Probabilistic Aspects of Options

by Hans Féllmer

0. Introduction

In recent years, derivative securities such as options have generated a lot of
interest, both on a practical and on a theoretical level. Starting with the creation
of the Chicago Board Options Exchange in 1973, there has been a remarkable
expansion of financial markets dealing with these instruments; for example, the
Swiss Options and Financial Futures Exchange opened in 1988, the Deutsche Ter-

minborse in 1990.

But what is really new from a theoretical, and in particular from a proba-
bilistic point of view? Already in Bachelier’s thesis “Théorie de la Spéculation”
(1900), Brownian motion is introduced as a model for price fluctuations on a spec-
ulative market, and option prices are computed as expected values in that model.
In the sixties, the pricing of American options was recognized as a problem of
optimal stopping, and this motivated some of the probabilistic work in that area;
cf. Samuelson (1964) and McKean (1964). As instruments of portfolio insurance,
options have the form of a stop loss contract, and such contracts have been studied
in the actuarial literature since the fifties; cf. Beard, Pesonen and Pentikainen
(1984).

In the seventies, due to the path-breaking work of Black and Scholes (1973)
and Merton (1973), the theory of options underwent a major change. It was realized
that, in a typical model for price fluctuations of a risky asset, a derivative security
can be replicated by a dynamical portiolio strategy. Thus, an option can be hedged
in a perfect manner: There is no intrinsic risk. This idea of dynamical hedging
soon began to have a practical impact on actual trading. On the theoretical level,
it became apparent that martingale theory provides a natural framework for the
study of options. This has changed the way financial mathematics is being taught,
and it also suggests new study programs for “Actuaries of the Third Kind”; ¢f. H.
Bihlmann (1988).

This survey gives an introduction to those aspects of the theory of options
which seem particularly interesting from a probabilistic point of view. In section
1 we describe the mathematical model of a complete financial market where con-
tingent claims can be represented as stochastic integrals of the underlying price
fluctuation. A fundamental representation theorem of K. It6 implies that the stan-
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dard diffusion model for risky assets is indeed complete. In section 2 we consider
stuations which are incomplete: A typical claim now carries an intrinsic risk, and
Ledging strategies can only reduce the actual risk to that intrinsic component.
Section 3 comments on some relations between option pricing, actuarial premium
principles and economic equilibrium analysis. In section 4 we take a closer look
it the structure of the probability measure P which models the price fluctuations
of the underlying asset. We review some of the arguments in favour of geometric
Brownian motion and conclude with a few tentative remarks on possible modifica-
lions.

This is the written version of two lectures given at a joint meeting of the Ac-
tuarial Society of Finland and the Finnish Mathematical Society in January 1990,
and it is a pleasure to express my thanks to Heikki Bonsdorff and Hannu Niemi for
their kind invitation to Helsinki. As the lectures, the paper is meant to be a first
ntroduction to the probabilistic theory of options. For further orientation, some
excellent surveys are available in the literature; cf., e.g., Harrison and Pliska (1981),
Karatzas (1989), Duffie (1991), and the books of Cox and Rubinstein (1986), Duffie
(1988), Huang and Litzenberger (1988), Ingersoll (1987) and Merton (1991).

Special thanks are due to Martin Schweizer: Sections 1 and 2 are an extension
of Follmer and Schweizer (1989), and he contributed to the present paper with a
number of comments and corrections.

1. Pricing and Hedging of Options

Consider a risky asset (a stock, a portfolio, an exchange rate, ...) whose price
fluctuation is described by a stochastic process

Xiw) (0<t<T)

on some probability space (Q2, F, P). At the initial time ¢ = 0, the value Xp(w) of
the asset at the terminal time T is unknown and thus constitutes a risk. In order
to reduce this risk, we may want to consider financial instruments such as options.

1.1 Options and Portfolio Insurance

Consider, for example, a call option with striking price ¢. This option gives
the right to buy the stock at time T at the fixed price c¢. The resulting pay-off is
given by

(1.1) Hw) = (Xp(w) - c)*.
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In the same manner, a put option with striking price ¢ would yield

H(w) = (c ~ Xp(w))*
Thus, an option corresponds to a contingent claim H(w) dependingonw € Q, i.e.,
to a random variable H on the underlying probability space.

