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Abstract

In an incomplete financial market model, we study a flow in the
space of equivalent martingale measures and the corresponding shifting
perception of the fundamental value of a given asset. This allows us to
capture the birth of a perceived bubble and to describe it as an initial
submartingale which then turns into a supermartingale before it falls
back to its initial value zero.
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1 Introduction

The notion of an asset price bubble has two ingredients. One is the observed
market price of a given financial asset, the other is the asset’s intrinsic value,
and the bubble is defined as the difference between the two. The intrinsic
value, also called the fundamental value of the asset, is usually defined as
the expected sum of future discounted dividends. Since it involves an ex-
pectation, this second ingredient of the bubble may involve a considerable
amount of model ambiguity: What looks like a bubble to some, may not be
a bubble for others if their perception of the fundamental value happens to
coincide with the actual price. It has been shown, however, that bubbles
arise even in experimental situations where there is no ambiguity about the
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probabilistic setting, and where market participants are informed of the re-
sulting fundamental value at all times; see Smith, Suchanek and Williams
[26]. From an economic point of view, the main challenge therefore consists
in explaining how such bubbles are generated at the microeconomic level by
the interaction of market participants; see for instance Tirole [27], Harrison
and Kreps [12], DeLong, Shleifer, Summers and Waldmann [9], Scheinkman
and Xiong [24], Abreu and Brunnermeier [1], Föllmer, Horst, and Kirman
[10] and the references therein.

In this paper, however, we make no attempt to contribute to a deeper
economic understanding of bubbles on the side of price formation. Instead,
we focus on the perception of the fundamental value. More precisely, we
consider the following question, which has already been studied by Jarrow,
Protter, and Shimbo [18], and which arises naturally in the standard setting
of an incomplete financial market model. Here the discounted price process
of a liquid financial asset is given in advance as a semimartingale S on some
filtered probability space. If D denotes the associated cumulative discounted
dividend process, then absence of arbitrage implies the existence of an equiv-
alent measure, which turns the wealth process W = S +D into a local mar-
tingale. Following an argument of Harrison and Kreps [12], any such measure
can be seen as a prediction scheme that is consistent with the observed price
process S if we take a speculative point of view, taking into account not only
future dividends but also the possibility of selling the asset at some future
time. However, if we take a fundamental point of view and restrict attention
to future dividends, then different martingale measures may give a different
assessment. Suppose that at any time the fundamental value of the asset
is computed as the conditional expectation of future discounted dividends
under some equivalent local martingale measure. Time consistency would
require that all these conditional expectations are computed under the same
martingale measure R. Denoting by SR the resulting fundamental value pro-
cess, the bubble is now defined as the difference S − SR, and this will be a
non-negative local martingale under R. There is a growing literature about
such bubbles and their various effects; see, for instance, Loewenstein and
Willard [21], Cox and Hobson [6], Jarrow and Madan [14], Jarrow, Protter
et al. [17], [18], [15], [13], [16]. In Jarrow and Protter [2], the novel concept of
a relative asset bubble is introduced, which allows the study of price bubbles
for assets with bounded payoffs such as defaultable bonds. The connection
between bubbles and the prices of derivatives written on assets whose price
process is driven by a strict local martingale has been studied in Pal and
Protter [22] and Karatzas, Kreher and Nikeghbali [20]. In [20] they provide
a decomposition of the price of certain clases of path-dependent options into
a “non-bubble” term and a default term. In a recent paper which focuses on
currency exchange-rates, Carr, Fisher and Ruf [5] use the Föllmer measure
to construct a pricing operator for complete models where the exhange rate
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is driven by a strict local martingale. This construction allows to preserve
the put-call parity and also provides the minimal joint replication price for
a contingent claim. For a comprehensive survey of the recent mathematical
literature on financial bubbles we refer to Protter [23].

But in such a setting, where the bubble is defined in terms of one fixed
martingale measure R, there are only two possibilities: Either the bubble
starts at some strictly positive initial value, or it is zero all the time. So how
do we capture the birth of a bubble in the standard framework of an incom-
plete financial market? To this end, we have to give up time consistency and
the corresponding choice of one single equivalent martingale measure. While
time consistency may be desirable from a normative point of view, there
are many factors at work at the microeconomic level that may cause, at the
aggregate level, a shift of the martingale measure. In particular, herding
behavior of heterogeneous agents with interacting preferences and expecta-
tions may have this effect. It is therefore plausible to introduce a dynamics
in the space of equivalent local martingale measures, and to look at the cor-
responding shifting perceptions of the fundamental value. In their paper on
Asset price bubbles in incomplete financial markets [18], Jarrow, Protter and
Shimbo do take that point of view. They consider a dynamics of regime
switching, where the martingale measure can only change at certain times.
In this picture, a bubble will pop up at some stopping time, and then it will
suddenly disappear again at some later stopping time.

In the present paper we consider a different picture. Our aim is to capture
the slow birth of a perceived bubble starting at zero, and to describe it as
an initial submartingale. To this end, we fix two martingale measures Q and
R. Under the measure Q, the wealth process W is a uniformly integrable
martingale, we have S = SR, and there is no perception of a bubble. Under
the measure R, the process W is no longer uniformly integrable, we have
S > SR, and so a bubble is perceived under R. A martingale measure
is often interpreted as a price equilibrium corresponding to the subjective
preferences and expectations of some representative agent; see for example
Föllmer and Schied [11], Section 3.1. In the case of the martingale measure
Q, this subjective view is “optimistic”, or “exuberant”: the actual price is
seen to be fully justified by the perceived fundamental value. In the case of
R, the view is “pessimistic” or “sober”, and there is a bubble in the eye of
the beholder.

The coexistence of such martingale measures Q and R holds for a wide
variety of incomplete financial market models. This is illustrated by a
generic example due to Delbaen and Schachermayer [8] and by the stochas-
tic volatility model discussed by Sin [25]. Furthermore, these examples show
that typically the following condition is satisfied: The fundamental wealth
WR = SR + D perceived under the “sober” measure R behaves as a sub-
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martingale under the “optimistic” measure Q. In other words, under Q it
is expected that the assessment WR, which seems too pessimistic from that
point of view, has a tendency to be adjusted in the upward direction.

In Section 3, we study a flow R = (Rt)t≥0 in the space of martingale
measures that moves from the initial measure Q to the measure R via convex
combinations of Q and R, which put an increasing weight on R; for an
economic interpretation of such a flow in terms of a microeconomic model of
interacting agents in the spirit of [10], see Remark 3.3. The corresponding
shifting perception of the fundamental value, computed at time t in terms
of the martingale measure Rt, is described by the fundamental value process
SR. We denote by βR = S − SR the resulting R-bubble perceived under
the flow R, and we assume that the above condition on the submartingale
behavior of WR under Q is satisfied. In Theorem 3.9 we show that the birth
and the subsequent behavior of the R-bubble under the reference measure
R can be described as follows: The R-bubble starts from its initial value as
a submartingale and then turns into a supermartingale before it finally falls
back to zero.

In Section 4, we look at the example of Delbaen and Schachermayer
where the price process S along with the measures Q and R are defined
in terms of two independent continuous martingales, for instance by two
independent geometric Brownian motions. Here the processes WR and βR

can be computed explicitly, and we can easily verify our condition on the
submartingale behavior of WR under Q. In Section 5, we verify the same
condition for a variant of the stochastic volatility model discussed by Sin
[25]. But we also show that the model can be modified in such a way that
the condition does no longer hold. In the final Section 6, we change our point
of view: Instead of using R as a reference measure, we compute the canonical
decomposition of the R-bubble under the measure Q. Here again, the birth
of the bubble can be described as an initial submartingale. Its subsequent
behavior is now more delicate though, as illustrated in the context of the
Delbaen-Schachermayer example.

