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Abstract In this article we introduce a new locking-free completely discontinuous for-
mulation for Reissner–Mindlin plates that combines the discontinuous Galerkin methods
with weakly over-penalized techniques. We establish a new discrete version of Helmholtz
decomposition and some important residual estimates. Combining the residual estimates with
enriching operators we derive an optimal a priori error estimate in the energy norm.We obtain
robust a posteriori error estimators and prove their reliability and efficiency.
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1 Introduction

The weak formulation for the Reissner–Mindlin plate model reads: Given g ∈ L2(�) and
f ∈ L2(�;R2), seek (θ , w, γ ) ∈ H1

0 (�;R2) × H1
0 (�) × L2(�;R2) such that

a(θ , η) + (γ , η)� = ( f , η)� for all η ∈ H1
0 (�;R2)

−(γ ,∇v)� = (g, v)� for all v ∈ H1
0 (�)

t2μ−1(γ ,φ)� − (θ − ∇w,φ)� = 0 for all φ ∈ L2(�;R2). (1)
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Here, and throughout this paper, t is the plate thickness, � is a convex polygonal domain,
and e(ξ) is the symmetric part of the gradient of ξ ,

Ce(ξ) = 1

3

[
2μe(ξ) + 2μλ

2μ + λ
div ξ I

]

where μ and λ are the Lamé coefficients and I is the identity 2 × 2 matrix, and

a(θ , η) = (e(θ), Ce(η))�.

In this paperwe introduce a new locking-free completely discontinuous formulation for (1)
that combines the traditional discontinuousGalerkinmethodswith theweakly over-penalized
symmetric interior penalty (WOPSIP)methods. For the first equation of theReissner–Mindlin
model we will apply the same formulation used, for example, in [1,2,7], while for the second
equation we will introduce a type of WOPSIP method similar to that presented in [15]. With
this approach the interior penalty term for the displacement will be over-penalized, but the
penalty parameter can be any positive constant. However, for polynomials of degree k = 2,
for which we have the required theoretical regularity available for the convex domain (see
Theorem 8 and [3,4]), the over-penalization (the power of h) will be the same as that used
in [7] and also in [35–37] for the biharmonic equation.

Locking-free formulations where completely discontinuous spaces are used for all the
variables have been reported in [1,2] and [7] (see [34] for an overview of the first two articles).
In the second article, polynomials of the same degree k were used for the displacement and
rotation and k−1was used for the shear stress, where k is an odd degree. For this formulation,
an optimal rate of convergence in the energy norm was proved. In [1], for any k ≥ 2 the
formulation considers degree k for displacement and k−1 for rotation and shear stress. Using
Helmholtz decomposition optimal rates of convergence in the energy norm and L2 normwere
proved. In the third article a new formulation was proposed, which does not introduce the
shear as an unknown and does not need reduced integration (as [1]). Using degree k for
displacement and k − 1 for rotation, for any k ≥ 2, optimal rates of convergence in the
energy norm were proved and numerically confirmed. In this article we will apply degree k
for displacement and k−1 for rotation and shear stress. Assuming Helmholtz decomposition
we will prove optimal rates of convergence in the energy norm and prove the reliability and
efficiency of the a posteriori error estimators.

Many other formulations for the Reissner–Mindlin model that combine (with or without
the bubble function) nonconforming, conforming and fully discontinuous elements are avail-
able [1–3,5,6,16,17,21–23,25,28,32,38]. In [24], a general review of the finite elements
methods for the Reissner–Mindlin model and related problems, such as dimensional reduc-
tion of the model, properties of the solution, regularity results and the locking problem, can
be found. A description of the main approaches used to solve the Reissner–Mindlin model,
including the Durán–Liberman element, MITC triangular families, Falk–Tu elements, linked
interpolation methods, nonconforming Arnold and Falk and some rectangular elements, is
provided. Other approaches, such as the discontinuous Galerkin methods and least-squares
schemes, are also discussed in the above-cited paper.

The weakly over-penalized symmetric methods were introduced in [14] for second-order
elliptic problems and extended to any higher-order polynomials in [15]. The main charac-
teristic of WOPSIP methods is that the jumps across the element boundary are weakly over-
penalized. Unfortunately, because of this, the resulting discrete system is ill-conditioned.
However, in [15] (see also [12]), an adequate preconditioner, which reduces the condition
number of the discrete problem to O(h−2) (the same as a typical discretization) when odd-
orders are considered, was constructed. This formulation is stable for any positive penalty
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parameter and has optimal errors in both the energy norm and L2 norm. For k = 1, in [11]
it was shown that WOPSIP is intrinsically parallel. Furthermore, a nonsymmetric version of
the over-penalized method was introduced in [13] for the same class of problem covered by
the symmetric version.

On combining discontinuous Galerkin (dG) methods with WOPSIP techniques the resul-
tant discrete formulation is not consistent. This prevents us from obtaining the Galerkin
orthogonality. Therefore, the traditional error analysis of dG methods can not be applied.
Furthermore, since the consistency term is dependent on the shear stress we can obtain only
suboptimal error estimates on applying the WOPSIP analysis techniques. To obtain optimal
error estimates we will proceed with the analysis through the residual estimates, which are
typical for a posteriori error analysis [18–20,33], together with enriching operators [8,9].
A similar approach has been previously used, for example, in [26] and [27] to analyze dG
methods under minimal regularity. To succeed with this strategy we need to assume that the
Helmholtz decomposition is valid. Fortunately, this is the case if k = 2 (at least) and if � is
a convex polygon domain, basically.

We highlight that this new formulation of dG for Reissner–Mindlin have the following
advantages: (a) more freedom in the choosing of the penalty parameters; (b) the formulation
is simpler, in the sense that have less terms; (c) we obtain robust a posteriori error estimators
and prove their reliability and efficiency; and (d) we required only reasonable and standard
hypotheses on the domain. Moreover, the error analysis was designed in an unusual way and
the Theorem 8, for k = 2, shows an error estimate in the energy norm which requires only
the regularity provided theoretically for the solution in the case of a convex polygon domain
(or smooth domain). In addition, the norms of the solution present on the right-hand side are
uniformly bounded with respect to t .

The rest of this paper is organized as follows: In the next sectionwe introduce the necessary
notation and recall some definitions to deal with discontinuous Galerkin methods. In Sect. 3
we introduce the new discrete formulation which combines dG with WOPSIP techniques.
Some residual estimates which are fundamental for error analysis are present in Sect. 4
together with a discrete version of Helmholtz decomposition. In Sect. 5 we describe the a
priori error analysis in the energy norm and the final section is dedicated to the a posteriori
error analysis.

2 Notation and Preliminaries

Let T be a shape-regular family of regular triangulations of � ⊂ R
2 into triangles T , where

the T are open, convex and pairwise disjoint, such that

� =
⋃
T∈T

T .

On the regular triangulation T ∈ T, the piecewise constant function hT is defined by

hT |T = hT := diam(T ) on T ∈ T

and we denote by h the maximum of hT for T ∈ T . Let E be the set of all edges E of all the
triangles in T and let us define the piecewise constant function hE as

hE|E = hE := diam(E) on E ∈ E .
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E(T ) denotes the set of the three edges of T . The set E will be divided into two subsets, E(Ω)

and E(∂Ω), defined by

E(Ω) = {E ∈ E : E ⊂ �} and E(∂Ω) = {E ∈ E : E ⊂ ∂�}.
The shape-regularity of T, provides some constant 0 < γ (T) ≤ 1 such that

∀ T ∈ T, ∀ T ∈ T , ∀ E ∈ E(T )

γ hT ≤ hE ≤ hT .

