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Abstract

A systemic risk measure for a network of financial positions, as pro-
posed by Chen, Iyengar, and Moallemi [6], involves an aggregation proce-
dure and a convex risk measure that is applied to the aggregate position.
We regard this structural decomposition as a consistency property with
respect to a suitable σ-field. From this point of view, the dual represen-
tation of a systemic risk measure reduces to a criterium for consistency
that is well known in the context of time-consistency. We also discuss
conditions for spatial consistency and connect them with the analysis of
spatial risk measures in [13] and [14].

1 Introduction

Consider a collection of financial positions, one for each node of a financial
network, where the net gain of the position at node i is described by a real-
valued function Xi on some set of possible scenarios. In view of an asymptotic
analysis of large finite networks, we include the case where the set I of nodes is
countably infinite.

To quantify the collective risk for such a collection, Chen, Iyengar, and
Moallemi [6] introduced the notion of a systemic risk measure, defined as a
functional ρ̄ on the linear space X̄ of all collections X̄ = (Xi)i∈I that satisfies
certain axioms. These axioms imply that the functional ρ̄ is convex on X̄ , and
they are shown to be equivalent to a structural decomposition

ρ̄(X̄) = ρ(Λ(X̄)), (1)

where Λ is an aggregation function on RI that associates to each collection X̄
an aggregate position X = Λ(X̄), and where ρ is standard risk measure for real-
valued positions. This is illustrated by the systemic risk measures discussed by
Brunnenmaier and Cheridito [5], where ρ is taken to be a utility-based shortfall
risk measure as introduced in [17]. In [6] the underlying set of scenarios is finite;
for extensions to a general setting see [22], [2], and [21].
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In this paper we use the structural decomposition (1) as a starting point.
Moreover, we focus on the case where the systemic risk measure ρ̄ is a convex
risk measure in the sense of [17] and [19] and can thus be interpreted as a global
capital requirement. This means that, in addition to the properties required
in [6], ρ̄ has the monetary property of cash invariance. Since cash invariance
is inherited by the aggregation function Λ in (1), this excludes some of the
examples discussed in the literature; see, however, Remark 14.

Collections X̄ ∈ X̄ can be identified with real-valued functions on a product
space. Since the systemic risk measure ρ̄ on X̄ is assumed to be cash-invariant,
the dual representation of ρ̄ discussed in [6] and [22] now follows from standard
representation results for convex risk measures in terms of suitably penalized
probability measures. This is explained in Section 4. In order to determine the
systemic penalty function appearing in the dual representation, we observe that
the structural decomposition (1) can be regarded as a consistency condition.
More precisely, ρ̄ is consistent with a conditional convex risk measure defined in
terms of the aggregation function Λ. Thus we can apply a well known criterium
for consistency that has been discussed in the literature on time-consistent risk
measures; cf., for example, [1] or [18, Chapter 11]. This yields a description of
the systemic penalty function for ρ̄ in terms of the penalty functions associated
to ρ and Λ; see Theorem 17, and also [6] and [22] for closely related results.

There are other consistency conditions that may be relevant. In Section 5
we use spatial consistency conditions to introduce the local specification of a
systemic risk measures, in analogy to the local specification of a Gibbs measure
in terms of local conditional probability distributions; see [10] or [20]. For each
finite set of nodes V ⊂ I we fix a conditional risk measure ρ̄V on the local
collections (Xi)i∈V that depends on the situation outside of V and admits a
structural decomposition as in (1); an axiomatic characterization of such condi-
tional systemic risk measures is given in [21]. We assume that the family (ρ̄V )
is spatially consistent, that is, ρ̄W (−ρ̄V ) = ρ̄V for V ⊆W . In analogy with the
theory of Gibbs measures, our aim is to clarify the structure of the set of all
global systemic risk measures ρ̄ that are consistent with the local specification
(ρ̄V ); in particular, this involves criteria for existence and uniqueness. As a first
step in this direction, we show how these questions are connected to the analysis
of spatial risk measures in [13] and [14]. Further results will be discussed in [15].

2 Preliminaries

In this section we recall some basic notions and facts about risk measures that
will be used later on. For further details see, for example, [18, Chapter 4 and
11].

Let X denote the space of all bounded measurable functions on some un-
derlying measurable space (Ω,F) of possible scenarios. A function X ∈ X is
interpreted as the P&L of a financial position: for any scenario ω ∈ Ω, the value
X(ω) denotes the resulting discounted net worth of the position at the end of a
given trading period.
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Definition 1. A real-valued functional ρ on X is called a monetary risk mea-
sure if it is

• cash invariant, i..e., ρ(X +m) = ρ(X)−m for any constant m,

• monotone, i.e. X ≤ Y ⇒ ρ(X) ≥ ρ(Y ).

• normalized, i.e., ρ(0) = 0.