Such options can be used for purposes of portfolio insurance. For example, we
could replace the pay-off X1 by the contingent claim

(1.2) H = max(c, X1),

either by holding the stock and a put option, or by holding the cash amount ¢ and

a call option, since
H=Xr+(c-Xp)t =c+ (X7 o)t

More generally, if we want to replace Xp by H = f(X7) with some convez function
f, this can be achieved by a mixture of such instruments:

(13) H =10+ £0Xr+ [ (Xr - e utde

where 4 is the distributional derivative of the convex function f, viewed as a non-
negative measure on R*; cf. Leland (1980).

1.2 The Fair Price of an Option

How should we compute the fair price of such a contingent claim H? In other
words: What is the value V; of the option at the initial time 0 when the final
outcome H{w) is still uncertain? From a classical actuarial point of view, there
seems to be a natural answer which goes back to Chr. Huygens and J. Bernoulli:
The fair price should be equal to the ezpected value of the random variable H with
respect to the probability measure P, i.e.,

(1.4) Vo = E[H].

(1.5) Vo = E|

To account for risk aversion, one might also want to add a safety loading, e.g., of
the form a - var(H), or defined in terms of some utility function. But (1.4) would

seem to be a natural starting point.
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If one accepts (1.4), or one of its modifications, then the problem is reduced
to the choice of the underlying stochastic model. Here is the standard reference
model. Suppose that (X,) satisfies the stochastic differential equation

(16) dXt = OZY;th + ngdt

where (W;) is a Brownian motion under P, ¢ is a parameter for the volatility and
m is a parameter for the trend of the process. The pathwise solution of equation

(1.6) is given by
1
(1.7) X = Xoexp[oW; + (m — —2-02)t] (0<t<T)

in particular, each random variable X, has a log-normal distribution.

In the context of this standard model, we could now apply the Huygens-
Bernoulli prescription (1.4), or one of the modifications above, in order to compute
the fair price of an option H. But Black and Scholes (1973) gave an answer to our
question which is quite different. Their prescription is as follows:

Replace P by the new measure P* corresponding to m* = 0 so that (X¢)
becomes a martingale under P*. Compute the price of H as

(1.8) Vo = E*[H).

Do not add any safety loading because there is no real risk.

If an interest rate r is to be included then take P* such that the discounted
process becomes a martingale and compute V; as in (1.5), but in terms of P* rather
than P.

At first sight, this prescription may seem counter-intuitive. In particular, it
may not be clear why the safety loading should be dropped. Before we present the
general argument, let us look at an elementary two-period model; cf. Cox, Ross
and Rubinstein (1979).

1.3 A Binary Example

Suppose that the current value of the risky asset, say the price of 100 US $
in SFR, is given by X, = 150. Consider a call option with a strike of ¢ = 150 at
time 7. We assume the following binary scenario: The price X7 of 100 $ at time
T will be 180 with probability p or 90 with probability 1 — p. Then the pay-off H
of the option will be 30 with probability p and 0 with probability 1 — p. Taking
into account an interest rate r, the Huygens-Bernoulli price (1.5) would be

H } 1

- p - 30;

1.9 = =
09 %[ ] = i
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for p = 0.5 and r = 0 we would get V5 = 15. The Black-Scholes prescription,
however, would be the following. First replace p by p* so that the exchange
rate, properly discounted, behaves like a fair game:

| X7T
(1.10) Xo=E [1+rJ

or, more explicitly,
i__..— p + p ;

for r = 0 we would get p* = -32- Now compute the fair price as the expected value

-p*-30

(1.11) VO:E"[ H} :

1+r :1+r

in this new model; for r = 0 we would get V, = 20.

