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Introduction

PDE constrained optimization problems under uncertainty attracted more interest

since the Oberwolfach meeting in 2013. Such problems are motivated by economic

and engineering applications.

Their solution requires a combination of discretization and sampling techniques, and

of specific iterative solution methods.

More specific PDEs with random coefficients are within the reach of efficient com-

putational methods.

Here, we study the impact of Monte Carlo methods in the presence of infinite

dimensions and present some numerical results.



PDE constrained optimization under uncertainty

Let D ⊂ Rm be an open bounded domain with Lipschitz boundary, V = H1
0(D)

the classical Sobolev space with inner product (·, ·)V , V ? = H−1(D) its dual with

norm ‖ · ‖? und dual pairing 〈·, ·〉 and H = L2(D) with inner product (·, ·)H . Let

Ξ be a metric space and P be a Borel probability measure on Ξ.

We consider the bilinear form a(·, ·; ξ) : V × V → R defined by

a(u, v; ξ) =

∫
D

n∑
i,j=1

bij(x, ξ)
∂u(x)

∂xi

∂v(x)

∂xj
dx (ξ ∈ Ξ).

We impose the condition that the functions bij : D × Ξ → R are measurable on

D × Ξ and there exist L > γ > 0 such that

γ

n∑
i=1

y2
i ≤

n∑
i,j=1

bij(x, ξ)yiyj ≤ L

n∑
i=1

y2
i (∀y ∈ Rn)

for a.e. x ∈ D and P-a.e. ξ ∈ Ξ. This implies that each bij is essentially bounded

on D × Ξ from both sides with respect to the associated product measure.



For P-a.e. ξ ∈ Ξ we define the mapping A(ξ) : V → V ? by means of the Riesz

representation theorem

〈A(ξ)u, v〉 = a(u, v; ξ) (u, v ∈ V ).

Then A(ξ) is a linear, uniformly positive definite (with γ > 0) and uniformly

bounded (with L > 0) random elliptic operator.

PDE constrained stochastic optimization problem:
Minimize the functional

F (z) =
1

2

∫
Ξ

∫
D

|u(x, ξ)− ũ(x)|2 dxdP(ξ) +
α

2

∫
D

|z(x)|2 dx

=
1

2
EP[‖u− ũ‖2

H ] +
α

2
‖z‖2

H

subject to A(ξ)u = z + g(ξ) and z ∈ Zad (P-a.e. ξ ∈ Ξ),

where Zad ⊂ H denotes a closed convex bounded subset, α > 0, ũ ∈ H and

g : D × Ξ→ R is measurable on D × Ξ and at least square integrable on D.



Existence and quadratic growth

Infinite-dimensional stochastic optimization problem:

We consider the integrand

f (z, ξ) =
1

2

∥∥A(ξ)−1(z + g(ξ))− ũ
∥∥2

H
+
α

2
‖z‖2

H

for any z ∈ Zad and P-a.e. ξ ∈ Ξ, and the optimization problem

min
{
F (z) =

∫
Ξ

f (z, ξ)dP(ξ) : z ∈ Zad

}
,

where g ∈ L2(Ξ,P;V ?) and A(ξ) as defined earlier.

Proposition:
The functional F is finite, strongly convex and lower semicontinuous, hence, weakly

lower semicontinuous on the weakly compact set Zad. Hence, there exists a unique

minimizer z(P) ∈ Zad of F and it holds

‖z − z(P)‖2 ≤ 8

α
(F (z)− F (z(P))) (∀z ∈ Zad).



Weak convergence and metric distances

Weak convergence in P(Ξ): (PN) converges weakly to P iff

lim
N→∞

∫
Ξ

f (ξ)dPN(ξ) =

∫
Ξ

f (ξ)dP(ξ) (∀f ∈ Cb(Ξ,R)).

The topology of weak convergence is metrizable if Ξ is separable.

A sequence of random variables converges in distribution if their probability

distributions converge weakly.

Distance on P(Ξ): (Zolotarev 83)

dF(P,Q) = sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)dP(ξ)−
∫

Ξ

f (ξ)dQ(ξ)

∣∣∣∣,
where F is a family of real-valued Borel measurable functions on Ξ.

A number of important probability metrics are of the form dF, for example, the

bounded Lipschitz metric (metrizing the topology of weak convergence) and the

Fortet-Mourier type metrics.

Whether convergence with respect to dF implies or is implied by weak convergence depends on

the richness and on analytical properties of F.



Quantitative stability

Compared with classical probability metrics we consider much smaller families F:

Fmi = {f (z, ·) : z ∈ Zad}
Fdi = {f ′z(z, ·)(h) : z ∈ Zad, ‖h‖H ≤ 1}.