A monetary risk measure ρ is called a convex risk measure if the functional ρ
is convex on X , i.e.,

• ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y )

for any λ ∈ [0, 1].

Any monetary risk measure ρ is Lipschitz-continuous with respect to the
supremum norm ||X|| := supω∈Ω |X(ω)|, that is,

|ρ(X)− ρ(Y )| ≤ ||X − Y ||. (2)

Moreover, ρ is uniquely determined by the associated acceptance set

A :=
{
X ∈ X

∣∣ ρ(X) ≤ 0
}
,

since
ρ(X) = inf

{
m ∈ R1

∣∣ X +m ∈ A
}
.

Thus ρ(X) has the financial interpretation of a capital requirement : it is the
minimal amount which should be added to the position X to make it acceptable.
The risk measure ρ is convex if and only if its acceptance set A is convex.

Typically, a convex risk measure ρ on X admits a dual representation of the
form

ρ(X) = sup
Q

(EQ [−X]− α(Q)) , (3)

where the supremum is taken over probability measures Q on (Ω,F), and where
the penalty function α is defined in terms of the acceptance set A by

α(Q) := sup
X∈A

EQ [−X] ∈ [0,∞]. (4)

Such a representation requires additional regularity properties. A necessary
condition is that ρ should be continuous from above, i.e.,

Xn ↘ X =⇒ ρ(Xn) ↗ ρ(X)

for any uniformly bounded sequence (Xn) in X . Continuity from below, defined
in an analogous manner, is a stronger condition, which is equivalent to the
following Lebesgue property :

Xn −→ X =⇒ ρ(Xn) −→ ρ(X)

for any uniformly bounded sequence (Xn) in X .
Let P be a probability measure on (Ω,F).
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Definition 2. We say that ρ is absolutely continuous with respect to P , and
we write ρ� P , if

X = Y P -a.s. =⇒ ρ(X) = ρ(Y ).

ρ is called sensitive with respect to P if P [A] > 0 implies ρ(−λIA) > 0 for large
enough λ > 0.

If ρ � P then ρ can be regarded as a convex risk measure on the Banach
space `∞(Ω,F , P ). As shown in [17] or [18, Theorem 4.33], continuity from
above is now sufficient for the dual representation of ρ. Moreover, α(Q) < ∞
implies Q � P , and so the supremum in (3) can be taken over all probability
measures Q� P . The supremum is attained if ρ is continuous from below; see
[18, Corollary 4.35]. Moreover, ρ is sensitive with respect to P if and only if the
dual representation holds in terms of equivalent probability measures Q ≈ P ;
see [18, Theorem 4.43]. This is summarized in the following theorem.

Theorem 3. Let ρ be a convex risk measure on X such that ρ� P .

1. If ρ is continuous from above then ρ has the dual representation (3), where
the supremum is taken over all probability measures Q� P .

2. The Lebesgue property implies that the supremum is actually attained.

3. Sensitivity with respect to P is equivalent to the condition that the supre-
mum in (3) can be taken over all probability measures Q ≈ P .

We are also going to use the notion of a risk kernel introduced in [13]. Let
F0 be a sub-σ-field of F1 := F , and denote by Xi the space of all bounded
measurable functions on (Ω,Fi) for i = 0, 1.

Definition 4. A map ρ0,1 : Ω×X1 → R1 is called a monetary risk kernel from
(Ω,F0) to (Ω,F1) if

• for any ω ∈ Ω, ρ0,1(ω, ·) is a monetary risk measure on X1,

• for any X ∈ X , ρ0,1(·, X) is an F0-measurable function on Ω,

• ρ0,1(·, X0) = −X0 for any X0 ∈ X0.

A monetary risk kernel ρ0,1 is called a convex risk kernel if each risk measure
ρ0,1(ω, ·) is convex.

Note that a monetary risk kernel ρ0,1 from (Ω,F0) to (Ω,F1) can be regarded
as a map from X to X0 since (2) implies |ρ0,1(ω,X)| ≤ ||X|| for any X ∈ X .

Definition 5. The monetary risk kernel ρ0,1 is called absolutely continuous
with respect to P if

X = Y P -a.s. =⇒ ρ0,1(·, X) = ρ0,1(·, Y ) P -a.s. .. (5)
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Condition (5) implies that ρ0,1 can be viewed as a map from `∞(Ω,F , P ) to
`∞(Ω,F0, P ). As such, ρ0,1 is a convex conditional risk measure in the sense of
[9] or [18, Chapter 11]. In this case, we denote by

A0,1 :=
{
X ∈ X1

∣∣ ρ0,1(X) ≤ 0 P -a.s
}
. (6)

the conditional acceptance set of ρ0,1, and by

α0,1(Q) = ess sup{EQ [−X|F0] |X ∈ A0,1} (7)

the conditional penalty function, defined for Q� P such that Q ≈ P onF0; the
essential supremum is taken with respect to P .