At first sight, this change of the model seems completely arbitrary, just as in
the diffusion model above. But in the present simple case we can give a direct
economic justification. For simplicity assume r = 0. Suppose that at time 0 you
sell the option. Then you can prepare for the resulting contingent claim at time T
by using the following strategy :

Sell the option at the price n(H) + 7(H)
Buy $33.33 at the present exchange rate of 1.50 - 50
Take a loan of SFR 30 + 30

Thus, the balance at time 0is 7(H) — 20. At time T we have to distinguish two
cases:

i) The dollar has risen : Option is exercized - 30
Sell dollars at 1.80 + 60
Pay back loan - 30
1i) The dollar has fallen : Option is worthless 0
Sell dollars at 0.90 + 30
Pay back loan - 30

Since the balance at time T is 0 in both cases, the balance at time 0 should also
be 0, and so the price 7(H) should coincide with the Black-Scholes price 20. Any
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option price different from the Black-Scholes price would enable ejther the option
seller or the option buyer to make a sure profit without any risk : There would be
an arbitrage opportunity. If the loan has to be paid back with interest then there
1s a similar strategy which leads to the Black-Scholes price (1.11).

In section 2.5 we are going to explain how the correct hedging strategy can be
found in a systematic way. It is clear that the present example is too simplistic;
even if we consider a two-period model, there is no reason to restrict our attention
to a binary scenario. In fact, the situation will become less pleasant as soon as
we admit a third possibility for the value X1 . In that case, a perfect hedge of
the claim is no longer possible. This simple observation will motivate our general

,\

approach in section 2. “

£

From the point of view of the continuous-time model (1.7), the binary example
is relevant because it can be regarded as an infinitesimal building stone of the
diffusion model. Similarly, our strategy should be viewed as an infinitesimal step
in the construction of a dynamical hedging strategy in continuous time. We are
now going to describe this construction. From now on, we leave completely aside
the question of interest rates in order to simplify the exposition.

1.3 The general argument

Let us explain the probabilistic structure of the argument which is behind the
Black-Scholes formula (1.8) and also behind the preceding example. As shown by
Harrison and Kreps (1979) and Harrison and Pliska (1981), the natural mathemat-
ical framework is provided by the theory of martingales.

We assume that the underlying measure P admits an equivalent measure P* ~
P such that

(1.12) (X¢) is a square-integrable martingale under P*.
This means that the increments have zero conditional expectation, i.e.,
(1.13) E*' X, - X |F,) =0

for 0 < s <t < T, where E*[ - |F,] denotes conditional expectation under P*
with respect to the o—algebra F, which specifies the information available at time
s. Such a measure P* will be called an equivalent martingale measure. We will
comment on the economic meaning of this assumption in section 4.2. From a
mathematical point of view, it guarantees that the following stochastic integrals
make sense. We omit a number of technical points. For example, integrability
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issumptions will be tacitly assumed whenever they are needed, but they will no

bnger be mentioned explicitely (up to a notable exception in 4.2).

Let us now onsider a dynamical portfolio strategy (&, 1) of the following form.
it time t we hold the amount £; in the risky asset, and the amount ¢ in the riskless
isset given by the constant 1. The process ¢ = (¢,) is assumed to be predictable and
1 = (1) is assumed to be adapted with respect to the o-fields (Ft). The motivation
bor this distinction is explained in Féllmer and Sondermann (1986); it also becomes
ipparent in section 2.5. For such a strategy, the value of the resulting portfolio at

fime ¢t is given by
(1.14) .‘/tztht+nt) . ‘j 4__’\’ R

and the cumuletive cost up to time t is given by
t

(L.15) Co=Vi- [ tax,,
0

since the stochastic integral fot €,dX, measures the gain from trade resulting from
the price fluctuations of the risky asset. Now consider a contingent claim H, and

assume that H admits an 16 representation

T
(1.16) H:Ho+/ eHdx,
0

as a stochastic integral of X. Then we can replicate or hedge the contingent claim
by the following dynamic portfolio strategy: Take

(1.17) £=¢"

and 7 such that
t
(1.18) Vi=¢0X +n =H, +/ ¢Hdx,.
0

This implies
(1.19) Vr(w) = H(w),

l.e., our strategy leads to a perfect. replication of the claim H for any scenario w € 2

which may unfold. Moreover,
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1.e., the strategy is self-financing: Starting with the initial amount Hy = Gy it
produces, without any further risk, the final amount Vr(w) = H(w). Thus, the
correct price of the claim should coincide with this initial amount Vo = Hy. There
1s no theoretical reason to add a safety loading.

