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Abstract

We study a coherent version of the entropic risk measure, both in the law-
invariant case and in a situation of model ambiguity. In particular, we discuss
its behavior under the pooling of independent risks and its connection with a
classical and a robust large deviations bound.
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1 Introduction

A monetary risk measure specifies the capital which should be added to a given
financial position to make that position acceptable. If the monetary outcome of
a financial position is described by a bounded random variable on some probability
space (2, F, P), then a monetary risk measure is given by a monotone and translation
invariant functional p on L (2, F, P). In the law-invariant case the value p(X) only
depends on the distribution of X under P. Typical examples are Value at Risk (VaR),
Average Value at Risk (AVaR), also called Conditional Value at Risk (CVaR) or Tail
Value at Risk (TVaR), and the entropic risk measure defined by

e (X) ::% log Eple™ "]
:sgp{EQ[—X] — %H(Q|P)}

for parameters v € [0, 00), where ey(X) := Ep[—X] and H(Q|P) denotes the relative
entropy of (Q with respect to P. VaR is the one which is used most widely, but it has
various deficiencies; in particular it is not convex and may thus penalize a desirable
diversification. AVaR is a coherent risk measure, i.e., convexr and also positively
homogeneous. As shown by Kusuoka [I3] in the coherent and by Kunze [12] and
Frittelli & Rosazza Gianin [8] in the general convex case, AVaR is a basic building
block for any law-invariant convex risk measure.

The entropic risk measures e, are convex, and they are additive for independent
positions. From an actuarial point of view, however, this property may not be desir-
able. Indeed, if e, (X7 + ...+ X,,) is viewed as the total premium for a homogeneous
portfolio of i.1. d. random variables X1,..., X, then the premium per contract would
simply be e,(X1), no matter how large n is. Thus the pooling of independent risks
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does not have the effect that the premium per contract decreases to the “fair pre-
mium”, i.e., to the expected loss from a single contract, as the number of contracts
increases.

In this note we focus on a fourth example, namely on a coherent version of the
entropic risk measure defined by

pe(X) = sup  Eg[-X]
QH(Q|P)<e

In Section [3| we clarify the connection between the coherent entropic risk measures
p. and the convex entropic risk measures e,. In Section E| we show that the capital
requirements computed in terms of p. have the desired behavior under the pooling
of independent risks X7, ..., X,. In fact it turns out that the asymptotic analysis of
pe(X1+...+X,,) simply amounts to a reformulation, in the language of risk measures,
of Cramér’s classical proof of the upper bound for large deviations of the average loss.

In Section [5] we extend the discussion beyond the law-invariant case by taking
model ambiguity into account. Instead of fixing a probability measure P we consider
a whole class P of probabilistic models. We define corresponding robust versions
ep and pp . of the entropic risk measures and derive some of their basic properties.
In particular, we show that the pooling of risks has the desired effect if premia are
computed in terms of pp ., and that this corresponds to a robust version of Cramér’s
theorem for large deviations.

2 Notation and definitions

Let X be the linear space of bounded measurable functions on some measurable space
(Q, F). Consider a set A C X such that § # ANR # R and

XeAYexXxY>X = YecA
Then the functional p : ¥ — R defined by
p(X) :=inf{m e RIX + m € A} (1)
is
i) monotone, i.e., p(X) < pY)if X >Y,
and
ii) cash-invariant, i.e., p(X + m) = p(X) —m for X € X and m € R.

Definition 2.1. A functional p : X — R with properties i) and ii) is called a monetary
risk measure.

Any monetary risk measure is of the form (1) with A, := {X € X|p(X) < 0}.

If X € X is interpreted as the uncertain monetary outcome of a financial position
and A as a class of “acceptable positions”, then p(X) can be regarded as a capital
requirement, i.e., as the minimal capital which should be added to the position to
make it acceptable.