Our study of a simple flow between two martingale measures of different
types complements the study of successive regime switching in [18], and
it sheds new light on the birth of a perceived bubble. Both case studies
should be seen as first steps towards a systematic investigation of dynamics
in the space of martingale measures. Ultimately, any dynamics at that level
should be derived from an underlying dynamics at the microeconomic level
of interacting market participants and thus be connected with the literature
mentioned above, but this is beyond the scope of the present paper.
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2 The Setting

We consider a market model that contains a risky asset and a money market
account. We will use the money market account as numéraire, and so we
may assume that it is constantly equal to 1. The risky asset generates an
uncertain cumulative cash flow, modeled as a non-negative increasing and
adapted right-continuous process D = (Dt)t≥0 on a filtered probability space
(Ω,F , (Ft)t≥0, P ) that satisfies the usual conditions. Moreover, we assume
that F0 is trivial under P , that is, P [A] ∈ {0, 1} for A ∈ F0. In order
to simplify the presentation, we assume that the filtration is such that all
martingales have continuous paths.

Remark 2.1. The process D = (Dt)t≥0 may be viewed as a cumulative
dividend process. There could be some maturity date or default time ζ such
that Dt = Dζ on {ζ ≤ t}, and then the value X := (Dζ −Dζ−)1{ζ<∞} can
be interpreted as a terminal payoff or liquidation value, as in the setting of
[18].

Themarket price of the asset is given by the non-negative, adapted càdlàg
process S = (St)t≥0. We denote by W = (Wt)t≥0 the corresponding wealth
process defined by

Wt = St +Dt, t ≥ 0.

Our focus will be on the class of globally equivalent local martingale measures
for W . More precisely, we denote by Mloc(W ) the class of all probability
measures Q ≈ P such thatW is a local martingale under Q, and we asssume
that

Mloc(W ) 6= ∅. (2.1)

This assumption clearly implies that there is no free lunch with vanishing
risk (NFLV R); cf.Delbaen and Schachermayer [7]. It will be satisfied by
our case studies in Sections 4 and 5.

Remark 2.2. Suppose that, in analogy to Bouchard and Nutz [3], we are in
situation of model uncertainty where no probability measure is given ex ante.
In this case we would assume the existence of some local martingale measure
Q for W and defineMloc(W ) in terms of the reference measure P := Q.

For any probability measure Q ∈ Mloc(W ) and at any time t, the given
price St is justified from the point of view of Q if we take into account not
only the expectation of the future cumulative cash-flow but also the option
to sell the asset at some future time τ . As in [12], this is made precise by
equation (2.2) below, and in particular by its second part.

Lemma 2.3. For any Q ∈Mloc(W ), the limits S∞ := limt→∞ St,
W∞ := limt→∞Wt and D∞ := limt→∞Dt exist a.s. and in L1(Q), and

St = ess supτ≥tEQ[Dτ −Dt + Sτ |Ft]
= ess supτ≥tEQ[Dτ −Dt + Sτ1{τ<∞}|Ft],

(2.2)
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where the essential supremum is taken over all stopping times τ ≥ t.

Proof. Since W is a non-negative local martingale and hence a supermartin-
gale under Q, the limit W∞ := limt→∞Wt exists Q-a.s. and in L1(Q). So
does S∞ := limt→∞ St, since the limit D∞ := limt→∞Dt exists by mono-
tonicity. Thus the right side of equation (2.2) is well defined. Moreover

Wt ≥ EQ[Wτ |Ft] (2.3)

for any stopping time τ ≥ t, and this translates into

St ≥ EQ[Dτ −Dt + Sτ |Ft] ≥ EQ[Dτ −Dt + Sτ1{τ<∞}|Ft]. (2.4)

On the other hand, we get equality in (2.3), and hence in (2.4), for n > t
and τ = σ ∧ n whenever σ is a localizing stopping time for W and Q, and
so we have shown (2.2).

In particular, Lemma 2.3 implies

St ≥ SQt := EQ[D∞ −Dt|Ft], (2.5)

where SQ denotes the potential generated by the increasing process D under
the measure Q.

Definition 2.4. For Q ∈Mloc(W ) the potential SQ defined in (2.5) will be
called the fundamental price of the asset perceived under the measure Q.

Formula (2.2) shows that, under any martingale measure Q ∈Mloc(W ),
the given price of the asset is justified from a speculative point of view, given
the possibility of selling the asset at some future time. In this sense different
martingale measures agree on the same price S. But they may provide very
different assessments SQ of the asset’s fundamental value. Let us discuss
this point more precisely.

As in [18], we use the notation

Mloc(W ) =MUI(W ) ∪MNUI(W ),

whereMUI(W ) denotes the class of measures Q ≈ P such that W is a uni-
formly integrable martingale under Q, and where MNUI(W ) = Mloc(W )\
MUI(W ). Typically, the classesMUI(W ) andMNUI(W ) will both be non-
empty, as illustrated in the examples of Sections 4 and 5. From now on we
assume that this is the case:

Assumption 2.5. MUI(W ) 6= ∅ andMNUI(W ) 6= ∅.

Lemma 2.6. A measure Q ∈Mloc(W ) belongs toMUI(W ) if and only if

St = EQ[D∞ −Dt + S∞|Ft], t ≥ 0. (2.6)

6



Proof. If Q ∈MUI(W ) then

Wt = EQ[W∞|Ft], (2.7)

and this translates into equation (2.6) Conversely, condition (2.6) implies
(2.7), and so W is a uniformly integrable martingale under Q.

We are now going to assume that the given market price S is justified not
only from a speculative point of view as in (2.2), but also from a fundamental
point of view. This means that S should be perceived as the fundamental
price for at least one equivalent martingale measure:

Assumption 2.7. There exists Q ∈Mloc(W ) such that

S = SQ, (2.8)

where SQ is the fundamental price perceived under Q as defined in (2.5).

Lemma 2.8. Assumption 2.7 holds if and only if S∞ = 0 a.s., and in this
case equation (2.8) is satisfied if and only if Q ∈MUI(W ).

Proof. In view of (2.2) the condition S = SQ implies S∞ = 0 a.s. Conversely,
if S∞ = 0 a.s. then (2.6) shows that S = SQ holds iff Q ∈MUI(W ), and by
Assumption 2.5 this class is non-empty.

From now on we assume that Assumption 2.7 is satisfied, and so we have
W∞ = D∞ a.s.

Definition 2.9. Let Q ∈MUI(W ). The process WQ = SQ +D, defined by

WQ
t := EQ[D∞|Ft], t ≥ 0, (2.9)

will be called the fundamental wealth of the asset perceived under Q.

Lemma 2.3 shows that the difference S − SQ, which is non-negative due
to (2.5), does not vanish if Q ∈ MNUI(W ), and this can be interpreted as
the appearance of a non-trivial “bubble”.

Definition 2.10. For any Q ∈ Mloc(W ) the non-negative adapted process
βQ defined by

βQ = S − SQ = W −WQ ≥ 0 (2.10)

will be called the bubble perceived under Q or the Q-bubble.

Combining the preceding results we obtain the following description of a
Q-bubble.

Corollary 2.11. A measure Q ∈Mloc(W ) belongs toMUI(W ) if and only
if the Q-bubble reduces to the trivial case βQ = 0. For Q ∈ MNUI(W ) the
Q-bubble βQ is a non-negative local martingale such that βQ0 > 0 and

lim
t→∞

βQt = 0, a.s. (2.11)
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Proof. The local martingale property follows from (2.10) since the difference
of a local martingale and a uniformly integrable martingale is again a local
martingale. Since both S and SQ converge to 0 almost surely, we obtain
(2.11).

