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Abstract

For a probability measure Q on Wiener space, Talagrand’s transport
inequality takes the form WH(Q,P )2 ≤ 2H(Q|P ), where the Wasser-
stein distance WH is defined in terms of the Cameron-Martin norm, and
where H(Q|P ) denotes the relative entropy with respect to Wiener mea-
sure P . Talagrand’s original proof takes a bottom-up approach, using
finite-dimensional approximations. As shown by Feyel and Üstünel in [3]
and Lehec in [10], the inequality can also be proved directly on Wiener
space, using a suitable coupling of Q and P . We show how this top-down
approach can be extended beyond the absolutely continuous case Q� P .
Here the Wasserstein distance is defined in terms of quadratic variation,
and H(Q|P ) is replaced by the specific relative entropy h(Q|P ) on Wiener
space that was introduced by N. Gantert in [7].

1 Introduction

There are many ways of quantifying the extent to which a probability measure
Q on the path space C[0, 1] deviates from Wiener measure P . In this paper
we discuss the following two approaches and the relation between them. One
involves the notion of entropy, the other uses a Wasserstein distance, that is,
the solution of an optimal transport problem on Wiener space. We will do this
in two stages.

In the first stage, the measure Q will be absolutely continuous with respect
to Wiener measure P , and we consider the relative entropy H(Q|P ) of Q with
respect to P . On the other hand, we use the Wasserstein distance

WH(Q,P ) = inf
( ∫
||ω − η)||HP (dω)R(ω, dη)

)1/2
, (1)

where the infimum is taken over all transition kernels R on Wiener space
which transport P into Q, and where the transportation cost is defined by
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the Cameron-Martin norm. Talagrand’s transport inequality

WH(Q,P ) ≤
√

2H(Q|P ) (2)

on Wiener space shows that these two measures of deviation are closely related.
In fact, inequality (2) becomes an identity as soon as we introduce the additional
constraint that the transport should be adapted to the natural filtration on
Wiener space; this was first shown by R. Lassalle in [9].

On Wiener space, inequality (2) was first studied by Feyel and Üstünel [3].
In Talagrand’s original version [13], the inequality is formulated on Euclidean
space Rn, including the case n =∞; the Wasserstein distance is defined in terms
of the Euclidean norm, and the reference measure P is the product of standard
normal distributions. But the Lévy-Ciesielski construction of Brownian motion
in terms of the Schauder functions shows that inequality (2) on Wiener space can
be viewed as a direct translation of the Euclidean case for n =∞, as explained
in Section 3.

Talagrand’s original proof in [13] takes a bottom-up approach, using finite-
dimensional approximations. Instead, as shown by D. Feyel and A. S. Üstünel
in [3] and by J. Lehec in [10], Talagrand’s inequality can be proved directly on
Wiener space, using a suitable coupling of Q and P . This top-down approach
involves the computation of relative entropy in terms of the intrinsic drift of Q
that was used in [4] and [5] for the analysis of time reversal and large deviations
on Wiener space. The intrinsic drift bQ is such that Q can be viewed as a weak
solution of the stochastic differential equation dW = dWQ + bQ(W )dt, that is,
WQ is a Wiener process under Q. Coupling WQ with the coordinate process W
under Q immediately yields inequality (2), and it solves the optimal transport
problem for the Cameron-Martin norm if the coupling is required to be adapted.

Clearly, inequality (2) is of interest only if the relative entropy is finite, and
so Q should be absolutely continuous with respect to Wiener measure. In the
second stage, we go beyond this restriction. Here we replace H(Q|P ) by the
specific relative entropy

h(Q|P ) := lim inf
N↑∞

2−NHN (Q|P ),

where HN (Q|P ) denotes the relative entropy of Q with respect to P on the σ-
field generated by observing the path along the N -th dyadic partition of the unit
interval. The notion of specific relative entropy on Wiener space was introduced
by N. Gantert in her thesis [7], where it serves as a rate function for large
deviations of the quadratic variation from its ergodic behaviour; cf. also [8].
In our context, the specific relative entropy appears if we rewrite the finite-
dimensional Talagrand inequality for n = 2N in the form

W 2
N (Q,P ) ≤ 2 · 2−NHN (Q|P ), (3)

where the Wasserstein metric WN is defined in terms of the discrete quadratic
variation along the N -th dyadic partition. This suggests that a passage to
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the limit should yield an extension of Talagrand’s inequality, where H(Q|P ) is
replaced by h(Q|P ), and where WH is replaced by a Wasserstein metric WS
that is defined in terms of quadratic variation. Here again, we take a top-down
approach. Instead of analyzing the convergence on the left-hand side of (3),
we argue directly on Wiener space, assuming that the coordinate process W
is a special semimartingale under Q. We show that h(Q|P ) < ∞ implies that
Q admits the construction of an intrinsic Wiener process WQ such that the
pair (W,WQ) defines a coupling of P and Q. This coupling solves the optimal
transport problem defined by WS , and for a martingale measure Q it yields the
inequality

WS(Q,P ) ≤
√

2h(Q|P ). (4)

If, more generally, Q is a semimartingale measure that admits a unique equiv-
alent martingale measure Q∗, then we obtain the following extension of Tala-
grand’s inequality on Wiener space:

WS(Q|P )2 ≤ 2
(
h(Q|P ) +H(Q|Q∗)

)
. (5)

In this form, inequality (5) includes both (4) and Talagrand’s inequality (2) as
special cases.

The paper is organized as follows. In Section 2 we introduce the basic
concepts of relative entropy and of a Wasserstein distance. Section 3 describes
the top-down approach to inequality (2) in the absolutely continuous case; the
exposition will be reasonably self-contained because we repeatedly refer to it in
the sequel. In the second stage, we consider measures Q on C[0, 1] such that
the coordinate process W is a semimartingale under Q. Section 4 shows how
the semimartingale structure of Q is reflected in the specific relative entropy
h(Q|P ); this extends Theorem 1.2 in [7] for martingale measures to the general
case. In section 5 we show that the condition h(Q|P ) < ∞ implies that Q
admits the construction of an intrinsic Wiener process WQ. Coupling WQ

with the coordinate process W under Q, we obtain the solution of an optimal
transport problem on Wiener space that yields inequalities (4) and (5).

2 Preliminaries

In this section we recall some basic notions, in particular the definitions of
relative entropy and of the Wasserstein distances that we are going to use.

For two probability measures µ and ν on some measurable space (S,S), the
relative entropy of ν with respect to µ is defined as

H(ν|µ) =

{∫
log dν

dµdν if ν � µ,

+∞ otherwise.

For ν � µ we can write

H(ν|µ) =

∫
h(
dν

dµ
)dµ,
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denoting by h the strictly convex function h(x) = x log x on [0,∞), and Jensen’s
inequality implies H(ν|µ) ≥ 0, with equality if and only if µ = ν. Sometimes
we will deal with different σ-fields S on the same space S, and then we will also
use the notation HS(ν|µ). We are going to use repeatedly the fact that

lim
n↑∞

HSn(ν|µ) = HS(ν|µ) (6)

if (Sn)n=1,2... is a sequence of σ-fields increasing to S.

Consider a measurable cost function c(·, ·) on S × S with values in [0,∞];
typically, c(·, ·) will be a metric on S. We define the corresponding Wasserstein
distance between ν and µ as

W (ν, µ) = inf
γ∈Γ(µ,ν)

(

∫
c2(x, y)γ(dx, dy))1/2,

where Γ(µ, ν) denotes the class of all probability measures γ on the product
space S × S with marginals µ and ν. Equivalently, we can write

W (ν, µ) = inf Ẽ[c2(X̃, Ỹ )]1/2,

where the infimum is taken over all couples (X̃, Ỹ ) of S-valued random variables
on some probability space (Ω̃, F̃ , P̃ ) such that X̃ and Ỹ have distributions µ and
ν, respectively. Such a couple, and also any measure γ ∈ Γ(µ, ν), will be called
a coupling of µ and ν. We refer to [15] for a thorough discussion of Wasserstein
distances in various contexts.