Definition 2.2. A monetary risk measure is called a convex risk measure if it is
quasi-convec, 1. e.,
P(AX + (1 = N)Y) < max{p(X), p(Y)}



for X, Y € X and A € [0,1]. In that case A, is convezx, and this implies that p is
a convex functional on X; cf. Follmer € Schied [7f, Proposition 4.6. A convex risk
measure is called coherent if it is positively homogeneous, i. e.,

P(AX) = Ap(X)
for X € X and A > 0.

Remark 2.1. Convez risk measures are closely related to actuarial premium princi-
ples; cf., e.g., Kaas et al. [T1]. For example, it is shown in Deprez & Gerber [2], that
a convex premium principle H is of the form H(X) = p(—X) for some convex risk
measure p if it satisfies the “no rip-off 7 condition H(X) < sup X.

Typically, a convex risk measure admits a robust representation of the form

p(X) = sup {Eqg[-X] - a(Q)}, (2)
QeM;

where M denotes the class of all probability measures on X, and where the penalty
function o : My — (—00, 0] is defined by

a(Q) := sup Eg[—X];
XeA,

cf., e.g., Artzner et al. [1], Delbaen [4], Frittelli & Rosazza Gianin [§], and Féllmer
& Schied [7], Chapter 4 for criteria and examples. In the coherent case we have

a(Q) € {0,00}, and (2) reduces to

p(X) = sup Eq[-X],
QeQ

where Q := {Q € M;|a(Q) = 0}.

Now suppose that P is a probability measure on (€2, F) and that p(X) = p(Y)
if X =Y P-a.s.. Then p can be regarded as a convex risk measure on L :=
L>(Q,F, P). In this case the representation holds if p is continuous from above,
i.e., p(Xy) / p(X) whenever X,, decreases to X in X, and M; can be replaced by
the class M1 (P) :={Q € M;|Q < P}.

A monetary risk measure p is called law-invariant if p(X) only depends on the
distribution of X under the given probability measure P. For a convex risk measure
which is continuous from above, this is the case if and only if the penalty a(Q) of
Q € M;(P) only depends on the law of % under P; cf., e.g., [7], Theorem 4.54.

A large class of examples arises if acceptability is defined in terms of expected
utility, i.e., if

A= {X € I®|Ep[u(X)] > u(0)}

for some concave increasing function u. In this case the resulting risk measure is
convex and law-invariant, and its penalty function can be computed in terms of the
conjugate function of u; cf. [7], Theorem 4.106.
Let us now take an exponential utility of the form u(x) = 1 —e~7* for some v > 0.
In that case the corresponding risk measure is given by
ey(X) = Llog Eple™¥], X € L%, (3)

and its robust representation takes the form

er(X) = sup {Bol-X]— LH(@QIP)}.
QEM;



where
Egllog 2] if Q < P
+00 otherwise

m@ir) - {
denotes the relative entropy of () with respect to P.

Definition 2.3. The convex risk measure e, defined by (@) is called the (convex)
entropic risk measure with parameter .

It is easy to see that e, (X) is increasing in v and strictly increasing as soon as X
is not constant P-a.s.. Moreover,

h?ol ey(X)=FEp[—X]| and liTm ey (X) = esssup(—X); (4)
v yToo
cf., e.g., [11], Theorem 1.3.2.

As noted already by de Finetti [3], the entropic risk measures can be characterized

as the only monetary risk measures p which are, up to a change of sign, also a certainty
equivalent, i.e.,

u(—p(X)) = Eplu(X)]

for some strictly increasing concave utility function w. In this case the utility function
is exponential, and p = e, for some ~ € [0, c0).
The actuarial premium principle H(X) = e,(—X) corresponding to the entropic

risk measure is usually called the exponential principle; cf. Deprez & Gerber [2] and
Gerber [9].

3 Coherent entropic risk measures
In this section we focus on the following coherent version of an entropic risk measure.

Definition 3.1. For each ¢ > 0, the risk measure p. defined by

pe(X) = sup Eq[-X], X elL*=, (5)
QEM:H(Q|P)<c

will be called the coherent entropic risk measure at level c.

