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Abstract

For a nice Markov process such as Brownian motion on a bounded do-
main, we introduce a non-linear potential operator defined in terms of running
suprema, and we prove a non-linear Riesz representation of a given function as
the sum of a harmonic function and a non-linear potential. The proof involves
a family of optimal stopping problems in analogy to the general construction
of Bank and El Karoui [3], but here the analysis is carried out in terms of
probabilistic potential theory.
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1 Introduction

In the context of potential theory it is well known that a function u satisfying some
strong regularity conditions admits a Riesz representation

u = Gf + h

as the sum of a harmonic function h and the potential of some function f . The
harmonic function is determined by the boundary behavior of u, and the function f
can be reconstructed from the induced potential Gf or from u by a differentiation
procedure:

f = DGf = Du.

In probabilistic terms, D can be described as the characteristic operator of the
underlying Markov process, and the potential operator G takes the form

Gf(x) = Ex

[ ζ∫

0

f(Xt)dt
]
.

In view of this probabilistic interpretation, let us now introduce the non-linear
potential operator G defined by

Gf(x) := Ex

[ ζ∫

0

sup
0≤s≤t

f(Xs)dt
]
.

Our purpose is to study the interplay between the subadditive operator G and a
corresponding superadditive operator D which is a derivator in the sense of the
non-linear potential theory developed by Dellacherie [7]. In particular we are going
to show that any function u satisfying some very mild regularity conditions admits
a non-linear Riesz decomposition of the form

u = Gf + h, (1)

where h is harmonic, and where f can be reconstructed from the induced non-linear
potential Gf or from u in terms of the derivator D:

f = DGf = Du. (2)

The non-linear Riesz representation will follow as a corollary from a careful analysis
of a family of optimal stopping problems. In potential-theoretic terms, we study the
dependence of the functions

Vcu = cG1 + R(u− cG1)

on the parameter c ∈ IR, where Rv denotes the réduite of the function v, i.e., the
smallest excessive function larger than v. Each function Vcu is characterized as the
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smallest function v such that v ≥ u and v Â cG1 in the strong order defined by
the cone of excessive functions. In terms of the non-linear derivator D, the function
Vcu can also be identified as the smallest function v such that v ≥ u and Dv ≥ c.
We show that the solution of these two equivalent minimization problems is given
by the sum of a harmonic function induced by the boundary behavior of u and the
non-linear potential

G(Du ∨ c)(x) = Ex

[ ζ∫

0

sup
0≤s≤t

Du(Xs) ∨ c dt
]
. (3)

In the limit c ↓ −∞ we obtain the non-linear Riesz representation (1) of the function
u.

As a further consequence of the probabilistic representation (3), we can use the
functions Vcu as building blocks for the construction of a concave envelope of the
processs U defined by Ut = u(Xt). In fact, the process C defined by

Ct := VΓtu(Xt)

with

Γt := sup
0≤s≤t

Du(Xs)

dominates the process U , has concave paths up to a martingale, and the derivatives
of the concave part only increase at times when C = U . Recall that the Snell
envelope of U can be viewed as the stochastic version of a decreasing envelope since
it has decreasing paths up to a martingale and a point of decrease only occurs
at times when C = U . In an analogous way, we may view the process C as the
stochastic version of a concave envelope.

The crucial idea of studying the dependence of réduites on a parameter goes back to
G. Mokobodzki and D. Heath as explained in [12]. It has also appeared in Whittle’s
construction [16] of Gittins indices for the multi-armed bandit problem. In both
versions it has been a source of inspiration for the theory of Gittins indices in
continuous time as developed by El Karoui and Karatzas [9], [10], [11]. Conversely,
the methods developed in that context allow us to give a probabilistic interpretation
of the results in [12], and they provide the key to the non-linear Riesz representation
(1). Independently, a stochastic representation problem with a similar structure has
appeared in the work of Bank [1] and Bank and Riedel [5] on singular optimization
problems in intertemporal consumption choice, where it was solved explicitely for a
class of Lévy processes. Combining these two developments, Bank and El Karoui
[3] solved the representation problem and explored the idea of a concave envelope
in a general semimartingale setting; see also [4] for a survey of the general theory
and some of its applications.