For Q ∈ MNUI(W ) the Q-bubble βQ appears immediately at time 0,
and then it finally dies out. In order to capture the slow birth of a bubble
starting from an initial value 0 we are going to consider a flow in the space
Mloc(W ) that begins inMUI(W ) and then enters the classMNUI(W ).

3 The Birth of a Bubble as a Submartingale

Consider a flow R = (Rt)t≥0 in the space of equivalent local martingale
measures, given by a probability measure Rt ∈ Mloc(W ) for any t ≥ 0. We
assume that R is càdlàg in the simple sense that the adapted process WR

defined by
WRt := ERt [D∞|Ft], t ≥ 0, (3.1)

admits a càdlàg version. Then the same is true for the adapted process SR

defined by
SRt = WRt −Dt = ERt [D∞ −Dt|Ft], t ≥ 0.

This càdlàg property clearly holds if, as in [18], the flow consists in switching
from one martingale measure to another at certain stopping times. It will
also be satisfied in the cases studied below.

Definition 3.1. For a càdlàg flow R = (Rt)t≥0 we define the R-bubble as
the non-negative, adapted, càdlàg process

βR := W −WR = S − SR ≥ 0.

Clearly, the definition and the analysis of the processes WR, SR and βR

only involves the conditional probability distributions

Rt[·|Ft], t ≥ 0, (3.2)

which describe the market’s forward looking view at any time t as described
by the local martingale measure Rt ∈Mloc(W ). It is thus enough to specify
these conditional distributions.
Conversely, any such specification that yields the càdlàg property of (3.1)
induces a càdlàg flow R = (Rt)t≥0 if we fix any measure Q ∈ MUI(W ) and
define the measure Rt by

Rt(A) = EQ[Rt[A|Ft]] (3.3)
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for A ∈ F and t ≥ 0; see Section 4.1-4.2 in Trevino-Aguilar [28]
As soon as the flow R is not constant, it describes a shifting system of

predictions (Rt[·|Ft])t≥0 that is not time consistent. Indeed, time consistency
would amount to the condition that the predictions

πt(H) =

∫
HdRt[·|Ft] = ERt [H|Ft], t ≥ 0

satisfy
πs(πt(H)) = πs(H) (3.4)

for any s ≤ t and for any bounded measurable contingent claim H. This
condition is clearly satisfied if all the conditional distributions in (3.2) belong
to the same martingale measure R0 ∈ Mloc(W ), and the converse holds as
well:

Proposition 3.2. If Rt[·|Ft] 6= R0[·|Ft] for some t > 0 then time consistency
fails.

Proof. The assumption implies that, for some A ∈ F and some t > 0, the
event

Bt = {Rt[A|Ft] > R0[A|Ft]}

has positive probability R0[Bt] > 0. Then H := IA∩Bt satisfies

πt(H) = ERt [H|Ft] ≥ ER0 [H|Ft],

and the inequality is strict on Bt. Thus we get

π0(H) = ER0 [H] = ER0 [ER0 [H|Ft]]
< ER0 [πt(H)] = π0(πt(H)),

in contradiction to (3.4).

In the time consistent case the conditional probability distributionsRt[·|Ft]
thus all belong to the same local martingale measure R0 ∈Mloc(W ), and so
we are in the situation of Corollary 2.11: Either no bubble appears at all, or
a bubble already exists at the very beginning.
Let us now look at a time inconsistent situation where the flow R is not
constant. As shown by Lemma 2.8, the R-bubble vanishes at times t when
Rt ∈MUI(W ), but it will typically become positive in periods when the flow
passes throughMNUI(W ). Let us now focus on the special case where the
flow R consists in moving from some initial measure Q inMUI(W ) to some
measure R inMNUI(W ) via adapted convex combinations. More precisely,
let us fix

Q ∈MUI(W ) and R ∈MNUI(W ) (3.5)
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and some adapted càdlàg process ξ = (ξt)t≥0 with values in [0, 1] starting in
ξ0 = 0. Now suppose that, at any time t ≥ 0, the market’s forward-looking
view is given by the conditional distribution

Rt[·|Ft] = ξtR[·|Ft] + (1− ξt)Q[·|Ft], (3.6)

putting weight ξt on the predictions provided by the martingale measure R
and the remaining weight on the prediction under Q. An example of a flow
inMloc(W ) inducing (3.6) is given in (3.13) below; see Lemma 3.7

Remark 3.3. The microeconomic model of interacting agents in [10] would
suggest the following economic interpretation of such a flow. There are two
financial “gurus”, one optimistic and one pessimistic, whose subjective views
are expressed by the two martingale measures Q and R. Each guru has a
group of followers, but the proportion between these two groups is shifting,
due to contagion effects. As a result, the temporary price equilibrium at any
time t is given by some martingale measure Rt, and in simple cases Rt should
be given by a weighted average of Q and R, depending on the present weights
of the two groups.

Lemma 3.4. For the flow R = (Rt)t≥0 in Mloc(W ) inducing (3.6), the
R-bubble βR = S − SR is given by

βRt = ξt(St − SRt ) = ξtβ
R
t , t ≥ 0. (3.7)

The R-bubble starts at βR0 = 0, and it dies out in the long run:

lim
t→∞

βRt = 0 a.s.

Proof. Note first that the R-bubble starts at the initial value 0 since
R0 = Q ∈MUI(W ). We have

WRt = ξtER[W∞|Ft] + (1− ξt)EQ[W∞|Ft]
= ξtW

R
t + (1− ξt)Wt,

(3.8)

hence
βRt = Wt −WRt = ξt(Wt −WR

t ) = ξt(St − SRt ) = ξtβ
R
t . (3.9)

This implies limt→∞ β
R
t = 0, since βR converges to 0 by Corollary 2.11 and

ξ remains bounded.

The following proposition shows that the initial behavior of the R-bubble
βR from its starting value 0 is captured by a submartingale property under
R, if ξ puts increasing weight on the prediction provided by the measure R.

Proposition 3.5. If the process ξ is increasing then the R-bubble βR is a
local submartingale under R. If ξ remains constant after some stopping time
τ1, then βR is a local martingale under R, and hence an R-supermartingale,
after time τ1.
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Proof. The R-bubble βR = W −WR is a local martingale under R as stated
in Corollary 2.11. Let σ be a localizing stopping time for βR under R, that
is, the stopped process (βR)σt := βRt∧σ is an R-martingale. Then the stopped
process (βR)σ = (ξβR)σ is an R-submartingale since

(ξβR)σs = ξs∧σβ
R
s∧σ = ξs∧σER[βRt∧σ|Fs] = ER[ξs∧σβ

R
t∧σ|Fs]

≤ ER[ξt∧σβ
R
t∧σ|Fs] = ER[(ξβR)σt |Fs]

for s ≤ t. To show that βR is a local R-martingale after time τ1 it is enough
to verify that the stopped process (βR)σ satisfies

ER[(βR)στ ] = ER[(βR)στ1 ]

for any stopping time τ ≥ τ1. Indeed, since ξτ∧σ = ξτ1∧σ, the representation
(3.7) of βR allows us to write

ER[βRτ∧σ] = ER[ξτ∧σβ
R
τ∧σ] = ER[ξτ1∧σER[βRτ∧σ|Fτ1∧σ]]

= ER[ξτ1∧σβ
R
τ1∧σ] = ER[βRτ1∧σ].

The situation becomes more delicate if the process ξ is no longer increas-
ing but only a submartingale under R, as will be the case in the situation
considered below in (3.13). Let us first look at the general case where ξ is
a special semimartingale with values in [0, 1]. As in (3.9), the bubble βR is
given by

βRt = ξt(St − SRt ) = ξtβ
R
t .