In this case we arrive at semi-metrics which we call minimal information (m.i.) and

minimal (Fréchet) derivative information (d.i.) distances, respectively.

Theorem:
Under the standing assumptions we obtain the following estimates for the infimum

v(P) and the minimizer z(P) of F with respect to Zad:

|v(Q)− v(P)| ≤ dFmi
(Q,P)

‖z(Q)− z(P)‖H ≤ 2

√
2

α
dFmi

(Q,P)
1
2

‖z(Q)− z(P)‖H ≤
8

α
dFdi

(Q,P)

for any Q ∈ P(Ξ).



Properties of the integrands

Lemma: (Topsøe 67)

Let F be uniformly bounded and P({ξ ∈ Ξ : F is not equicontinuous at ξ}) = 0

holds. Then F is a P-uniformity class, i.e., weak convergence of (PN) to P implies

lim
N→∞

dF(PN ,P) = 0.

Theorem:
Assume that all functions bij(x, ·), i, j = 1, . . . , n, and g(x, ·) are Lipschitz contin-

uous on Ξ uniformly with respect to x ∈ D. Furthermore, let g ∈ L∞(Ξ,P;V ?).

Then the families Fmi and Fdi are uniformly bounded and equi-Lipschitz continuous

on Ξ and, hence, P-uniformity classes.

Let Ξ ⊂ Rd be a bounded, convex set having the property Ξ ⊆ cl int Ξ, let k ∈ N.

Assume that all functions bij(x, ·), i, j = 1, . . . , n, g(x, ·), x ∈ D, have continuous

mixed partial derivatives up to order k which are in addition all measurable and

essentially bounded on D × Ξ.

Then both classes Fmi and Fdi are bounded subsets of Ck(Ξ).



Monte Carlo approximations

Let ξ1, ξ2, . . . , ξn, . . . be independent identically distributed Ξ-valued random vari-

ables on some probability space (Ω,F , P ) having the common distribution P, i.e.,

P = Pξ−1
1 . We consider the empirical measures

Pn(·) =
1

n

n∑
i=1

δξi(·) (n ∈ N)

and the empirical or Monte Carlo approximation of the original stochastic program

with sample size n, namely, the program

min
{1

n

n∑
i=1

f (z, ξi(·)) : z ∈ Zad

}
.

Its optimal value v(Pn(·)) is a real random variable and its solution z(Pn(·)) an

H-valued random element.

Qualitative and quantitative results on the asymptotic behavior of optimal values

and solutions are known in finite-dimensional settings so far.

(Dupačová-Wets 88, and the surveys by Shapiro 03 and Pflug 03)



It is well known that (Pn(·)) converges weakly to P P -almost surely.

Corollary: The sequences (v(Pn(·))) and (z(Pn(·))) of empirical optimal values

and solutions converge P -almost surely to the true optimal values and solutions

v(P) and z(P), respectively.

Quantitative information on the asymptotic behavior of v(Pn(·)) and z(Pn(·)) is

closely related to uniform convergence properties of the empirical process{
Gnf =

√
n(Pn(·)− P)f =

1√
n

n∑
i=1

(f (ξi(·))− Pf )
}
f∈F

indexed by F = {f (z, ·) : z ∈ Zad}, where we set Qf =
∫

Ξ f (ξ)dQ(ξ) for any

probability distribution Q and any f ∈ F.

We are interested in obtaining quantitative information on the mean or probability

estimates of √
n dF(Pn(·),P) =

√
n sup

f∈F
|Pn(·)f − Pf |

and in a (functional) central limit theorem for {Gnf}f∈F.



The supremum is non-measurable in general, but since Z is a subset of a separable Hilbert space

and all functions in F are continuous, the supremum may be restricted to a countable set of

functions and is, hence, measurable.

A collection F of measurable functions on Ξ is called P-Donsker if the empirical

process {Gnf}f∈F converges in distribution to a tight random variable G

Gn =
√
n(Pn − P)

d−→ G

in the space `∞(F) of bounded functions on F, where the limit G = {Gf : f ∈ F}
is a Gaussian process with zero mean and covariance function

EP [Gf1Gf2] = P[(f1 − Pf1)(f2 − Pf2)] (f1, f2 ∈ F).

The limit G is sometimes called a P-Brownian bridge process in `∞(F).

Whether such a functional central limit theorem or rates for convergence in mean

or probability are valid, depends on the size of the class F measured in terms of

bracketing and entropy numbers. To introduce the latter concepts, let F be a subset

of the linear normed space Lp(Ξ,P) (for some p ≥ 1) equipped with the usual norm

‖f‖P, p = (P|f |p)
1
p =

(∫
Ξ

|f (ξ)|pdP(ξ)
)1
p
.