In this paper, our purpose is to go “back to the roots” and to illustrate these recent
developments in the classical setting of probabilistic potential theory. In particular
we would like to point out the connection to non-linear potential theory, since we
hope that it should be possible to go further in that direction.
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2 A non-linear potential operator

Let (Xt)t≥0 denote a strong Markov process with topological state space S and life
time ζ, defined on a stochastic base (Ω,F , (Ft)t≥0, (Px)x∈S) which satisfies the usual
conditions. We use the notation

PT f(x) := Ex[f(XT ) ; T < ζ]

for any stopping time T . Let G denote the classical potential operator of the process,
defined by

Gf(x) :=

∞∫

0

Ptf(x)dt = Ex

[ ζ∫

0

f(Xt)dt
]
,

and recall that the characteristic operator D of the process is defined by

Du(x) := lim
u(x)− PT u(x)

Ex[T ]

for functions u such that the limit exists. Here the limit is taken along decreasing
neighborhoods of x, and T denotes the exit time from such a neighborhood.

Let us now consider the subadditive potential operator G defined by

Gf(x) := Ex

[ ζ∫

0

sup
0≤s≤t

f(Xs)dt
]
. (4)

The corresponding superadditive operator D is given by

Du(x) := inf
u(x)− PT u(x)

Ex[T ]
, (5)

where the infimum is taken over exit times from open neighborhoods of x. Note
that D is a “derivator” in the sense of Dellacherie [7], i.e.,

u ≤ v =⇒ Du ≤ Dv on {u = v}. (6)

Our aim is to prove existence and uniqueness of the non-linear Riesz representation
(1) in terms of the non-linear operators G and D.

For the ease of exposition, we do not insist on proving our results in the most general
setting; this would involve some technical refinements such as the fine topology of
the process, in analogy to the general constructions in Bank and El Karoui [3].
Instead, we introduce the following assumptions:

A1) S is a locally compact metric space, and we denote by S = S ∪ {∆} the
Alexandrov compactification of S. Functions f on S will also be viewed as
functions on S with f(∆) := 0.
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A2) The process (Xt)t≥0 is a Hunt process in the sense of [6] XVI.11 such that
lim
t↑ζ

Xt = ∆. In particular it is quasi-leftcontinuous.

A3) The excessive functions of the process are lower-semicontinuous, and the func-
tion g defined by

g(x) := Ex[ζ] = G1(x) (7)

is continuous and bounded.

Recall that a measurable function f ≥ 0 on S is excessive if

Ptf ≤ f and lim
t↓0

Ptf = f,

and that any excessive function is lower-semicontinuous if, for example, the pro-
cess has the strong Feller property. In particular, our assumptions are satisfied for
Brownian motion on a bounded domain, and in the sequel the reader could simply
consider this special case.

Let us now be more precise as to the definition and the properties of the non-linear
potential Gf .

Lemma 2.1 Let f be an upper-semicontinuous function on S. Then the function
u = Gf defined by

u(x) = Gf(x) := Ex

[ ζ∫

0

sup
0≤u≤s

f(Xu) ds
]
,

satisfies

u ≥ f · g,

and for any x ∈ S such that Gf(x) ∈ IR we have

lim
t↑ζ

u(Xt) = 0 Px − a.s. and in L1(Px). (8)

Moreover, the function Gf is excessive if f ≥ 0, and it is lower-semicontinuous on
{f ≥ c} for any c ∈ IR.

Proof: 1) Since

{ sup
0≤s≤t

f(Xs) ≥ c, t < ζ} = {Dc ≤ t < ζ} ∈ Ft,

where Dc denotes the first entrance time into the closed set {f ≥ c}, the process

sup
0≤s≤t

f(Xs)I{t<ζ} (t ≥ 0)
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is adapted. Thus,

Gf(x) =

∞∫

0

Ex

[
sup

0≤s≤t
f(Xs)I{t<ζ}

]
dt

is well defined on {f > −∞} and satisfies

Gf(x) ≥ f(x)g(x).