A convenient way of computing this price in a direct manner, without first
finding the representation (1.16), is provided by the equivalent martingale measure

P*: Since
T
E* U g”dXJ =0
0

due to the martingale property of X under P* (and our implicit integrability

assumptions), we obtain

(1.21) Vo = Ho = E*[H).

The model (2, F, P) of our financial market is called complete if every contin-
gent claim H admits an It representation of the form (1.16). For the purposes of
this paper, completeness is equivalent to uniqueness of the equivalent martingale
measure P*; cf. Jacod (1979). A fundamental theorem of K. [t3 (1951) states
that the canonical model for Brownian motion, given by Wiener measure P on
= C[0,T] with X((w) = w(t), is indeed complete. Many diffusion processes can
be constructed as pathwise functionals of Brownian motion and thereby inherit
completeness. In particular, it follows from Itd’s theorem that the standard refer-
ence model (1.7) is complete. Thus, the general argument leading to (1.21) also
explains the Black-Scholes formula (1.8).

For simplicity, we have limited our discussion to one single financial asset. But
the argument is equally valid in the multidimensional case X — (X1, ..., X™) where
the financial market consists of n risky assets. Such a market is called complete if
every contingent claim can be represented in the form

n T
H=Hy+ Z/ EfdXE,
k=170

and in that case the preceding discussion applies with only notational changes.

1.4 How to Compute the Strategy

In order to compute the hedging strategy, we have to find the integrand £ in
the representation (1.16). The value process 1s given by

(1.22) Vi = E*[H|FY],
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and so the remaining cornponent n of our strategy will be determined via (1.18).

Let us first consider the case
(1.23) | = f(Xr),

where the contingent claim depends only on the final value X1 of the underlying
asset. Let us assume that under P* the process (X¢) is a diffusion with generator
L* . Denote by h the solution of the boundary value problem

(1.24) (L™ + (—%)h =0, Rh(,T)=f.
By Ité’s formula we obtain
¢
h(X:,t) = h(X,,0) +/ he(X,,s)dX,,
0

and this implies

(1.25) ¢ = he(Xs,$), Ve = h(X,, s).

Consider the special case (1.7) of geometric Brownian motion. The solution
of (1.24) can be computed explicitly as

h(.’L‘,t) = #/ f (a:e"“‘/?‘—‘—%a’(Tq)) e—"%idu.

For a call option with f(z) = (z - o)t we get

SN’

h(z,t) =zd ——1—_——(logE + l0'2(T — 1)) | —cd ~—1—__~(log—ai - 102(T —t))
oVT -t “c 2 ovVT -t "c 2

and

(1.26) L= (;ﬁ;—\/_t_t(log—){—i + %UQ(T - t))) ,

where © denotes the distribution function of the standard normal distribution. In
particular, the price of a call option at the initial time i = 0 and for an injtal value
Xo = z of the underlying asset is given by

(1.27)

Vo :h(m,O):xCI)( !

FAlos +57°) o (ol o)
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This is the Black Scholes option pricing formula (with r = 0) as it appeared in
Black and Scholes (1973).

Let us mention at this point a conceptual problem. Trading strategies should
be built upon the single empirical trajectory X (w) (0 <t < T') which is actually
observed. On the other hand, general stochastic integrals cannot be constructed
path by path. But in our present case, we are dealing with the special class of
stochastic integrals arising from It6 calculus, and these can indeed be constructed
in a strictly pathwise manner, “without probabilities”; cf. Féllmer (1981). Based
on this observation, a pathwise approach to the Black-Scholes formula has been
developped in Bick and Willinger (1990).

For contingent claims depending only on the final value X7(w), we have re-
duced the computation of the trading strategy to the solution of a partial differ-
ential equation. But we could also consider a look-back option H which depends
on the whole trajectory X (w) (0 <t < T'). In that case, the computation of the
ntegrand ¢ in (1.16) becomes more involved. In the context of (1.7), H may be
viewed as a functional of the underlying Brownian motion. More precisely, we
write H = F(W*) where W = W, + ot is a standard Brownian motion under the
martingale measure P*. Suppose that F, viewed as a function on C[0,T), is almost
surely Fréchet differentiable and denote by DF(W*,.) the derivative, regarded as
a measure on [0,T]. Under some integrability conditions, the integrand can now
be identified via Clark’s formula

(1.28) H = E*[H] + / TE‘[DF(W‘, (t, T))|Fe)dW s

d., e.g., Rogers and Williams (1987). In fact, since
dX = o XdW*,
(1.28) implies

(129) & = (@ X) B DFC (4 TDIE).