Clearly, p. is a coherent risk measure. It is also law-invariant; this follows from
Theorem 4.54 in Follmer & Schied [7], and also from the representation in Propo-

sition [3.1] below; cf. Corollary
For X € L* we denote by

Qpx =1{Q,|7 € R} (6)

the exponential family induced by P and — X, i.e.,

dﬁ; = e X Eple XL,

If p(X) := P[X = essinf X] > 0, then we include as limiting case the measure
Qoo = lim 10 @y = P[-|X = essinf X].

The following proposition shows that the supremum in is attained by some
probability measure in the exponential family Qp x.



Proposition 3.1. For ¢ € (0, —logp(X)) we have

pe(X) Eq[-X] = Eq, [-X], (7)

= max
QEM1:H(Q|P)<c
where Q~, € Qp x and vy, > 0 is such that H(Q,.|P) = ¢, and

po(X) = min{£ + e, (X)} = £ + e, (X), (8)

If p(X) >0 and ¢ > —logp(X), then
pc(X) = Eg_[—X] = esssup(—X). (9)

Proof. We exclude the trivial case, where X is P-a.s. constant.
1) Assume that 0 < ¢ < —logp(X) and take @ such that H(Q|P) < c¢. For any
v >0 and for @, € Qp x,

H(Q|P) = H(Q|Q4) + vEq[-X] — log Ep[e™ "] (10)
with H(Q|Q~) > 0 and H(Q|Q~) =0 iff @ = Q. Thus
Eq[=X] < 5 +¢,(X), (11)
and

pe(X) = sup Eql-X]
QEM1:H(Q|P)<c

< inf {2+, (X)),

Both the supremum and the infimum are attained, and they coincide. Indeed, we can
choose 7, > 0 such that H(Q,|P) = ¢, and then we get equality in for @ = Q,
and v = 7. Such a 7, > 0 exists and is unique. Indeed,

H(Q4|P) = vEq, [~ X] —log Eyle™"]

is continuous and strictly increasing in +y, and lim . H(Q~|P) = —logp(X) since
limy oo Q[Ae] =1 for A, := {—X > a} and any a < esssup(—X).

2) If p(X) > 0, then Qo satisfies H(Qoo|P) = —logp(X) and Eq_[-X] =
esssup(—X). For ¢ > —logp(X) we thus obtain p.(X) > esssup(—X), hence (9),
since the converse inequality in @ is clear. O

Remark 3.1. Conversely, the convex entropic risk measure e, can be expressed in
terms of the coherent entropic risk measures p. as follows:

ey(X) = rggl{pc(X) - %} = pe, (X) — %v

where ¢y 1= H(Q~|P); this follows immediately from (@)

Remark 3.2. Note that the parameter 7. in (@ depends both on ¢ and on X. For a
fized value v > 0, the resulting functional

p(X) = Ep[(=X)e "X](Eple¥]) 7!

s neither coherent mor convex, but the corresponding actuarial premium principle
H(X) = p(—X) is well-known as the Esscher principle; cf., e. g., Deprez € Gerber [2].



Corollary 3.1. The coherent risk measure p. is law-invariant, continuous from above,
and even continuous from below. Moreover, p. is increasing in ¢ and satisfies

lilrgpc(X) = Ep[—-X] and liTm pe(X) = esssup(—X). (12)

Proof. Law-invariance follows from since each e, is law-invariant. Continuity from
below follows from , i.e., from the representation

J(X) = Eol—X
pe(X) gggQ[ ]

with @ = {Q € M1|H(Q|P) < ¢}; cf. [7], Corollary 4.35. In particular, p. is continu-
ous from above; cf. [7], Corollary 4.35 together with Theorem 4.31. The convergence
in follows easily from Proposition Indeed, implies limc|g pe(X) < ey (X)
for each v > 0, hence the first equality in (12)), due to (). As to the second equality,
it is enough to consider the measures ) = P[-|A4,] for the sets A, := {—X > a} with
a < esssup(—X). O

Let us now compare the coherent entropic risk measures p. to the familiar risk
measures “Value at Risk” and “Average Value at Risk” defined by