Let
ξ = M ξ +Aξ (3.10)

denote the canonical decomposition of ξ into a local R-martingale M ξ and a
predictable process Aξ with paths of bounded variation. Since βR is a local
R-martingale, an application of Itô’s integration by parts formula shows that
the canonical decomposition of the R-bubble βR = ξβR takes the form

dβRt = (ξtdβ
R
t + βRt dM

ξ
t ) + dARt , (3.11)

where AR is the predictable process with paths of bounded variation defined
by

ARt =

∫ t

0
βRs dA

ξ
s + [ξ, βR]t, t ≥ 0. (3.12)

Our aim is to clarify the condition which guarantee that AR is an in-
creasing process, that is, the bubble βR takes off as a submartingale. In
that case, we could say that the “birth” of the bubble takes place while the
increase of AR is strict.

Let us first state the following criterion for the local submartingale prop-
erty of βR.
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Proposition 3.6. The R-bubble βR is a local R-submartingale if and only
if AR is an increasing process. If ξ is a submartingale, then the local R-
submartingale property for βR holds whenever the process [ξ, βR] is increas-
ing.

Proof. The first claim follows immediately from (3.11). If ξ is a submartin-
gale then Aξ is an increasing process, and so is the first term on the right-
hand side of (3.12) since βR ≥ 0. Thus AR increases whenever [ξ, βR] is
increasing.

From now on we focus on the following special case. Suppose that the
flow R = (Rt)t≥0 is of the form

Rt = (1− λt)Q+ λtR, (3.13)

where (λt)t≥0 is a deterministic càdlàg process of bounded variation that
takes values in [0, 1] and starts at λ0 = 0. Let us denote by M the uniformly
integrable martingale

Mt = ER[
dQ

dR
|Ft], t ≥ 0.

Lemma 3.7. The conditional distributions Rt[·|Ft] are of the form (3.6)
where the adapted process ξ is given by

ξt =
λt

λt + (1− λt)Mt
, t ≥ 0. (3.14)

Proof. For any F-measurable Z ≥ 0 and any At ∈ Ft we have

ERt [Z;At] = ER[(λt + (1− λt)M∞)Z;At]

= ER[λtER[Z|Ft] + (1− λt)MtEQ[Z|Ft];At].

Since
dRt
dR
|Ft = λt + (1− λt)Mt,

we have
λt
dR

dRt
|Ft = ξt

and
(1− λt)Mt

dR

dRt
|Ft = 1− ξt.

Thus we can write

ERt [Z;At] = ERt [ξtER[Z|Ft] + (1− ξt)EQ[Z|Ft];At],

and this amounts to the representation (3.6) of the conditional distribution
Rt[·|Ft].
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Lemma 3.8. If λ is increasing, then the process (ξt)t≥0 defined in (3.14) is
an R-submartingale with values in [0, 1], and its Doob-Meyer decomposition
(3.10) is given by

M ξ
t = −

∫ t

0

λs(1− λs)
(λs + (1− λs)Ms)2

dMs (3.15)

and

Aξt =

∫ t

0

Ms

(λs + (1− λs)Ms)2
dλs +

∫ t

0

λs(1− λs)2

(λs + (1− λs)Ms)3
d[M,M ]s (3.16)

Proof. Note that ξt = g(Mt, λt), where the function g on (0,∞) × [0, 1]
defined by

g(x, y) =
y

y + (1− y)x
(3.17)

is convex in x and increasing in y. Due to Jensen’s inequality, this implies

ξs = g(ER[Mt|Fs], λs) ≤ ER[g(Mt, λs)|Fs]
≤ ER[g(Mt, λt)|Fs] = ER[ξt|Ft]

for any s ≤ t, and so we have shown that ξ is an R-submartingale. Applying
Itô’s formula to ξt = g(Mt, λt), we obtain the Doob-Meyer decomposition
(3.10) with

M ξ
t =

∫ t

0
gx(Ms, λs)dMs

and

Aξt =

∫ t

0

1

2
gxx(Ms, λs)d[M,M ]s +

∫ t

0
gy(Ms, λs)dλs,

and this yields the explicit expressions (3.15) and (3.16).

Theorem 3.9. Consider a flow R = (Rt)t≥0 of the form (3.13), where λ is
an increasing, right-continuous function on [0,∞) with values in [0, 1] and
initial value λ0 = 0. Assume that

WR is a local submartingale under Q (3.18)

or, equivalently, that

[WR,M ] is an increasing process. (3.19)

Then the R-bubble βR is a local submartingale under R with initial value
βR0 = 0. After time t1 = inf{t;λt = 1}, βR is a local martingale under R,
and hence an R-supermartingale.
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Proof. Both WR and M are martingales under R, and so Itô’s product for-
mula

d(WRM) = WRdM +MdWR + d[WR,M ]

shows that the quadratic covariation [WR,M ], defined as the predictable
process of bounded variation in the canonical decomposition of the semi-
martingale WRM , is an increasing process if and only if WRM is a local
submartingale under R. But this is equivalent to the condition that WR is
a local submartingale under Q.
Since W is a local martingale under both R and Q, the process WM is a
local martingale under R. Thus [W,M ] ≡ 0, and so we see that

[βR,M ] = [W −WR,M ] = −[WR,M ] (3.20)

is a decreasing process. But this implies that [ξ, βR] is an increasing process.
Indeed, since ξ = g(M,λ) with g defined by (3.17), we obtain

d[ξ, βR] = d[M ξ, βR] = gx(M,λ)d[M,βR],

and we have gx(M,λ) ≤ 0 because g(x, y) is decreasing in x. The local
submartingale property of βR under R follows from Proposition 3.6. The
rest follows as in Proposition 3.5 since ξt = 1 for t ≥ t1.

Let us now assume that the wealth process W is strictly positive. Then
the local R-martingale W admits the representation

W = E (L) = exp(L− 1

2
[L,L]),

where L is a local martingale under R. The fundamental wealth processWR

perceived under R can now be factorized as follows into the wealth process
W and a semimartingale C:

WR
t = ER[WR

∞|Ft] = WtCt, (3.21)

where
Ct := ER[exp{L∞ − Lt −

1

2
([L,L]∞ − [L,L]t)}]. (3.22)

The martingale property of W under Q implies [W,M ] ≡ 0, and so the
factorization 3.21 yields:

d[WR,M ] = Wd[C,M ] + Cd[W,M ] = Wd[C,M ]. (3.23)

Since W is strictly positive, the criterion in Theorem 3.9 now takes the
following form:

Corollary 3.10. The R-bubble βR is a local R-submartingale if [C,M ] is
an increasing process, where C is defined by the factorization WR = WC in
(3.21) and (3.22).
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4 The Delbaen-Schachermayer example

The following situation typically arises in an incomplete financial market
model. It was first studied in [8] and then used as a key example in [18].

Let X(1) and X(2) be two independent and strictly positive continuous
martingales on our filtered probability space (Ω,F , (Ft)t≥0, P ) such that
X

(1)
0 = X

(2)
0 = 1 and

lim
t↑∞

X
(1)
t = lim

t↑∞
X

(2)
t = 0, P − a.s.

We fix constants a ∈ (0, 1) and b ∈ (1,∞) and define the stopping times

τ1 := inf{t > 0;X
(1)
t = a}, τ2 := inf{t > 0;X

(2)
t = b} (4.1)

and τ := τ1 ∧ τ2. Note that τ1 < ∞ P -a.s., and that an application of the
stopping theorem to the martingale X(2) yields

P [τ2 <∞|Ft] =
1

b
X

(2)
t∧τ2 . (4.2)

Now consider an asset that generates a single payment X(1)
τ at time τ ,

and whose price process S is given by St = X1
t 1{τ>t}, t ≥ 0. Thus we have

Dt = X(1)
τ 1{τ≤t}, t ≥ 0,

and the wealth process W is given by the process X(1) stopped at τ :

Wt = St +Dt = X
(1)
τ∧t, t ≥ 0.