The Sobolev space of real order (or index) s of real-valued functions defined on ω ⊂ �,
will be labeled by Hs(ω). Its inner product, norm and semi-norm will be denoted by (·, ·)s,ω,
‖ ·‖s,ω, and | · |s,ω, respectively. In particular, we will write ‖ ·‖ω and (·, ·)ω instead of ‖ ·‖0,ω
and (·, ·)0,ω, respectively. Similarly, for any E ∈ E we will denote by 〈·, ·〉E and ‖ · ‖E the
inner product and the induced norm in the space L2(E), respectively. Also, we will denote
by Hs(ω;R2) = Hs(ω) × Hs(ω) the Sobolev space of vector functions for which, as in the
case of the scalar function, (·, ·)s,ω will denote the inner product. Note that the same notation
for the inner product also will be used occasionally for symmetric tensors. Let

Hs(T ) = {v ∈ L2(�) : v|T ∈ Hs(T ), for all T ∈ T }
be the space of piecewise Sobolev Hs-functions.We denote its inner product, norm and semi-
norm by (·, ·)s,h , ‖ · ‖s,h and | · |s,h , respectively. Hs(T ;R2) = Hs(T )× Hs(T ) denotes the
space of piecewise Sobolev Hs-vector functions.

We use the following differential operators: Curl(v) = (∂v/∂y,−∂v/∂x) for a scalar
function v, and rot (η) = ∂η2/∂x − ∂η1/∂y for a vector function η = (η1, η2). We observe
that any differential operator defined over a piecewise Sobolev space will be indicated by a
subscript h.

For any T ∈ T , let νT = (ν1, ν2) be the outer unit normal to the boundary ∂T and let
τ T = (−ν2, ν1) be the tangential vector. Let T− and T+ be two distinct elements of T
sharing the edge E = T− ⋂

T+ ∈ E(Ω). We define the jump of v ∈ H1(T ) by

[v] = v−ν− + v+ν+,

where v± := v|T± and ν± denote the outer unit normal νT± on T±. For a vector function
η ∈ H1(T ;R2), define

[η] = η− · ν− + η+ · ν+ and [[η]] = η− 
 ν− + η+ 
 ν+,

where η 
 ν = (ηνT + νηT )/2. Similarly, for a tensor ε ∈ H1(�;R2×2) the jump on E is
defined by

[[ε]] = ε−ν− + ε+ν+.

Note that the jump of a scalar function is a vector. For a vector function η, the jump [η] is
a scalar, while the jump [[η]] is a symmetric matrix, and for a tensor the jump is a vector. The
average of a tensor, scalar function or vector function χ is defined by {χ} = 1

2 (χ
− + χ+).

On a boundary edge, we define the average {χ} as the trace of χ , while we consider [φ] to
be φν, [η] to be η · ν, [[η]] to be η 
 ν and [[ε]] to be εν.

Occasionally, we shall use the jump on E in relation to the tangent vector, in this case
denoted by [v]τ , that is, [v]τ = v−τ− + v+τ+ (idem for a vector function).

For a positive integer k, Pk(T ) will denote the linear space of polynomials on T with a
total degree of less than or equal to k, and Pk(T ;R2) := Pk(T )×Pk(T ). The discrete space
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for the displacement will be

Pk(T ) = {
v ∈ L2(�) : ∀ T ∈ T , v|T ∈ Pk(T )

}
,

and for the rotation and shear stress it will be

Pk−1(T ;R2) = {η ∈ L2(�;R2); ∀ T ∈ T , η|T ∈ Pk−1(T ;R2)}

for any k ≥ 2.
Let πW denote the natural projection onto Pk(T ) (see [1] for definition of πW ).

For w ∈ Hk+1(�) let w I = πWw be the interpolant of w. It then follows that
w I ∈ Pk(T ) ∩ H1(�) and that for 0 ≤ q ≤ k + 1, there exists a constant c such that

‖w − w I ‖q,h ≤ chk+1−q ‖w‖k+1,� for all w ∈ Hk+1(�). (2)

The rotated Brezzi–Douglas–Marini space of degree k − 1, i.e., the space of all piecewise
polynomial vector fields of degree k − 1 subject to interelement continuity of the tangential
components, will be denoted by BDMR

k−1. Let πΘ be the natural projection operator of
H1(�;R2) into BDMR

k−1 ⊂ Pk−1(T ;R2). For θ ∈ Hk(�;R2) we define its interpolant θ I

by θ I := πΘθ . With this choice, for 0 ≤ s ≤ �, and 1 ≤ � ≤ k we have

‖θ − θ I ‖s,h ≤ ch�−s‖θ‖�,� for all θ ∈ H �(�;R2). (3)

Defining γ I = t−2(θ I − ∇w I ), it follows from the commutative property
πΘ∇w = ∇πWw that

πΘγ = t−2πΘ (θ − ∇w) = t−2(πΘθ − ∇πWw) = t−2(θ I − ∇w I ) = γ I .

Thus γ I interpolates γ and for 0 ≤ s ≤ � and 1 ≤ � ≤ k we have

‖γ − γ I ‖s,h ≤ ch�−s‖γ ‖�,� for all γ ∈ H �(�;R2). (4)

To develop our dG with WOPSIP for the Reissner–Mindlin model, we need to define the
following auxiliary norms

‖v‖2h :=
∑
T∈T

‖∇hv‖2T +
∑
E∈E

σ2

hρ
E

‖�k−1[v]‖2E for all v ∈ H1(T );

‖η‖2h :=
∑
T∈T

‖eh(η)‖2T +
∑
E∈E

σ1

hE
‖[[η]]‖2E for all η ∈ H1(T ;R2);

‖η, v,φ‖2h := ‖η‖2h + ‖v‖2h + t2‖φ‖20,h for all (η, v,φ) ∈ H1(T ;R2)

×H1(T ) × L2(T ;R2).

Here, and throughout this paper, ρ, σ1 and σ2 are positive constants that will be defined
below. The operator �k−1 is the orthogonal projections from L2(E;R2) onto Pk−1(E;R2)

where Pk−1(E) is the space of polynomials of degree less than or equal to k − 1 on E .
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3 Combined Formulation of dG and WOPSIP

The new formulation for the Reissner–Mindlin model that combines WOPSIP and dG uses
the following form on

(
H1+κ (T ;R2) × H1(T ) × L2(T ;R2)

)2
with κ > 1/2, namely

Ah(ξ , u, ζ ; η, v,φ) = Bh(ξ , η) + J (u, v)

+
∑
T∈T

((ζ , η − ∇hv)T

−(ξ − ∇hu,φ)T + t2μ−1(ζ ,φ)T
)

(5)

where

Bh(ξ , η) = ah(ξ , η) −
∑
E∈E

〈{Ceh(ξ)}, [[η]]〉E − δ
∑
E∈E

〈{Ceh(η)}, [[ξ ]]〉E + JJ (ξ , η),

ah(ξ , η) =
∑
T∈T

(Ceh(ξ), eh(η))T , JJ (ξ , η) =
∑
E∈E

σ1

hE
〈[[ξ ]], [[η]]〉E

and
J (u, v) =

∑
E∈E

σ2

hρ
E

〈�k−1[u],�k−1[v]〉E .

Moreover, σ1 and σ2 are the penalty parameters and ρ > 1 (which is dependent on k) will
be defined below. The parameter δ is the symmetric/nonsymmetric bilinear form parameter
with −1 ≤ δ ≤ 1. This gives the following energy norms

|||η, v,φ|||2 = ‖eh(η)‖20,h + t2‖φ‖20,h + JJ (η, η) + J (v, v) +
∑
E∈E

hE

σ1
‖{Ceh(η)}‖2E ;

|||η, v,φ|||2∗ = |||η, v,φ|||2 + t−2‖η − ∇hv‖20,h
for all (η, v,φ) ∈ H1+κ (T ;R2) × H1(T ) × L2(T ;R2).

The weakly over-penalized interior penalty associated with the discontinuous Galerkin
(dGWOPIP)method for theReissner–Mindlinmodel reads: Seek (θh, wh, γ h) ∈ Pk−1(T ;R2)

× Pk(T ) × Pk−1(T ;R2) such that

Ah(θh, wh, γ h; η, v,φ) = (g, v)� + ( f , η)�

for all (η, v,φ) ∈ Pk−1(T ;R2) × Pk(T ) × Pk−1(T ;R2). (6)

This formulation differs from those of [2] and [1] as follows: (a) the dGWOPIP formulation
does not have the terms 〈{γ h}, [v]〉E and 〈{φ}, [wh]〉E as in [2] and [1]; (b) the dGWOPIP
formulation does not need reduced integration while in [2] it is needed; (c) the dGWOPIP
formulation over-penalizes the jump of the displacement (even for k = 2 the penalization is
different); and (d) the dGWOPIP formulation involves the projection of the jump while in
[1] the projection is not present.