In the sequel, the space S will be either a Euclidean space Rn, including the
infinite-dimensional case n =∞, or the space

Ω = C0[0, 1]

of all continuous functions ω on [0, 1] with initial value ω(0) = 0.

For S = Rn with n ∈ {1, . . . ,∞} we are going to use the cost function
c(x, y) = ||x− y||n, defined by the Euclidean norm ||x||n = (

∑n
i=1 x

2
i )

1/2. Thus,
the corresponding Wasserstein distance is given by

Wn(ν, µ) = inf
γ∈Γ(µ,ν)

(

∫
||x− y||2n)γ(dx, dy))1/2.

Taking as reference measure the Gaussian measure

µn =

n∏
i=1

N(0, 1),

Talagrand’s inequality on Euclidean space can now be stated as follows:

Theorem 1. For any n ∈ {0, . . . ,∞} and for any probability measure ν on Rn,

Wn(ν, µn) ≤
√

2H(ν|µn). (7)
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Talagrand’s proof in [13] takes a bottom-up approach. First the inequality
is proved in the one-dimensional case, using Vallender’s expression

W1(ν, µ) =
( ∫ 1

0

(
qν(α)− qµ(α)

)2
dα
)1/2

(8)

in [14] of the Wasserstein distance on R1 in terms of the quantile functions
qν and qµ, followed by an integration by parts that involves the special form
of the normal distribution. The finite-dimensional case is shown by induc-
tion, applying the one-dimensional inequality to the conditional distributions
ν(dxn+1|x1, . . . , xn) of ν. The infinite-dimensional case n = ∞ follows by ap-
plying (7) to the finite-dimensional marginals and taking the limit n ↑ ∞, using
a standard martingale argument to obtain convergence of the relative entropies
on the right-hand side.

Let us now turn to the case S = Ω = C0[0, 1]. We denote by (Ft)0≤t≤1 the
right-continuous filtration on Ω generated by the coordinate process

W = (Wt)0≤t≤1

defined by Wt(ω) = ω(t). We set F = F1 and denote by P the Wiener measure
on (Ω,F). Let H denote the Cameron-Martin space of all absolutely continuous
functions ω ∈ Ω such that the derivative ω̇ is square integrable on [0, 1]. First
we will consider the cost function c(ω, η) = ||ω − η||H, where

||ω||H =

{
(
∫ 1

0
ω̇2(t)dt)1/2 if ω ∈ H

+∞ otherwise.

The corresponding Wasserstein distance will be denoted by WH, that is,

WH(Q,P ) = inf
γ∈Γ(P,Q)

∫
||ω − η||2Hγ(dω, dη)1/2,

for any probability measure Q on (Ω,F). In this setting, Talagrand’s inequality
takes the following form, first stated by D. Feyel and A. S. Ustunel in [3].

Theorem 2. For any probability measure Q on (Ω,F),

WH(Q,P ) ≤
√

2H(Q|P . (9)

In fact, inequality (9) can be viewed as a direct translation of Talagrand’s
inequality on R∞. To see this, recall the Lévy-Ciesielski representation

Wt(ω) =
∑
i∈I

Xi(ω)ei(t)

of Brownian motion in terms of the Schauder basis (ei)i∈I of C0[0, 1]. Un-
der Wiener measure P , the coordinates Xi are independent with distribution
N(0, 1). Thus, the random vector (Xi(ω))i∈I , viewed as a measurable map T
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from Ω to R∞, has distribution µ∞ under P . Relative entropy is invariant under
T, and so we get

H(ν|µ∞) = H(Q|P ),

where ν denotes the image of Q under T . On the other hand we have ||ω||H =
||(Xi(ω))i∈I ||∞, and this implies

WH(Q,P ) = W∞(ν, µ∞).

Thus, Talagrand’s inequality (7) for n = ∞ translates into inequality (9) on
Wiener space.

Having scetched the bottom-up approach to Talagrand’s inequality on Wiener
space, we are now going to focus on the top-down approach. It consists in prov-
ing Talagrand’s inequality (9) directly on Wiener space, using a suitable coupling
of Q and P .

3 Intrinsic drift and optimal coupling in the ab-
solutely continuous case

Take any probability measure Q on (Ω,F) that is absolutely continuous with
respect to Wiener measure P . Let us first recall the following computation of
the relative entroopy H(Q|P ) in terms of the intrinsic drift of Q ; cf. [4], [5] or,
for the first two parts, Th. 7.11 in [11].

Proposition 3. There exists a predictable process bQ = (bQt (ω))0≤t≤1 with the
following properties:

1) ∫ 1

0

(
bQt (ω)

)2
dt <∞ Q-a.s., (10)

that is, the process BQ defined by BQt (ω) =
∫ t

0
bQs (ω)ds satisfies

BQ(ω) ∈ H Q-a.s.

2) WQ := W − BQ is a Wiener process under Q, that is, W is a special semi-
martingale under Q with canonical decomposition

W = WQ +BQ.

3) The relative entropy of Q with respect to P is given by

H(Q|P ) =
1

2
EQ
[ ∫ 1

0

(bQt )2dt
]

=
1

2
EQ
[
||BQ||2H

]
. (11)

The process bQ will be called the intrinsic drift of Q.
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Proof. For the convenience of the reader we scetch the argument; cf., e.g., [5]
for details.

1) By Itô’s representation theorem, the density φ = dQ
dP can be represented as a

stochastic integral of the Brownian motion W , that is, there exists a predictable

process (ξt)0≤t≤1 such that
∫ 1

0
ξt(ω)dt <∞ P − a.s. and

φ = 1 +

∫ 1

0

ξtdWt P -a.s.

Moreover, the process

φt := EP [φ|Ft] = 1 +

∫ t

0

ξsdWs, 0 ≤ t ≤ 1,

is a continuous martingale with quadratic variation

〈
φ
〉
t

=

∫ t

0

ξ2
sds P -a.s.

and
inf

0≤t≤1
φt > 0 P -a.s. on {φ > 0},

hence Q-a.s.. Thus, the predictable process bQ defined by

bQt :=
ξt
φt
I{φt>0}, 0 ≤ t ≤ 1,

satisfies the integrability condition (10).

2) Applying Itô’s formula to log φt, we get

log φt =

∫ t

0

1

φs
dφs −

1

2

∫ t

0

(
1

φs
)2d
〈
φ
〉
s

=

∫ t

0

bQs dWs −
1

2

∫ t

0

(bQs )2ds

=

∫ t

0

bQs dW
Q
s +

1

2

∫ t

0

(bQs )2ds

The second part now follows from Girsanov’s theorem.

3) Equation (11) for H(Q|P ) = EQ[log φ1] follows from the preceding equation

for t = 1. Indeed, if EQ
[ ∫ 1

0
(bQs )2ds

]
<∞ then we get

EQ
[ ∫ 1

0

bQs dW
Q
s

]
= 0,

and this implies (11). In the general case, the same argument applies up to each

stopping time Tn = inf{t|
∫ t

0
(bQs )2ds > n}∧1, and for n ↑ ∞ we obtain (11).
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Remark 4. Apart from our present purpose, the intrinsic drift of Q is also an
efficient tool in proving a number of inequalities, including logarithmic Sobolev
and Shannon-Stam inequalities; see [10] and [2].

As observed by J. Lehec in [10], proposition 3 can be rephrased as follows in
terms of coupling, and in this form it yields an immediate proof of Talagrand’s
inequality on Wiener space.

Proposition 5. The processes WQ = W−BQ and W , defined on the probability
space (Ω,F , Q), form a coupling of P and Q such that

EQ
[
||W −WQ||2H

]
= 2H(Q|P ). (12)

Corollary 6. Any probability measure Q on (Ω,F) satisfies Talagrand’s in-
equality

WH(Q,P ) ≤
√

2H(Q|P ). (13)

Proof. If Q is not absolutely continuous with respect to Wiener measure P then
we have H(Q|P ) = ∞, and (13) holds trivially. In the absolutely continuous
case, inequality (13) follows immediately from equation (12) and the definition
of the Wasserstein distance WH.