VaRq(X) := inf{m € R|IP[X + m < 0] < a}

and
o
AVaR, (X) := é/ VaR(X) d\ > VaR,(X)
0

for any « € (0,1). Recall that VaR,, is a monetary risk measure which is positively
homogeneous but not convex, while AVaR,, is a coherent risk measure which can also
be written as

AVaRo(X) = £ Epl(¢a — X)*] ~ ¢a
for any a-quantile g, of X; cf., e.g., [7], Section 4.4. Note also that VaR,(X) is
decreasing and right-continuous in « with left limits

VaR,— (X) :=inf{m € R|P[X +m < 0] < a}.
Proposition 3.2. For any a € (0,1) and any X € L,
VaR,(X) < VaRa_ (X) < AVaR, (X) < pe(a (X), (13)
where c(a) ;== —loga > 0.

Proof. Clearly, we have VaR,(X) < VaR,—(X) < AVaR,(X). In view of Corollary
it is enough to verify the inequality VaR,(X) < pea)(X), since AVaR,, is the
smallest law-invariant coherent risk measure which is continuous from above and
dominates VaR,; cf. [7], Theorem 4.61. For any v > 0,

PIX +m <0] < e "Ep[e” ¥,
and the right-hand side is < « if —ym + log Ep[e 7] < loga, i.e., if
m > @ + ev(X)'

Thus, by Proposition

VaRo (X) < inf (<5 + e (X)} = pogo) (X).



Alternatively, we can check directly the last inequality in , using the robust re-
presentation
AVaR,(X) = max Eg[—X]

QEQq
with Qn == {Q € M1|Q < P, %2 < 1y ¢f [7], Lemma 4.46 and Theorem 4.47.
Indeed, any Q € Q,, satisfies log ’;—g < ¢(w), hence H(Q|P) < ¢(a). O

4 Capital requirements for i.i.d. portfolios

Consider a homogeneous portfolio of n insurance contracts whose uncertain out-
comes are described as i.1.d. random variables X7, ..., X, on some probability space
(2, F, P). Let u denote the distribution of X; under P. To keep this exposition sim-
ple, we assume that p is non-degenerate and has bounded support; in fact it would
be enough to require finite exponential moments f e~ 7* p(dx) for any v € R.

If p is a monetary risk measure, then p(X; + ...+ X,,) can be viewed as the
smallest monetary amount which should be added to make the portfolio acceptable.
This suggests to equate p(X1 + ...+ X,,) with the portfolio’s total premium, and to
use the fraction

T =1p(X1 +... +X,)

as a premium for each individual contract X;, i =1,...,n.
For any v > 0, the entropic risk measure e, satisfies
ey (X1 + ...+ X,) = ney(X1).
If e, is used to calculate the premium m,, it yields

Ty = %efy(Xl + ... +Xn) = ev(Xl) > Ep[—Xl].

Thus the exponential premium principle based on the convex entropic risk measure
does not have the desirable property that the “risk premium” 7, — Ep[—X7] decreases
to 0 as n tends to oo; cf., e.g., [16], Example 12.5.1 and Remark 12.5.2.

For the coherent risk measure p., however, the pooling of risks does have the
desired effect.

Corollary 4.1. The premium

Moy 1= %pc(XlJr...Jan) (14)

)

computed in terms of the coherent entropic risk measure p. satisfies mn, > Ep[—Xi]
and
lim Ten = Ep[—Xl].

nToo
Proof. In view of we can choose for any € > 0 some 6 > 0 such that es(X;) <
Ep[—Xi] + €. Thus, by ,
_ 1
Ten = g;r;fo{% +e,(Xi+...+ X))}
= I ey (X))

<5 T Ep[-Xi]+e€

hence lim,, o0 Te.n < Ep[—X1]. Since 7., > Ep[—X1], the conclusion follows. In fact
we have 7., > Ep[—X;] since the distribution p of X is non-degenerate. O



Let us now describe the decay of the risk premium . ,, — Ep[—X;] more precisely.
Note that for any @, € Qp x,+..+x, we have

=R (Bl )

and
H(Q’Y‘P) = nH(N’yW)a

where p., is the distribution on R with density
dpiy T —yz —
o) = e ([ e ),
mean m(y) := [(—z)u,(dz), and variance 62(7) := [(x +m(v))? py(dz). We denote

by 0% (X;) := 0%(0) the variance of X; under P.