Theorem 6. Suppose that the risk kernel ρ0,1 is convex, absolutely continuous
with respect to P , and continuous from above in the sense that

Xn ↘ X P -a.s =⇒ ρ0,1(Xn)↗ ρ0(X) P -a.s

for any uniformly bounded sequence (Xn) in X . Then ρ0,1 admits the dual
representation

ρ0,1(X) = ess sup
Q

(EQ [−X|F0]− α0,1(Q)), (8)

where the essential supremum is taken under P and over all probability measures
Q� P such that Q ≈ P onF0; cf. [9, 3, 7, 1] or [18, Chapter 11].

Definition 7. The risk measure ρ on X is called consistent with the risk kernel
ρ0,1 if

ρ = ρ(−ρ0,1), (9)

that is, ρ(X) = ρ(−ρ0,1(·, X)) for any X ∈ X .

Let ρ0 denote the restriction of ρ to X0, and note that the consistency
condition (9) can be written as

ρ = ρ0(−ρ0,1). (10)

We denote by
A0 :=

{
X ∈ X0

∣∣ ρ(X) ≤ 0
}
,

the acceptance set corresponding to the convex risk measure ρ0 on X0, and by
α0 the corresponding penalty function defined by

α0(Q) := sup
X∈A0

EQ [−X] . (11)

As shown in [16, 3, 7, 4, 1] or [18, Chapter 11], consistency of ρ with the
risk kernel ρ0,1 can be characterized as follows in terms of the acceptance sets
A,A0,A0,1 or, equivalently, in terms of the penalty functions α, α0, α0,1.
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Theorem 8. Assume that ρ and ρ0,1 are convex, absolutely contiuous with
respect to P , and continuous from above. Then the following conditions are
equivalent:

1. ρ0 is consistent with ρ0,1

2. A = A0 +A0,1

3. α(Q) = α0(Q) + EQ[α0,1(Q)]

for any Q� P such that Q ≈ P onF0.

3 Systemic risk measures

In addition to the measurable space (Ω,F) of possible scenarios we fix a count-
able set I, viewed as the set of nodes i in some financial network. We denote by
`∞ the space of bounded sequences x̄ = (xi)i∈I and by ||x̄|| the corresponding
supremum norm. If the set I is finite then `∞ reduces to the Euclidean space
RI .

Let X̄ denote the space of bounded measurable functions on the product
space Ω̄ := Ω× I with canonical product σ-field F̄ . Note that any X̄ ∈ X̄ can
be regarded as a configuration

X̄ = (Xi)i∈I ∈ X I

of financial positions, one for each node of the network, such that

||X̄|| := sup
i∈I
||Xi|| <∞.

We are going to regard both X and `∞ as subspaces of X̄ : Any X ∈ X wiil be
identified with the configuration X̄ defined byXi(ω) = X(ω) (constant across all
nodes), and any x̄ ∈ `∞ with the configuration defined by X̄(ω) = x̄ (constant
across all scenarios).

Chen, Iyengar, and Moallemi [6] introduced the notion of a systemic risk
measure on the space X̄ of configurations X̄ = (Xi)i∈I that consists in applying
some convex risk measure ρ on X to a suitable real-valued aggregate Λ(X̄) of
the configuration X̄. Here we focus on systemic risk measures that are given by
a monetary risk measure ρ̄ on X̄ . More precisely:

Definition 9. A monetary risk measure ρ̄ on the space X̄ is called a systemic
risk measure if it admits a structural decomposition

ρ̄(X̄) = ρ(Λ(X̄)), (12)

also written as
ρ̄ = ρ ◦ Λ, (13)

where ρ is a monetary risk measure on X and Λ is a measurable map from `∞

to R1 such that Λ(X̄) ∈ X for any X̄ ∈ X̄ .
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Note that cash-invariance of ρ̄ takes the form

ρ̄(X̄ + m̄) = ρ̄(X̄)−m,

where m̄ = (mi)i∈I is such that mi ≡ m for some m ∈ R1. Accordingly, ρ̄(X̄)
is interpreted as a capital requirement per node, i.e.,

ρ̄(X̄) = inf
{
m ∈ R1

∣∣ X̄ + m̄ ∈ Ā
}
,

where
Ā :=

{
X̄ ∈ X̄

∣∣ ρ̄(X̄) ≤ 0
}

(14)

denotes the acceptance set of ρ̄.
Since both ρ̄ and ρ are required to be a monetary risk measure, the structural

decomposition (12) imposes further restrictions on the map Λ:

Definition 10. A map Λ from `∞ to R1 will be called a monetary aggregation
function if it satisfies the following properties for any x̄ = (xi) and ȳ = (yi):

1. Λ(0̄) = 0

2. Λ(x̄) ≤ Λ(ȳ) if x̄ ≤ ȳ,

3. Λ(x̄+ ȳ) = Λ(x̄) + y if ȳ is constant, i.e., yi = y for all i ∈ I.