Note that the coupling (WQ,W ) of P and Q, which is defined on the filtered
probability space (Ω,F , (Ft)0≤t≤1, Q), is adaptive in the following sense.

Definition 7. A coupling (X̃, Ỹ ) of P and Q will be called an adaptive coupling,
if it is defined on a filtered probability space (Ω̃, F̃ , (F̃t)0≤t≤1, P̃ ) such that

1. Ỹ = (Ỹt) is adapted with respect to P̃ and (F̃t)0≤t≤1,

2. X̃ is a Wiener process with respect to P̃ and (F̃t)0≤t≤1. that is, each

increment X̃t − X̃s is independent of F̃s with law N(0, t− s).

Theorem 8. The optimal adaptive coupling of P and Q is given by (WQ,W ),
that is,

EQ
[
||W −WQ||2H

]
≤ Ẽ

[
||Ỹ − X̃||2H

]
, (14)

for any adaptive coupling (X̃, Ỹ ) of P and Q, and equality holds iff

Ỹ = WQ(Ỹ ) +BQ(Ỹ ), P̃ − a.s.. (15)

Proof. Take any adapted coupling (X̃, Ỹ ) of P and Q, defined on a filtered
probability space (Ω̃, F̃ , (F̃t)0≤t≤1, P̃ ), such that

Ẽ
[
||Ỹ − X̃||2H

]
<∞.

Since Ỹ is adapted with continuous paths, B̃ := Ỹ − X̃ is an adapted contin-
uous process such that Ẽ

[
||B||2H

]
< ∞. This implies B̃t =

∫ t
0
b̃sds for some

predictable process b̃ = (b̃s)0≤s≤1 such that Ẽ
[ ∫ 1

0
b̃2sds

]
< ∞. Since X̃ is a
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Brownian motion with respect to the filtration (F̃t), the process Ỹ is a special
semimartingale with canonical decomposition

Ỹt = X̃t +

∫ t

0

b̃sds (16)

under P̃ with respect to (F̃t). On the other hand, since Ỹ has law Q under
P̃ and WQ is a Brownian motion under Q, the process WQ(Ỹ ) is a Brownian
motion under P̃ with respect to the smaller filtration (F̃0

t ) generated by the
adapted process Ỹ . Thus, Ỹ has the canonical decomposition

Ỹt = WQ
t (Ỹ ) +

∫ t

0

bQs (Ỹ )ds (17)

under P̃ with respect to (F̃0
t ). This implies

bQt (Ỹ ) = Ẽ
[
b̃t | G̃t

]
P̃ ⊗ dt− a.s.; (18)

cf., for example, Th. 8.1 in [11] or the proof of equation 68 in the general context
of Proposition 35 below. Applying Jensen’s inequality, we obtain

Ẽ
[
||Ỹ − X̃||2H

]
= Ẽ

[ ∫ 1

0

b̃2tdt
]

≥ Ẽ
[ ∫ 1

0

(bQt (Ỹ ))2dt
]

= EQ
[ ∫ 1

0

(bQt (W ))2dt
]

= 2H(Q|P ).

Equality holds iff
b̃t = bQt (Ỹ ) P̃ ⊗ dt− a.s.,

and in this case (16) and (17) imply X̃ = WQ(Ỹ ) P̃ -a.s..

Let us define WH,ad(Q,P ) as the infimum of the right hand side in (14),
taken only over the adaptive couplings of P and Q. Clearly we have

WH(Q,P ) ≤WH,ad(Q,P ), (19)

and Theorem 8 shows that the following identity holds, first proved by R. Las-
salle in [9].

Corollary 9. For any probability measure Q on (Ω,F) we have

WH,ad(Q,P ) =
√

2H(Q|P ). (20)

Remark 10. For a thorough discussion of optimal transport problems on Wiener
space under various constraints, with special emphasis on the effects of an en-
largement of filtration, we refer to [1].
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The following example illustrates the difference between WH and WH,ad. It
also shows how the finite-dimensional inequalities in (7) can be derived from Ta-
lagrand’s inequality on Wiener space, thus completing the top-down approach.

For a probability measure ν on R1 we introduce the probability measure

Qν =

∫
P xν(dx)

on (Ω,F), where P x denotes the law of the Brownian bridge from 0 to x ∈ R1.
If ν � µ := N(0, 1), then Qν is absolutely continuous with respect to P with
density

dQν

dP
=
dν

dµ
(W1),

and the relative entropy is given by

H(Qν |P ) =

∫
log

dν

dµ
(W1)dQν =

∫
log

dν

dµ
dν = H(ν|µ). (21)

Corollary 11. We have

WH(Qν , P ) = W1(ν, µ) and WH,ad(Q
ν , P ) =

√
2H(ν|µ). (22)

Thus, inequality (19) implies

W1(ν, µ) ≤
√

2H(ν|µ). (23)

Inequality (23) is strict except for the case where ν = N(m, 1) for some m ∈ R1.

Proof. 1) The second identity in (22) follows from Corollary 9 and equation
(21).

2) To prove the first identity, take any coupling (X̃, Ỹ ) of P and Q, defined
on some probability space (Ω̃, F̃ , P̃ ), such that Z := Ỹ − X̃ ∈ H. Then the
endpoints X̃1 and Ỹ1 form a coupling of µ and ν. Since

(Ỹ1 − X̃1)2 = Z2
1 = (

∫ 1

0

Żsds)
2 ≤

∫ 1

0

Ż2
sds = ||Ỹ − X̃||2H,

we obtain
W 2

1 (ν, µ) ≤ Ẽ
[
(Ỹ1 − X̃1)2

]
≤ Ẽ

[
||Ỹ − X̃||2H

]
,

hence
W 2

1 (ν, µ) ≤W 2
H(Q,P ). (24)

We now show that the lower bound W 2
1 (ν, µ) is attained by the following cou-

pling (W,Y ) of P and Qν , defined on the Wiener space (Ω,F , P ). The process
Y is given by

Yt = Wt + t
(
fν(W1)−W1

)
, 0 ≤ t ≤ 1,

where fν(x) = qν(Φ(x)) and Φ denotes the distribution function of µ = N(0, 1).
The endpoint Y1 = fν(W1) has distribution ν under P , and the conditional
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distribution of Y given the endpoint Y1 = y coincides with the Brownian bridge
P y. Thus Y has distribution Qν under P , and (W,Y ) is a coupling of P and Qν ,
defined on (Ω,F , P ). Note that this coupling is not adaptive with respect to
the filtration (Ft), since Y anticipates the endpoint W1 of the Brownian path.
Since ||Y −W ||2H = (fν(W1)−W1)2, we get

EP
[
||Y −W ||2H

]
=

∫ (
fν(x)− x

)2
µ(dx)

=

∫ 1

0

(
qν(α)− Φ−1(α)

)2
dα = W 2

1 (ν, µ),

using equation (8) in the last step. This completes the proof of the first identity
in (22)

3) Let us write Q = Qν . Theorem 8 shows that the optimal adapted coupling
of Q and P is given by (W,WQ) under Q. Since

(W1 −WQ
1 )2 = (

∫ 1

0

bQt dt)
2 ≤

∫ 1

0

(bQt )2dt = ||BQ||2H

and
W 2

1 (ν, µ) ≤ EQ
[
(W1 −WQ

1 )2
]
≤ EQ

[
||BQ||2H

]
= 2H(ν|µ),

equality in (23) implies, Q-a.s., that bQt (·) is almost everywhere constant in

t, hence equal to m(·) := W1 −WQ
1 . Since the process bQ is adapted to the

filtration (Ft), m(·) is measurable with respect to F0 =
⋂
t>0 Ft. But P is 0-1

on F0, and the same is true for Q � P . This implies m(·) = m Q-a.s. for

some m ∈ R1, that is, W1 = WQ
1 +m and ν = N(m, 1).