As an explicit example, consider the mazimum option

(1.30) Hw) = Ox%ltanTX,(w) = Xy exploMp(w)] = F(W*)

where we use the notation

. 1
M, = atélt?él[wu - §aru]
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and M = My,. The maximum of (X,) is attained, P*—almost surely, at a unique
random time 7(W*). At such a trajectory, F is differentiable with

DE(W*,-) = c F(W")&,(w),

where §. denotes the Dirac measure at ¢. Using the Markov property, we can now

compute

EX[DEW?, (t, TDIF)W*) = E* [0 F(W™ ) I(p, 15 a1,y | F (W)
= o X E* [exp(oMp_y); Mp_, > M(W™)]

For a fixed value of W*, this expectation only depends on the distribution of the
maximum of a Brownian motion with constant drift. But this distribution is known
explicitly; cf. Shepp (1979). This leads to the strategy

(1.31)

o (T — — log Mi(y, %UQT—t

— log %(w) + %02 (T — t))

*"VT"“"’( o /T 1

and to the value
. T 1 1
(1.32) V= E*[H] = X, —-+2)¢ 5o—\/T +ovVT X 50\@ :

where ¢ denotes the density of the standard normal distribution; cf. Goldman et
al. (1979). The derivation via Clark’s formula is due to M. Schweizer; it parallels
IV.41.13 in Rogers and Williams (1987).

As shown by J.M. Bismut, the Clark formula (1.28) can be derived as an
exercise in Malliavin calculus; of., e.g., Rogers and Williams (1987). A systematic
application of Malliavin calculus techniques leads to more refined versions, where
differentiability and integrability assumptions are relaxed considerably. Actually,
one of the recent extensions of Clark’s formula was motivated by the application
to financial markets; ¢f. Karatzas and Ocone (1989). Thus, the mathematics of
financial markets becomes involved with very advanced techniques of stochastic
analysis. Here is another example: Merton (1989) introduces contingent claims of
the form

H = 6.(X7),
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in analogy to the pure securities of Arrow and Debreu. But a rigorous mathematical
approach to distributions on Wiener space has been developped only recently; cf.

Watanabe (1984).

2. Minimizing Risk in an Incomplete Market

So far we have described the construction of hedging strategies in a complete
financial market where every contingent claim admits a representation (1.16). In
that ideal case, hedging allows us to eliminate all the uncertainty involved in han-
dling an option. But real situations will typically be incomplete. In discrete time,
this happens whenever the possibilities at one single step do not reduce to a binary
scenario as in section 1.3. It also happens in continuous time if the price fluctua-
tions include jumps of varying size, or if a contingent claim depends on additional
sources of randomness. In particular, the standard model (1.7) becomes incomplete

if the variance is not completely known; cf. section 2.4 below.

In an incomplete situation, there will be claims which carry an intrinsic risk.
In this section, our purpose is to find a dynamic portfolio strategy which reduces the
actual risk to that intrinsic component. Thus, our emphasis is not on the pricing
of claims (we will come back to that question in section 3), but on the reduction
of risk, as it is perceived by an agent who evaluates the situation in terms of the
probability measure P. In continuous time, this reduction of risk corresponds to a
regression problem for semimartingales, and this is a somewhat technical matter.
But the basic idea is quite simple, and in section 2.5 it is described in an elementary
two-period model. If the reader is less interested in the martingale aspects of the
problem, he is invited to pass immediately on to 2.5.