On {f = −∞} we use the definition

Gf(x) := lim
c↓−∞

Ex

[ ζ∫

0

sup
0≤u≤s

f(Xu) ∨ c ds
]
,

and by monotone convergence we can write

Gf(x) = Ex

[ ζ∫

0

sup
0≤s≤t

f(Xs)dt
]

on {Gf > −∞}.

2) Since

Ptu(x) = Ex

[ ζ∫

t

sup
t≤u≤s

f(Xu)ds
]

satisfies Ptu ≤ u and lim
t↓0

Ptu = u for f ≥ 0, the function u = Gf is excessive as

soon as the function f is nonnegative.

3) If f is bounded from below by c ∈ IR then Gf = G(f − c) + cg is the sum of an
excessive function and of a continuous function, hence lower-semicontinuous due to
our assumption (A3).

4) If u(x) = Gf(x) is finite then, by dominated convergence,

u(Xt) = EXt

[ ζ∫

0

sup
0≤u≤s

f(Xu)ds
]

= Ex

[ ζ∫

t

sup
t≤u≤s

f(Xu)ds|Ft

]

converges to 0, both Px-a.s. and in L1(Px), as t ↑ ζ. 2

Our aim is to show that, conversely, any function u satisfying some mild regularity
conditions admits a unique representation in terms of the non-linear potential op-
erator G.
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3 Uniqueness of the non-linear Riesz representa-

tion

In this section, we show that a non-linear Riesz representation of the form (1) is in
fact unique.

Definition 3.1 Let us say that a measurable function u on S has nice boundary
behavior if

∃ lim
t↑ζ

u(Xt) Px − a.s. and in L1(Px)

for any x ∈ S. In this case we define

P̃T u(x) := Ex

[
u(XT ); T < ζ

]
+ Ex

[
lim
t↑ζ

u(Xt); T = ζ
]

for any stopping time T ≤ ζ.

Let T (x) denote the class of all exit times from relatively compact open neigh-
borhoods of x, and let T̃ (x) ⊇ T (x) denote the class corresponding to all open
neighborhoods of x; in particular, we have ζ ∈ T̃ (x). Recall that a continuous
function h on S is harmonic if

h(x) = PT h(x) ∀T ∈ T (x).

and that it is said to be of class (D) if, for any x ∈ S, the family {h(XT )|T ∈ T (x)}
is uniformly integrable with respect to Px. A harmonic function h of class (D) has
nice boundary behavior, and it is in fact determined by its boundary behavior:

h(x) = Ex

[
lim
t↑ζ

h(Xt)
]
.

Moreover,

h(x) = P̃T h(x) ∀T ∈ T̃ (x). (9)

Theorem 3.1 Suppose that u is a real-valued function on S which admits a non-
linear Riesz representation

u = Gf + h, (10)

where h is a harmonic function of class (D) and f is upper-semicontinuous. Such
a decomposition (10) is unique. More precisely, u has nice boundary behavior,

h(x) = Ex

[
lim
t↑ζ

u(Xt)
]
,
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and

f(x) = Du(x) := inf
T∈T (x)

u(x)− PT u(x)

Ex[T ]

= inf
T∈T̃ (x)

u(x)− P̃T u(x)

Ex[T ]
(11)

for any x ∈ S. In particular, the function Du is upper-semicontinuous. If f is
bounded from below by c ∈ IR then u is lower-semicontinuous and satisfies u ≥ cg+h.

Proof. 1) Since u(x) and h(x) are finite by assumption, we have Gf(x) < ∞ for any
x ∈ S. By Lemma 2.1,

lim
t↑ζ

(
u(Xt)− h(Xt)

)
= 0, Px − a.s. and in L1(Px).

Since h is a harmonic function of class (D), we obtain the existence of lim
t↑ζ

u(Xt) and

the identity

h(x) = Ex

[
lim
t↑ζ

h(Xt)
]

= Ex

[
lim
t↑ζ

u(Xt)
]
.