Lemma 1 Let T be a shape-regular partition, then there exists a positive constant c inde-
pendent of h and t, such that for all ((ξ , u, ζ ), (η, v,φ)) ∈ (H1+κ (T ;R2) × H1(T ) ×
L2(T ,R2))2 satisfies

|Ah(ξ , u, ζ ; η, v,φ)| ≤ c|||ξ , u, ζ |||∗|||η, v,φ|||∗.
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Lemma 2 Let T be a shape-regular partition and assume that the Lamé coefficients are
uniformly bounded. Then, there exists a positive constant σ̃1, such that, if σ1 > σ̃1, there
exists a positive constant ς independent of h and t such that,

ς |||η, v,φ|||2 ≤ Ah(η, v,φ; η, v,φ)

for all (η, v,φ) ∈ Pk−1(T ;R2)×Pk(T )×Pk−1(T ;R2) and for any choice of σ2 > σ̃2 > 0
where σ̃2 is arbitrary but fixed.

Proof Let �0, �1 be positive constants such that

�0‖eh(η)‖20,h ≤ |ah(η, η)| ≤ �1‖eh(η)‖20,h . (7)

Then we have

Ah(η, v,φ; η, v,φ) − ς |||η, v,φ|||2 ≥ (�0 − ς)‖eh(η)‖20,h
+(μ−1 − ς)t2‖φ‖20,h + (1 − ς) (J (η, η) + J (v, v))

−(1 + δ)
∑
E∈E

〈{Ceh(η)}, [[η]]〉E − ς
∑
E∈E

hE

σ1
‖{Ceh(η)}‖2E .

For any positive constant � the Cauchy–Schwarz inequality and arithmetic-geometric
inequality show that

−〈{Ceh(η)}, [[η]]〉E ≥ −�

2

hE

σ1
‖{Ceh(η)}‖2E − 1

2�

σ1

hE
‖[[η]]‖2E .

An inverse inequality implies that

hE‖{Ceh(η)}‖2E ≤ c‖eh(η)‖2T . (8)

With this we obtain

Ah(η, v,φ; η, v,φ) − ς |||η, v,φ|||2 ≥ (
μ−1 − ς

)
t2‖φ‖20,h + (1 − ς)J (v, v)

+
(

�0 − ς

(
1 + c

σ1

)
− (1 + δ)

�c

2σ1

)
‖eh(η)‖20,h

+
(
1 − ς − (1 + δ)

2�

)
J (η, η).

If δ 
= −1 we first choose � such that 1− (1+δ)
2� > 0. In the following we choose σ̃1 such

that �0 − (1 + δ)
�c
2σ̃1

> 0. The assumption follows with ς > 0 be such that

ς < min

{
1, μ−1, 1 − (1 + δ)

2�
,

�0 − (1 + δ)
�c
2σ̃1

1 + c
σ̃1

}
.

On the other hand, if δ = −1 the assumption follows for any choice of σ1 > σ̃1 > 0, with
σ̃1 arbitrary but fixed, if ς > 0 be such that

ς < min

{
1, μ−1,

�0

1 + c
σ̃1

}
.

��
Note that if δ 
= −1, any choice of � > 1 implies that 1 − (1+δ)

2� > 0, for all δ ∈ (−1, 1].
Thereby, if σ̃1 >

(1+δ)c�
2�0

, where c is given by (8) and �0 by (7), the assumption follows with
the suitable ς .
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4 Residual Estimates

This section provides some residual estimates that will be necessary in Sect. 5 to prove the
a priori error estimates. In order to achieve sharp residual estimates, we will also prove a
discrete Helmholtz decomposition.

The first theorem gives various preliminary residual estimates for some quantities of
interest. The proof of this result follows directly from that of Theorem 5.

Theorem 3 Let gh ∈ Pk(T ), f h ∈ Pk−1(T ;R2) and φ, η ∈ Pk−1(T ;R2) be arbitrary.
Then, it holds for all T ∈ T and for all E ∈ E(�) that

hT ‖ f h + divhCeh(η) − φ‖T � ‖e(θ) − eh(η)‖T + hT ‖γ − φ‖T
+‖ f T − f h‖H−1(T ),

hT ‖gh − divh(φ)‖T � ‖γ − φ‖T + ‖gT − gh‖H−1(T ),

h1/2E ‖[[Ceh(η)]]‖E � ‖e(θ) − eh(η)‖ωE + hE‖γ − φ‖ωE + ‖ f E − f h‖H−1(ωE ),

h1/2E ‖[φ]‖E � ‖γ − φ‖ωE + ‖gE − gh‖H−1(ωE ).

Here, and throughout this paper, gT = g|T , gE = g|ωE (idem for f ) and ωE is the patch of
two triangles sharing the face E. Moreover, an inequality a � b replaces a ≤ Cb with a
multiplicative (t, hT , hE )-independent constant C.

If we apply Theorem 3 directly, the our a priori error estimate (see Theorem 8 below)
will be optimal with respect to h but will not be optimal with respect to t because the norm
‖γ ‖k−1, which is not bounded as t tends to zero, will appear on the right-hand side. The
Helmholtz decomposition provides a remedy for this. As in [1], we assume that γ has a
Helmholtz decomposition in the form

γ = ∇α + Curl(β) with α ∈ Hk(�) ∩ H1
0 (�) and β ∈ Hk(�)/R. (9)

In addition we will assume that

‖α‖k,� + ‖β‖k,� � ‖γ ‖k−1,�, and ‖α‖k,� + ‖β‖k−1,� � ‖γ ‖Hk−2(div), (10)

where Hk−2(div) is the space of vectors in Hk−2(�;R2) that have divergence in Hk−2(�).
We note that this result holds for k = 2 (at least) if � is a convex polygon and if we have Hk

regularity for the Poisson problem �α = div(γ ).
In order to obtain a result similar to that of Theorem 3 using Helmholtz decomposition, we

first need to prove the follow discrete version of Helmholtz decomposition. This consists of
splitting any piecewise polynomialφ ∈ Pk−1(T ;R2) into two parts, where one is the gradient
of z ∈ Pk(T ) and the other is the curl of r ∈ Pk(T ). To stabilize this split we assume that
‖z‖1,h + ‖r‖1,h � ‖φ‖0,h . Another version of discrete Helmholtz decomposition can be
found in [31, Lemma 5.2].

Lemma 4 Any piecewise polynomial φ ∈ Pk−1(T ;R2) can be written as ∇hz + Curlh(r)
where z ∈ Pk(T ) and r ∈ Pk(T ).

Proof It is suffice to prove the assumption for a generic T ∈ T . Given φ ∈ Pk−1(T ;R2)

suppose that φ = (xa1 x
b
2 , 0), where a, b ∈ N are such that a + b = k − 1 (the maximal

degree of Pk−1(T ;R2)). If b = 0 set z = 1
a+1 x

a+1
1 and r = 0. If a = 0 set z = 0 and

r = 1
b+1 x

b+1
2 . In all other cases set z1 = 1

a+1 x
a+1
1 xb2 and r1 = b

(a+1)(a+2) x
a+2
1 xb−1

2 and
observe the following.
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If a = k − 2 then b = 1 and the assumption reads

∇z1 + Curl(r1) =
(
xa1 x

b
2 ,

b

a + 1
xa+1
1 xb−1

2

)
+

(
0, − b

a + 1
xa+1
1 xb−1

2

)
= φ

with a solution z = z1 and r = r1. Otherwise, it holds that

∇z1 + Curl(r1) =
(
xa1 x

b
2 ,

b

a + 1
xa+1
1 xb−1

2

)

+
(

b(b − 1)

(a + 1)(a + 2)
xa+2
1 xb−2

2 , − b

a + 1
xa+1
1 xb−1

2

)

= φ +
(

b(b − 1)

(a + 1)(a + 2)
(xa+2

1 xb−2
2 , 0)=:φ + φ1

)
.

If a = k − 3 set z2 = −c1
1

a+3 x
a+3
1 xb−2

2 and r2 = 0, where c1 = b(b−1)
(a+1)(a+2) . This allows

the solution z = z1 + z2 and r = r1 because

∇z2 + Curl(r2) =
(
−c1(x

a+2
1 xb−2

2 , 0) − c1(0, 0)
)

= −φ1.