2.1 Hedging with a martingale

Let us first consider the case P = P* where X is already a martingale under
the initial measure P. In this case, the following criterion of risk-minimization was
introduced in Féllmer and Sondermann (1986). For a given contingent claim H,
we look for a strategy which replicates the claim in the sense that

(2.1) Vr =H,
and which minimizes, at each time ¢, the remaining risk
(2.2) E[(Cr ~ C)*|F);

the minimum is taken over all continuations of this strategy after time ¢ which
respect (2.1). H admits a representation (1.16) if and only if this remaining risk
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can be reduced to 0, and this means that the risk-minimizing strategy is self-
financing. For a general contingent claim, this will no longer be true. However,

the risk-minimizing strategy is always mean-self-financing in the sense that

i.e., the cost process C associated to a risk-minimizing strategy is a martingale.

Existence and uniqueness of a risk-minimizing strategy follow from the decom-
position

T
(2.4) H=H, +/ efdx, + Lo
0

where (L{?) is a martingale orthogonal to X. The strategy is then described by

(2'5) & = sza ne =V — X,
with
t
(2.6) Vi = H, +/ ¢Hdx, + LY.
0

The associated cost process is of the form
(2.7) Cy=Hy + L,
and so the remaining risk at time ? is given by

(2.8) E((L ~ L) | F).

The value process V can be computed directly as the martingale
(2.9) Vi = E[H|F] (0<t<T).

Its decomposition (2.6), and in particular the decomposition (24) of Vp = H,
is obtained by applying the well-known Kunita-Watanabe projection technique in
the space of square-integrable martingales: We simply project the martingale V
associated to I via (2.9) on the martingale X; ¢f. Féllmer and Sondermann (1986).
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2.2 Hedging with a semimartingale

Let us consider the general incomplete case P ~ P*, where P itself is no longer
a martingale measure. (X,) is now a semimartingale under P, and we assume that
it admits a Doob decomposition of the form

where (M) is a martingale and (4,) is a continuous process with paths of bounded
variation. Schweizer (1988) introduces a criterion of local risk-minimization. For a
strategy with (2.1), it is essentially equivalent to the condition that the associated

cost process
(2.11) C' is a martingale orthogonal to M.

Such a strategy will be called optimal. An optimal strategy corresponds to a

decomposition
T

(2.12) H:H0+/ ¢fdx, + L2
0

where (L{?) is a martingale orthogonal to M. Given such a decomposition, the
associated optimal strategy (£, 1) can be computed again by (2.5) and (2.6). Con-
versely, an optimal strategy leads to the decomposition

T T
H=CT+/ sst.,=co+/ £.dX, + (Cr— Cy),
0 0

and this is of the form (2.12). Thus, the problem of minimizing risk is reduced to
the task of finding the representation (2.12). This is of course analogous to (2.4).
But if X is not a martingale, we can no longer use directly the Kunita-Watanabe
projection technique. An obvious idea is to shift the problem to an equivalent
martingale measure. But in contrast to the complete case, the martingale mea-
sure is no longer unique, and different martingale measures may lead to different
strategies. However, in a number of situations it turns out that there is a minimal
martingale measure P* &~ P such that the optimal strategy for P can be computed
in terms of P*; cf. Schweizer (1990b) and Féllmer and Schweizer (1990).

]

2.3 Incomplete information

Let us now consider a situation which would be complete if we had more
information. In that case, the projection problem can be solved in a direct manner.
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Recall that the information accessible to us is described by the o —fields (F;). Now
suppose that the model is complete with respect to some larger family (F,), and
that the Doob-Meyer decomposition (2.10) of X with respect to (F;) is also valid
with respect to (.72), l.e., M is also a martingale with respect to (.7::,) A class of
examples will be given in in section 2.4.

By assumption, a given claim H has the representation
o~ T o~
(2.13) H = H, +/ ¢Hdx,
0

where I;'o is fo-measurable, and where the process EH is predictable with respect
to the larger filtration (F;). In Follmer and Schweizer (1990) it is shown that (2.13)

implies

T
(2.14) H = Hy + / eHax, + LY
0

with Hy = E[f}olfo}, where the integrand is obtained by predictable projection:
(2.15) &' = B[ |7,
Thus, there exists a unique optimal strategy given by (2.5) and (2.6).