Proposition 4.1. For a given level ¢ > 0, the premium 7., defined by 18 given

by Ten = M(Yen), where yep is such that H(p,, ,|1) = <, and we have

n’

7111%10 Vi(men — Ep[—X1]) = V2cop(X1).

Proof. Recall from Proposition [3.1] that
pe(X1+...+ X)) =Eq, [—(Xi+...+X,)],

where Q,., € Qpx,+..+x,, and where the parameter ., > 0 is taken such that
H(Q%yn |P) = ¢. Thus,

¢ = H(Qy. ,|P) =nH (1), (15)

and the individual premium 7., can be rewritten as
e = %pc(Xl +...+ X)) =m(ven) (16)

The smooth function f defined by f(v) := log Ep[e™*1] = log [ e™7% u(dz) satisfies
f'(7) = m(y) and f”(vy) = o%(v), and so we have

H(pylp) = ym(v) — f(v) = 517

for some 74 € [0,4]. The condition

% = H(Mvc,nm) = %fu(ﬁc,n)'yg,n
clearly implies lim;,1o Ve, = 0, hence

lim nyZ,, = 2c(f"(0)) 7" (17)

nToo

Since

f(lyc,n) = f(()) + f/(o)'}/c,n + %fﬁ(ﬁc,n)’yg’n

= m(O)’yc,n + %f”(%n)ﬁn

for some 7., € [0, Ve,n], we have

Teqn = M(Yen) = 5= (H (b, [0) + f(Vein))
= (& +m(0)Yen + 31" Aen)Von)-




Due to , we finally obtain

lim V(e — Ep[—X1]) = lim —= (1 +1 f”(%n)”cg’”)

ntoo nloo VM7e,n

V2cop(X7).

O

Let us now fix a premium 7 such that Ep[—X;] < m < esssup(—X), and let us
determine the maximal tolerance level

Crm i=max{c > 0|Lp. (X1 +...+ X,) <7}
at which the portfolio X1,..., X, is made acceptable by the total premium ns.
Corollary 4.2. Take y(mw) > 0 such that m(y(w)) =n. Then
Crn = NH (o (| 12).-
Proof. At level ¢, we have
FPen (X1 4o+ X)) = m(y(m)).
In view of and this is the case iff

Cron = nH(M’y(ﬂ')Lu)'

Remark 4.1. Due to , C’orollary implies
VaRg, - (X1 +...+X,,) <nrw
for ar = exp(—cx n). But this translates into
Pl-1(X1+ ...+ X,) > 7] < atrpm,

and so we obtain

Llog Pl-2(X1 4 ...+ X)) > 7] < == = —H(py(my |10).-

In other words, the combination of C’orollary with the estimate simply amounts
to a reformulation, in the language of risk measures, of the classical proof of Cramér’s
upper bound for the large deviations of the averages _TIL(Xl + ...+ X,); see, e.g.,
Dembo & Zeitouni [3].

5 Model ambiguity and robust large deviations

So far we have fixed a probability measure P which is assumed to be known. Let us
now consider a situation of model ambiguity where P is replaced by a whole class P
of probability measures on (€2, F).

Assumption 5.1. We assume that all measures P € P are equivalent to some refer-
ence measure R on (0, F), and that the family of densities

Pp = {%uj S 7)}

is convexr and weakly compact in L*(R).



For a probability measure @ on (2, F), the extent to which it differs from the
measures in the class P will be measured by the relative entropy of QQ with respect to
the class P, defined as

H(QIP):= inf H(QIP).

Our assumption implies that for each @ such that H(Q|P) < oo there is a unique mea-
sure Py € P, called the reverse entropic projection of Q on P, such that H(Q|Pg) =
H(Q|P); cf. [6], Remark 2.10 and Proposition 2.14.