2) For any stopping time T ∈ T̃ (x) we have h(x) = P̃T h(x), hence

u(x)− P̃T u(x) = Gf(x)− P̃T Gf(x)

= Ex

[ T∫

0

sup
0≤s≤t

f(Xs)dt
]

+ Ex

[ ζ∫

T

( sup
0≤s≤t

f(Xs)− sup
T≤s≤t

f(Xs))dt; T < ζ
]

≥ Ex

[ T∫

0

sup
0≤s≤t

f(Xs)dt
]
. (12)

In particular,

u(x)− P̃T u(x) ≥ f(x)Ex[T ],

and this implies

Du(x) ≥ f(x).

3) In order to prove the converse inequality Du(x) ≤ f(x), we fix α > f(x) and
define Tα ∈ T̃ (x) as the exit time from the open neighborhood {f < α} of x. Since

sup
Tα≤s≤t

f(Xs) = sup
0≤s≤t

f(Xs)

for t ∈ [Tα, ζ), the general inequality in (12) becomes an equality for T := Tα. Thus

u(x)− P̃Tαu(x) = Ex

[ Tα∫

0

sup
0≤s≤t

f(Xs)dt
]
≤ αEx[Tα],
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and this implies

inf
T∈T̃ (x)

u(x)− P̃T u(x)

Ex[T ]
≤ f(x) (13)

4) We have to show that the left hand side of (13) coincides with Du(x). Let (Un)n≥1

be a sequence of relatively compact open sets increasing to S, and denote by Sn the
exit time from Un. For T ∈ T̃ (x), the stopping times Tn := T ∧ Sn ∈ T (x) increase
to T , and so we have Ex[Tn] ↑ Ex[T ]. Moreover, since the process is quasi-left-
continuous and u has nice boundary behavior,

lim
n

PTnu(x) = Ex

[
lim

n
u(XTn)

]

= Ex

[
u(XT ); T < ζ

]
+ Ex

[
lim
t↑ζ

u(Xt); T = ζ
]

= P̃T u(x).

Thus,

u(x)− P̃T u(x)

Ex[T ]
= lim

n

u(x)− PTnu(x)

Ex[Tn]
≥ Du(x)

for any T ∈ T̃ (x), and this shows that both expressions for Du(x) in (11) coincide. 2

4 A family of optimal stopping problems

Let u be a continuous function on S. We assume that u is of class (D), that it has
nice boundary behavior, and that the function h defined by

h(x) := Ex

[
lim
t↑ζ

u(Xt)
]

is continuous on S. Our aim is to prove the existence of a non-linear Riesz repre-
sentation for u. Subtracting the harmonic function h of class (D), we may assume
without loss of generality

lim
t↑ζ

u(Xt) = 0 Px-a.s. (14)

for x ∈ S. Note that (14) and our convention u(∆) := 0 allow us to write

P̃T u(x) = Ex[u(XT )] = Ex[u(XT ); T < ζ]

for any stopping time T ≤ ζ.

As a first step in our construction, we study the following family of optimal stopping
problems and the variation of the corresponding réduites. For each c ∈ IR we define

Vcu(x) := sup
T∈T (x)

Ex[u(XT ) + cT ]. (15)
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In other words, Vcu denotes the value function of the optimal stopping problem with
parameter c which is defined by the right-hand side of (15). Note that Vcu(x) < ∞,
due to our assumption (A3). Since ζ = T + ζ ◦ θT for any stopping time T ≤ ζ, we
have

g(x) = Ex[T ] + Ex[g(XT ); T < ζ], (16)

hence

Vcu(x) = cg(x) + sup
T∈T (x)

Ex[(u− cg)(XT )]. (17)

But the value function of the optimal stopping problem introduced on the right-hand
side of (17) coincides with the réduite Ruc of the continuous function uc := u− cg,
defined as the smallest excessive function v such that v ≥ uc; see, e.g., [15] Th. III.1.
Moreover, the supremum in (17) is attained by the first entrance time

Dc := inf{t ≥ 0|Xt ∈ Ac} ≤ ζ

into the set

Ac := {Ruc = uc} = {Vcu = u}.

Note that Ac is closed since Ruc is excessive, hence lower-semicontinuous due to our
assumption (A3). These properties of the réduite are well known on various levels
of generality; see, e.g., [8], Th. 2.76. For the convenience of the reader we include a
short proof in our present setting.