The bracketing number N[ ](ε,F, ‖ · ‖P,p) is the minimal number of brackets

[l, u] = {f ∈ Lp(Ξ,P) : l ≤ f ≤ u}
needed to cover F, where l, u ∈ Lp(Ξ,P) and ‖l − u‖P, p < ε.

The metric entropy number H[ ](ε,F, ‖ · ‖P,p) with bracketing for F is defined by

H[ ](ε,F, ‖ · ‖P,p) = logN[ ](ε,F, ‖ · ‖P,p).
Both numbers are finite if F is a totally bounded subset of Lp(Ξ,P).

Proposition: (van der Vaart 96)

There exists a universal constant C > 0 such that for any class F of measurable

functions with envelope function F̂ (i.e., |f | ≤ F̂ for every f ∈ F) belonging to

L2(Ξ,P) the estimate

√
nE[dF(Pn(·),P)] ≤ C

∫ 1

0

√
1 + H[ ](ε‖F̂‖P,2,F, ‖ · ‖P,2) dε ‖F̂‖P,2

holds. If the integral is finite, then the class F is P-Donsker.

Note that the integral can only be finite if H[ ](ε,F, ‖ · ‖P,2) grows at most like

ε−β with 0 < β < 2 for ε→ +0.



Below it turns out that the integral is finite if F is a bounded subset of classical linear normed

spaces of smooth functions.

Let Ξ ⊂ Rd be convex, bounded with the property Ξ ⊆ cl int Ξ, k ∈ N0. We

consider the classical Banach space Ck(Ξ) of real functions on Ξ having continuous

partial derivatives up to order k.

Proposition: (Kolmogorov/Tikhomirov 61)

Let Bk(ρ) denote the ball around the origin with radius ρ in Ck(Ξ). Then there

exists a constant K > 0 depending only on d, k, ρ and the diameter of Ξ such that

we have for its metric entropy with bracketing

H[ ](ερ,Bk(ρ), ‖ · ‖P,2) ≤ Kε−
d
k

for every ε > 0.

Corollary:
Bounded subsets F of Ck(Ξ) are P-Donsker if d < 2k.



Delta theorem

Proposition: (Shapiro 91)

Let B1 and B2 be linear normed spaces equipped with their Borel σ-fields. Let (Xn)

be random elements of B1, and (τn) be positive and such that τn →∞ as n→∞.

Let

τn(Xn − x̄)
d−→ X

for some x̄ ∈ B1 and some random element X of B1, and let Φ : B1 → B2 be

Hadamard directionally differentiable at x̄, i.e.,

lim
t→0+
y→ȳ

Φ(x̄ + ty)− Φ(x̄)

t
= Φ′(x̄; ȳ)

for all ȳ ∈ B1. Then it holds

τn(Φ(Xn)− Φ(x̄))
d−→ Φ′(x̄;X),

where
d→ means convergence in distribution.

(King 89, Dümbgen 93)



Application:
B1 = `∞(Zad), B2 = R and Φ(h) = infz∈Zad

h(z).

Proposition:
The infimum mapping Φ is Hadamard directionally differentiable at each h ∈
`∞(Zad) and it holds

Φ′(h; θ) = lim
ε→0+

inf
{
θ(z) : z ∈ Zad, h(z) ≤ inf

z∈Zad

h(z) + ε
}
.

If h and θ are weakly lower semicontinuous on Zad, then

Φ′(h; θ) = min
{
θ(z) : z ∈ arg min

z∈Zad

h(z)
}
.

(Lachout 06, Eichhorn-Römisch 07)

Application:
h(z) := F (z) = Pf (z, ·), θ(z) := Gf (z, ·) and Φ′(h, θ) = Gf (z(P), ·).



Main result

Theorem:
Let Ξ ⊂ Rd be a bounded, convex set having the property Ξ ⊆ cl int Ξ and

let k ∈ N be such that d < 2k. Assume that all functions bij(x, ·) : Ξ → R,

i, j = 1, . . . ,m, and g(x, ·) : Ξ → R, x ∈ D, have continuous partial derivatives

up to order k which are all measurable and essentially bounded on D × Ξ.

Then the classes Fmi and Fdi are P-Donsker and it holds that

E[|v(Pn(·))− v(P)|] = O(n−
1
2)

E[‖z(Pn(·))− z(P)‖H ] = O(n−
1
2)

and the sequence (
√
n(v(Pn(·)) − v(P))) converges in distribution to a normal

random variable with mean zero and variance E[(Gf (z(P), ·))2].