A monetary aggregation function Λ will be called a concave aggregation function
if Λ is concave on `∞.

Note that these three properties simply amount to the condition that −Λ is
a normalized monetary risk measure on the space `∞. It follows from (2) that
Λ has the contraction property

|Λ(x̄)| ≤ ||x̄||. (15)

In particular, any aggregation function satisfies Λ(X̄) ∈ X for any X̄ ∈ X̄ , as
required in (12).

Remark 11. We interpret Λ(x̄) as an aggregate per node. In particular, the
aggregate of a constant position ȳ with yi ≡ y is given by y and not by y |I| as
in [6], where I is assumed to be finite. Moreover, condition (3) in our definition
of a monetary aggregation function insists on cash invariance, while this is not
required in [6]. Our stronger condition implies that −Λ is a monetary risk
measure. This will be convenient in the next section, because it allows us to
use standard results on the dual representation of convex risk measures. Note
also that [6] argues in terms of net losses X̃ := −X instead of net gains X.
Thus, the corresponding aggregation function on `∞ given by Λ̃(x̄) := −Λ(−x̄)
is convex if Λ is concave.
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Proposition 12. Suppose that ρ̄ is a systemic risk measure. Then the structural
decomposition (12) is unique, and it is given by the restrictions

ρ := ρ̄|X and − Λ := ρ̄|`∞ (16)

of ρ̄ to the subspaces X and `∞. In particular, Λ is an aggregation function.
Moreover, the systemic risk measure ρ̄ is convex if and only if the risk measure
ρ is convex on X and the aggregation function Λ is concave on `∞.

Proof. For a deterministic configuration X̄ with X̄(·) ≡ x̄ for some x̄ ∈ `∞, the
decomposition (12) implies

ρ̄(X̄) = ρ(Λ(x̄)) = −Λ(x̄),

since the normalized monetary risk measure ρ satisfies ρ(m) = −m for any
constant m ∈ R1. This shows that −Λ is given by the restriction of ρ̄ to `∞,
viewed as a subspace of X̄. In particular, −Λ is a monetary risk measure on
`∞, and this means that Λ is an aggregation function. The first property of an
aggregation function implies |Λ(X̄(ω)| ≤ ||X̄||, and so we obtain Λ(X̄) ∈ X for
any X̄ ∈ X̄ .

Now consider a configuration X̄ = (Xi)i∈I that is constant across all nodes,
that is, Xi ≡ X for some X ∈ X . The third property of the aggregation function
Λ implies Λ(X̄(ω)) = X(ω), hence

ρ̄(X̄) = ρ(Λ(X̄)) = ρ(X).

Thus ρ is given by the restriction of ρ̄ to X , viewed as a subspace of X̄ .
Finally, convexity of ρ̄ on X̄ implies convexity on the subspaces X and `∞,

and so both ρ and −Λ are convex risk measures. Conversely, convexity of both
ρ and −Λ implies, using the monotonicity of ρ, that ρ̄ = ρ(Λ) is a convex risk
measure on X̄ .

Remark 13. As observed in [6], the structural decomposition (12) implies
stronger versions of the standard properties of a convex risk measure ρ̄ on
X̄ . These stronger properties of ρ̄ are formulated in terms of the restriction
Λ = ρ̄|`∞ of ρ̄ to `∞.

Let � denote the partial order on `∞ defined by x̄ � ȳ :⇐⇒ Λ(x̄) ≤ Λ(ȳ),
and write X̄ � Ȳ if X̄(ω, ·) � X̄(ω, ·) for each ω ∈ Ω. Then the structural
decomposition implies

X̄ � Ȳ =⇒ ρ̄(X̄) ≤ ρ̄(Ȳ ).

This property, called preference consistency in [6], is stronger than monotonicity
since the pointwise inequality X̄ ≥ Ȳ implies X̄ � Ȳ .

If ρ̄ is convex, then the structural decomposition ρ̄ = ρ ◦ Λ implies

Z̄ � αX̄ + (1− α)Ȳ =⇒ ρ̄(Z̄) ≤ αρ̄(X̄) + (1− α)ρ̄(X̄)
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for any α ∈ [0, 1], since ρ is monotone and convex. This property, calles risk
convexity in [6], is stronger than convexity because the condition on the left hand
side is satisfied whenever Z̄ = αX̄ + (1− α)Ȳ , due to the concavity of Λ.

Conversely, a convex risk measure ρ̄ admits a structural decomposition (12)
when it has these stronger properties; see [6] in the case of a finite Ω, [22] and
[21] in the general case, and also [12] and [2] for closely related results.

