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Multistage stochastic programs
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Let £={&)L | be an IR%valued discrete-time stochastic data pro-
cess defined on some probability space (§2, F, IP) and with &; de- rie Page |

terministic. The stochastic decision z; at period ¢ is assumed to be
measurable with respect to F; := o (&1, . . ., &) (nonanticipativity). B

44 »»
Multistage stochastic program: I

T Ty € Xt, < 4
min ¢ /& Z (be(&), z4)]| x4 is Fy — measurable;t =1,...,T,
! Aoy + Agi(E)aemr = ha(&r), ¢ =2, 7)

where X; are nonempty and polyhedral set, A; are fixed matrices GoBack |
and by(-), hy(-) and A; () possibly depend affinely linearly on &,

where £ varies in a polyhedral set =. Full Screen |
The model is (multiperiod) two-stage if /; = F, t=2,...,T. e

Stability of such models is not known so far (cf. the survey by Rémisch 03). 5
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Application: Airline Revenue Management

Origin&Destination (O&D) Revenue Management has become a
standard instrument in airline industry. It considers the entire air-
line network and determines protection levels for all origin desti-
nation itineraries, fare classes, points of sale and data collection
points (dcp’s) of the booking horizon. Our model incorporates
the stochastic nature of the passenger behaviour and represents a
multi-stage stochastic program where its stages refer to the dcp'’s.
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To have the multistage stochastic program well defined, we assume
ry € Ly(Q, Fp, IP; IR™) and & € L,(Q, Fy, IP; IRY), where r > 1

and

L if only costs are random
r , if only right-hand sides are random
r =2 , if only costs and right-hand sides are random

Then nonanticipativity may be expressed as

T € Ny
Nna — {gj S szlLr’<Qafa P; Rmt) L L = E[xt‘ft] ) \V/t}v

I.e., as a subspace constraint, by using the conditional expectations

IE[-|F;] with respect to the o-fields F;.
For T'= 2 we have NV, = R™ x L.(Q,F, P; IR™).

— infinite-dimensional optimization problem

oo , if all technology matrices are random and r = T.
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Dynamic programming
Home Page I

Theorem: (Evstigneev 76, Rockafellar/Wets 76)
Under weak assumptions the multistage stochastic program is equiv- rite Poge_|
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alent to the (first-stage) convex minimization problem

min{ [ for,OP() 121 € X1}
where f is an integrand on IR™' x = given by
f@1,€):=(b1(&1), 21) + Po(1,€7),
(I)t(ﬂfla cee s L1, ft> izinf{@t(&); $t>+E[q>t+1(fCla ey It ftﬂ)\ft]i Lml
I (& Xt, At,()xt —+ At,lxt—l — ht(ft)} Go Back |

fort =2,...,T, where O ((xy,...,x7, &) = 0.

Full Screen

— The integrand f depends on the probability measure IP in a
Close I
nonlinear way !
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Quantitative Stability
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Let us introduce some notations. Let /' denote the objective func-
tion defined on L,.(Q, F, IP;IR®) x L.(Q,F,IP;IR") — IR by Tice Page |
F(¢, ) = B[, (&), z2)], let

Xi(xi—1; &) = {xr € Xe|Avore + A1 (&)1 = (&)}

denote the ¢-th feasibility set for every t = 2,...,T and

Contents

KT

X(&) = {x € X Lu(Q, Fpy P; ™)1 € Xy, 2, € Ki(wy_y; &)} ol B
the set of feasible elements with input &. Pagesof 12|

Then the multistage stochastic program may be rewritten as

min{F'(&,z) : = € X(§)}.

Go Back

Let v(£) denote its optimal value and, for any o > 0, ST
lo(F(€,7) = {z € X(€) : F(&,2) <v(€) +a} o |

denote the a-level set of the stochastic program with input &. Que |



The following conditions are imposed:

(A1) There exists a 9 > 0 such that for any £ e L.(Q,F, P, R°)

with ||€ — €|, < 0, anyt = 2,...,T and any z; € X, 2, € _Tere |
XT(a:T_l;éT), T =2,...,t — 1, the set Xt(xt_l;ét) is nonempty
(relatively complete recourse locally around &).