Lemma 4.1 The réduite Ruc of the function uc is given by

Ruc(x) = Ex

[
uc(XDc)

]
, (18)

and it coincides with the value function of the optimal stopping problem in (17).

Proof. Define Ac,n := {Ruc ≤ (1 + 1/n)uc} and denote by Dc,n the first entrance
time into the closed set Ac,n. By Mokobodzki’s theorem as explained in [12] or in
[7] No.16,

Ruc = R
(
(Ruc)IAc,n

)
.

Applying Hunt’s balayage theorem as stated in [6] XIV.97 to the excessive function
Ruc on the right hand side, we obtain

Ruc(x) = Ex

[
Ruc(XDc,n)

]
.

Using quasi-left-continuity of the process and our assumptions on u we obtain

lim
n

Ruc(XDc,n) = uc(XDc) in L1(Px),
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and this implies equation (18). In order to identify Ruc(x) as the value of the
optimal stopping problem in (17), note first that the excessive function v = Ruc

satisfies v ≥ PT v ≥ PT u for any stopping time T ∈ T (x). On the other hand, we
have just seen that for any x /∈ Ac the value Ruc(x) is approximated by stopping
times Dc,n ∈ T̃ (x), and this remains true if we replace each Dc,n by a suitable
Tn ∈ T (x). For x ∈ Ac we can approximate the value Ruc(x) = uc(x) by any
sequence of stopping times Tn ∈ T (x) decreasing to 0. 2

Combining the predecing lemma with equation (16), we see that the function Vcu is
given by

Vcu(x) = cg(x) + Ruc(x)

= Ex[u(XDc) + cDc]. (19)

In particular, Vcu is lower-semicontinuous since it is the sum of a continuous and an
excessive function. Clearly, Vcu dominates the function u ∨ cg, and it is excessive
for c ≥ 0 since the functions Ruc and g are excessive. This implies Vcu ≥ R(u ∨ cg)
for c ≥ 0, but in general there is no equality. The following lemma provides a
characterization of Vcu in terms of the strong order induced by the cone of excessive
functions, i.e.,

v Â w :=⇒ v − w is excessive.

Lemma 4.2 Vcu is the smallest function v such that v ≥ u and v Â cg.

Proof. The function v := Vcu dominates u, and it satisfies v Â cg since v− cg = Ruc

is excessive. Conversely, consider any function ṽ such that ṽ ≥ u and ṽ Â cg. Then
ṽ = cg + w for some excessive function w, and w satisfies

w = ṽ − cg ≥ u− cg = uc

hence w ≥ Ruc. Thus,

ṽ = cg + w ≥ cg + Ruc = Vcu.

2

We are now going to study the dependence of Vcu(x) resp. Ruc(x) on the parameter
c ∈ IR. This idea goes back to G. Mokobodzki and D. Heath, and for the rest of
this section we follow their approach, as explained in Heath [12] in the special case
where the function u is excessive. The next section will provide a new probabilistic
interpretation of the potential theoretic results in [12]. It should be seen as a special
case of the general discussion in Bank and El Karoui [3], and it will provide the key
to our existence proof for the non-linear Riesz representation of the function u.

Lemma 4.3 For each x ∈ S, Vcu(x) is increasing and convex in c.
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Proof. Monotonicity is clear from the definition. Convexity follows from the rep-
resentation (17), since the the right hand side may be viewed as the supremum of
functions which are affine in c. 2

Since the function c 7→ Vcu(x) is convex, it is almost everywhere differentiable.
We denote by ∂+Vcu(x) and ∂−Vcu(x) the derivatives from the right and the left,
respectively, and by ∂Vcu(x) the derivative if it exists. The notation ∂Rcu(x) will
be used in the same way. Let us now analyze these derivatives in more detail. Since
Vcu is increasing in c and Vcu ≥ u, the sets Ac = {Vcu = u} are decreasing in c.
Thus, the first entrance times Dc are increasing in c, and we write

Dc− := lim
a↑c

Da, Dc+ := lim
b↓c

Db.

We can now describe the derivatives of c 7→ Vcu(x) and c 7→ Ruc(x) in terms of the
stopping times Dc.