Remark 14. In this paper we restrict the discussion to systemic risk measures
ρ̄ = ρ ◦ Λ that are cash-invariant. The aggregation function Λ inherits this
property, and this excludes various examples of aggregation functions that are
discussed in the literature. However, some of them are included if we apply
our cash-invariant risk measure ρ̄ not to the collection X̄ but to the collection
X̄ ′, where the position Xi is replaced by X ′i := min(Xi, 0) . In other words,
we replace ρ̄ by the loss-based risk measure ρ̄′ defined by ρ̄′(X̄) := ρ̄(X̄ ′), as
proposed in [8].

In the general case, our arguments apply if we replace the standard results
for convex risk measures by their extensions to general risk functionals; see, e.g.,
[11]. This will be discussed in [15].

4 Dual Representation

From now on we fix a probability measure P on (Ω,F) and a probability measure
µ on I with strictly positive weights (µi)i∈I , and we denote by P̄ = P ⊗ µ the
corresponding product measure on (Ω̄, F̄).

Throughout this section we fix a systemic risk measure ρ̄ = ρ ◦Λ on X̄ that
is convex. We also assume ρ̄� P̄ ; this is equivalent to ρ� P , since µ is strictly
positive on I. Thus, ρ̄ and ρ can be viewed as convex risk measures on the
Banach spaces `∞(Ω̄, F̄ , P̄ ) and `∞(Ω,F , P ), respectively.

Lemma 15. The systemic risk measure ρ̄ = ρ ◦ Λ is continuous from above if
and only if both ρ and −Λ are continuous from above. The same equivalence
holds for continuity from below.

Proof. Clearly, continuity from above for ρ̄ implies continuity from above for
the restrictions ρ := ρ̄|X and Λ := −ρ̄|`∞ .

Conversely, take a sequence (X̄n)n=1,2,... in X̄ that decreases P̄ -a.s. to X̄ ∈
X̄ . Then we have Xn,i(ω)↘ Xi(ω) (i ∈ I) P -a.s., hence Λ(X̄n(ω))↘ Λ(X̄(ω))
P -a.s. if Λ is continuous from above on `∞. But this implies

ρ̄(X̄n) = ρ(Λ(X̄n))↗ ρ(Λ(X̄)) = ρ̄(X̄)

if, in addition, ρ is continuous from above on X .
The same argument shows that continuity from below, in other words the

Lebesgue property, holds for ρ̄ if and only if it holds for ρ and −Λ.

Lemma 16. The systemic risk measure ρ̄ = ρ ◦Λ is sensitive with respect to P̄
if and only if ρ is sensitive with respect to P and −Λ is sensitive with respect
to µ.
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Proof. Sensitivity of ρ̄ clearly implies sensitivity for the restrictions ρ := ρ̄|X
and Λ := −ρ̄|`∞ .

Conversely, take Ā ∈ F such that P [Ā] > 0, and choose A ∈ F and i ∈ I
such that P [A] > 0 and A × {i} ⊆ Ā. Sensitivity of −Λ implies γ(λ) :=
−Λ(−λI{i}) > 0 for some λ > 0. In fact we obtain limλ→∞ γ(λ) = ∞, since
γ(0) = 0 and since the function γ(·) is convex, due to the concavity of Λ. Since

−Λ(−λIA×{i}(ω, ·)) = γ(λ)IA(ω),

monotonicity of ρ̄ and sensitivity of ρ yield

ρ̄(−λIĀ) ≥ ρ̄(−λIA×{i}) = ρ(−γ(λ)IA) > 0

for large enough γ(λ), that is, for large enough λ.

From now on we also assume that the convex systemic risk measure ρ̄� P̄
is continuous from above. Theorem 3, applied to ρ̄ on X̄ , shows that ρ̄ admits
the dual representation

ρ̄(X̄) = sup
Q̄�P̄

(
EQ̄

[
−X̄

]
− α(Q̄)

)
, (17)

where the penalty function ᾱ is defined by

ᾱ(Q̄) := sup
X∈Ā

EQ̄ [−X] (18)

in terms of the acceptance set Ā in (14). If ρ̄ is sensitive with respect to P̄ then
it is enough to take the supremum over equivalent probability measures Q̄ ≈ P̄ .

Our aim is to clarify the structure of the systemic penalty function ᾱ. To
this end, we are going to show that the structural decomposition ρ̄ = ρ ◦ Λ in
(12) can be viewed as a consistency property of ρ̄ with respect to a risk kernel
ρ̄0,1 defined in terms of Λ. This will allow us to apply Theorem 8.

