = X and Y ∩ Z is
finite.

Proof. According to 15, there is a homomorphism p : X → Y such that p|Y = nY for some n ∈ N.
Define Z to be the connected component of 0 in ker p. Then Y ∩ Z ⊆ ker p|Y , which is finite as p|Y is
an isogeny. So Y × Z → X, (y, z) 7→ y + z has finite kernel as well and since dimY × Z ≥ dimX, it is
an isogeny too and hence surjective.
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Corollary 17. Let f : Y → X be an isogeny of abelian varieties of degree n. Then there is an isogeny
g : X → Y such that g ◦ f = nY and f ◦ g = nX .

Proof. The kernel ker f is a finite group scheme of order n, hence we can proceed as in the proof
of Proposition 15 to obtain a map g : X → Y such that g ◦ f = nY . Since nY is surjective and
dimX = dimY , g is an isogeny as well. Moreover, f ◦ g ◦ f = f ◦ nY = nX ◦ f , therefore g ◦ f = nX ,
as f is flat and surjective and hence an epimorphism of schemes.
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