Clearly, W is a martingale under P and bounded below by a. But it is not
uniformly integrable, as shown in [8]. More precisely:

Lemma 4.1. We have

EP [W∞|Ft] = a(1− 1

b
X

(2)
t∧τ ) +

1

b
X

(1)
t∧τX

(2)
t∧τ , (4.3)

and this is strictly smaller than Wt = X
(1)
t on the set {τ > t}.

Proof. Equation (4.3) clearly holds on the set {τ ≤ t}, where both the right
side and W∞ coincide with X(1)

τ . On the set {τ > t} we write

EP [W∞|Ft] = EP [X(1)
τ |Ft]

= EP [X(1)
τ1 1{τ2=∞}|Ft] + EP [X(1)

τ 1{τ2<∞}|Ft]

= aP [τ2 =∞|Ft] + EP [EP [X
(1)
τ1∧τ2 |Ft ∨ σ(τ2)]1{τ2<∞}|Ft].

(4.4)
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By considering a sequence of bounded stopping times converging to τ1 ∧ τ2
we can see that the last term reduces to

X
(1)
t P [τ2 <∞|Ft],

and in view of (4.2) this implies (4.3). The fact that ER[W∞|Ft] < Wt =

X
(1)
t on {τ > t} follows directly by definition (4.1) of τ1 and τ2.

Consider the bounded martingale M defined by

Mt := X
(2)
t∧τ , t ≥ 0,

and denote by Q the probability measure with density

dQ

dP
= M∞ = X(2)

τ > 0.

Thus Q is equivalent to P , and it is shown in [8] that W is a uniformly
integrable martingale under Q. Indeed W is a Q-local martingale since
[W,M ] ≡ 0. Moreover we have EP [X

(1)
τ |τ2] = 1 on {τ2 < ∞} and X

(2)
τ =

EP [X
(2)
τ2 1{τ2<∞}|Fτ ], hence

EQ[W∞] = EP [X(1)
τ X(2)

τ ] = EP [X(1)
τ X(2)

τ2 1{τ2<∞}]

= bEP [EP [X(1)
τ |τ2]1{τ2<∞}] = bP (τ2 <∞) = 1

= W0,

(4.5)

and this implies uniform integrability of W under Q.
Defining R := P , we thus have

R ∈MNUI(W ) and Q ∈MUI(W ).

As in Section 3 we now consider a flow R = (Rt)t≥0 of the form (3.13) and
the resulting R-bubble βR. In view of (4.3), the fundamental wealth process
WR perceived under R is given by

WR
t = ER[W∞|Ft] = a(1− 1

b
Mt) +

1

b
WtMt, t ≥ 0. (4.6)

The following proposition shows that Condition (3.19) of Theorem 3.9 is
satisfied in our present case.

Proposition 4.2. WR is a local submartingale under Q.

Proof. Since [W,M ] = 0, we obtain

d[WR,M ] =
1

b
d[(W − a)M,M ] =

1

b
(W − a)d[M,M ].

Thus [WR,M ] is an increasing process and this amounts to the local sub-
martingale property of WR under Q.

16



In view of (4.6), the R-bubble takes the form

βR = W −WR = (W − a)(1− 1

b
M), (4.7)

and so the R-bubble is given by

βR = ξβR = ξ(W −WR) = ξ(W − a)(1− 1

b
M).

In particular the R-bubble vanishes at time τ , that is, βRt = 0 for t ≥ τ .
Since we have just verified condition (3.18), the R-bubble takes off from
its initial value 0 as a R-submartingale before it finally returns to 0. More
precisely:

Corollary 4.3. The behavior of the R-bubble under the measure R is de-
scribed by Theorem 3.9.

5 A stochastic volatility example

In this section we consider a stochastic volatility model of the form

dXt = σ1vtXtdB
1
t + σ2vtXtdB

2
t , X0 = x,

dvt = a1vtdB
1
t + a2vtdB

2
t + a3vtdB

3
t , v0 = 1,

(5.1)

where B = (B1, B2, B3) is a 3-dimensional Brownian motion on a filtered
probability space (Ω,F , (Ft)t≥0, P ). We assume that the vectors a = (a1, a2)
and σ = (σ1, σ2) are not parallel and satisfy (a ·σ) > 0, and that a3 ∈ {0, 1}.

The model (5.1) is a slight modification of the stochastic volatility model
studied by C.A.Sin [25]. On the one hand we drop the drift term in the
equation of the process v under the measure P , and this will be convenient
for the computation of the fundamental valueWR in Proposition 5.2. On the
other hand, our model is driven by a 3-dimensional instead of a 2-dimensional
Brownian motion, and this will allow us to construct a counterexample to
our Condition (3.18).

The following theorem provides the corresponding variant of Theorem
3.9 in [25]; its proof is given in the Appendix A.

Theorem 5.1. There exists a unique solution (X, v) of (5.1).
For any T > 0, the process (Xt)t∈[0,T ] is a strict local martingale under

P . Moreover, there exists an equivalent martingale measure Q for X such
that the densities

dQ

dP
|Ft = Mt, 0 ≤ t ≤ T,

are given by

Mt = E
(
−
∫ ·
0

vs(a · σ)

a · σ⊥
σ⊥1 dB

1
s −

∫ ·
0

vs(a · σ)

a · σ⊥
σ⊥2 dB

2
s + |α|2B3

t

)
t

, (5.2)
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where E (Z) = exp(Z − 1
2 [Z,Z]) denotes the stochastic exponential of a con-

tinuous semimartingale Z, the vector σ⊥ = (σ⊥1 , σ
⊥
2 ) 6= 0 satisfies

σ · σ⊥ = σ1σ
⊥
1 + σ2σ

⊥
2 = 0,

and where we put |α| =
√
a21 + a22 + a23. More precisely, the process (Xt)t∈[0,T ]

is a martingale under Q satisfying

dXt = σ1vtXtdB
Q,1
t + σ2vtXtdB

Q,2
t , X0 = x,

dvt = a1vtdB
Q,1
t + a2vtdB

Q,2
t + a3vtdB

Q,3
t − (a · σ)v2t dt+ a3|α|2vtdt, v0 = 1,

where BQ = (BQ,1, BQ,2, BQ,3) is a 3-dimensional Brownian motion under
Q.

In order to return to the setting of Section 2, we consider a financial asset
that generates a single payment XT at time T and whose price process S is
given by St := Xt for t < T and ST = 0. Then the wealth process is given
by W = X. Theorem 5.1 shows that W is a uniformly integrable martingale
under Q, and so we have

Q ∈MUI(W ).

But Theorem 5.1 also shows that W = X is not uniformly integrable under
P , and so we have

R := P ∈MNUI(W ).

Let us now compute the fundamental valueWR perceived under R, given
by

WR
t = ER[WT |Ft] = ER[XT |Ft], t ∈ [0, T ].

Proposition 5.2. The process WR admits the factorization WR = W · C,
where the semimartingale C is of the form

Ct = 1 + (σ1c1(t) + σ2c2(t))vt, t ∈ [0, T ].