Due to Proposition 12 and Lemma 15, our assumptions on ρ̄ imply that the
monetary risk measures ρ and −Λ are convex and continuous from above, with
ρ� P and −Λ� µ. Thus, ρ admits the dual representation

ρ(X) = sup
Q�P

(EQ [−X]− α(Q)) , (19)

where the penalty function α is given by (4). In the same way, −Λ admits a dual
representation on `∞ with penalty function αI . For the aggregation function Λ,
this takes the form

Λ(x̄) = inf
π

(〈x̄, π〉+ αI(π)) (20)

for any x̄ ∈ `∞, where the infimum is taken over all probability measures π =
(πi)i∈I on I. Here we use the notation 〈x̄, π〉 =

∑
i∈I xiπi, and the penalty

function αI is defined by

αI(π) := sup
x̄∈AI

〈−x̄, π〉 (21)
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in terms of the acceptance set

AI := {x̄ ∈ `∞ |Λ(x̄) ≥ 0}.

Note that any probability measure Q̄ on the product space (Ω̄, F̄) can be
written as the product Q ⊗ ν of a probability measure Q on (Ω,F) and a
stochastic kernel ν(·) from (Ω,F) to I, that is,

• for any ω ∈ Ω, ν(ω) = (νi(ω))i∈I is a probability measure on I

• for any i ∈ I, νi(·) is a measurable function on (Ω,F).

More precisely, Q is the marginal distribution of the first coordinate under Q̄, the
stochastic kernel ν(·) is taken as a regular version of the conditional distribution
of the second coordinate under Q̄ with respect to the first coordinate, and

EQ̄[X̄] = EQ⊗ν [X̄] :=

∫
〈X̄(ω, ·), ν(ω)〉Q(dω) (22)

for any X̄ ∈ X̄ . Since µ has strictly positive weights, we have Q̄ � P̄ if and
only if Q� P .

Let us introduce the conditional acceptance set

ĀI := {X̄ ∈ X̄ | X̄(ω, ·) ∈ AI P -a.s}

and the conditional penalty function ᾱI , defined for any stochastic kernel ν(·)
from (Ω,F) to I by

ᾱI(ν(·)) := ess sup {〈X̄(·, ·), ν(·)〉 | X̄ ∈ ĀI}; (23)

the essential supremum of the F-measurable functions ω → 〈X̄(ω, ·), ν(ω)〉 is
taken under P . The systemic penalty function ᾱ can now be described as follows
in terms of the penalty function α and the conditional penalty function ᾱI(·).

Theorem 17. For any Q̄ = Q ⊗ ν � P̄ such that Q ≈ P , the penalty ᾱ(Q̄)
defined by (18) is given by

ᾱ(Q̄) = α(Q) + EQ [ᾱI(ν(·))] . (24)

Proof. Let F̄0 denote the sub-σ-field {A × I|A ∈ F} of F̄1 := F̄ . We denote
by X̄0 the space of bounded measurable functions on (Ω̄, F̄0) and by ρ̄0 the
restriction of ρ̄ to X̄0. Consider the convex risk kernel ρ̄0,1 from (Ω̄, F̄0) to
(Ω̄, F̄1) defined by

ρ̄0,1(ω̄, X̄) = −Λ(X̄(ω, ·))

for X̄ ∈ X̄ and ω̄ = (ω, i) ∈ Ω̄. Note that ρ̄0,1 is continuous from above and
absolutely continuous with respect to P̄ . The structural decomposition ρ̄ = ρ◦Λ
can now be read as the consistency relation

ρ̄ = ρ̄(−ρ̄0,1) = ρ̄0(−ρ̄0,1)
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as it appears in (9), (10), and Theorem 8. Thus, the decomposition (24) will
follow from the description of the penalty function in Theorem 8, applied to the
risk measure ρ̄ and the risk kernel ρ̄0,1.

It remains to identify the penalty functions of ρ̄0 and ρ̄0,1. Since X̄ ∈ X̄0 iff
X̄(ω, ·) ≡ X(ω) for some X ∈ X , we have Λ(X̄) = X, hence

ρ̄0(X̄) = ρ̄(X̄) = ρ(Λ(X̄)) = ρ(X).

for X̄ ∈ X̄0. Thus, the penalty function ᾱ0 of ρ̄0 is given by

ᾱ0(Q̄) := sup{EQ̄[−X̄] | X̄ ∈ X̄0, ρ̄0(X̄) ≤ 0}
= sup{EQ[−X]|X ∈ X , ρ(X) ≤ 0}
= α(Q)

for any Q̄ = Q⊗ ν � P̄ .
Finally, we show that the conditional penalty function ᾱ0,1(Q̄) for the con-

ditional risk measure ρ̄0,1 is given by

ᾱ0,1(Q̄)(ω̄) = ᾱI(ν(ω))

for P̄ -a.a. ω̄ = (ω, i). Note first that the conditional acceptance set Ā0,1 of ρ̄0,1

coincides with ĀI . Indeed, X̄ ∈ X̄ belongs to Ā0,1 iff

ρ̄0,1(ω̄, X̄) = −Λ(X̄(ω, ·)) ≤ 0 P̄ -a.s. ⇐⇒ X̄(ω, ·) ∈ AI P -a.s.,

that is, iff X̄ ∈ ĀI . Since

EQ̄[−X̄ | F̄0](ω̄) = 〈−X̄(ω, ·), ν(ω)〉 P̄ -a.s.,

we have, P̄ -a.s,

ᾱ0,1(Q̄)(ω̄) := ess sup{EQ̄[−X̄ | F̄0] | X̄ ∈ Ā0,1}
= ess sup{〈−X̄(ω, ·), ν(ω)〉 | X̄ ∈ ĀI}
=: ᾱI(ν(·))(ω).