Let us denote by M1 (R) the class of all probability measures on (€2, ) which are
absolutely continuous with respect to R. From now on we write L = L>®(Q, F, R);
note that L> C L>(Q, F, P) for any P € M;(R). We also use the notation ep, and
pp,c for the convex and the coherent entropic risk measures defined in terms of the
specific measure P.

In this context of model ambiguity, we define the robust version ep - of the (con-
vex) entropic risk measure by

ep(X) = sup epy(X) =

% up log Eple™¥], X € L™.
PEP P

S
Pe
Assumptionimplies that the supremum is actually attained. Clearly, ep . is again
a convex risk measure, and its robust representation takes the form

epa(X) = sup {Bgl-X| = JH(QIP)}, X & I*.

Lemma 5.1. We have
ep(X) > max Ep[—X],

PeP
and ep (X)) is increasing in v with
li X) = Ep|—-X]|. 1
vlfgem( ) = max Ep[—X] (18)

Proof. The functions
Hep) = epy(X) — Ep[-X]

with pp = % are weakly continuous on ®p and they decrease pointwise to 0, due
to . Since ®p is weakly compact, the convergence is uniform by Dini’s lemma,
and this implies . Note that the maximum in is actually attained since
pp — Er[(—X)pp] is continuous on the weakly compact set ®p. O

From now on we focus on the robust extension pp . of the coherent entropic risk
measure defined by

pp.o(X) = sup Eg[—X] (19)
QEM1:H(Q|P)<c

for any X € L.

Lemma 5.2. The supremum in (@ s attained, i.e., for any X € L™ there is a
pair (Q¢, P.) € My(R) X P such that H(Q.|P.) < ¢ and

pp.o(X) = Eq.[-X].

In particular,

(X) = o(X) > max Ep[~X]. 2
pp.o(X) = max ppc(X) 2 max Ep[—X] (20)

10



Proof. Since any @ such that H(Q|P) < oo admits a reverse entropic projection
Pg € P, we can write

pp.(X) = sup Eq[-X]
QeEMi(R):H(Q|P)<c
= sup Eq[-X]

B QEM(R),PEP:H(Q|P)<c
= sup FEg[(—X)¢],
(p,¥)eCe

where we define
C. = {(p,0) € D x Dp|Eg[h(p, )] < ¢}

with @ := {%\Q € My(R)} and h(z,y) := xlog { for y > 0 and x > 0, h(0,0) :=
0, and h(x,0) = oo for x > 0. The functional F(p,¢) := Egr[(—X)y] is weakly
continuous on ® x ®p, and the set C. is weakly compact in L'(R) x L'(R); cf. the
proof of Lemma 2.9 in Féllmer & Gundel [6]. This shows that the supremum in
is actually attained and that holds. O

Recall that for X € L* and P € P we denote by Qp x the exponential family
introduced in @

Proposition 5.1. For

¢ < —logmax P[X = essinf X]
PeP

we have
pp.o(X) = maxmin{2 + epy(X)}
= »TLF + ep. . (X)
= EQC [_X]’

where Q). denotes the measure in the exponential family Qp, x with parameter 7., and
Ye > 0 is such that

H(Q.|P) = HQ.P.) = c. (21)
If ¢ > —logmaxpep P[X = essinf X], then
pp.o(X) = esssup(—X). (22)

Proof. 1) If ¢ > —log P[X = essinf X| for some P € P, then pp.(X) = esssup(—X)
due to Proposition and this implies .