The time-dependent coefficients are given by

c1(t) = ER

[
1

vt

∫ T−t

0
eXuvu+tdB̃

1
u

]
,

c2(t) = ER

[
1

vt

∫ T−t

0
eXuvu+tdB̃

2
u

]
,

(5.3)

and satisfy
σ1c1(t) + σ2c2(t) < 0 (5.4)

for any t ∈ [0, T ).
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Proof. The process X is given by the stochastic exponential

Xt = E
(∫ ·

0
σ1vsdB

1
s +

∫ ·
0
σ2vsdB

2
s

)
t

, t ∈ [0, T ].

Thus

XT

Xt
= exp

(∫ T

t
σ1vsdB

1
s +

∫ T

t
σ2vsdB

2
s −

1

2

∫ T

t
(σ21 + σ22)v2sds

)

= exp

(
vt

∫ T

t
σ1
vs
vt
dB1

s + vt

∫ T

t
σ2
vs
vt
dB2

s −
1

2
v2t

∫ T

t
(σ21 + σ22)(

vs
vt

)2ds

)
.

Clearly, we can write

WR
t = XtER[

XT

Xt
|Ft] = WtCt,

where
Ct := ER[

XT

Xt
|Ft] (5.5)

for t ∈ [0, T ]. Note that

vu
vt

= exp(a1(B
1
u −B1

t ) + a2(B
2
u −B2

t ) + a3(B
3
u −B3

t )− 1

2
|α|2(t− u))

is independent of Ft for T ≥ u ≥ t. Fixing y := vt and writing

Yu = σ1y

∫ t+u

t

vs
vt
dB1

s + σ2y

∫ t+u

t

vs
vt
dB2

s −
1

2
(σ21 + σ22)y2

∫ t+u

t

(
vs
vt

)2

ds,

for u ≥ 0, we have Y0 = 0 and

YT−t = σ1y

∫ T

t

vs
vt
dB1

s + σ2y

∫ T

t

vs
vt
dB2

s −
1

2
(σ21 + σ22)y2

∫ T

t

(
vs
vt

)2

ds.

Applying Itô’s formula for the function f(x) = ex, we obtain

eYT−t = eY0 +

∫ T−t

0
eYudYu +

1

2

∫ T−t

0
eYud[Y, Y ]u

= eY0 + σ1y

∫ T−t

0

vu+t
vt

eYudB̃1
u + σ2y

∫ T−t

0

vu+t
vt

eYudB̃2
u,

(5.6)

where the Brownian motion B̃ = (B̃1, B̃2) defined by B̃i
u := Bi

t+u − Bi
t,

i = 1, 2, is independent of Ft. For fixed vt = y, the conditional expectation
(5.5) will thus be equal to the absolute expectation

ER[eYT−t ] = 1 + (σ1c1(t) + σ2c2(t))y, (5.7)

where c1(t) and c2(t) are given by (5.3). It is shown in [25] that an application
of Feller’s explosion test yields WR

t < Wt for any t ∈ [0, T ), and this implies
(5.4).
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As before we now consider the flow R = (Rt)t≥0 defined by (3.13) and
the resulting bubble

βR = W −WR = ξ(W −WR).

Corollary 5.3. If a3 = 0, the processWR is a submartingale under the mea-
sure Q, and so the behavior of the bubble βR is again described by Theorem
3.9.

Proof. Let us verify the sufficient condition in Corollary 3.10. Since

dCt = (σ1c1(t) + σ2c2(t))dvt + σ1vtdc1(t) + σ2vtdc2(t),

the local martingale part of the semimartingale C is given by

MC
t =

∫ t

0
a1(σ1c1(s) + σ2c2(s))vsdB

1
s +

∫ t

0
a2(σ1c1(s) + σ2c2(s))vsdB

2
s .

Since (5.2) implies

Mt = −
∫ t

0

vs(a.σ)

(a.σ⊥)
σ⊥1 MsdB

1
s −

∫ t

0

vs(a.σ)

(a.σ⊥)
σ⊥2 MsdB

2
s ,

we obtain

[M,C]t = [M,M c]t =

∫ t

0
−(σ1c1(s) + σ2c2(s))(a.σ)v2sMsds.

This is indeed an increasing process, since the integrand is strictly positive.
In view of Corollary 3.10 we have thus shown that βR is a local submartingale
under R.

Let us now modify the model in such a way that Condition (3.19) is no
longer satisfied. To this end we choose the parameters such that

|α|2

(a · σ)
> 1,

and we introduce the stopping time

τ := inf{t > 0; vt =
|α|2

(a · σ)
}.

Consider a financial asset that generates a single payment Xτ0 at time
τ0 := T ∧ τ and whose price process S is given again by St := Xt for t < τ0
and St := 0 for t ≥ τ0. The wealth process is then given again by W = X.

Proposition 5.4. If a3 = 1, the quadratic covariation [M,C] is a decreasing
process, and so condition (3.19) is no longer satisfied.
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Proof. By using the same computations as in the proof of Proposition 5.2
we obtain

dCt = (σ1c1(t) + σ2c2(t))dvt + σ1vtdc1(t) + σ2vtdc2(t)

= (σ1c1(t) + σ2c2(t))(a1vtdB
1
t + a2vtdB

2
t + vtdB

3
t )

+ σ1vtdc1(t) + σ2vtdc2(t),

where c1(t) and c2(t) are given by (5.3). Hence the local martingale part of
C is given by

dMC
t = (σ1c1(t) + σ2c2(t))(a1vtdB

1
t + a2vtdB

2
t + vtdB

3
t ).

Therefore we obtain

d[MC ,M ]t = −(σ1c1(t) + σ2c2(t))(a · σ)v2tMtdt

+ (σ1c1(t) + σ2c2(t))|a|2vtMtdt

= −(σ1c1(t) + σ2c2(t))(−|α|2 + (a · σ)vt)vtMtdt.

In view of (5.4) the process is decreasing on [0, τ0], since (a · σ)vt − |α|2 ≤ 0
on [0, τ0].

6 The behavior of the R-bubble under Q

Let us return to the situation of Section 3 where the flow R is given by (3.5)
and (3.2), and where the R-bubble is of the form

βR = W −WR = ξβR;

cf. Lemma 3.4. But now we change our point of view: instead of using the
reference measure R, we are going the analyze the behavior of the R-bubble
under the measure Q.

Let us first focus on the R-bubble βR = W −WR = S − SR. We retain
our condition (3.18) that the fundamental wealth process WR is a local
submartingale under Q, and so its canonical decomposition is of the form

WR = MQ +AQ, (6.1)

whereMQ is aQ-local martingale and AQ is an increasing continuous process
of bounded variation.

Proposition 6.1. Under condition (3.18) the R-bubble βR is a supermartin-
gale of class (D) under Q. More precisely, βR is the Q-potential generated
by the increasing process AQ, that is,

βRt = EQ[AQ∞ −A
Q
t |Ft], t ≥ 0. (6.2)
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Proof. Under Q, W is a uniformly integrable martingale and hence in class
(D). Since W dominates both MQ and βR, the R-bubble

βR = W −WR = (W −MQ)−AQ

is a Q-supermartingale of class (D). Moreover,

MQ
t = EQ[MQ

∞|Ft] = EQ[W∞ −AQ∞|Ft] = Wt − EQ[AQ∞|Ft], (6.3)

and this implies (6.2).

Let us denote by M̃ the Q-martingale

M̃t :=
1

Mt
=
dR

dQ
|Ft , t ≥ 0,

and let us represent the R-bubble in the form

βR = ξ̃β̃R,

where ξ̃ := ξM and β̃R := βRM̃ .

Lemma 6.2. The process β̃R = βRM̃ is a local martingale under Q. Under
condition (3.18), the processes [β̃R, M̃ ] and [βR, M̃ ] are both increasing.