Lemma 4.4 For any c ∈ IR,

Ex[Dc−] ≤ ∂−Vcu(x) ≤ ∂+Vcu(x) ≤ Ex[Dc+], (20)

and for almost all c ∈ IR we have

∂Vcu(x) = Ex[Dc] (21)

and

∂Ruc(x) = Ex[Dc]− g(x) = −Ex[g(XDc)]. (22)

Proof. Applying equation (18) with parameter b, we obtain

Vbu(x)− Vcu(x) ≤ (b− c)g(x) + Ex[ub(XDb
)]− Ex[uc(XDb

)]

= (b− c)(g − PDb
g)(x)

= (b− c)Ex[Db]

for b > c, and in the same way we obtain

Vcu(x)− Vau(x) ≥ (c− a)Ex[Da]

for a < c. This implies the inequalities in (20). But since Ex[Dc−] and Ex[Dc+] are
the limits from the left and from the right of the increasing function c → Ex[Dc],
we have Ex[Dc−] = Ex[Dc] = Ex[Dc+] for almost all c. Thus the derivative ∂Vcu(x)
exists for almost all c and can be identified with Ex[Dc]. 2

5 Existence of the non-linear Riesz representa-

tion

As in the previous section we assume that u is a continuous function on S of class
(D) with boundary behavior (14). In view of Lemma 4.4,

Vbu(x)− Vau(x) =

b∫

a

Ex[Dc]dc (23)
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and

Rua(x)−Rub(x) =

b∫

a

Ex[g(XDc)]dc (24)

In order to analyze these expressions in more detail, we introduce the function γ
defined by

γ(x) := sup{c|x ∈ Ac} (25)

and the increasing adapted process

Γt := sup
0≤s≤t

γ(Xs) (t ≥ 0). (26)

Note that γ is upper-semicontinuous since the sets Ac are closed, and that the paths
of (Γt)t≥0 are right-continuous.

Proposition 5.1 For a < b,

Rua(x)−Rub(x) = G(γ ∧ b)(x)−G(γ ∧ a)(x)

Proof. Due to (24) we have

Rua(x)−Rub(x) =

b∫

a

Ex[ζ −Dc]dc = Ex

[ b∫

a

(ζ −Dc)dc
]
.

Now note that

{t < Dc < ζ} = {Vcu(Xs) > uc(Xs) ∀s ≤ t, t < ζ}
= {γ(Xs) < c ∀s ≤ t, t < ζ}
= {Γt < c, t < ζ}. (27)

Thus,

b∫

a

(ζ −Dc)dc =

b∫

a

ζ∫

0

I{Dc≤s}dsdc =

b∫

a

ζ∫

0

I{Γs≥c}dsdc

=

ζ∫

0

(Γs ∧ b− Γs ∧ a)ds,

and so we get

Rua(x)−Rub(x) = Ex

[ ζ∫

0

Γs ∧ b ds
]
− Ex

[ ζ∫

0

Γs ∧ a ds
]

= G(γ ∧ b)(x)−G(γ ∧ a)(x).

2
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Lemma 5.1 lim
c↑∞

Ruc(x) = 0

Proof. Let (Un)n≥1 be a sequence of relatively compact open sets Un increasing to
S, and define Tn as the exit time from Un. Construct an increasing sequence (cn)
such that 0 ≤ cn ↑ ∞ and ucn ≤ 0 on Un. Then

Rucn(x) = Ex[ucn(XDcn
)] ≤ Ex[ucn(XDcn

); Dcn > Tn]

≤ Ex

[
u+(XDcn∨Tn)

]
,

and the right-hand side converges to 0 due to our assumption (14) on the boundary
behaviour of u. 2

Theorem 5.1 For any a ∈ IR, the functions Rua and Vau can be represented as
follows:

Rua(x) = Ex

[ ζ∫

0

(Γt − a)+dt
]

= G(γ − a)+(x), (28)

and

Vau(x) = Ex

[ ζ∫

0

Γt ∨ adt
]

= G(γ ∨ a)(x), (29)

Proof. By Lemma 5.1,

Rua(x) = lim
b↑∞

Ex

[ ζ∫

0

(Γt ∧ b− Γt ∧ a)dt
]

= Ex

[ ζ∫

0

(Γt − Γt ∧ a)dt
]

= Ex

[ ζ∫

0

(Γt − a)+dt
]

and

Vau(x) = ag(x) + Rua(x)

= Ex

[ ζ∫

0

((Γt − a)+ + a)dt
]

= Ex

[ ζ∫

0

Γt ∨ a dt
]
.