Otherwise, set z3 = z2 and r3 = −c1
b−2

(a+3)(a+4) x
a+4
1 xb−3

2 .
If a = k − 4 then b = 3 and

∇z3 + Curl(r3) = −c1

(
xa+2
1 xb−2

2 ,
b − 2

a + 3
xa+3
1 xb−3

2

)

+c1

(
0,

b − 2

a + 3
xa+3
1 xb−3

2

)
= −φ1.

In this case the process finishes with the solution z = z1 + z3 and
r = r1 + r3. Otherwise,

∇z3 + Curl(r3) = −c1
(
xa+2
1 xb−2

2 , c2x
a+3
1 xb−3

2

)

+c1

(
−c2(b − 3)

(a + 4)
xa+4
1 xb−4

2 , c2x
a+3
1 xb−3

2

)

= −φ1

(
−c1c2

(b − 3)

(a + 4)
(xa+4

1 xb−4
2 , 0)=: − φ1 + φ2

)
,

where c2 = b−2
a+3 . It is easily observed that on continuing the process, after j ( j ≤ k − 1)

steps, we found the solution.
If the first component of φ is a sum of parcels we perform this process for each one of

them. To complete, if φ has two components different from zero, then we apply this process
to each component. ��

Clearly, the decomposition of Lemma 4 is not unique, for example, by adding any constant
to z and/or r the result will continue to be a solution. Exploring this freedom, we will
require for any φ = ∇hz + Curlh(r) ∈ Pk−1(T ,R2) that

∫
T z dx = ∫

T α dx and
∫
T r dx =∫

T β dx ∀ T ∈ T , where α and β are given by (9).
In the following downwewill apply Lemma 4 only to the subspace ofPk−1(T ,R2)which

consists of all elements φ ∈ Pk−1(T ,R2) such that z, r ∈ H1(�) ∩ Pk(T ), where z and
r are the counterpart of φ, that is, φ = ∇z + Curl(r). Using this subspace our results for
Theorems 5 and 7 become clearer, and the proof of error estimates for the solution of the
dGWOPIP given in Theorem 8 is not affected.
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Under the Helmholtz decomposition hypothesis the next theorem provides residual esti-
mates that improve those of Theorem 3. Note that the proof of the next theorem is based on
the idea described in [26, Lemma 2.2].

Theorem 5 Let η,φ ∈ Pk−1(T ;R2) be arbitrary but such that φ = ∇z + Curl(r) with
z, r ∈ Pk(T )∩ H1(�). Then, for gh ∈ Pk(T ) and f h ∈ Pk−1(T ;R2) it holds for all T ∈ T
and for all E ∈ E(�) that

hT ‖ f h + divhCeh(η) − φ‖T � ‖e(θ) − eh(η)‖T + ‖α − z‖T + ‖β − r‖T
+‖ f T − f h‖H−1(T ), (11a)

hT ‖gh − divh(φ)‖T � ‖∇(α − z)‖T + ‖gT − gh‖H−1(T ), (11b)

h1/2E ‖[[Ceh(η)]]‖E � ‖e(θ) − eh(η)‖ωE + ‖α − z‖ωE + ‖β − r‖ωE

+‖ f E − f h‖H−1(ωE ), (11c)

h1/2E ‖[φ]‖E � ‖∇(α − z)‖ωE + ‖gE − gh‖H−1(ωE ). (11d)

Proof Let bT ∈ H1
0 (T ) be the bubble function that takes the value of one at the barycenter

of T . Then,

‖bT ( f h + divh(Ceh(η)) − φ)‖T ≤ ‖ f h + divh(Ceh(η)) − φ‖T . (12)

As we are dealing with a finite dimension there exists a positive constant c such that

c‖ f h + divh(Ceh(η)) − φ‖2T ≤ ‖b1/2T ( f h + divh(Ceh(η)) − φ)‖2T .

Note that ϑ := bT ( f h + divh(Ceh(η)) − φ) ∈ H1
0 (T ;R2). Hence

c
∫
T
( f h + divh(Ceh(η)) − φ)2 dx ≤

∫
T

ϑ · ( f h + divh(Ceh(η)) − φ) dx

=
∫
T
f T · ϑ dx +

∫
T

ϑ · (divh(Ceh(η)) − φ) dx

+
∫
T
( f h − f T ) · ϑ dx=:Υ1 + Υ2 + Υ3.

Let ϑ̃ be the extension of ϑ by zero outside of T . Then

Υ1 + Υ2 =
∫
T
f T · ϑ̃ dx +

∫
T

ϑ · (divh(Ceh(η)) − φ) dx

=
∫

�

(
Ce(θ) : eh(ϑ̃) + γ · ϑ̃

)
dx −

∫
T

(Ceh(η) : eh(ϑ) + φ · ϑ) dx

=
∫
T

(Ce(θ) − Ceh(η)) : eh(ϑ) dx +
∫
T

(γ − φ) · ϑ dx,

where we use (1). Using the Helmholtz decomposition (9), integration by parts and the
properties of the bubble function we obtain∫

T
(γ − φ) · ϑ dx = −

∫
T
(α − z)div(ϑ) dx +

∫
T
(β − r)rot (ϑ) dx .

From Cauchy–Schwarz inequality and inverse inequality

Υ1 + Υ2 � ‖Ce(θ) − Ceh(η)‖T ‖eh(ϑ)‖T + ‖div(ϑ)‖T ‖α − z‖T
+‖rot (ϑ)‖T ‖β − r‖T � h−1

T (‖e(θ) − eh(η)‖T + ‖α − z‖T + ‖β − r‖T ) ‖ϑ‖T .
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In the same way we obtain

Υ3 � ‖ f h − f T ‖H−1(T )‖ϑ‖H1(T ) � h−1
T ‖ f h − f T ‖H−1(T )‖ϑ‖T .

Combining this and using (12) we complete the proof of inequality (11a).
For the second inequality, proceeding in a similar way, we obtain

c
∫
T
(gh − divh(φ))2 dx ≤ ‖gh − gT ‖H−1(T )‖ϑ‖H1(T ) +

∫
T
(γ − φ) · ∇ϑ dx .

Using Helmholtz decomposition, integration by parts (term with Curl) and the properties of
the bubble function, together with inverse inequality and Cauchy–Schwarz inequality, we
obtain ∫

T
(γ − φ) · ∇ϑ dx =

∫
T

∇(α − z) · ∇ϑ dx +
∫
T
(β − r)rot (∇ϑ) dx

−
∫

∂T
(β − r)∇ϑ · τ dx � ‖∇(α − z)‖T ‖∇ϑ‖T

� h−1
T ‖∇(α − z)‖T ‖ϑ‖T ,

because ∇ϑ · τ = 0 on ∂T . The combination of the previous arguments concludes the proof
of inequality (11b).

To prove the third inequality, let bE ∈ H1
0 (ωE ) be the edge-bubble function that takes the

value of one at the barycenter of the edge E . Let � be the extension of [[Ceh(η)]] to ωE by
constants along lines orthogonal to the edge E and set ϑ = bE�. Then,

‖ϑ‖ωE � ‖h1/2E [[Ceh(η)]]‖E (13)

and

‖[[Ceh(η)]]‖2E � ‖b1/2E [[Ceh(η)]]‖2E =
∫
E

ϑ · [[Ceh(η)]] ds

=
∑
T∈ωE

∫
T
divh(Ceh(η)) · ϑ dx +

∑
T∈ωE

∫
T
Ceh(η) : eh(ϑ) dx

±
∑
T∈ωE

∫
T

φ · ϑ dx ±
∑
T∈ωE

∫
T
f h · ϑ dx ±

∑
T∈ωE

∫
T
f E · ϑ dx

=
∑
T∈ωE

∫
T

(
f h + divh(Ceh(η)) − φ

) · ϑ dx +
∑
T∈ωE

∫
T
(φ − γ ) · ϑ dx

+
∑
T∈ωE

∫
T

(Ceh(η) − Ce(θ)) : eh(ϑ) dx +
∑
T∈ωE

∫
T
( f E − f h) · ϑ dx .