Talagrand’s inequality in any finite dimension n > 1 follows in the same
manner. For our purpose it is convenient to use the following equivalent version,
where the reference measure is taken to be

µ̃n =

n∏
i=1

N(0,
1

n
)

instead of µn =
∏n
i=1N(0, 1) as in (7).

Corollary 12. For any probability measure ν on Rn,

nW 2
n(ν, µ̃n) ≤ 2H(ν|µ̃n). (25)

Proof. We may assume ν � µ̃n. Let Tn : Ω → Rn denote the map that
associates to each path ω the vector of its increments ω(i/n)−ω((i−1)/n) (i =
1, . . . , n). Under Wiener measure P , the distribution of Tn is given by µ̃n. Define
Qν on (Ω,F) by

dQν

dP
=
dν

dµ
(Tn).
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For any coupling (X̃, Ỹ ) of P and Qν such that Z := Ỹ − X̃ ∈ H, the vectors
Xn := Tn(X̃) and Yn := Tn(Ỹ ) form a coupling of ν and µ̃n. Since

||Xn − Yn||2 =

n∑
i=1

(

∫ i/n

(i−1)/n

Żsds)
2 ≤

n∑
i=1

1

n

∫ i/n

(i−1)/n

Ż2
sds =

1

n
||Ỹ − X̃||2H,

we obtain

W 2
n(ν, µ̃n) ≤ Ẽ

[
||Yn −Xn||2

]
≤ 1

n
Ẽ
[
(||Ỹ − X̃||2H

]
,

hence

W 2
n(ν, µ̃n) ≤ 1

n
W 2
H(Q,P ) ≤ 2

n
H(Qν |P ).

due to Corollary 6. Since H(Qν |P ) = H(ν|µ̃n), we have proved (25).

4 Specific Relative Entropy

The following concept of specific relative entropy on Wiener space was intro-
duced by N. Gantert in her thesis [7], where it plays the role of a rate function
for large deviations of the quadratic variation from its ergodic behaviour; cf.
also [8]. In our context, it will allow us to extend Talagrand’s inequality on
Wiener space beyond the absolutely continuous case Q� P .

From now on, the index N will refer to the N -th dyadic partition of the unit
interval, that is, DN = {k2−N |k = 1, . . . , 2N}. In particular we introduce the
discretized filtration

FN,t = σ({Ws|s ∈ DN , s ≤ t}), 0 ≤ t ≤ 1

on Ω = C0[0, 1], and we set FN = FN,1 = σ({Ws|s ∈ DN}).

Definition 13. For any probability measure Q on (Ω,F), the specific relative
entropy of Q with respect to Wiener measure P is defined as

h(Q|P ) = lim inf
N↑∞

2−NHN (Q|P ), (26)

where HN (Q|P ) denotes the relative entropy of Q with respect to P on the σ-field
FN .

Since H(Q|P ) = limN HN (Q|P ), we get h(Q|P ) = 0 for any Q such that
H(Q|P ) <∞. Thus, the notion of specific relative entropy is of interest only if
we look beyond the cases that we have considered so far.

Remark 14. Note that FN = σ(Tn) for n = 2N , where Tn : Ω → Rn maps a
path ω to the vector of its increments along the N -th dyadic partition; cf. the
proof of Corollary 12. Identifying the restrictions of Q and P to FN with their
images ν and µ̃n under Tn, Talagrand’s finite-dimensional inequality (25) can
be written in the form

2NW 2
N (Q,P ) ≤ 2HN (Q|P ), (27)
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with
WN (Q,P ) := inf

(
ẼP̃
[〈
Ỹ − X̃

〉
N

])1/2
,

where the infimum is taken over all couplings of Q and P and
〈
·
〉
N

denotes the

discrete quadratic variation along the N -th dyadic partition, that is,
〈
ω
〉
N

=

||Tn(ω)||2n for any continuous function ω ∈ Ω = C0[0, 1]. For N ↑ ∞, the
right hand side of (27) increases to 2H(Q|P ). Thus, an alternative version of
the bottom-up approach to Talagrand’s inequality on Wiener space consists in
showing that, in the limit N ↑ ∞, the left hand side of (27) can be replaced by
WH(Q,P ) if H(Q|P <∞.

In order to go beyond the absolutely continuous case Q� P , let us rewrite
the finite-dimensional inequality (27) as

W 2
N (Q,P ) ≤ 2 · 2−NHN (Q|P ). (28)

Taking the limit N ↑ ∞, the specific relative entropy h(Q|P ) appears on the
right hand side of (28), while the left hand side suggests to define a new Wasser-
stein distance on Wiener space in terms of quadratic variation. The resulting
extension of Talagrand’s inequality is contained in Theorems 32 and 36 below.
Instead of analyzing the limit behaviour of the left hand side of (28), we are
going to use again a top-down approach, arguing directly in terms of couplings
on Wiener space. As a first step in that direction, we now show how the spe-
cific relative entropy h(Q|P ) reflects the special structure of a semimartingale
measure Q on C0[0, 1].

Definition 15. Let QS denote the class of all probability measures Q on Ω =
C0[0, 1] such that the coordinate process W is a special semimartingale of the
form

W = MQ +AQ (29)

under Q with respect to the filtration (Ft), where

1. MQ = (MQ)0≤t≤1 is a square-integrable martingale under Q

2. AQ = (AQ)0≤t≤1 is an adapted process with continuous paths of bounded

variation such that its total variation |A|Q satisfies |A|Q1 ∈ L2(Q).

A probability measure Q ∈ QS will be called a martingale measure if AQ = 0,
that is, if W is a square-integrable martingale under Q. The class of all such
martingale measures will be denoted by QM.

Remark 16. Proposition 3 shows that any probability measure Q on (Ω,F) with
finite relative entropy H(Q|P ) < ∞ belongs to the class QS , with MQ = WQ

and AQ = BQ.

Let us now fix a measure Q ∈ QS . We denote by〈
W
〉

=
(〈
W
〉
t

)
0≤t≤1

13



the continuous quadratic variation process defined, Q-a.s., by the decomposition

W 2 =

∫
WdW +

〈
W
〉

of the continuous semimartingale W 2 under Q. Our assumptions for Q ∈ QS
imply that 〈

W
〉
t

= lim
N↑∞

∑
t∈DN

(
Wt −Wt−2−N

)2
in L1(Q) (30)

and that
lim
N↑∞

∑
t∈DN

(
At −At−2−N

)2
= 0 in L1(Q) (31)

cf., e.g., Ch. VI in [12].

Let us introduce the finite measure q(ω, dt) on [0, 1] with distribution func-
tion

〈
W
〉
(ω), defined Q-a.s., and denote by

q(ω, dt) = qs(ω, dt) + σ2(ω, t)dt (32)

its Lebesgue decomposition into a singular and an absolutely continuous part
with respect to Lebesgue measure λ on [0, 1]; an explicit construction will be
given in the second part of the following proof.

Our next aim is to derive, for a large class of probability measures Q ∈ QS ,
a lower bound for the specific relative entropy h(Q|P ) in terms of the quadratic
variation of W under Q, that is, in terms of the random measure q(·, ·). In a
first step we focus on the case Q ∈ QM . The following theorem for martingale
measures is essentially due to N. Gantert in [7]; here we extend it to the case
where the quadration variation may have a singular component.

Theorem 17. For any martingale measure Q ∈ QM, the specific relative en-
tropy of Q with respect to Wiener measure P satisfies

h(Q|P ) ≥ 1

2
EQ
[
q(ω, [0, 1])− 1 +H(λ|q(ω, ·))

]
=

1

2
EQ
[
qs(ω, [0, 1])

]
+ EQ

[ ∫ 1

0

f
(
σ2(ω, t)

)
dt
]
, (33)

where f is the convex function on [0,∞) defined by f(x) = 1
2 (x−1− log x) ≥ 0.