5 Local specification and phase transition

We have seen that the structural decomposition of a systemic risk measure can
be regarded as a consistency condition, and we have used this fact in our proof of
the dual decomposition in Theorem 17. There are other consistency conditions
that may be relevant. In this section we introduce the local specification of a
systemic risk measure, defined in terms of spatial consistency conditions. This
will establish a connection between systemic risk measures and the spatial risk
measures discussed in [13] and [14].
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From now on we assume that the underlying measurable space is a product
space of the form

(Ω,F) = (SI ,SI),

where S is some polish state space with Borel σ–field S. Thus, a possible
scenario is given by a map ω : I → S that specifies a state s ∈ S for each site
i ∈ I. For any subset J ⊆ I, we denote by FJ the σ-field on Ω generated by the
projection maps ω → ω(i) for any i ∈ J , by GJ the σ-field on I generated by
the sets {j} with j ∈ J , and by F̄J the product-σ-field FJ × GJ on Ω̄ = Ω× I.

We assume that I is countably infinite, and we denote by V the class of
non-empty finite subsets V of I. For a given set V ∈ V, the σ-field FV contains
the events that are observable on V , while the events in FV c depend on the
environment of V , that is, the situation on V c := I\V .

For each V ∈ V, we fix a systemic risk kernel ρ̄V (·, ·) that associates to
any local configuration X̄V = (Xi)i∈V of positions at the sites in V a capital
requirement ρ̄V (ω, X̄V ) that depends on the environment of V . More precisely,

1. for any ω ∈ Ω, ρ̄V (ω, ·) is a systemic risk measure on X V with structural
decomposition

ρ̄V (ω, ·) = ρV (ω, ·) ◦ ΛV , (25)

where ρV (ω, ·) is a convex risk measure on X and ΛV is a concave aggre-
gation function on RV ,

2. for any X̄V ∈ X V , ρ̄V (·, X̄V ) is an FV c-measurable function on Ω.

An axiomatic characterization of such conditional systemic risk measures is
given in [21].

Note that the second condition implies that each ρV (·, ·) is a risk kernel from
(Ω,FV c) to (Ω,F). Thus, the composition ρW (−ρV ) of two kernels ρV and ρW
is well defined as a risk kernel from (Ω,FW c) to (Ω,F). The following definition
is taken from [13] and [14].

Definition 18. A collection (ρV )V ∈V of convex risk kernels ρV from (Ω,FV c)
to (Ω,F) is called a local specification of a convex risk measure on X if it
satisfies the consistency condition

ρW (−ρV ) = ρW

for any V,W ∈ V such that V ⊆W .
We denote by R the set of all convex risk measures ρ on X that are consistent

with the local specification (ρV )V ∈V , that is,

ρ(−ρV ) = ρ for any V ∈ V.

In order to introduce the analogous notion at the systemic level, we are
going to regard ρ̄V (·, ·) as a risk kernel from (Ω̄, F̄I−V ) to (Ω̄, F̄). To this
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end, we identify the local aggregation function ΛV on RV with the conditional
aggregation function on `∞ given by

ΛV (i, x̄) =

{
ΛV (x̄V ) if i ∈ V,
xi if i ∈ V c.

Thus, ΛV associates to each profile x̄ a new profile ΛV (·, x̄), where the values
on V are replaced by the aggregate value ΛV (x̄V ) while the values outside of V
remain unchanged.

Note that −ΛV (·, ·) : I × `∞ → R1 can be regarded as a convex risk kernel
from (I,GV c) to (I,GI). As in the preceding definition, we can thus define the
local specification of a concave aggregation function on `∞ as a family (ΛV )V ∈V
of conditional aggregation functions that satisfies the consistency condition

ΛW (i,ΛV (·, x̄)) = ΛW (i, x̄)

for i ∈ I, x̄ ∈ `∞, and for any V,W ∈ V such that V ⊆W .

Definition 19. We denote by L the set of all concave aggregation functions Λ
on `∞ that are consistent with the local specification (ΛV )V ∈V , i.e.,

Λ(−ΛV (·, x̄)) = Λ(x̄)

for any V ∈ V.