Applying Cauchy–Schwarz inequality

‖[[Ceh(η)]]‖2E � ‖ f E − f h‖H−1(ωE )‖ϑ‖H1(ωE ) +
∑
T∈ωE

∫
T
(φ − γ ) · ϑ dx

+
∑
T∈ωE

(‖ f h + divh(Ceh(η)) − φ‖T ‖ϑ‖T + ‖Ceh(η) − Ce(θ)‖T ‖eh(ϑ)‖T
)
.

(14)
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For the last term of the first line, using the Helmholtz decomposition and integration by parts
we have

Υ4 :=
∑
T∈ωE

∫
T

(γ − φ) · ϑ dx = −
∑
T∈ωE

∫
T
div(ϑ)(α − z) dx

+
∑
T∈ωE

∫
T
rot (ϑ)(β − r) dx +

∫
E
{α − z}[ϑ] ds +

∫
E
{β − r}[ϑ]τ ds.

From Cauchy–Schwarz inequality and inverse inequality (as [ϑ] = 0 and [ϑ]τ = 0)

|Υ4| �
∑
T∈ωE

(‖div(ϑ)‖T ‖α − z‖T + ‖rot (ϑ)‖T ‖β − r‖T )

�
∑
T∈ωE

h−1
T (‖α − z‖T + ‖β − r‖T ) ‖ϑ‖T .

The inequality (11c) follows from (13), (14), inverse inequality and (11a).
For the last inequality, let � be the extension of [φ] to ωE by constants along lines

orthogonal to the edge E . Let bE ∈ H1
0 (ωE ) be the edge-bubble function that takes the value

of one at the barycenter of the edge E . Defining ϑ = bE� we have that

h−1/2
E ‖ϑ‖ωE � ‖[φ]‖E (15)

and

‖[φ]‖2E � ‖b1/2E [φ]‖2E =
∫
E

ϑ[φ] ds =
∑
T∈ωE

∫
T
divh(φ)ϑ dx

+
∑
T∈ωE

∫
T

φ · ∇ϑ dx ±
∑
T∈ωE

∫
T
ghϑ dx ±

∑
T∈ωE

∫
T
gEϑ dx

=
∑
T∈ωE

∫
T

(−gh + divh(φ)) ϑ dx +
∑
T∈ωE

∫
T
(gh − gE )ϑ dx

+
∑
T∈ωE

∫
T
(φ − γ ) · ∇ϑ dx .

Applying Cauchy–Schwarz inequality

‖[φ]‖2E � +
∑
T∈ωE

∫
T
(φ − γ ) · ∇ϑ dx

+
∑
T∈ωE

(‖ − gh + divh(φ)‖T ‖ϑ‖T + ‖gh − gE‖H−1(ωE )‖ϑ‖H1(ωE )

)
. (16)

Helmholtz decomposition, integration by parts (in the term with Curl) and the properties of
the bubble function, together with inverse inequality and Cauchy–Schwarz inequality, show
that
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∑
T∈ωE

∫
T

(γ − φ) · ∇ϑ dx =
∫
E
{β − r}[∇ϑ]τ ds

+
∑
T∈ωE

(∫
T

∇(α − z) · ∇ϑ dx −
∫
T
(β − r)rot (∇ϑ) dx

)

�
∑
T∈ωE

‖∇(α − z)‖T ‖∇ϑ‖T �
∑
T∈ωE

h−1
T ‖∇(α − z)‖T ‖ϑ‖T .

We complete the proof of inequality (11d) combining the last inequality with (16) and
using (15), inverse inequality and (11b). ��

5 A Priori Error Analysis

In this section we use the residual estimates to derive an optimal error estimate in the energy
norm. Initially, we recall some definitions and results. We begin with the following lemma,
which was proved in [15].

Lemma 6 ([15, Lemma 2.2]) Any v ∈ H1(T ) satisfies∑
E∈E

h−1
E ‖[v]‖2E � ‖v‖2h .

The following enriching operators use averaging techniques (see [8] and [9] for details):
IEh : Pk−1(T ;R2) → Pk−1(T ;R2) ∩ H1

0 (�,R2) such that
(∑
T∈T

h−2
E ‖IEhη − η‖2T

)1/2

+ ‖∇h(IEhη − η)‖� � ‖η‖h (17)

and Eh : Pk(T ) → Pk(T ) ∩ H1
0 (�) such that

(∑
T∈T

h−2
E ‖Ehv − v‖2T

)1/2

+ ‖∇h(Ehv − v)‖� � ‖v‖h . (18)

The previous inequality (17) follows from the enriching operator properties and from
discrete Korn’s inequality (see [10] and [2]), while (18) follows from the enriching operator
properties and from Lemma 6 (recall that ρ > 1).

We recall now the following definitions of oscillation for a scalar function and for a vector
function

Osc(g) =
(∑
E∈E

‖gE − Pg‖2H−1(ωE )

)1/2

and

Osc( f ) =
(∑
E∈E

‖ f E − P f ‖2H−1(ωE )

)1/2

,

where P : L2(�) → Pk(T ) is the L2 orthogonal projection onto Pk(T ) and
P : L2(�;R2) → Pk−1(T ;R2) is the L2 orthogonal projection onto Pk−1(T ;R2).
That is, ∫

�

(Pg − g)v dx = 0 ∀ v ∈ Pk(T ) (analogous for P f ).
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As proved in [26], if f ∈ L p(�;R2) for p > 1 we have that

Osc( f ) � h1−2(1/2−1/q)‖ f − P f ‖L p(�), (19)

where p and q are such that 1/p + 1/q = 1. In the same way, it is possible to obtain

Osc(g) � h1−2(1/2−1/q)‖g − Pg‖L p(�) (20)

if g ∈ L p(�) for p > 1.
In the analysis that follows we will divide the error into two parts, where one is related to

the interpolation error and the other is related to the nonconforming error and the consistency
error (as in Strang’s second lemma). Using enriching operators and the residual estimates
we bound the consistency/nonconforming error by one factor similar to an interpolation
error plus one factor (the terms with the coefficient hρ−1 in Theorem 7) which will be
controlled by over-penalization. To ensure the convergence we need to set ρ appropriately,
this means over-penalizing the jump of the displacement in (5). With this strategy we can
prove an optimal a priori error bound (see Theorem 8). The motivation comes from [27,
Lemma 2.1], where this error decomposition is explicit. We observe that the terms Υa and
Υb defined below are related to the interpolation and consistency/nonconforming error part,
respectively. Unfortunately, the analysis of Υa is more complex here because the condition
N3 necessary for [27, Lemma 2.1] was not established.

Theorem 7 Let (θ , w, γ ) be the solution of (1), and let (θh, wh, γ h) be the solution of the
dGWOPIP formulation (6). Assume further that the Helmholtz decomposition (9) is valid.
Then we have

|||θ − θh, w − wh, γ − γ h |||2 � Osc2(g) + Osc2( f ) + hρ−1‖γ ‖2�
+ inf

φ ∈ Pk−1(T ;R2)

{∑
T∈T

(
‖α − z‖2T + ‖β − r‖2T + (hρ−1

T + t2)‖γ − φ‖2T

+ ‖∇(α − z)‖2T
)} + inf

η ∈ Pk−1(T ;R2)

v ∈ Pk(T )

{
t−2‖θ − ∇w − (η − ∇hv)‖20,h

+ ‖θ − η‖2h +
∑
E∈E

hE

σ1
‖{Ceh(θ − η)}‖2E + J (w − v,w − v)

}
,

where φ = ∇hz + Curl(r) with z, r ∈ Pk(T ) ∩ H1(�).