In particular,

h(Q|P ) <∞ =⇒ σ2(·, ·) > 0 Q⊗ λ− a.s. (34)

Proof. 1) First we look at the general case Q ∈ QS . Thus we can write W =
M + A, where M is a square-integrable Q-martingale and A is an adapted
process with continuous paths of bounded variation such that EQ

[
|A|21

]
<∞.

14



For N ≥ 1 and i = 1, . . . , 2N we write ti = i2−N and denote by νN,i(ω, ·) the
conditional distribution of the increment Wti −Wti−1

under Q given the σ-field
FN,ti−1

, by

mN,i = EQ
[
Wti −Wti−1

|FN,ti−1

]
= EQ

[
Ati −Ati−1

|FN,ti−1

]
its conditional mean, by

σ̃2
N,i = EQ

[
(Wti −Wti−1)2|FN,ti−1

]
−m2

N,i

its conditional variance, and by

σ2
N,i = EQ

[
(Mti −Mti−1)2|FN,ti−1

]
= EQ

[〈
W
〉
ti
−
〈
W
〉
ti−1
|FN,ti−1

]
(35)

the conditional variance of the martingale increment Mti−Mti−1
. We can write

HN (Q|P ) =

2N∑
i=1

EQ
[
H
(
νN,i(ω, ·)|N(0, 2−N

)]
.

Since

H
(
N(m,α)|N(0, β)

)
= f(

α

β
) +

m2

2β

for α, β > 0 and m ∈ R1, we get

H
(
νN,i|N(0, 2−N )

)
= H

(
νN,i|N(mN,i, σ̃

2
N,i)

)
+H

(
N(mN,i, σ̃

2
N,i)|N(0, 2−N )

)
= H

(
νN,i|N(mN,i, σ̃

2
N,i)

)
+ f(2N σ̃2

N,i) +
1

2
2Nm2

N,i ,

hence

HN (Q|P ) = HN (Q|Q∗N ) + EQ
[ 2N∑
i=1

f(2N σ̃2
N,i)

]
+

1

2
2NIN , (36)

where we define

IN := EQ
[ 2N∑
i=1

m2
N,i

]
, (37)

and where Q∗N denotes the probability measure on (Ω,FN ) such that the incre-
ments Wti −Wti−1

have conditional distribution N(mN,i, σ̃
2
N,i) given the σ-field

FN,ti−1
. Note that Jensen’s inequality yields

IN ≤ EQ
[ 2N∑
i=1

(Ati −Ati−1
)2
]
,

hence
lim
N↑∞

IN = 0, (38)
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due to (31). Note also that HN (Q|P ) < ∞ implies σ̃2
N,i(ω) > 0 Q-a.s., since

f(0) =∞.

2) Let Q⊗q denote the finite measure on Ω̄ = Ω×[0, 1] defined by Q⊗q(dω, dt) =
Q(dω)q(ω, dt). On the σ-field

PN := σ({At × (t, 1] | t ∈ DN , At ∈ FN,t}),

the measure Q⊗q is absolutely continuous with respect to the product measure
Q⊗λ, where λ denotes the Lebesgue measure on (0, 1], and the density is given
by

σ2
N (ω, t) :=

2N∑
i=1

2Nσ2
N,i(ω)I(ti−1,ti](t).

The σ-fields PN increase to the predictable σ-field P on Ω̄, generated by the
sets At× (t, 1] with t ∈ [0, 1] and At ∈ Ft. Applying the first part of Lemma 19
with µ = Q⊗ λ and ν = Q⊗ q, we see that the limit

σ2(ω, t) = lim
N↑∞

σ2
N (ω, t)

exists both Q⊗ q -a.s. and Q⊗ λ -a.s., with

σ2(ω, t) ∈ [0,∞) Q⊗ λ− a.s.

and
σ2(ω, t) ∈ (0,∞] Q⊗ q − a.s..

Moreover, the Lebesgue decomposition of Q ⊗ q with respect to Q ⊗ λ on the
predictable σ-field P takes the form

Q⊗ q [Ā] = Q⊗ q [Ā ∩ {σ2 =∞}] + EQ⊗λ
[
σ2; Ā

]
,

for Ā ∈ P. This implies, Q-a.s., the Lebesgue decomposition

q(ω, dt) = qs(ω, dt) + σ2(ω, t)λ(dt),

of q(ω, ·) with respect to Lebesgue measure λ, where the singular part qs(ω, ·)
is given by the restriction of q(ω, ·) to the λ-null set

N(ω) := {t | σ2(ω, t) =∞}. (39)

3) Let us now focus on the case where Q is a martingale measure. For Q ∈ QM,
we have σ̃2

N,i = σ2
N,i and A = 0, hence IN = 0. Thus, equation (36) can be

written as

2−NHN (Q|P ) = 2−NHN (Q|Q∗N ) + EQ
[ ∫ 1

0

f(σ2
N (·, t))dt

]
. (40)
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Since HN (Q|Q∗N ) ≥ 0, we obtain

h(Q|P ) ≥ lim
N↑∞

EQ
[ ∫ 1

0

f(σ2
N (·, t))dt

]
=

1

2
EQ
[
qs(ω, (0, 1])

]
+ EQ

[ ∫ 1

0

f(σ2(·, t))dt
]
. (41)

where we apply the second part of Lemma 19 below, with µ = Q ⊗ λ and
ν = Q ⊗ q. Since f(0) = ∞, we see that h(Q|P ) < ∞ implies that σ2(·, ·) is
strictly positive Q⊗ λ-a.s..

Remark 18. The proof of Theorem 17 shows that we obtain existence of the
limit

h(Q|P ) = lim
N↑∞

2−NHN (Q|P ) (42)

together with the equality

h(Q|P ) =
1

2
EQ
[
qs(ω, [0, 1])

]
+ EQ

[ ∫ 1

0

f
(
σ2(ω, t)

)
dt
]
, (43)

if and only if Q is “almost locally Gaussian” in the sense that the measures Q∗N
appearing in (36) satisfy

lim
N↑∞

2−NHN (Q|Q∗N ) = 0. (44)

This was already observed by N. Gantert in [7].

In the proof of Theorem 17 we have used the following general lemma.

Lemma 19. Consider two probability measures µ and ν on a measurable space
(S,S) and a sequence (Sn)n=1,2,... of sub-σ-fields increasing to S∞. Suppose
that ν is absolutely continuous with respect to µ on Sn with density φn.
1) The limit φ∞ = limn φn exists both µ-a.s. and ν-a.s., with

φ∞ ∈ [0,∞) µ− a.s. and φ∞ ∈ (0,∞] ν − a.s.,

and the Lebesgue decomposition ν = νs + νa of ν with respect to µ on S∞ is
given by

νs(A) = ν(A ∩ {φ∞ =∞}) and νa(A) =

∫
A

φ∞dµ.

2) For f(x) = 1
2 (x− 1− log x) we have

lim
n↑∞

∫
f(φn)dµ =

1

2
νs(S) +

∫
f(φ∞)dµ. (45)

This equation extends to the case where ν is a non-negative finite measure.
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Proof. The first part is well-known; the proof uses standard martingale argu-
ments. To prove the second part, we write

2

∫
f(φn)dµ =

∫
φndµ− 1 +

∫
log(φ−1

n )dµ

= νs(S) +

∫
φ∞dµ− 1 +HSn(µ|ν);

note that both sides are equal to +∞ if ν is not equivalent to µ on Sn. Since
the relative entropies converge as in (6), we get

lim
n↑∞

∫
f(φn)dµ =

1

2

(
νs(S) +

∫
φ∞dµ− 1 +HS∞(µ|ν)

)
.

