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Low-rank paradigm.

Low-rank matrices arise in one way or another:

I low-degree statistical processes
 e.g. collaborative filtering, latent semantic indexing.

I regularization on complex objects
 e.g. manifold learning, metric learning.

I approximation of compact operators
 e.g. proper orthogonal decomposition.

Fig.: Collaborative filtering (courtesy of wikipedia.org).
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Robust principal component pursuit.

I Sparse component corresponds to pattern-irrelevant outliers.

I Robustifies classical principal component analysis.

I Carries important information in certain applications;
e.g. moving objects in surveillance video.

I Robust principal component pursuit:

data low-rank sparse noise
Z = A + B + N

 

 

 

 

 

 

 

 

I Introduced in [Candés, Li, Ma, and Wright, ’11],
[Chandrasekaran, Sanghavi, Parrilo, and Willsky, ’11].
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Convex-relaxation approach.

I A popular (convex) variational model:

min ‖A‖nuclear + λ‖B‖`1
s.t. ‖A+B − Z‖ ≤ ε.

I Considered in [Candés, Li, Ma, and Wright, ’11],
[Chandrasekaran, Sanghavi, Parrilo, and Willsky, ’11], ...

I rank(A) relaxed by nuclear-norm;
‖B‖0 relaxed by `1-norm.

I Numerical solvers: proximal gradient method, augmented
Lagrangian method, ...
 Efficiency is constrained by SVD in full dimension at each
iteration.
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Manifold constrained least-squares model.

I Our variational model:

min
1

2
‖A+B − Z‖2

s.t. A ∈M(r) := {A ∈ Rm×n : rank(A) ≤ r},
B ∈ N (s) := {B ∈ Rm×n : ‖B‖0 ≤ s}.

I Our goal is to develop an algorithm such that:

I globally converges to a stationary point (often a local
minimizer).

I provides exact decomposition with high probability for noiseless
data.

I outperforms solvers based on convex-relaxation approach,
especially in large scales.
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Existence of solution and optimality condition.

I A little quadratic regularization (0 < µ� 1) is included for
the (theoretical) sake of existence of a solution; i.e.

min f(A,B) :=
1

2
‖A+B − Z‖2 +

µ

2
‖A‖2,

s.t. (A,B) ∈M(r)×N (s).

In numerics, choosing µ = 0 seems fine.

I Stationarity condition as variational inequalities:

{
〈∆, (1 + µ)A∗ +B∗ − Z〉 ≥ 0, for any ∆ ∈ TM(r)(A

∗),

〈∆, A∗ +B∗ − Z〉 ≥ 0, for any ∆ ∈ TN (s)(B
∗).

TM(r)(A
∗) and TN (s)(B

∗) refer to tangent cones.
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Constraints of Riemannian manifolds.

I M(r) is Riemannian manifold around A∗ if rank(A∗) = r;
N (s) is Riemannian manifold around B∗ if ‖B∗‖0 = s.

I Optimality condition reduces to:
{
PTM(r)(A

∗)((1 + µ)A∗ +B∗ − Z) = 0,

PTN (s)(B
∗)(A

∗ +B∗ − Z) = 0.

PTM(r)(A
∗) and PTN (s)(B

∗) are orthogonal projections onto
subspaces.

I Tangent space formulae:

TM(r)(A
∗) = {UMV > + UpV

> + UV >p : A∗ = UΣV > as compact SVD,

M ∈ Rr×r, Up ∈ Rm×r, U>p U = 0, Vp ∈ Rn×r, V >p V = 0},

TN (s)(B
∗) = {∆ ∈ Rm×n : supp(∆) ⊂ supp(B∗)}.
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A conceptual alternating minimization scheme.

Initialize A0 ∈M(r), B0 ∈ N (s). Set k := 0 and iterate:

1. Ak+1 ≈ arg minA∈M(r)
1
2‖A+Bk − Z‖2 + µ

2‖A‖2.

2. Bk+1 ≈ arg minB∈N (s)
1
2‖Ak+1 +B − Z‖2.

Theorem (sufficient descrease + stationarity ⇒ convergence)

Let {(Ak, Bk)} be generated as above. Suppose that there exists
δ > 0, εka ↓ 0, and εkb ↓ 0 such that for all k:

f(Ak+1, Bk) ≤ f(Ak, Bk)− δ‖Ak+1 −Ak‖2,
f(Ak+1, Bk+1) ≤ f(Ak+1, Bk)− δ‖Bk+1 −Bk‖2,
〈∆, (1 + µ)Ak+1 +Bk − Z〉 ≥ −εka‖∆‖, for any ∆ ∈ TM(r)(A

k+1),

〈∆, Ak+1 +Bk+1 − Z〉 ≥ −εkb‖∆‖, for any ∆ ∈ TN (s)(B
k+1).

Then any non-degenerate limit point (A∗, B∗), i.e. rank(A∗) = r
and ‖B∗‖0 = s, satisfies the first-order optimality condition.
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Sparse matrix subproblem.

I The global solution PN (s)(Z −Ak+1) (as metric projection)
can be efficiently calculated from “sorting”.