Proof. The local martingale property of βR under R translates into the local
martingale property of β̃R under Q. Under condition (3.18) the process
[βR,M ] is decreasing, see (3.20). Applying Itô’s formula to β̃R = βRM̃ and
M̃ = M−1 we obtain

d[β̃R, M̃ ] = − 1

M3
d[βR,M ] +

1

M4
βRd[M,M ]

and so [β̃R, M̃ ] is increasing. Moreover,

d[βR, M̃ ] = − 1

M2
d[βR,M ],

and so [βR, M̃ ] is increasing.

From now on we consider the special case where the flow R = (Rt)t≥0 is
of the form (3.13), i.e.

Rt = (1− λt)Q+ λtR,

where (λt)t≥0 is a increasing càdlàg function that takes values in [0, 1] and
starts in λ0 = 0. In particular, the process ξ is now given by (3.14).
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Proposition 6.3. The process ξ̃ = ξM is a submartingale under Q. More
precisely, the Doob-Meyer decomposition of ξ̃ under Q is given by

ξ̃t = M̃ ξ + Ãξ (6.4)

with

dM̃ ξ = − λ2

(λM̃ + (1− λ))2
dM̃

and

dÃξ =
1

(λM̃ + (1− λ))2
dλ+

λ3

(λM̃ + (1− λ))3
d[M̃, M̃ ]. (6.5)

Proof. Note that
ξ̃t = g̃(M̃t, λt),

where
g̃(x, y) =

y

xy + (1− y)

is convex in x ∈ (0,∞) and increasing in y ∈ [0, 1]. As in the proof of
Lemma 3.8, it follows that ξ̃ is a Q-submartingale. The explicit form of its
Doob-Meyer decomposition is obtained by applying Itô’s formula, using

g̃x(x, y) = − y2

(xy + (1− y))2
, g̃y(x, y) =

1

(xy + (1− y))2
(6.6)

and

g̃xx(x, y) =
2y3

(xy + (1− y))3
. (6.7)

Let us now describe the behavior of the R-bubble βR = ξβR = ξ̃β̃R

under the measure Q.

Proposition 6.4. Under Q the R-bubble has the canonical decomposition

βR = M̃R + ÃR,

where the local martingale M̃R is given by

dM̃R = ξ̃dβ̃R + β̃RdM ξ̃.

The process ÃR takes the form

dÃR =
M̃

λM̃ + (1− λ)
(βRdλ− dD), (6.8)

where D denotes the increasing process given by

dD =
λ2(1− λ)βR

M̃(λM̃ + (1− λ))
d[M̃, M̃ ] + λ2d[βR, M̃ ].
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Proof. Applying integration by parts to βR = ξ̃β̃R and using the Doob-
Meyer decomposition (6.4) of ξ̃, we obtain

dβR = ξ̃dβ̃R + β̃Rdξ̃ + d[β̃R, ξ̃]

= (ξ̃dβ̃R + β̃RdM̃ ξ) + (β̃RdÃξ + d[β̃R, ξ̃])

=: dM̃R + dÃR.

In view of Lemma 6.2, M̃R is a local martingale under Q, and so the finite-
variation part is given by ÃR. Since ξ̃ = g̃(M̃, λ) and β̃R = βRM̃ , we
obtain

d[β̃R, ξ̃] = g̃(M̃, λ)d[β̃R, M̃ ]

= g̃x(M̃, λ)(βRd[M̃, M̃ ] + M̃ [βR, M̃ ]).

Combined with (6.6) and (6.5), this yields

dÃR =
βRM̃

(λM̃ + (1− λ))2
dλ+

βRM̃λ3

(λM̃ + (1− λ))3
d[M̃, M̃ ]

− βRλ2

(λM̃ + (1− λ))2
d[M̃, M̃ ]− λ2M̃

(λM̃ + (1− λ))2
d[βR, M̃ ]

=
βRM̃

(λM̃ + (1− λ))2
dλ− βRλ2(1− λ)

(λM̃ + (1− λ))3
d[M̃, M̃ ]

− λ2M̃

(λM̃ + (1− λ))2
d[βR, M̃ ]

=
M̃

(λM̃ + (1− λ))2
(βRdλ− dD).

Note that the process D is indeed increasing due to Lemma 6.2.

Definition 6.5. We say that the R-bubble βR behaves locally as a strict Q-
submartingale in a given random period if ÃR is strictly increasing in that
period.

The preceding proposition shows that the R-bubble behaves like a Q-
supermartingale in periods where λ stays constant. In order to induce a
strict submartingale behavior under Q, the increase in λ must be strong
enough to compensate for the increase in D. Typically this will be the case
during the initial period when the R-bubble is born, as long as λ and hence
D still remain small enough to be compensated by the initial increase of λ.

Let us illustrate the qualitative behavior of the R-bubble under Q in
the specific situation of the Delbaen-Schachermayer example in Section 4.
According to (4.7), the R-bubble now takes the form

βR = (W − a)(1− 1

b
M). (6.9)
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Since [W, M̃ ] = 0 and d[M, M̃ ] = −M̃−2d[M̃, M̃ ], the increasing process
[βR, M̃ ] is given by

d[βR, M̃ ] =
1

b
(W − a)M̃−2d[M̃, M̃ ]. (6.10)

Let us denote by

φ =
dλ

d[M̃, M̃ ]

the density of the absolute continuous part of λ with respect to [M̃, M̃ ].

Corollary 6.6. The R-bubble behaves locally as a strict Q-submartingale in
periods where

φt > λ2t (1− λt(1−
1

b
))(M̃t −

1

b
)−1(λtM̃t + (1− λt))−1. (6.11)

Proof. In view of (6.8), (6.9) and (6.10) and after cancellation of the common
term W − a, the condition dÃR > 0 takes the form

(1− 1

b
Mt)φt ≥ λ2t (1− λt)(1−

1

b
Mt)M̃

−1
t (λtM̃t + (1− λt))−1 +

λ2t
b
M̃−2t

Multiplying by M̃t(λtM̃t + (1− λt)) we obtain

(M̃t −
1

b
)(λtM̃t + (1− λt))φt ≥ λ2t (1− λt(1−

1

b
)).

Let us now consider the special case where the martingale X(2) in Section
4 is of the form dX(2) = X(2)dB for some Brownian motion B. Then we
have d[M̃, M̃ ] = M̃2dt up to the stopping time τ introduced in Section 4.

Let λ be continuous and piecewise differentiable with right-continuous
derivative λ′. Then the density φ is given by φ = M̃−2λ′. Introducing the
functions

f(x, t) := (1− 1

b
x)(λ(t) + (1− λ(t))x)λ′(t)

and
h(t) := λ2(t)(1− λ(t))(1− 1

b
)

we can now describe the behavior of the R-bubble under Q as follows:

Corollary 6.7. Up to time τ , the R-bubble βR behaves locally as a strict
Q-submartingale as long as the process (Mt, t) stays in the domain

D+ := {(x, t); f(x, t) > h(t)},
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and as a strict supermartingale under Q as long as it stays in

D− := {(x, t); f(x, t) < h(t)}.

In particular, if λ′(0) > 0 then βR behaves as a strict Q-submartingale up to
the exit time

σ := inf{t > 0; (Mt, t) 6∈ D+} > 0

from D+.

Proof. In our special situation, (6.11) amounts to the condition f(Mt, t) > h(t),
and the condition f(Mt, t) < h(t) is equivalent to dÃR < 0. Note that
λ′(0) > 0 implies (1, 0) ∈ D+, hence (Mt, t) ∈ D+ for small enough t, and so
the exit time from D+ is strictly positive.
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A Appendix

This section contains the proof of Theorem 5.1. We proceed as in the proof
of Theorem 3.3 in [25]. Note first that there exists a unique solution (X, v) of
equation (5.1). Indeed, the process v satisfies the one-dimensional stochastic
differential equation

dvt = |α|vtdWt, 0 ≤ t ≤ T, (A.1)

with respect to the Brownian motion

Wt = |α|−1(α1B
1
t + α2B

2
t + α3B

3
t ).