But we can write

HS∞(µ|ν) =

∫
log(φ−1

∞ )dµ,

and this yields equation (45).
The convergence of relative entropies remains valid for finite measures µ̃ =

αµ and ν̃ = βν with α, β > 0, since

HSn(µ̃|ν̃) = α
(α
β

+HSn(µ|ν)
)

for n ∈ {1, . . . ,∞}. Thus, the preceding argument shows that equation (45)
extends to the case of a non-negative measure ν

Let us now go beyond the case of a martingale measure. Take Q ∈ QS and
let W = M +A be the canonical decomposition of the semimartingale W under
Q. As soon as the process A is non-deterministic, the conditional variances σ2

N,i

of M defined in (35) do no longer coincide with the conditional variances σ̃2
N,i

of W along the N -th dyadic partition. Instead we have

σ̃2
N,i = σ2

N,i + δN,i,

where
δN,i = α2

N,i + 2EQ
[
(Mti −Mti−1)(Ati −Ati−1)|FN,ti−1

]
,

and where we denote by

α2
N,i = EQ

[
(Ati −Ati−1

)2|FN,ti−1

]
−m2

N,i

the conditional variances of A along the N -th dyadic partition.

Lemma 20. The differences δN,i and the conditional variances α2
N,i satisfy

lim
n↑∞

EQ
[ 2N∑
i=1

|δN,i|
]

= lim
n↑∞

EQ
[ 2N∑
i=1

α2
N,i

]
= 0.
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Proof. Since

JN := EQ
[ 2N∑
i=1

α2
N,i

]
≤ EQ

[ 2N∑
i=1

(Ati −Ati−1
)2
]
,

we obtain
lim
n↑∞

JN = 0 (46)

due to (31). On the other hand, since

|δN,i| ≤ α2
N,i + 2σN,iαN,i, (47)

we get

EQ
[ 2N∑
i=1

|δN,i|
]
≤ EQ

[ 2N∑
i=1

α2
N,i

]
+ 2

2N∑
i=1

EQ
[
σ2
N,i

]1/2
EQ
[
α2
N,i

]1/2
≤ JN + 2EQ

[
M2

1

]1/2
J

1/2
N ,

hence

lim
N↑∞

EQ
[ 2N∑
i=1

|δN,i| = 0, (48)

due to (46).

To prove our extended version of Theorem 17, we use an additional assump-
tion.

Definition 21. We denote by Q0
S the class of all probability measures Q ∈ QS

such that

lim
n↑∞

EQ
[
2−N

2N∑
i=1

α2
N,iσ

−2
N,i

]
= 0. (49)

Remark 22. Condition (49) is satisfied if σ2(·, ·) is bounded away from 0.
Indeed, if σ2(·, ·) ≥ c Q⊗ λ-a.s. for some c > 0 then

2N∑
i=1

2Nσ2
N,i(ω)I(ti−1,ti](t) = σ2

N (ω, t) ≥ EQ⊗λ
[
σ2|PN

]
≥ c Q⊗ λ− a.s.;

cf. the second part of the proof of Theorem 17. Thus, (49) follows from Lemma
20.

Theorem 23. For any Q ∈ Q0
S ,

h(Q|P ) ≥ 1

2
EQ
[
qs(ω, [0, 1])

]
+ EQ

[ ∫ 1

0

f
(
σ2(ω, t)

)
dt
]
. (50)
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Proof. 1) Let us return to the first part of the proof of Theorem 17. Since
HN (Q|Q∗N ) ≥ 0, equation (36) yields

2−NHN (Q|P ) ≥ EQ
[ 2N∑
i=1

f(2N σ̃2
N,i)2

−N ]+
1

2
IN .

Since f is convex with f ′(x) = 1
2 (1− x−1), we obtain

f(2N σ̃2
N,i) ≥ f(2Nσ2

N,i) +
1

2
(1− 2−Nσ−2

N,i)2
NδN,i.

Due to (38), this implies

h(Q|P ) ≥ lim inf
N↑∞

EQ
[ ∫ 1

0

f
(
σ2
N (ω, t)

)
dt+

1

2
∆N

]
,

where

∆N =
2N∑
i=1

(
δN,i − 2−Nσ−2

N,i δN,i
)
.

Applying the second part of Lemma 19 as in the proof of Theorem 17, we see
that inequality (50) holds as soon as we show that

lim
N↑∞

∆N = 0 in L1(Q). (51)

2) In view of Lemma 20 it is enough to show convergence to 0 for

EQ
[ 2N∑
i=1

2−Nσ−2
N,i|δN,i|

]
≤ EQ

[ 2N∑
i=1

2−Nσ−2
N,iα

2
N,i

]
+ 2EQ

[
2−N

2N∑
i=1

αN,iσ
−1
N,i

]
≤ EQ

[ 2N∑
i=1

2−Nσ−2
N,iα

2
N,i

]
+ 2EQ

[
2−N

2N∑
i=1

σ−2
N,iα

2
N,i

]1/2
.

But the last two terms converge to 0 due to our assumption (49), and this
completes the proof of (51).

Corollary 24. Let Q ∈ QS be such that ||AQ||H ∈ L2(Q). Then we have

h(Q|P ) = 0 ⇐⇒ H(Q|P ) <∞,

and in this case the canonical decomposition (29) of W under Q takes the form
MQ = WQ and AQ = BQ .
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Proof. Let us assume h(Q|P ) = 0. Inequality (33) implies qs(ω, ·) = 0 Q-a.s
and f

(
σ2(ω, t)

)
= 0 Q ⊗ λ-a.s, hence σ2(ω, t) = 1 Q ⊗ λ-a.s. Thus, W has

quadratic variation 〈
W
〉
t

=
〈
MQ

〉
t

= t

under Q, and so MQ is a Wiener process under Q. Uniqueness of the canonical
decomposition of W under Q yields MQ = WQ and AQ = BQ, hence

H(Q|P ) =
1

2
EQ
[
||AQ||2H

]
<∞

due to Proposition 3. Conversely, H(Q|P ) <∞ implies h(Q|P ) = 0, as we have
already observed above, following the definition of h(Q|P ).

5 Intrinsic Wiener Process and Optimal Cou-
pling for Semimartingale Measures

We fix a probability measure Q ∈ QS and denote by

W = M +A (52)

the canonical decomposition of the coordinate process W under Q. Recall the
Lebesgue decomposition

q(ω, dt) = qs(ω, dt) + σ2(ω, t)dt

of the random measure q(ω, ·) on [0, 1] with distribution function
〈
W
〉
(ω), and

put
A(ω) := {t ∈ [0, 1] | σ2(ω, t) <∞}.

The following construction of an intrinsic Wiener process WQ for Q extends the
definition in Proposition 3 beyond the absolutely continuous case Q� P .

Lemma 25. If h(Q|P ) <∞ then the process WQ = (WQ
t )0≤t≤1, defined Q-a.s.

by

WQ
t :=

∫ t

0

σ(·, s)−1IA(·)(s)dMs, (53)

is a Wiener process under Q.

Proof. By Theorem 17, our assumption h(Q|P ) <∞ implies

EQ
[ ∫ 1

0

f(σ2(ω, t))dt
]
<∞,

where f(x) = 1
2 (x− 1− log x), and in particular

0 < σ2(·, ·) <∞ Q⊗ λ− a.s..
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since f(0) = ∞. Since
〈
M
〉

=
〈
W
〉

and λ
(
A(·)

)
= 1 Q-a.s., the predictable

integrand φs = σ(·, s)−1IA(·)(s) in (53) satisfies∫ t

0

φ2
sd
〈
M
〉
s

=

∫ t

0

σ−2
s IA(·)(s)σ

2
sds =

∫ t

0

IA(·)(s)ds = t.

Thus, the stochastic integrals in (53) are well defined, and they define a continu-
ous martingale WQ under Q with quadratic variation

〈
WQ

〉
t

= t. This implies

that WQ is a Wiener process under Q.