2

The representation (29) allows us to identify the function Vcu as the solution of a
minimization problem defined in terms of the non-linear derivator D.
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Corollary 5.2 Let V denote the class of all functions v admitting a non-linear Riesz
representation. Then Vcu can be characterized as the smallest function v ∈ V such
that

i) v ≥ u

ii) Dv ≥ c.

Proof. The function v := Vcu belongs to V and satisfies v ≥ u and v = G(γ ∨ c),
hence Dv = γ ∨ c ≥ c due to Theorem 2.1. In order to show that Vcu is minimal,
consider a function ṽ ∈ V such that ṽ ≥ u and Dṽ ≥ c. Thus, ṽ = GDṽ+ h̃, where h̃
is a non-negative harmonic function and Dṽ = c + f for some lower-semicontinuous
function f ≥ 0. Thus,

ṽ = Gc + Gf + h̃ = c · g + w

where w := Gf + h̃ is excessive, since w ≥ 0 and Dw = f ≥ 0. This implies ṽ Â cg,
and the inequality ṽ ≥ v = Vc now follows from Lemma 4.2. 2

We will now derive the non-linear Riesz representation of the function u from the
representation (29) of the functions Vcu, combined with the observation that γ = Du.

Theorem 5.2 Let u be a continuous function of class (D) on S such that

lim
t↑ζ

u(Xt) = 0 Px-a.s.

Then, for any x ∈ S,

u(x) = Ex

[ ζ∫

0

sup
0≤s≤t

Du(Xs)dt
]

= GDu(x). (30)

Proof. 1) For any c ∈ IR we have γ(x) ≥ c if and only if Vcu(x) = u(x). But this
translates into the condition that

u(x)− Ex[u(XT )] ≥ cEx[T ]

for any stopping time T ∈ T (x), which is equivalent to Du(x) ≥ c. This shows that
the two functions γ and Du are in fact identical.

2) For c ≤ γ(x) we have

u(x) = Vcu(x) = Ex

[ ζ∫

0

Γtdt
]

= Gγ(x) = GDu(x),

due to (29) and part 1). Thus, the representation (30) holds for any x ∈ S such
that γ(x) > −∞.

15



3) Suppose that γ(x) = −∞. Since

−∞ < u(x) ≤ v(x) : = lim
c↓−∞

Vcu(x)

= Ex

[ ζ∫

0

sup
0≤s≤t

γ(Xs)dt
]
,

the entrance time into the set {γ > −∞} is Px-a.s. equal to 0, and this implies

lim
c↓−∞

Dc = 0 Px − a.s.. (31)

Comparing equation (19) with the representation (29) of Vcu(x), we see that

Ex[u(XDc) + cDc] = Ex

[ ζ∫

0

Γt ∨ c dt
]
.

This implies

Ex[u(XDc)] = Ex

[ ζ∫

Dc

Γtdt
]
, (32)

since

Dc∫

0

Γt ∨ c dt = cDc.

In view of (31) and since u is of class (D), the left hand side of (32) converges to
u(x), and we can use monotone convergence on the right hand side to conclude
u(x) = v(x), as desired. 2

Let us now return to the optimal stopping problem in (15), and let us replace the
class T (x) by the class of all stopping times T ≤ ζ. The following characterization
of the value and of the optimal stopping times in terms of the non-linear operator
D is a special case of the results developed by Bank [2] in a general semimartingale
setting.