I The global solution may not necessarily fulfill the sufficient
descrease condition.

I Whenever necessary, safeguard by a local solution:

Bk+1
ij =

{
(Z −Ak+1)ij , if Bk

ij 6= 0,

0, otherwise.

I Given non-degeneracy of Bk+1, i.e. ‖Bk+1‖0 = s, the exact
stationarity holds.
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Low-rank matrix subproblem: a Riemannian perspective.

I Global solution PM(r)(
1

1+µ(Z −Bk)) as metric projection:
I available due to Eckart-Young theorem; i.e.

1

1 + µ
(Z −Bk) =

n∑
j=1

σjujv
>
j ⇒ PM(r)(

1

1 + µ
(Z −Bk)) =

r∑
j=1

σjujv
>
j .

I but requires SVD in full dimension
 expensive for large-scale problems (e.g. m,n ≥ 2000).

I Alternatively resolved by a single Riemannian optimization
step on matrix manifold.

I Riemannian optimization applied to low-rank matrix/tensor
problems; see [Simonsson and Eldén, ’10], [Savas and Lim,
’10], [Vandereycken, ’13], ...

I Our goal: The subproblem solver should activate the
convergence criteria, i.e. sufficient descrease + stationarity.
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Riemannian optimization: an overview.Optimization on Manifolds in one picture

M f

R

3

I References: [Smith, ’93], [Edelman, Arias, and Smith, ’98],
[Absil, Mahony, and Sepulchre, ’08], ...

I Why Riemannian optimization?
I Local homeomorphism is computationally infeasible/expensive.

I Intrinsically low dimensionality of the underlying manifold.

I Further dimension reduction via quotient manifold.

I Typical Riemannian manifolds in applications:
I finite-dimensional (matrix manifold): Stiefel manifold,

Grassmann manifold, fixed-rank matrix manifold, ...

I infinite-dimensional: shape/curve spaces, ...
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Riemannian optimization: a conceptual algorithm.
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Conceptually, a retraction R at x, denoted by Rx, is a mapping from 
TxM to M with a local rigidity condition that preserves gradients at x; see 
Figure 4.1. 

x 

M 

TxM 

Rx(ξ)

ξ 

Figure 4.1 Retraction.

Definition 4.1.1 (retraction) A retraction on a manifold M is a smooth
mapping R from the tangent bundle T M onto M with the following proper-
ties. Let Rx denote the restriction of R to TxM.

(i) Rx(0x) = x, where 0x denotes the zero element of TxM.
(ii) With the canonical identification T0x

satisfiesTxM ! TxM, Rx

DRx(0x) = idTxM, (4.2) 
where idTxM denotes the identity mapping on TxM.

We generally assume that the domain of R is the whole tangent bundle T M. 
This property holds for all practical retractions considered in this book. 

Concerning condition (4.2), notice that, since Rx is a mapping from TxM
to M sending 0x to x, it follows that DRx(0x) is a mapping from T0x

(TxM) 
to TxM (see Section 3.5.6). Since TxM is a vector space, there is a nat-
ural identification T0x

(TxM) ! TxM (see Section 3.5.2). We refer to the 
condition DRx(0x) = idTxM as the local rigidity condition. Equivalently, for 
every tangent vector ξ in TxM, the curve γξ : t "→ Rx(tξ) satisfies γ̇ξ(0) = ξ. 
Moving along this curve γξ is thought of as moving in the direction ξ while 
constrained to the manifold M. 

Besides turning elements of TxM into points of M, a second important 
purpose of a retraction Rx is to transform cost functions defined in a neigh-
borhood of x ∈ M into cost functions defined on the vector space TxM. 
Specifically, given a real-valued function f on a manifold M equipped with 
a retraction R, we let f̂ = f R denote the pullback of f through R. For ◦ 
x ∈ M, we let 

fx = f Rx (4.3) ̂ ◦ 

retractM̄(r)(A
k,∆k)

∆k

Ak

TM̄(r)(A
k)

M̄(r)

At the current iterate:

1. Build a quadratic model in the tangent space using
Riemannian gradient and Riemannian Hessian.

2. Based on the quadratic model, build a tangential search path.

3. Perform backtracking path search via retraction to determine
the step size.

4. Generate the next iterate.
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Riemannian gradient and Hessian.

I M̄(r) := {A : rank(A) = r}; fkA : A ∈ M̄(r) 7→ f(A,Bk).

I Riemannian gradient, gradfkA(A) ∈ TM̄(r)(A), is defined s.t.

〈gradfkA(A),∆〉 = DfkA(A)[∆], ∀∆ ∈ TM̄(r)(A).

gradfkA(A) = PTM̄(r)(A)(∇fkA(A)).

I Riemannian Hessian, HessfkA(A) : TM̄(r)(A)→ TM̄(r)(A), is

defined s.t. HessfkA(A)[∆] = ∇∆gradfkA(A), ∀∆ ∈ TM̄(A).

HessfkA(A)[∆] = (I − UU>)∇fkA(A)(I − V V >)∆>UΣ−1V >

+ UΣ−1V >∆>(I − UU>)∇fkA(A)(I − V V >)

+ (1 + µ)∆.