2) The proof of Lemma shows that for any X € L there exists a pair
(Qc, P.) € My (R) x P such that H(Q.|P.) < ¢ and

p’P,(/(X) = EQL [_X]'
Let us first show that Q. belongs to the exponential family Op, x, and that H(Q.|P.) =
c. To this end, we take 7. > 0 such that H(Qp, . |P.) = ¢, and we show that

Q. = Qp, ~,- Indeed, Qp, -, satisfies the constraint

H(QPC,WC|P) < H(QPC,%|PC) =¢

11



and as in the proof of Proposition [3.1] we see that

_ H(Qc|P.) — H(Q.|Qp, ~.)
Ve
< 5 tep (X)

= EQPC,'VC [_X} :

Eq. [-X] +ep . (X)

But Eg,[—X] is maximal under the constraint H(Q|P) < ¢, and so we must have
equality. This implies H(Q:|Qp,,.) = 0, hence Q. = Qp,, and H(Q.|P:) =
H(QPC7'YC|PC) =cC
3) We have
pP,c(X) = ch,c(X) = sSup EQ[_X]
Q:H(Q|P:)<c

Indeed, “<” is clear since P, € P. Conversely, if H(Q|P) < ¢ then, since Q. € Qp, x
and H(Q.|P.) = ¢, Proposition [3.1] implies

Eq[-X] < Eq.[-X] = pp..(X),

and this yields “<”.
4) In view of 2) and Proposition we have

sup  Eg[—X] = pp(X) = sup pp(X)
Q:H(Q|P)<c PcP

— M [&]
= sup mf {5 +epn(X)}-
The argument in part 1) shows that the second and the third supremum are attained
by P = P,., the first by @ = Q., and the infimum by v = ..

5) If does not hold, then we have H(Q.|P) < c¢ for some P € P. But then
the proof of Proposition shows that there exists some @Q such that H(Q|P) <
H(Q|P) = c and Eg[—X] > Eq,[—X], contradicting the definition of Q.. O

Corollary 5.1. The robust versions

VaRp o(X) := sup VaRp(X) = inf{m € R| sup P[X +m < 0] < a},
Pep PeP

VaRp o (X) := sup VaRp o (X) = inf{m € R| sup P[X +m < 0] < a},
pPeP PeP

and

AVaRp o(X) := sup AVaRp o (X)
PeP

of Value at Risk and Average Value at Risk with respect to the class of prior models
P satisfy

VaRp o(X) < VaRp o (X) < AVaRp (X) < pp ooy (X) (23)
with ¢(a) := —loga > 0.
Proof. This follows from Proposition [5.1] and Proposition [3.2} O

Let us now look at the asymptotic behavior of the robust premium
e = %pp,c(Xl +... 4+ X)) (24)

for a portfolio which satisfies the following

12



Assumption 5.2. For any P € P, the random variables X1,...,X, are i.i.d. and
non-degenerate under P.

Thus, model ambiguity only appears in the multiplicity of the distributions pup of
X under the various measures P € P. As in Section [f] we assume for simplicity that
X, belongs to L.

Corollary 5.2. The robust premium 7., defined by satisfies

Ten 2 Max Ep[—X]

P
and
lim 7., = max Ep[—X1]. (25)
nloo PeP

Proof. Due to we can choose d > 0 such that

< —
67)’5(X1) < Ilglea%Ep[ X1] +e€

for a given € > 0. In analogy to the proof of Corollary Proposition [5.1] yields the
estimate
Ten < ﬁ + 11?27}3( Ep[*Xl] + €,

and this implies . O

Remark 5.1. While the pooling of risks has the desired effect if premiums are com-
puted in terms of pp ., this is not the case if we use the robust version ep , of the
convez entropic risk version. Indeed, it is easy to check that the above homogeneity
Assumption implies

ep~(Xi+ ...+ X,) =nep (X1).
We conclude with the robust extension of Corollary [1.2] and Remark [£:1]
Proposition 5.2. For a fixed premium m such that

Ep[-X)] <7< —X),
max p[—X1] <7 < esssup(—X7)

the corresponding tolerance level

Crm i=max{c > 0|Lpp (X1 + ...+ X,) < 7} (26)
s given by
Crn = nlp(m) = nAp(m), (27)
where
Ip(m) := min H(QP 28
plr) = min H(QIP) (28)
and
Ay () = sup{ym — sup log Ep[e”7*1]}. (29)
>0 PeP

In particular, Ip coincides with the convex conjugate A% of the convex function Ap
defined by

Ap(y) = sup log Eple™ 1], 4> 0.