For the rest of this section we assume that Q ∈ QS satisfies the condition

h(Q|P ) <∞, (54)

and so WQ will be a Wiener process under Q.

Definition 26. WQ will be called the intrinsic Wiener process of Q.

Remark 27. If H(Q|P ) <∞ then the intrinsic Wiener process coincides with
the Wiener process WQ := W − BQ defined in Proposition 3; cf. the proof of
corollary 24.

Definition 28. An adaptive coupling (X̃, Ỹ ) of P and Q on a filtered probability
space (Ω̃, F̃ , (F̃t)0≤t≤1, P̃ ) will be called a semimartingale coupling if Ỹ is a

special semimartingale with respect to P̃ and (F̃t)0≤t≤1, and if the canonical

decomposition Ỹ = M̃ + Ã is such that

1. M̃ is a square-integrable martingale,

2. Ã is an adapted process with continuous paths of bounded variation such
that its total variation |Ã| satisfies |Ã|1 ∈ L2(P̃ ).

Clearly, the pair (WQ,W ) is a semimartingale coupling of P and Q, defined
on the filtered probability space (Ω,F , (Ft)0≤t≤1, Q). In fact, we are going to
show that (WQ,W ) is the optimal semimartingale coupling for the Wasserstein
distance WS(Q,P ) defined below.

Proposition 29. For any semimartingale coupling (X̃, Ỹ ) of P and Q on some
filtered probability space (Ω̃, F̃ , (F̃t)0≤t≤1, P̃ ) we have

Ẽ
[〈
Ỹ − X̃

〉
1

]
≥ EQ

[〈
W −WQ

〉
1

]
, (55)

and equality holds if and only if X̃ = WQ(Ỹ ) P̃ -a.s.. Moreover,

EQ
[〈
W −WQ

〉
1

]
= EQ

[ ∫ 1

0

(
σ(·, s)− 1

)2
ds+ qs(·, (0, 1])

]
. (56)

.
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Proof. 1) First we show that the last equality holds. Recall from the proof of
Theorem 17 that qs(ω, ·) is given, Q-a.s., by the restriction of q(ω, ·) to the
λ-nullset N(ω) defined in (39). Since A(·) ∪N(·) = [0, 1], we have

Wt =

∫ t

0

IA(·)(s)dWs +

∫ 1

0

IN(·)(s)dWs

=

∫ t

0

σ(·, s)dWQ
s +

∫ 1

0

IN(·)(s)dWs,

hence

(W −WQ)t =

∫ t

0

(
σ(·, s)− 1

)
dWQ

s +

∫ 1

0

IN(·)(s)dWs

and 〈
W −WQ

〉
t

=

∫ t

0

(
σ(·, s)− 1

)2
ds+

∫ 1

0

IN(·)(s)d
〈
W
〉
s

+ 2

∫ t

0

(
σ(·, s)− 1

)
IN(·)(s)d

〈
WQ,W

〉
s
.

The last term vanishes since, Q-a.s., N(ω) is a nullset with respect to
d
〈
WQ,W

〉
(ω)� d

〈
WQ

〉
(ω) = dt. This implies

EQ
[〈
W −WQ

〉
1

]
= EQ

[ ∫ 1

0

(
σ(·, s)− 1

)2
ds+ qs(·, (0, 1])

]
.

2) Consider any semimartingale coupling (X̃, Ỹ ) of P and Q, defined on some
filtered probability space (Ω̃, F̃ , (F̃t)0≤t≤1, P̃ ). Both X̃ and the process W̃ :=

WQ(Ỹ ), defined by

W̃t :=

∫ t

0

σ(Ỹ , s)−1IA(Ỹ )(s)dỸs ,

are Wiener processes under P̃ with respect to the filtration (F̃t). Projecting the
first on the second, we can write

X̃t =

∫ t

0

ρsdW̃s + L̃t ,

where L̃ = (L̃t)0≤t≤1 is a martingale orthogonal to W̃ . Since

t =
〈
X̃
〉
t

=

∫ t

0

ρ2
sds+

〈
L̃
〉
t
,

we get ρ2
t ≤ 1 and d

〈
L̃
〉
t

= (1− ρ2
t )dt. This implies

d
〈
X̃, Ỹ

〉
= ρtd

〈
W̃ , Ỹ

〉
= ρtσ

−1(Ỹ , t)IA(Ỹ )(t)σ
2(Ỹ , t)dt

≤ σ(Ỹ , t)dt,
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hence 〈
Ỹ − X̃

〉
1

=
〈
Ỹ
〉

1
+
〈
X̃
〉

1
− 2
〈
X̃, Ỹ

〉
1

≥
∫ 1

0

σ2(Ỹ , t)dt+ qs(Ỹ , (0, 1]) + 1− 2

∫ 1

0

σ(Ỹ , t)dt

=

∫ 1

0

(
σ(Ỹ , t)− 1

)2
dt+ qs(Ỹ , (0, 1]).

Thus,

Ẽ
[〈
Ỹ − X̃

〉
1

]
≥ Ẽ

[ ∫ 1

0

(σ
(
Ỹ , t)− 1

)2
dt+ qs(Ỹ , (0, 1])

]
= EQ

[ ∫ 1

0

(
σ(·, t)− 1

)2
dt+ qs(·, (0, 1])

]
. = EQ

[〈
W −WQ

〉
1

]
,

and equality holds iff ρt(·) = 1 P̃ ⊗ dt -a.s., that is, iff X̃ = W̃ = WQ(Ỹ ) P̃ -
a.s..

Now consider the following Wasserstein distance WS(Q,P ), where the cost
function is defined in terms of quadratic variation.

Definition 30. The Wasserstein distance WS(Q,P ) between Q and Wiener
measure P is defined as

WS(Q,P ) = inf
(
Ẽ
[〈
Ỹ − X̃

〉
1

+ ||Ã||2S
]) 1

2 , (57)

where the infimum is taken over all semimartingale couplings (Ỹ , X̃) of Q and
P on some filtered probability space, where M̃+Ã is the canonical decomposition
of Ỹ , and where we set

||Ã||S =
( ∫ 1

0

ã2
td
〈
Ỹ
〉
t

)1/2
if Ã is absolutely continuous with respect to

〈
Ỹ
〉

with density process ã, and

||Ã||S =∞ otherwise.

Remark 31. In the absolutely continuous case Q� P we have

d
〈
Ỹ
〉

= d
〈
X̃
〉

= dt Q−a.s.,

and so the norm ||Ã||S reduces to the Cameron-Martin norm ||Ã||H.

As an immediate corollary to the preceding proposition we obtain the fol-
lowing inequality for martingale measures. It provides a first extension of Tala-
grand’s inequality (13) on Wiener space beyond the absolutely continuous case.
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Theorem 32. For a martingale measure Q ∈ QM,

W 2
S(Q,P ) = EQ

[〈
W −WQ

〉
1

]
≤ 2h(Q|P ), (58)

and equality holds iff Q = P .

Proof. 1) For Q ∈ QM, the pair (W,WQ) is a semimartingale coupling of Q and
P , defined on (Ω,F , (Ft)0≤t≤1, Q), such thatW−WQ = M−WQ is a martingale
under Q. Thus, the expected cost in (57) only involves the quadratic variation
component, and Proposition 29 implies

W 2
S(Q,P ) = EQ

[〈
W −WQ

〉
1

]
= EQ

[ ∫ 1

0

(
σ(·, s)− 1

)2
ds+ qs(·, (0, 1])

]
. (59)

Note that
(σ − 1)2 ≤ σ2 − 1− log σ2 = 2f(σ2),

with equality iff σ2 = 1. Thus,

EQ
[〈
W −WQ

〉
1

]
≤ EQ

[
2

∫ 1

0

f
(
σ2(·, s)

)
dt+ qs(·, (0, 1])

]
≤ 2h(Q|P ), (60)

where the second inequality follows from Theorem 17.