Proof Step 0: Let η̃ = θh − η, ṽ = wh − v and φ̃ = γ h − φ where θh , wh and γ h
are the solution for the dGWOPIP formulation (6), η and v are arbitrary in Pk−1(T ;R2)

and Pk(T ), respectively, and φ is arbitrary in Pk−1(T ;R2) but such that its counterpart
z, r ∈ Pk(T ) ∩ H1(�). The coercivity of the bilinear form given by Lemma 2 and (6)
implies that

|||η̃, ṽ, φ̃|||2 � Ah(η̃, ṽ, φ̃; η̃, ṽ, φ̃) = Ah(θh, wh, γ h; η̃, ṽ, φ̃)

−Ah(η, v,φ; η̃, ṽ, φ̃) = ( f , η̃) + (g, ṽ) − Ah(η, v,φ; η̃, ṽ, φ̃)

= ( f , η̃ − IEhη̃) + (g, ṽ − Ehṽ) − (
∑
T∈T

(φ, η̃ − IEhη̃ − ∇h(ṽ − Ehṽ))T + J (v, ṽ)

+Bh(η, η̃ − IEhη̃)) + ( f , IEhη̃) + (g,Ehṽ) − Bh(η, IEhη̃)

−
∑
T∈T

(
(φ, IEhη̃ − ∇h(Ehṽ))T − (η − ∇hv, φ̃)T + t2μ−1(φ, φ̃)T

)
. (21)
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Step 1: Proof of

Υa �
(∑
T∈T

(‖e(θ) − eh(η)‖2T + ‖α − z‖2T + ‖β − r‖2T
))1/2

‖η̃‖h

+
(∑
T∈T

‖∇(α − z)‖2T
)1/2

‖ṽ‖h + (JJ (θ − η, θ − η))1/2 ‖η̃‖h

+
(∑
T∈T

t2‖γ − φ‖2T + t−2‖θ − ∇w − (η − ∇hv)‖2T
)1/2

t‖φ̃‖0,h, (22)

where

Υa := −
∑
T∈T

(
(φ, IEhη̃ − ∇(Ehṽ))T − (η − ∇hv, φ̃)T + t2μ−1(φ, φ̃)T

)

−Bh(η, IEhη̃) + ( f , IEhη̃) + (g,Ehṽ).

For the analysis ofΥa observe that IEhη̃ ∈ H1
0 (�;R2)∩Pk−1(T ;R2) andEhṽ ∈ H1

0 (�)∩
Pk(T ). Hence (1) and the definition of Bh(·, ·) lead to

Υa =
∑
T∈T

((Ce(θ) − Ceh(η), eh(IEhη̃))T + μ(γ − φ, IEhη̃)T

−μ(γ − φ,∇Ehṽ)T ) +
∑
E∈E

δ〈[[η]], {Ceh(IEhη̃)}〉E

+
∑
T∈T

(
(η − ∇hv, φ̃)T − t2μ−1(φ, φ̃)T

)
=:Υ1 + · · · + Υ6.

The Cauchy–Schwarz inequality implies that

Υ1 =
∑
T∈T

(Ce(θ) − Ceh(η), eh(IEhη̃))T

�
∑
T∈T

‖e(θ) − eh(η)‖T ‖eh(IEhη̃)‖T .

From Helmholtz decomposition (9) and integration by parts we obtain

Υ2 = −μ
∑
T∈T

(∫
T
(α − z)div(IEhη̃) dx −

∫
∂T

(α − z)IEhη̃ · ν ds

)

−μ
∑
T∈T

(∫
T
(β − r)rot (IEhη̃) dx −

∫
∂T

(β − r)IEhη̃ · τ ds

)

= −μ
∑
T∈T

∫
T
(α − z)div(IEhη̃) dx + μ

∑
E∈E

∫
E
{α − z}[IEhη̃] ds

−μ
∑
T∈T

∫
T
(β − r)rot (IEhη̃) dx − μ

∑
E∈E

∫
E
{β − r}[IEhη̃]τ ds.

Since IEhη̃ ∈ H1
0 (�;R2) ∩ Pk−1(T ;R2) the Cauchy–Schwarz inequality leads to

|Υ2| �
∑
T∈T

(‖α − z‖T ‖div(IEhη̃)‖T + ‖β − r‖T ‖rot (IEhη̃)‖) .
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For the third term we proceed as in the case of the second, but this time we integrate by
parts only the term with Curl(β − r). This leads to

Υ3 = μ
∑
T∈T

(∫
T

∇(α − z) · ∇(Ehṽ) dx −
∫
T
(β − r)rot (∇Ehṽ) dx

)

+μ
∑
E∈E

∫
E
{β − r}[∇Ehṽ]τ ds = μ

∑
T∈T

∫
T

∇(α − z) · ∇(Ehṽ) dx .

Subsequently, it follows from Cauchy–Schwarz inequality that

|Υ3| �
∑
T∈T

‖∇(α − z)‖T ‖∇Ehṽ‖T .

Applying Cauchy–Schwarz inequality, the fourth term leads to

Υ4 �
∑
E∈E

δ

∥∥∥∥
√

σ1

hE
[[η]]

∥∥∥∥
E

∥∥∥∥∥
√
hE

σ1
{Ceh(IEhη̃)}

∥∥∥∥∥
E

� (JJ (η, η))1/2

(∑
T∈T

‖eh(IEhη̃)‖2T
)1/2

.

For the last two terms, since φ̃ ∈ L2(�;R2), from (1) and Cauchy–Schwarz inequality, it
follows that

Υ5 + Υ6 =
∑
T∈T

(
t2μ−1(γ , φ̃)T − (θ − ∇w, φ̃)T + (η − ∇hv, φ̃)T − t2μ−1(φ, φ̃)T

)

�
∑
T∈T

(
t‖γ − φ‖T t‖φ̃‖T + t−1‖η − ∇hv − (θ − ∇w)‖T t‖φ̃‖T

)

�
(∑
T∈T

(
t2‖γ − φ‖2T + t−2‖η − ∇hv − (θ − ∇w)‖2T

))1/2

t‖φ̃‖0,h .

The combination of these bounds shows that

Υa �
∑
T∈T

(‖e(θ) − eh(η)‖T ‖eh(IEhη̃)‖T + (‖α − z‖T + ‖β − r‖T ) |IEhη̃|1,T
)

+
(∑
T∈T

(
t2‖γ − φ‖2T + t−2‖η − ∇hv − (θ − ∇w)‖2T

))1/2

t‖φ̃‖0,h

+
∑
T∈T

‖∇(α − z)‖T ‖∇Ehṽ‖T + (JJ (η, η))1/2

(∑
T∈T

‖eh(IEhη̃)‖2T
)1/2

.

Applying the properties of the enriching operators (17) and (18) we arrive at (22)
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Step 2: Proof of

Υb �
(∑
T∈T

(‖e(θ) − eh(η)‖2T + ‖α − z‖2T + ‖β − r‖2T
))1/2

‖η̃‖h

+
(∑
T∈T

(‖∇(α − z)‖2T + hρ−1
T (‖γ − φ‖2T + ‖γ ‖2T ))

)1/2

‖ṽ‖h

+ (
J (w − v,w − v) + Osc2(g)

)1/2 ‖ṽ‖h
+ (

JJ (θ − η, θ − η) + Osc2( f )
)1/2 ‖η̃‖h, (23)

where

Υb := ( f , η̃ − IEhη̃) + (g, ṽ − Ehṽ) − Bh(η, η̃ − IEhη̃)

−
∑
T∈T

(φ, η̃ − IEhη̃ − ∇h(ṽ − Ehṽ))T − J (v, ṽ).

To facilitate the handling we use the definition of the bilinear form Bh(·, ·) to write all
terms of Υb, that is,

Υb = ( f , η̃ − IEhη̃)� + (g, ṽ − Ehṽ)� −
∑
T∈T

(Ceh(η), eh(η̃ − IEhη̃))T

−
∑
T∈T

(φ, η̃ − IEhη̃)T +
∑
T∈T

(φ,∇h(ṽ − Ehṽ))T

+
∑
E∈E

〈{Ceh(η)}, [[η̃ − IEhη̃]]〉E + δ
∑
E∈E

〈{Ceh(η̃ − IEhη̃)}, [[η]]〉E

−JJ (η, η̃) − J (v, ṽ)=:Υ1 + · · · + Υ9.