It follows that (A.1) admits a unique solution v = E (|α|W ). Therefore X is
uniquely determined as the stochastic exponential of the square integrable
process ∫ t

0
σ1vsdB

1
s +

∫ t

0
σ2vsdB

2
s .

Let us now show that (Xt)t∈[0,T ] is a strict local martingale under P . It
follows from Lemma 4.2 of [25] that the expectation of the local martingale
X under P can be computed as

EP [XT ] = X0P ({wt does not explode on [0, T ]}),

where (wt)t∈[0,T ] is given by

dwt = a1wtdB
1
t + a2wtdB

2
t + a3wtdB

3
t + (a · σ)w2

t dt, w0 = 1.

Then we have
dwt = |α|wtdWt + (a · σ)w2

t dt. (A.2)

It follows from Lemma 4.3 of [25] that the unique solution of equation (A.2)
explodes to +∞ in finite time with positive probability. This implies that
EP [XT ] < X0, therefore X is a strict local martingale under P .
Now we have to prove that the process (Mt)t∈[0,T ] is indeed a Radon-Nykodim
density process, i.e., that it is a true martingale under the measure P . It
follows from Lemma 4.2. of [25] that the expectation under P ofMT is given
by

EP [MT ] = M0P ({v̂t does not explode on [0, T ]}) (A.3)

where (v̂t)t∈[0,T ] satisfies

dv̂t = a1v̂tdB
1
t + a2v̂tdB

2
t + a3v̂tdB

3
t − (a · σ)(v̂t)

2dt+ a3|α|2v̂tdt
= |α|v̂tdWt − (a · σ)(v̂t)

2dt+ a3|α|2v̂tdt.

The explosion time of (v̂t)t∈[0,T ] is given by

τ∞ = inf{t ≥ 0; v̂t 6∈ (0,∞)}.
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We apply Feller’s test to v̂ (see Chapter 5, section 5.5 of Karatzas and Shreve
[19]) in order to prove that

P ({τ∞ = +∞}) = P ({v̂t does not explode on [0, T ]}) = 1.

To this end we compute the scale function

p(x) =

∫ x

1
exp(−2

∫ y

1

−(a · σ)z2 + a3|α|2z
|α|2z2

dz)dy,

and examine the limits limx↓0 p(x) and limx↑∞ p(x). Here we distinguish
between two cases:

Case 1: a3 = 0. We have

p(x) =

∫ x

1
exp(

2(a · σ)

|α|2

∫ y

1
dz)dy

= k

∫ x

1
exp(

2(a · σ)y

|α|2
)dy

= k1
|α|2

2(a · σ)
exp(

2(a · σ)x

|α|2
)− k2

with k, k1, k2 ∈ R+. Clearly

lim
x↑∞

p(x) = +∞,

since a · σ > 0. Therefore it follows from Problem 5.27 of [19] that

u(∞) = +∞,

where
u(x) =

∫ x

1
p′(y)

∫ y

1

2

p′(z)|α|2z2
dzdy.

Furthermore

lim
x→0+

p(x) = k1
|α|2

2(a · σ)
− k2 > −∞

As required by Feller’s test, we now compute

lim
x→0+

u(x) = lim
x→0+

∫ x

1
p′(y)

∫ y

1

2

|α|2z2p′(z)
dzdy

= lim
x→0+

∫ x

1

2

|α|2z2p′(z)

∫ x

z
p′(y)dydz

= lim
x→0+

∫ x

1

2

|α|2z2
exp(−2(a · σ)z

|α|2
)

∫ x

z
exp(

2(a · σ)y

|α|2
)dydz

≥ lim
x→0+

e
− 2(a·σ)
|α|2

∫ x

1

2

|α|2z2

∫ x

z
dydz

= lim
x→0+

(
e
− 2(a·σ)
|α|2

2

|α|2

∫ x

1

1

z2
(x− z)dz

)

= e
− 2(a·σ)
|α|2

2

|α|2
lim
x→0+

(− log x− x+ 1) = +∞
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Applying Theorem 5.29 of [19] we obtain that

P (τ∞ = +∞) = 1.

Therefore v̂ does not explode on [0, T ]. In view of (A.3), we have proved
EP [MT ] = M0. Thus the process (Mt)t∈[0,T ] is a true martingale, and we
denote by Q ≈ P the probability measure with the Radon-Nikodym density
process given by M .

Applying Girsanov’s Theorem, we see that under the measure Q the
bivariate process (X, v) satisfies

dXt = σ1vtXtdB
Q,1
t + σ2vtXtdB

Q,2
t , X0 = x,

dvt = a1vtdB
Q,1
t + a2vtdB

Q,2
t − (a · σ)v2t dt, v0 = 1.

Thus X is a positive local Q-martingale. To show that is a true martingale
it is enough to show that it has constant expectation. By applying Lemma
4.2 from [25] we obtain

EQ[XT ] = X0Q({v̄t does not explode on [0, T ]}),

where
dv̄t = a1v̄tdB

1
t + a2v̄tdB

2
t . (A.4)

Since the equation (A.4) has linear coefficients, it follows from Remark
5.19 [19] that it has a non-exploding solution. Therefore (Xt)t∈[0,T ] is a
Q-martingale.

Case 2: a3 = 1. The scale function is in this case equal to:

p(x) =

∫ x

0
exp(−2

∫ y

1

−(a · σ)z2 + |α|23z
|α|2z2

dz)dy

= k

∫ x

1
exp(2

(a · σ)y

|α|2
)y−2dy,

where k ∈ R+. We examine the limits limx↓0 p(x) and limx↑∞ p(x). We have
that

lim
x↓0

p(x) = lim
x↓0

k

∫ x

1
exp(2

(a · σ)y

|α|2
)y−2dy = −∞

Then it follows from Problem 5.27 of [19] that

u(0+) = +∞,

where
u(x) =

∫ x

1
p′(y)

∫ y

1

2

p′(z)|α|2z2
dzdy.

Furthermore, we have that

lim
x↑∞

p(x) = lim
x↑∞

k

∫ x

1
exp(2

(a · σ)y

|α|2
)y−2dy

= +∞.
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Then it follows from Problem 5.27 of [19] that

u(∞) = +∞.

Applying Theorem 5.29 of [19] we obtain that

P (τ∞ = +∞) = 1.

Therefore v̂ does not explode on [0, T ]. Thus the process M is a true mar-
tingale.

Applying Girsanov’s Theorem, we see that under the measure Q the
bivariate process (X, v) satisfies

dXt = σ1vtXtdB
1,Q
t + σ2vtXtdB

2,Q
t , t ∈ [0, T ],

dvt = a1vtdB
1,Q
t + a2vtdB

2,Q
t + vtdB

3,Q
t − (a · σ)v2t dt+ |α|2vtdt.

Thus X is a positive local Q-martingale. As in the previous case, in oder
to show that is a true martingale it is enough to show that it has constant
expectation. By applying Lemma 4.2 from [25] we obtain

EQ[XT ] = X0Q({ŵt does not explode on [0, T ]}),

where
dŵt = a1ŵtdB

1,Q
t + a2ŵtdB

2,Q
t + ŵtdB

3,Q
t + |α|2ŵtdt. (A.5)

Due to the linearity of the coefficients, it follows from Remark 5.19 in [19]
that equation (A.5) has a non-exploding solution. Therefore (Xt)t∈[0,T ] is a
Q-martingale.
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