Corollary 5.3 For any c ∈ IR, the optimal stopping problem

sup
T

Ex[u(XT ) + cT ],

where the supremum is taken over all stopping times T ≤ ζ, is solved by the entrance
time Dc into the closed set {Du ≥ c}, and its value coincides with

Vcu(x) = G(Du ∨ c)(x).
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More precisely, a stopping time T is optimal if and only if it satisfies the two con-
ditions

Dc ≤ T ≤ Dc+ (33)

and

sup
0≤t≤T

Du(Xt) = Du(XT ). (34)

Proof. For any stopping time T ≤ ζ,

Vcu(x) = cg(x) + Ruc(x)

≥ cg(x) + PT Ruc(x)

≥ cg(x) + PT uc(x)

= c(g(x)− PT g(x)) + PT u(x)

= Ex[u(XT ) + cT ].

But lemma 4.1 shows that the value Vcu(x) is attained by the stopping time T = Dc,
and so Dc is optimal. On the other hand,

Ex[u(XT ) + cT ] = cg(x) + Ex[uc(XT )]

for any stopping time T ≤ ζ, and due to (30) we can write

Ex[uc(XT )] = Ex

[ ζ∫

T

sup
T≤s≤t

(γ(Xs)− c)dt
]

≤ Ex

[ ζ∫

T

sup
0≤s≤t

(γ(Xs)− c)+dt
]

≤ Ex

[ ζ∫

Dc+

sup
0≤s≤t

(γ(Xs)− c)+dt
]

= Ex

[
uc(XDc+)

]

since Dc+ := limb↓c Db = inf{t ≥ 0|γ(Xt) > c}. Clearly, optimality of T is equivalent
to the condition that both inequalities reduce to an equality. For the second inequal-
ity this is the case if and only if T ≤ Dc+ Px-a.s. The first inequality becomes an
equality if and only if

sup
T≤s≤t

(γ(Xs)− c) = sup
0≤s≤t

(γ(Xs)− c)+ ∀t ∈ [T, ζ)

Px-a.s. By upper-semicontinuity of γ, this is equivalent to

γ(XT ) = sup
0≤s≤T

γ(Xs) ≥ c,

and thus to the two conditions T ≥ Dc and (34). 2
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6 A pathwise concave envelope

Let u be a continuous function on S satisfying the conditions of the last section. If
we observe the réduite Ru = V0u of the function u along the paths of the Markov
process X then we obtain the Snell envelope of the process U := u(X). Recall that
the Snell envelope is defined as the smallest supermartingale which dominates the
process U . As suggested by the trivial case where X is a uniform motion to the right
on the unit interval [0, 1], the Snell envelope may be viewed as a stochastic analogue
of the decreasing envelope of a function on [0, 1]. In a similar way, one can think of
introducing a stochastic analogue of the concave envelope. Such an approach was
developed by Bank and El Karoui [3] in a general semimartingale context. Let us
now illustrate their construction in our present Markovian setting, where it involves
the family of functions Vcu.

Consider the process C defined by

Ct := VΓtu(Xt) (t ≥ 0).

Clearly, C ≥ U , and C dominates the Snell enveloppe Px− a.s. if γ(x) ≥ 0. For
t ≤ ζ,

Ct = EXt

[ ζ∫

0

sup
0≤u≤s

γ(Xu) ∨ Γt ds
]

= Ex

[ ζ∫

t

sup
t≤u≤s

γ(Xu) ∨ Γt ds|Ft

]

= Ex

[ ζ∫

t

Γs ds|Ft

]

= Mt − At ,

where the process M defined by

Mt := Ex

[ ζ∫

0

Γs ds|Ft

]

is a martingale, and the process A defined by

At :=

t∫

0

Γs ds

has convex paths with increasing derivatives Γt. Thus, the process C has concave
paths up to a martingale, and may thus be viewed as the stochastic analogue of
a concave majorant of the process U . Moreover, the process has the following
minimality property:
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Proposition 6.1 The process Γ only increases at times where Ct = Ut:

ζ∫

0

(Ct − Ut)dΓt = 0

Proof. For any time t such that Ct(ω) > Ut(ω), the value c := Γt(ω) satisfies
Vcu(Xt(ω)) > u(Xt(ω)), hence γ(Xt(ω)) < c. Thus, t is not a point of increase for
the function t 7→ Γt(ω), and so t does not belong to the support of the corresponding
measure dΓt(ω). 2
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