See, e.g., [Vandereycken, ’12].
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Dogleg search path and projective retraction.74 C H A P T E R 4 . T R U S T - R E G I O N M E T H O D S
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(

Figure 4.4 Exact trajectory and dogleg approximation.

by simply omitting the quadratic term from (4.5) and writing

p∗(!) ≈ −!
g

‖g‖
, when ! is small. (4.14)

For intermediate values of !, the solution p∗(!) typically follows a curved trajectory like
the one in Figure 4.4.

The dogleg method finds an approximate solution by replacing the curved trajectory
for p∗(!) with a path consisting of two line segments. The first line segment runs from the
origin to the minimizer of m along the steepest descent direction, which is

pU % − gT g
gT Bg

g, (4.15)

while the second line segment runs from pU to pB (see Figure 4.4). Formally, we denote this
trajectory by p̃(τ ) for τ ∈ [0, 2], where

p̃(τ ) %
{

τ pU, 0 ≤ τ ≤ 1,

pU + (τ − 1)(pB − pU), 1 ≤ τ ≤ 2.
(4.16)

The dogleg method chooses p to minimize the model m along this path, subject to
the trust-region bound. The following lemma shows that the minimum along the dogleg
path can be found easily.

∆(σ)

∆C

∆N
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retractM̄(r)(A
k,∆k)

∆k

Ak

TM̄(r)(A
k)

M̄(r)

I “Dogleg” path ∆k(τk) as approximation of optimal trajectory
of tangential trust-region subproblem (left figure):

min fkA(Ak) + 〈gk,∆〉+
1

2
〈∆, Hk[∆]〉

s.t. ∆ ∈ TM̄(r)(A
k), ‖∆‖ ≤ σ.

I Metric projection as retraction (right figure):

retractM̄(r)(A
k,∆k(τk)) = PM̄(r)(A

k + ∆k(τk)).

Computationally efficient: “reduced” SVD on 2r-by-2r matrix!
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Low-rank matrix subproblem: projected dogleg step.

Given Ak ∈ M̄(r), Bk ∈ N (s):

1. Compute gk, Hk, and build the dogleg search path ∆k(τk) in
TM̄(r)(A

k).

2. Whenever non-positive definiteness of Hk is detected, replace
the dogleg search path by the line search path along steepest
descent direction, i.e. ∆(τk) = −τkgk.

3. Perform backtracking path/line search; i.e. find the largest
step size τk ∈ {2, 3/2, 1, 1/2, 1/4, 1/8, ...} s.t. the sufficient
descrease condition is satisfied:

fkA(Ak)−fkA(PM̄(r)(A
k+∆k(τk))) ≥ δ‖Ak−PM̄(r)(A

k+∆k(τk))‖2.

4. Return Ak+1 = fkA(PM̄(r)(A
k + ∆k(τk))).

tao.wu@uni-graz.at Riem-RPCP (15/19)



Low-rank matrix subproblem: convergence theory.

I Backtracking path search:

I The sufficient descrease condition can always be fulfilled after
finitely many trails on τk.

I Any accumulation point of {Ak} is stationary.

I Further assume Hessf(A∗, B∗)
∣∣∣
µ=0
� 0 at a non-degenerate

accumulation point (A∗, B∗). Then

I Tangent-space transversality holds, i.e.

TM̄(r)(A
∗) ∩ TN (s)(B

∗) = {0}.
I Contractivity of PTM̄(r)(A

∗) ◦ PTN(s)(B∗): ∃κ ∈ [0, 1) s.t.

‖(PTM̄(r)(A
∗) ◦ PTN(s)(B∗))(∆)‖ ≤ κ‖∆‖.

I q-linear convergence of {Ak} towards stationarity:

lim sup
k→∞

‖Ak+1 −A∗‖
‖Ak −A∗‖ ≤ κ.
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Numerical implementation.

I Trimming  Adaptive tuning of rank rk+1 and cardinality
sk+1 based on the current iterate (Ak, Bk).

I k-means clustering on (nonzero) singular values of Ak in
logarithmic scale.

I hard thresholding on entries of Bk.

I q-linear convergence confirmed numerically:

0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration

||
A

k
−

A
* ||

/|
|A

* ||

(a) Convergence of {Ak}.

0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration

||
B

k
−

B
* ||

/|
|B

* ||

(b) Convergence of {Bk}.

tao.wu@uni-graz.at Riem-RPCP (17/19)



Comparison with augmented Lagrangian method (m = n = 2000).
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(a) Relative error of {Ak}.
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(b) Relative error of {Bk}.
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(c) Phase transition of {Ak}.
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(d) Phase transition of {Bk}.
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Application to surveillance video.

I Problem settings:

I A sequence of 200 frames taken from a surveillance video at an
airport.

I Each frame is a gray image of resolution 144× 176.

I Stack 3D-array into a 25344× 200 matrix.

I Results:

I CPU time: AMS  39.4s; ALM  124.4s.

I Visual comparison.
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