With this notation, the convex risk kernel ρ̄V from (Ω̄, F̄I−V ) to (Ω̄, F̄)
corresponding to (25) can now be defined by

ρ̄V (ω̄, ·) := ρV (ω, ·) ◦ ΛV (i, ·) (26)

for any ω̄ = (ω, i) ∈ Ω̄ , that is,

ρ̄V (ω̄, X̄) = ρV (ω,ΛV (i, X̄)) =

{
ρV (ω,Xi) if i ∈ V
ρV (ω,ΛV (X̄V )) if i ∈ V c

(27)

for any X̄ ∈ X̄ .

Remark 20. The value ρV (ω,Xi) would reduce to −Xi(ω) if the position Xi

would only depend on the situation at the node i, or only on the situation on
V c. In general, however, the position taken at the node i may also depend on
the situation in V .

Definition 21. The collection (ρ̄V )V ∈V is called a local specification of a convex
systemic risk measure on X̄ if it satisfies the consistency condition

ρ̄W (−ρ̄V ) = ρ̄W (28)

for any V,W ∈ V such that V ⊆W .
We denote by R̄ the set of all convex systemic risk measures ρ̄ on X̄ that

are consistent with the local specification (ρ̄V )V ∈V , that is,

ρ̄(−ρ̄V ) = ρ̄ (29)

for any V ∈ V.
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Our aim is to clarify the structure of the systemic risk measures in R̄, and in
particular the question of existence and uniqueness, possibly under additional
regularity constraints. The following theorem shows how this is related to the
analysis of spatial risk measures in [13] and [14].

Let us denote by R̄L the class of all systemic risk measures ρ̄ that have the
Lebesgue property, that is, they are continuous from below. The notation RL
and ΛL is used in the same manner.

Theorem 22. Let (ρ̄V )V ∈V be a local specification of a systemic risk measure
on X̄ , where the kernels ρ̄V are given by (26).

1. (ρV )V ∈V is a local specification of a convex risk measure on X , and (ΛV )V ∈V
is a local specification of a concave aggregation function on `∞,

2. For any systemic risk measure ρ̄ = ρ ◦ Λ ∈ R̄ we have ρ ∈ R and Λ ∈ L.

3. For any systemic risk measure ρ̄ = ρ ◦ Λ ∈ R̄L we have ρ ∈ RL and
Λ ∈ LL.

Proof. To check the second statement, take ρ̄ = ρ ◦Λ ∈ R̄. If X̄(·, i) = X(·) for
some X ∈ X (constant across nodes), then we have Λ(X̄) = X and ΛV (·, X̄) =
X, hence ρ̄(X̄) = ρ(X) and ρ̄V ((ω, i), X̄) = ρV (ω,X). Thus the consistency
condition (29) implies

ρ(X) = ρ̄(X̄) = ρ̄(−ρ̄V (·, X̄)) = ρ̄(−ρV (·, X)) = ρ(−ρV (·, X)),

and so we have ρ ∈ R.
On the other hand, if X̄(·, i) = x̄i for some x̄ ∈ `∞ (constant across scenar-

ios), then ρ̄(X̄) = −Λ(x̄) and ρ̄V ((ω, i), X̄) = −ΛV (i, x̄). Thus we obtain

Λ(x̄) = −ρ̄(X̄) = −ρ̄(−ρ̄V (·, X̄)) = Λ(ΛV (·, x̄)),

that is, Λ ∈ L.
The proof of the first statement proceeds in the same way, and the third

statement follows by combining the second with Lemma 15.

Theorem 22 sets the stage for analysing the structure of the global systemic
risk measures in R̄ (or R̄L) in terms of the spatial risk measures in R (or RL)
and the aggregation functions in L (or LL). In particular, it shows that the
existence of a global systemic risk measure implies existence of a global spatial
risk measure and of a global aggregation function, i.e.,

R̄ 6= ∅ =⇒ R 6= ∅ and L 6= ∅,

and the same is true if we require the Lebesgue condition:

R̄L 6= ∅ =⇒ RL 6= ∅ and LL 6= ∅.

In the same way, non-uniqueness at the systemic level implies that there must
be non-uniqueness either for the spatial risk measures or for the aggregation
functions, that is,

|R̄| > 1 =⇒ |R| > 1 or |L| > 1,
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and
|R̄L| > 1 =⇒ |RL| > 1 or |LL| > 1.

This is just a first step; the converse implications are less immediate. Typi-
cally, a global aggregation function in LL will be unique, and so the focus will be
on the class RL and its interplay with the class R̄L. In [13] and [14], the struc-
ture of the spatial risk measures in RL is analyzed under the assumption that
their local specification is tied to an underlying probabilistic structure, namely
to the local specification of a Gibbs measure. At the probabilistic level, non-
uniqueness of the global Gibbs measure is also called a phase transition. It is
shown in [13] and [14] how such a phase transition is related to non-uniqueness of
the spatial risk measures in RL. The application of these results to the systemic
risk measures in R̄L will be explored in [15].
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