We start by integrating by parts the first term of the bilinear form Bh(η, η̃ − IEhη̃) in order
to obtain

−
∑
T∈T

(Ceh(η), eh(η̃ − IEhη̃))T =
∑
T∈T

(divh(Ceh(η)), η̃ − IEhη̃)T

−
∑
E∈E

〈{Ceh(η)}, [[η̃ − IEhη̃]]〉E −
∑
E∈E

〈{η̃ − IEhη̃}, [[Ceh(η)]]〉E . (24)

Based on (24), inverse inequality, Cauchy–Schwarz inequality and the definition of orthog-
onal projection P we obtain

Υ1 + Υ3 + Υ4 + Υ6 =
∑
T∈T

((P f + divh(Ceh(η)) − φ) , η̃ − IEhη̃)T

−
∑
E∈E

〈{η̃ − IEhη̃}, [[Ceh(η)]]〉E

�
(∑
T∈T

h2T ‖P f + divh(Ceh(η)) − φ‖2T
)1/2 (∑

T∈T
h−2
T ‖η̃ − IEhη̃‖2T

)1/2

+
(∑
T∈T

h−2
E ‖η̃ − IEhη̃‖2T

)1/2 (∑
E∈E

hE‖[[Ceh(η)]]‖2E
)1/2

.
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Integrating by parts the term Υ5 and from the definition of orthogonal projection P we
have

Υ2 + Υ5 =
∑
T∈T

∫
T
(Pg − divh(φ))(ṽ − Ehṽ) dx

+
∑
E∈E

∫
E

({φ} · [ṽ − Ehṽ] + {ṽ − Ehṽ}[φ]) ds=:S1 + S2.

For the first term of S2, since φ ∈ Pk−1(T ,R2), we obtain from Cauchy–Schwarz inequality
and inverse inequality that∫

E
{φ} · [ṽ − Ehṽ] ds =

∫
E
{φ} · �k−1[ṽ − Ehṽ] ds

�

√
hρ−1
E

σ2
‖φ‖T

∥∥∥∥∥
√

σ2

hρ
E

�k−1[ṽ − Ehṽ]
∥∥∥∥∥
E

.

From triangle inequality and Cauchy–Schwarz inequality we obtain

S2 �
(∑
T∈T

hρ−1
E

σ2

(‖γ − φ‖2T + ‖γ ‖2T
))1/2

J (ṽ, ṽ)1/2

+
∑
E∈E

h−1/2
E ‖{ṽ − Ehṽ}‖Eh1/2E ‖[φ]‖E .

On combining these results and applying Cauchy–Schwarz inequality and inverse inequality
we obtain

Υ2 + Υ5 �
(∑
T∈T

h2E‖Pg − divh(φ)‖2T
)1/2 (∑

T∈T
h−2
E ‖ṽ − Ehṽ‖2T

)1/2

+
(∑
T∈T

hρ−1
E

σ2

(‖γ − φ‖2T + ‖γ ‖2T
))1/2

J (ṽ, ṽ)1/2

+
(∑
E∈E

hE‖[φ]‖2E
)1/2 (∑

T∈T
h−2
E ‖ṽ − Ehṽ‖2T

)1/2

.

For the last three terms we once again apply Cauchy–Schwarz inequality and inverse inequal-
ity and consider that θ ∈ H1(�,R2) and w ∈ H1(�) to obtain

Υ7 + Υ8 + Υ9 � δ
∑
E∈E

√
hT
σ1

‖{Ceh(η̃ − IEhη̃)}‖E
√

σ1

hT
‖[[η]]‖E

+ (JJ (η − θ , η − θ))1/2 (JJ (η̃, η̃))1/2 + (J (w − v,w − v))1/2 (J (ṽ, ṽ))1/2

�

⎛
⎝δ

(∑
T∈T

‖eh(η̃ − IEhη̃)‖2T
)1/2

+ (JJ (η̃, η̃))1/2

⎞
⎠ (JJ (η − θ, η − θ))1/2

+ (J (w − v,w − v))1/2 (J (ṽ, ṽ))1/2 .

By combining all of these inequalities and using the enriching operator properties (17)
and (18), together with the Theorem 5, we prove (23).
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Step 3: We combine the previous steps to finish the proof. Firstly, observe that
‖η‖h ≤ ‖η, v,φ‖h , ‖v‖h ≤ ‖η, v,φ‖h and t‖φ‖0,h ≤ ‖η, v,φ‖h . Also, there exists positive
constants c̃1 and c̃2 such that (finite dimension)

c̃1|||η, v,φ||| ≤ ‖η, v,φ‖h ≤ c̃2|||η, v,φ|||. (25)

Finally, from (21)–(23) and (25) we have

|||η̃, ṽ, φ̃|||2 �
∑
T∈T

(‖e(θ) − eh(η)‖2T + t−2‖θ − ∇w − (η − ∇hv)‖2T
)

+
∑
T∈T

(
‖∇(α − z)‖2T + (t2 + hρ−1

T )‖γ − φ‖2T + hρ−1
T ‖γ ‖2T + ‖α − z‖2T

+‖β − r‖2T
) + J (w − v,w − v) + JJ (θ − η, θ − η) + Osc2(g) + Osc2( f ).

From triangle inequality we complete the proof. ��
Once again, as in [1], let α I ∈ Pk(T ) ∩ H1

0 (�) and β I ∈ Pk(T ) ∩ H1
0 (�)/R be the

interpolants of α and β, respectively, which satisfies the following estimates

‖α − α I ‖� + h|α − α I |1,� � h�|α|�,� � = 1, . . . , k,

‖β − β I ‖� + h|β − β I |1,� � h�|β|�,� � = 1, . . . , k. (26)

The choice of γ̃ I = ∇α I + Curl(β I ) proves with (10) that

‖γ − γ̃ I ‖� � h�−1 (|α|�,� + |β|�,�
)

� h�−1‖γ ‖�−1,� � = 1, . . . , k. (27)

Exploring the infima on the right-hand side of Theorem 7 we can prove the following
convergence result.

Theorem 8 Let (θ , w, γ ) be the solution of (1), and let (θh, wh, γ h) be the solution of the
dGWOPIP formulation (6). Assume that the solution (θ , w, γ ) ∈ Hk(�;R2) × Hk(�) ×
Hk−1(�;R2), f ∈ Hk−2(�;R2) and g ∈ Hk−2(�) for k ≥ 2. Moreover, assume that
the Helmholtz decomposition (9) is valid. Then, if ρ = 2k − 1 we have the following error
estimate

|||θ − θh, w − wh, γ − γ h ||| � hk−1 (‖ f ‖k−2,� + ‖g‖k−2,�
)

+hk−1 (‖γ ‖k−2,� + t‖γ ‖k−1,� + ‖γ ‖� + ‖γ ‖Hk−2(div) + ‖θ‖k,�
)
. (28)

Proof First note that if v = w I and η = θ I we have that t−2(η − ∇v) = γ I . Since
w I ∈ H1(�) ∩ Pk(T ) we obtain from trace inequality and interpolation estimates (3) and
(4) that

inf
η ∈ Pk−1(T ;R2)

v ∈ Pk(T )

{‖θ − η‖2h + t−2‖θ − ∇w − (η − ∇hv)‖20,h

+
∑
E∈E

hE

σ1
‖{Ceh(θ − η)}‖2E + J (w − v,w − v)

}

� ‖e(θ) − eh(θ
I )‖20,h + t2‖γ − γ I ‖20,h +

∑
E∈E

σ1

hE
‖[[θ − θ I ]]‖2E

+
∑
T∈T

hT

(
h−1
T

∥∥∥eh(θ − θ I )

∥∥∥2
T

+ hT
∣∣∣eh(θ − θ I )

∣∣∣2
1,T

)

� h2k−2 (‖θ‖2k,� + t2‖γ ‖2k−1,�

)
.
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Recalling that α I ∈ H1
0 (�) ∩ Pk(T ) and β I ∈ H1(�) ∩ Pk(T )/R we obtain from the

definition of γ̃ I (note that γ̃ I has counterpart in H1(�)∩Pk(T )) and interpolation estimates
(26) and (27) that

Υ := inf
φ ∈ Pk−1(T ;R2)

∑
T∈T

(‖α − z‖2T + ‖β − r‖2T + ‖∇(α − z)‖2T

+
(
hρ−1
T + t2

)
‖γ − φ‖2T

)
�

∑
T∈T

(
‖α − α I ‖2T + ‖β − β I ‖2T + ‖∇(α − α I )‖2T

+hρ−1
T ‖γ − γ̃ I ‖2T + t2‖γ − γ̃ I ‖2T

)
�

∑
T∈T

(
h2k−2
T

(|α|2k−1,T + |β|2k−1,T

)

+h2k−2
T |α|2k,T + hρ−1

T ‖γ ‖2T + h2k−2
T t2‖γ ‖2k−1,T

)
.