13



Proof. 1) Let us first show the identity I» = A%. Indeed, for any @ € M such that
Eq[—X1] > m, for any P € P, and for any vy > 0, implies

H(Q|P) > ym — log Ep[e_"YXl]

with equality iff Q = Q, € Qp x and v > 0 is such that Eq_[-X] = m. This yields
the classical identity

Ip(m) == i O H(Q|P) = Ap(m),

where A% denotes the convex conjugate of the convex function Ap defined by Ap(7) :=
log Eple=7%1]; cf., e. g., [7], Theorem 3.28. Thus

Ip(T) = i H(Q|P) = inf i H(Q|P
p(m) L (QIP) L S (Q[P)
= inf A%(7).
p2 Ar ()

In order to identify the right-hand side with A} (7), we apply a minimax theorem,
for example Terkelsen [I7], Corollary 2, to the function f on ®p x (0,00) defined by
f(%,’y) = g7 — log Eg[e™ X1 %]. This yields

jnf Ap(r) = inf iglg{w —Ap(7)} = sup Jnf {ym —Ap(7)}

= igpo{w —Ap(7)}

= Ap(m),
hence Ip(m) = A (7).
2) In order to verify the first equality in , recall from Proposition that

n

wope(Xi 4. 4+ Xp) = LEq.[- ) X)) = Eq.[-X],

=1

where Q. := Q. € Qp, x,+..+x, and . is such that ¢ = H(Q.|P.) = H(Q.|P). Our
assumptions imply that pp (X7 + ...+ X,,) is strictly increasing and continuous in
c. Thus the tolerance level c ,, is determined by

%pp&m (Xi+...+X,) =m,
i.e., by the two conditions
¢rn = H(Qec, ,|P) = H(Qc, . |P,,) and Eq._ [-Xi]=m.
Using part 1), we thus see that

crn = fnf H(Qe, .|P) = inf {Eq.  [~Ye.., ; Xi] = nlog Eplexp(—7e,.. X1)]}

=n inf (e, .7 —log Eplexp(—e, , X1)]}

= n(Ye,, .7 — log sup Eplexp(—7e, , X1)])
PeP

< nlp(r) = nlp(m).
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On the other hand, the same arguments applied to P,

Cron = H(Qcﬂ,n |Pc7r,n) = n(’chﬂr —log Ep

Cm,n

yield

T,n

=nsup{ym —log Ep,_ [e ']}
>0 ’

=nlp,_ (m)

> nlp(m)

since the supremum in the second line is attained by v = ., .-

[exp(—Ye,., X1)])

O

As in Remark translates into the upper bound of the following extension
of Cramér’s theorem to our present context of model ambiguity. For related results on
robust large deviations we refer to Sadowsky [I5], Pandit & Meyn [14], and Hu [10].

Corollary 5.3. For any m > maxpep Ep[—X1] we have

Llog(sup P[-2 (X1 +...4+ X,,) > 7)) < —Ip(m),
PeP

and

lim L log(sup P[-1 (X1 + ...+ X,) > ) = —Ip(n),
nloo PeP

where the rate function Ip is given by @ and coincides with (@
Proof. For ay p := exp(—cr.n), and imply
VaRp o, ,— (X1 + ...+ Xp) <ppe. (X1 +... + X,) <o,

sup P X1 +...+ X, +nm < 0] < agp,
PeP

hence

Llog(sup P[-1 (X1 +... 4+ X,) > 7)) < —Ip(m).
Pep

In order to verify , simply recall that Cramér’s theorem yields

lim LlogP[—1( X1+ ...+ X,) > 7] > — min H(Q|P
lim 2 log Pl (X, )z - win  HQIP)

for any P € P, hence

lim 1 log(sup P[—2 (X1 +...4+ X,,) > 7]) > sup(— min H(Q|P))
nfoo PeP PeP Q:Eq[-Xi]=m
=— min H(QP
Lo H(@IP)
= —IP(T(').
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