(A2) The optimal value v(£) is finite and the objective function

F' is level-bounded locally uniformly at &, i.e., for some a > 0 [ [
there exists a > 0 and a bounded subset B of L,.(), F, IP; IR™)

such that I,(F(&,-)) is nonempty and contained in B for all £ €  [Rserefia]
L, (9, F, IP; IR®) with [|€ — €|, < 0.

(A3) ¢ € L.(Q, F, IP; IR?) for some r > 1.

Full Screen |
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Theorem:
Let (A1), (A2) and (A3) be satisfied and X be bounded. Home Page |
Then there exist positive constants L, o and 0 such that

[0(€) = v(&)] < L€ — €l + Dx(. £))

holds for all & € L,(Q, F, IP; IR®) with ||{ — &l < 6.
Here, D(&, ) denotes the filtration distance of & and & defined by “«| »

Contents

Di(€, €y=sup _inf Zmax{uast Eled| Bl )| — El#| 7)) S
56(07 ]Teé( Page 8 of 12 |

where F, = o(&1,.. ., &) and Fr=o(&,...,&) t=2,...,T—1.

Note that the filtration distance vanishes for multiperiod two-stage

stochastic programs ! cose |



If solutions exist, the filtration distance is of the simplified form

-1

Di(6,&) = _inf >~ max{lloi—Bloi| Flll, |13~ Bl )

LGZO

iely(F <5 >> (=2
For example, solutions exist if {2 is finite or if 1 < ' < oo implying
that the spaces L, are finite-dimensional or reflexive Banach spaces
(hence, the level sets are compact or weakly sequentially compact).

Remark:

The continuity property of infima in the Theorem can be supple-
mented by a quantitative stability property of the set S(&) of first
stage solutions. Namely, there exists a constant L > 0 such that

sup d(z, S(€)) < W (L(1€ = €Il + Di(&, ),

z€S5()
where V¢ (7):=inf {IE[f (21, &)]—v(€):d(x1,S(§)) > 7,21 € X1}
with \Ifgl(a) = sup{7T € R, : V(1) < a} (o € R,) is the
growth function of the original problem near its solution set S(§).
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The following example shows that the filtration distance Dy is in-
dispensable for the stability result to hold.

Example: (Optimal purchase under uncertainty)

The decisions x; correspond to the amounts to be purchased at
each time period with uncertain prices are &, t = 1,...,7T, and
such that a prescribed amount a is achieved at the end of a given
time horizon. The problem is of the form

y

(th, St) S Xt = R%—’
g (¢, 5¢) is (& &;)-measurable
. E ty 9 )t )
m1n< ;gtxt St—St_lziCt,tIQ,...,T, ’

s1 =0,sr = a.
L 1 s OT )

where the state variable s; corresponds to the amount at time ¢.

Let 7" := 3 and &, denote the stochastic price process having the
two scenarios £! = (3,24 ¢,3) (e € (0,1)) and £ = (3,2, 1) each
endowed with probability %; Let € denote thg approximation of &,
given by the two scenarios £8 = (3,2, 3) and €2 = (3,2, 1) with the

same probabilities %
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We obtain

U<€€> = _<(2+€>CL+CL>: a

v(€) = 2a,

but

~ 1 1 -
& =€l < 50+e+0)+5(0+0+0) =,

Hence, the multistage stochastic purchasing model is not stable

with respect to || - ||;.

However, the estimate for \v(g)
valid with L = 1 since Dy(&, )

_a

5"

(€)| in the stability theorem is
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Conclusions

The stability result has important consequences for the construction
of scenario trees &;, as approximations of the original process £&. The
tree &, should be selected such that

H£ — gtrH'r and Df<€7€tr)

are smaller than some tolerance. This problem may be solved for &
having scenarios &' and probabilities p;, 7 = 1,..., N.

Application: Airline revenue management (continued)

Let & be passenger demand scenarios for a single flight (LH400, A340-300) with d = 14 fare classes
and the booking time horizon with 7" = 18 obtained by (re)sampling from historical data (N=300).
An implementation of a (forward) tree construction leads to the following scenario tree with 150

scenarios, 1190 nodes and branching at all t =1,...,18.
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