2) Equality in (58) implies equality in (60). It follows from part 1) that σ2(·, ·) =
1 Q⊗λ-a.s.. This implies W = M = WQ under Q, hence Q = P . The converse
is obvious.

Definition 33. We write Q ∈ Q∗S if the canonical decomposition W = M + A
of the coordinate process W under Q ∈ QS is such that

EQ
[
||A||2S

]
<∞, (61)

that is, dAt = atd
〈
W
〉
t

with
∫ 1

0
a2
td
〈
W
〉
t
∈ L1(Q), and if

G∗ := exp
(
−
∫ 1

0

atdM −
1

2

∫ 1

0

a2
td
〈
M
〉
t

)
satisfies

G∗ ∈ L2(Q) and EQ[G∗] = 1. (62)

Remark 34. For Q ∈ Q∗S , the probability measure Q∗ defined by

dQ∗ = G∗dQ (63)

is an equivalent martingale measure for Q; cf., for example, [6]. Note that
QM ⊂ Q∗S , and that Q∗ = Q for Q ∈ QM.

Proposition 35. For Q ∈ Q∗S , the coupling (W,WQ) of Q and P is optimal
for WS , that is,

W 2
S(Q,P ) = EQ

[〈
W −WQ

〉
1

+ ||A||2S
]
. (64)
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Proof. For Q ∈ Q∗S , the right-hand side in (64) is finite, and so we have
WS(Q,P ) < ∞. Now take any semimartingale coupling (Ỹ , X̃) of Q and P ,
defined on some filtered probability space (Ω̃, F̃ , (F̃t)0≤t≤1, P̃ ), such that

Ẽ
[〈
Ỹ − X̃

〉
1

+ ||Ã||2S
]
<∞.

Since
Ẽ
[〈
Ỹ − X̃

〉
1

]
≥ EQ

[〈
W −WQ

〉
1

]
(65)

by Proposition 29, it only remains to show that

Ẽ
[
||Ã||2S

]
≥ EQ

[
||A||2S

]
,

that is,

Ẽ
[ ∫ 1

0

ã2
td
〈
Ỹ
〉
t

]
≥ EQ

[ ∫ 1

0

a2
td
〈
W
〉
t

]
. (66)

We denote by P̃ the predictable σ-field on Ω̃× (0, 1] corresponding to the filtra-
tion (F̃t), and by P0 ⊆ P the predictable σ-field corresponding to the smaller
filtration (F̃0

t ) generated by (Ỹt). Since Ẽ
[
||Ã||2S

]
<∞, we have

dÃt = ãtd
〈
Ỹ
〉
t

= ãtdq(Ỹ , t),

where ã = (ãt) is P-measurable and square-integrable with respect to the finite
measure P̃ ⊗ q(Ỹ , ·) on P̃. Let ã0 = (ã0

t ) denote the process defined by the
conditional expectation

ã0 := EP̃⊗q(Ỹ ,·)
[
ã
∣∣P0

]
,

and note that Jensen’s inequality implies

EP̃⊗q(Ỹ ,·)
[
(ã0)2

]
≤ EP̃⊗q(Ỹ ,·)

[
ã2
]
. (67)

For any A0
t ∈ F0

t we can write

Ẽ
[
Ỹt+h − Ỹt;A0

t

]
= Ẽ

[
M̃t+h − M̃t;A

0
t

]
+ Ẽ

[
Ãt+h − Ãt;A0

t

]
= Ẽ

[ ∫ t+h

t

ãsd
〈
Ỹ
〉
s
;A0

t

]
= EP̃⊗q(Ỹ ,·)

[
ã;A0

t × (t, t+ h]
]

= EP̃⊗q(Ỹ ,·)
[
ã0;A0

t × (t, t+ h]
]

= Ẽ
[ ∫ t+h

t

ã0
sd
〈
Ỹ
〉
s
;A0

t

]
.

This implies that the canonical decomposition of the semimartingale Ỹ in the
smaller filtration (F̃0

t ) is of the form

Ỹt = M̃0
t +

∫ t

0

ã0
sd
〈
Ỹ
〉
s
.
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where M̃0 is a martingale with respect to (F̃0
t ). On the other hand, since the

law of Ỹ under P̃ is given by Q, we have

Ỹt = Mt(Ỹ ) +

∫ t

0

as(Ỹ )d
〈
Ỹ
〉
s
.

Uniqueness of the canonical decomposition implies

ã0 = a(Ỹ ) P̃ ⊗ q(Ỹ , ·)− a.s. (68)

Thus, inequality (67) yields

Ẽ
[ ∫ 1

0

ã2
td
〈
Ỹ
〉
t

]
≥ Ẽ

[ ∫ 1

0

a2
t (Ỹ )d

〈
Ỹ
〉
t

]
= EQ

[ ∫ 1

0

a2
t (W )d

〈
W
〉
t

]
,

and so we have shown inequality (66).

The following inequality extends Theorem 32 beyond the case of a martingale
measure. As explained in Remark 37 below, it contains inequality (58) for
Q ∈ QM, Talagrand’s inequality (9) for Q � P , and Corollary 9 for WH,ad as
special cases.

Theorem 36. For Q ∈ Q∗S ,

W 2
S(Q,P ) ≤ 2

(
h(Q|P ) +H(Q|Q∗)

)
, (69)

where Q∗ is the equivalent martingale measure for Q defined by (63). Equality
holds iff H(Q|P ) <∞.

Proof. 1) Proposition 35 combined with inequality (60) shows that

W 2
S(Q,P ) = EQ

[〈
W −WQ

〉
1

+ ||A||2S
]

≤ 2h(Q|P ) + EQ
[ ∫ 1

0

a2
td
〈
W
〉
t

]
. (70)

Since Q∗ is equivalent to Q, we have

H(Q|Q∗) = EQ
[

log
(
dQ∗/dQ)−1

]
= EQ

[ ∫ 1

0

atdMt +
1

2

∫ 1

0

a2
td
〈
M
〉
t

]
.

But M is a square-integrable martingale under Q and EQ[
∫ 1

0
a2
td
〈
M
〉
t

]
< ∞

for Q ∈ Q∗S . This implies EQ
[ ∫ 1

0
atdMt

]
= 0, hence

H(Q|Q∗) =
1

2
EQ
[ ∫ 1

0

a2
td
〈
M
〉
t

]
.

Thus,

W 2
S(Q,P ) ≤ EQ

[〈
W −WQ

〉
1

+ ||A||2S
]
≤ 2h(Q|P ) + 2H(Q|Q∗).
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and so we have shown inequality (69).

2) Equality in (69) implies equality in (70), hence

EQ
[〈
W −WQ

〉
1

]
= 2h(Q|P ).

Recall that the left-hand side satisfies equation (56). As in the proof of Theorem
32, it follows that M = WQ. This implies W = WQ + A and ||A||H = ||A||S ∈
L2(Q), hence

H(Q|P ) =
1

2
EQ
[
||A||2H

]
<∞,

due to Proposition 3.

Conversely, H(Q|P ) <∞ implies h(Q|P ) = 0 and Q ∈ Q∗S with Q∗ = P , hence
H(Q|Q∗) = H(Q|P ). Thus, the right-hand side of (69) reduces to 2H(Q|P ) =
EQ
[
||BQ||2H

]
. Moreover, since W = WQ + BQ and

〈
W
〉
t

= t under Q, we

get A = BQ, and the left-hand side becomes W 2
S(Q,P ) = W 2

H,ad(Q,P ) =

EQ
[
||BQ||2H

]
. Thus, equality holds in (69).

Remark 37. Inequality (69) includes inequality (58) for martingale measures
as a special case. Indeed, for Q ∈ QM ⊂ Q∗S we have Q = Q∗, hence H(Q|Q∗) =
0 and

W 2
S(Q,P ) ≤ 2h(Q|P ).

Part 2) of the preceding proof shows how Talagrand’s inequality (9) and the
identity (20) for WH,ad follow from Theorem 36.
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