Remark:
An extension to unbounded Ξ is possible if an additional condition is satisfied which

connects the tail behaviour of P and bounds for the integrand on bounded subsets.



Illustrating example

We construct examples that are flexible in the number of random variables and

smoothness in the coefficients.

Set D = (0, 1)2, Ξ = [0, 1]d and P the uniform distribution, where d = 2q, q ∈ N0.

Next, we partition the interval [0, 1] into d closed intervals

Di =
[i− 1

d
,
i

d

]
(i = 1, . . . , d)

with 1lDi be the associated characteristic function.

Next we define the mapping b̂ : D × Rd → R by

b̂(x, η) =

d∑
i=1

(ηi + 10−2x2 + 10−3)1lDi(x1).

where x ∈ D and η ∈ Rd. We will use b̂ to define the random coefficients inside

the differential operator. For each k = 0, 1, 2, . . . we define wk : Ξ→ Rd by

(wk(ξ))j = (ξj − 10−1)k max{0, ξj − 10−1} (j = 1, . . . , d),

and for every i, j ∈ {1, 2} we set

bij(x, ξ) = b̂(x,wk(ξ)).



Note that if k = 0, then bij(x, ξ) is only Lipschitz in ξ. However, for k = 1, 2, . . .

and fixed x ∈ D, bij(x, )̇ is in Ck(Ξ).

For the right hand side of the differential equation, we consider

g(x, ν) = sin(2x1) sin(2x2) + 10−2ν

where (x1, x2) ∈ D and ν ∈ R. The parameter ν is understood to be part of the

vector ξ and Ξ will be a subset of Rd+1. Given z ∈ H, we then consider the random

elliptic PDE

A(ξ)u = z + g(·, ξ).

For three randomly chosen ξ1, ξ2, ξ3 ∈ Ξ and z ≡ 0 we plot the resulting solutions:

Uncontrolled, random states: Three realizations of u(ξ) computed by setting z ≡ 0.



The PDE constrained stochastic optimization problem is

min F (z) =
1

2
EP[‖u− ũ‖2

H ] +
α

2
‖z‖2

H

subject to A(ξ)u = z + g(ξ) and z ∈ Zad (P-a.e. ξ ∈ Ξ),

where we set α = 1.0, ũ ≡ 1/2, Zad =
{
z ∈ H : −3

4 ≤ z(x) ≤ 3
4, a.e. x ∈ D

}
.

Solution method:

� For fixed n ∈ N, we let ξ1, ξ2, . . . , ξn, . . . be independent identically distributed

(iid) Ξ-valued random variables on a probability space (Ω,F , P ) with common

distribution P = P ◦ ξ−1
1 .

� The domain D is triangulated by a uniform mesh rule and we use a standard

H1 finite element discretization for solving the PDE. The theoretical optimality

conditions indicate that the optimal solutions z(P), z(Pn) share the regularity

in V = H1
0(D). Hence, we use the same discretization for the controls.

� The unique solutions satisfy nonsmooth equations which are solved by a semi-

smooth Newton method.



We have plotted the result applying this scheme to our problem with n = 500 and a mesh defined

by 128 x 128 grid. This corresponds to 16129 degrees of freedom for the control variables z

and approximately 8 million degrees of freedom for the state variables associated with the 500

elliptic PDEs. The average controlled state is much closer to the desired state of ũ ≡ 0.5 than

observed in the uncontrolled states.

Optimal solution and average states: The left picture shows the optimal control computed for a

random sample of size n = 500 on a uniform mesh with 16129 degrees of freedom. The right

picture shows the effect of the optimal control z(Pn) on the state variables u(ξ) for a new sample

of size 500 by computing 1
n

∑n
i=1A(ξi)

−1(z(Pn) + g(ξi)).



Stability statistics: The figures show the experimental convergence rates of the optimal solutions

and optimal values. A coarser uniform mesh was chosen that corresponded to 900 degrees of

freedom was used.

The left figure exhibits an experimental rate of O(m−0.53656) for ‖z(Pm)− z(Pn)‖H .

The right figure exhibits an experimental rate of O(m−0.66035) for |v(Pm)− v(Pn)|.



Conclusions and future work

� The empirical central limit theorem enables the application of resampling tech-

niques like bootstrapping or subsampling to determine asymptotic confidence

intervals.

� Monte Carlo methods have several asymptotic properties, but the slow conver-

gence rate O(n−
1
2) requires a large sample size and, thus, a high number of

PDE solves.

� Randomized Quasi-Monte Carlo methods could be a viable alternative due to

the better convergence rate of about O(n−1). However, their justification re-

quires a completely different methodology, they produce dependent samples and

the computation of confidence intervals is unsolved.
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