From (10) and choosing ρ = 2k − 1 we have

Υ � h2k−2
(
‖γ ‖2k−2,� + t2‖γ ‖2k−1,� + ‖γ ‖2Hk−2(div) + ‖γ ‖2�

)
.

Combining this result we have from Theorem 7 that

|||θ − θh, w − wh, γ − γ h |||2 � Osc( f ) + Osc(g)

+h2k−2
(
‖γ ‖2k−2,� + t2‖γ ‖2k−1,� + ‖γ ‖2Hk−2(div) + ‖γ ‖2� + ‖θ‖2k,�

)
.

The result follows from (19) and (20). ��
We note that for k = 2 the regularity required for the solution of (1) is θ ∈ H2(�;R2),

w ∈ H2(�) and γ ∈ H1(�;R2). This regularity always holds if � is a convex polygon
domain or a smooth bounded domain for f ∈ L2(�;R2) and g ∈ L2(�). Furthermore, in
this case (k = 2), the right-hand side, which is dependent on the solution, reads: t‖γ ‖1,�
+ ‖γ ‖H(div) + ‖γ ‖� + ‖θ‖2,�, which remains bounded as t tends to zero.

As this result was proved under the assumption that the Helmholtz decomposition holds
for γ , we highlight that the Helmholtz decomposition always hold if � is a convex polygon
domain. Thus, our estimates (28) will hold for k = 2 (at least).

6 A Posteriori Error Analysis

We apply in this section the recent results regarding the a posteriori error control theory
obtained in [29,30] for the dGWOPIP formulation (6). This allows robust a posteriori error
estimators to be obtained and their reliability and efficiency to be proved.

Since the condition (H1)–(H3) of [29] holds for the formulation (6), we can use The-
orem 3.2 of [29]. Moreover, as the dGWOPIP formulation is similar to that reported in
Section 4 of [30], we will proceed with the a posteriori analysis in the same way as in [30].

Throughout this section we will use the same notation used in [29] and [30]. Let
w̃h ∈ H1

0 (�) and θ̃h ∈ H1
0 (�,R2) be arbitrary. Setting γ̃ ′

h := γ ′
h = β̃−2(θh − ∇hwh)

we find that the residual r̃h := β̃2γ̃ ′
h − (θ̃h − ∇w̃h) = θh − θ̃h − ∇h(wh − w̃h) and that

η̃R := ‖ 1
α̃
(γ h − α̃2(θ̃h − ∇w̃h) − γ̃ ′

h)‖� � ‖θh − θ̃h − ∇h(wh − w̃h)‖�, where for a

given positive function α̃ ∈ L∞(�), with ‖α̃‖L∞(�) ≤ μ

t2
, we define β̃ ∈ L∞(�) satisfying

1
β̃2 = μ

t2
− α̃2.

Since the dGWOPIP formulation does not make use of a reduction integration operator
we have Rh = I which results in μh(γ h) = 0.
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Lemma 9 It holds that

η̃(r̃h) �
(∑
T∈T

min

(
1

h2T
,
1

t2

)
‖θh − θ̃h‖2T

)1/2

+
(∑
E∈E

1

hE
‖[∇hwh]τ‖2E

)1/2

+
(∑
E∈E

min

(
hE

t2
,
1

t

)
‖[∇hwh − θh]τ‖2E

)1/2

+ ‖θh − θ̃h − ∇h(wh − w̃h)‖�

+
(∑
T∈T

min

(
hT
t

, 1

)2

‖rot (θh − θ̃h)‖2T
)1/2

,

where

η̃(r̃h) = sup
0 
=p∈H̆1(�)

(r̃h,Curl(J p))�
‖p‖� + ‖t∇p‖�

+
(∑
E∈E

min

(
hE

t2
,
1

t

)
‖[r̃h]τ‖2E

)1/2

+
(∑
T∈T

min

(
hT
t

, 1

)2

‖rot (r̃h)‖2T
)1/2

+ ‖α̃ r̃h‖�.

Proof The proof follows from integrating by parts the term (∇wh,Curl(J p))�, the properties
of Clément-type interpolation operator J and repeating the same lines described in [30,
Lemma 4.1]. ��

Aiming to apply [29, Theorem 3.2], we define the energy norm of the error by

ð(θ − θh, w − wh, γ − γ h)
2 = |||θ − θh |||2� + |||w − wh |||2W + t2‖γ − γ h‖2�

+‖γ − γ h‖2H−1(div)
+ J̃ (w − wh, w − wh), (29)

where

|||η|||2� = ‖η‖21,h +
∑
E∈E

1

hE
‖[[η]]‖2E ∀ η ∈ H2(T ;R2),

|||v|||2W = ‖v‖21,h +
∑
E∈E

1

hE
‖[v]‖2E ∀ v ∈ H1(T ),

J̃ (v, v) =
∑
E∈E

σ2

h2k−1
E

〈[v], [v]〉E .

We express the volume and edge terms ηK and ηE as

ηT = hT ‖g − div(γ h)‖T + hT ‖ f + div Ce(θh) − γ h‖T ,

ηE = h1/2E ‖[γ h]‖E + h1/2E ‖[[Ce(θh)]]‖E .

Then we define the a posteriori error estimator ηh by

η2h =
∑
T∈T

η2T +
∑
E∈E

η2E +
∑
E∈E

h−1
E

(‖[wh]‖2E + ‖[[θh]]‖2E
)

+
∑
E∈E

min

(
1

t
,
hE

t2

)
‖[θh − ∇wh]τ‖2E + J̃ (wh, wh) +

∑
E∈E

1

hE
‖[∇hwh]τ‖2E .

The proof of the next theorem is basically the same as in [30, Theorem 4.1].
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Theorem 10 (The reliability of the estimator) It holds that

ð(θ − θh, w − wh, γ − γ h) � ηh .

Finally, the next result shows the efficiency of the estimator.

Theorem 11 (The efficiency of the estimator) It holds that

ηh � ð(θ − θh, w − wh, γ − γ h) + Osc(g) + Osc( f ).

Proof We only need to prove the efficiency for the last term of ηh . The others terms have
been previously verified in [29, Theorem 4.5].

Let bE ∈ H1
0 (ωE ) be the edge-bubble function that takes the value of one at the barycenter

of the edge E . Let � be the extension of [∇hwh]τ to ωE by constants along lines orthogonal
to the edge E and set ϑ = bE�. Then,

‖[∇hwh]τ‖2E � 〈[∇hwh]τ , ϑ〉E = −
∑
T∈ωE

∫
T

∇hwh · Curl(ϑ) dx

=
∑
T∈ωE

∫
T

whdiv(Curl(ϑ)) dx −
∑
E∈ωE

∫
E

wh Curl(ϑ) · ν ds

=
∫
E
[wh] · Curl(ϑ) ds

where in the last equality we consider that Curl(ϑ) ∈ H(div) and ∇ϑ · τ = 0 on ∂ωE .
Applying Cauchy-Schwarz inequality and inverse inequality we obtain

‖[∇hwh]τ‖2E � 〈h−ρ/2
E [wh], hρ/2

E Curl(ϑ)〉E � ‖h−ρ/2
E [wh]‖Ehρ/2−1

E ‖ϑ‖E .

From the definition of ϑ it follows that

‖[∇hwh]τ‖E � ‖h−ρ/2
E [wh]‖Ehρ/2−1

E ,

and then setting ρ = 2k − 1 we have

∑
E∈E

1

hE
‖[∇hwh]τ‖2E �

∑
E∈E

1

hE
‖h−ρ/2

E [wh]‖2Ehρ−2
E � J̃ (wh, wh)h

2k−4.

As k ≥ 2, we have that h2k−4 < 1 for any choice of k ≥ 2. Therefore

∑
E∈E

1

hE
‖[∇hwh]τ‖2E � J̃ (wh, wh).

Since w ∈ H1(�) we have

∑
E∈E

1

hE
‖[∇hwh]τ‖2E � J̃ (wh, wh) = J̃ (w − wh, w − wh)

� ð(θ − θh, w − wh, γ − γ h),

which ends the proof. ��
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