2.4. Incompleteness due to a random variance

As a more explicit example, consider a diffusion model on C[0,7T] together
with an additional source of randomness, described by a probability space (S, S, p),
which affects the variance of the diffusion. Let F be the natural product o-field on

Q0 =C[0,T) x S,

define X((w) = wo(t) for w = (wo,n) € Q, let (F¢) denote the o—fields generated
by the process (X,), and let (]?t) be the larger family obtained by adding at time 0

the information in S. The diffusion is given by adapted processes (8;) and (o,(, 7))
(n € S) on C[0,T) such that the stochastic differential equation

(2.16) dX, = 0,(X,n)dW, + B(X)dt

with respect to a standard Wiener process (W;) has a unique solution for any
n € S. Let P, be the corresponding distribution on C[0, T}, and assume that the
diffusion model (C[0, T}, P,) is complete for any n € S.
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Now let P be the probability measure on (2, F) given by P(dwq,dn) =
p1(dn)P,(dwg). Then the conditions of the previous section are satisfied. In particu-
lar, the model (, F, P) is complete with respect to (.%,) By predictable projection
as in (2.15), we obtain the representation (2.14) of a given contingent claim H and
the corresponding optimal hedging strategy.

In order to illustrate this general projection method, consider the standard
Black-Scholes model, but with a random jump of the diffusion parameter at time
to. Forn € S = {+,~} and t5 € (0,T), put

ou(n) = UOI[O,to)(t) + 0" 14y, 1y(t)

with fixed parameters 0% 6%, ¢~ > 0, and define u by #({+}) = p. Let P, be the
distribution of the solution of the stochastic differential equation

d;—Yt = 01(17) . Xtth +m - Xt dt

with some drift parameter m € IR. Any contingent claim can be written as a
stochastic integral with respect to the larger filtration (F):

T
(2.17) H=H}Ig+ HIp. +/ (EH1p + €7 I )dX,
0

where Hét and £* denote the usual Black-Scholes values and strategies for a known
variance 0%, and where B = {n = +}. The decomposition (2.14) with respect to
the smaller filtration () is given by

Hy = B[H,| = pH{ + (1 -p)H;,

£= P+ (1 =p) Mo + (£ I + § Ipe) (1,1

and

L = (Hf = Hy)-(Is = p) - Iito 1y (1)

This determines the optimal strategy. It depends explicitly on p but not on the
drift parameter m. In fact, it can be computed in terms of the minimal martingale
measure P* which eliminates the drift but does not change the parameter p.

In the martingale case P = P*| this example was introduced in Harrison and
Pliska (1981), and the optimal strategy already appears in Miiller (1985). The
general projection method in Féllmer and Schweizer (1990) was developped in
order to provide a systematic approach to examples of this kind.
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2.5 A two-period example

In discrete time, the preceding discussion becomes much simpler: A unique
risk-minimizing strategy does exist, and it can be computed by a backward iter-
ation from the terminal time 7. At each step, the computation reduces to the
following elementary regression argument, except that expectations are replaced
by conditional expectations with respect to the information available at that step;
cf. Féllmer and Schweizer (1989). Here we only explain the structure of one single
step.

Consider a simple two-period model for the risky asset, say for the exchange
rate of US$ against SFR. At time 0 the exchange rate X, is known and will be
treated as a constant. The exchange rate X; at time 1 is a random variable on
some probability space (2, F, P). Now assume we have sold an option described
by a random variable H on the same probability space. At time 1 we will have to
pay the random amount H(w). In order to hedge against this pay-off, we buy &
dollars and put aside no Swiss francs. This initial portfolio at time 0 has the value

(2.18) Vo =&6Xo + o -

At the terminal time 1, we want a portfolio whose value is exactly equal to H. The
value of the dollar account will be £,.X; , and so we have to adjust the Swiss franc
account from ng to g = H — £, X; in order to obtain

(2.19) Vi=6X,+m=H.

For a given H, such a strategy will be determined by our choice of the constants &
and Vy at the initial time 0; 5; is a random variable which is determined at time
1 by (2.19).

Let us examine the resulting cumulative costs. At time 0 we have Co = Vg,
and the additional cost due to our adjustment of the Swiss franc account at time

1 is given by
(220) Cl“CO :m—rIO:Vl—VO~§1(X1-X0).

due to (2.18) and (2.19). Let us now choose our trading strategy described by ¢,
and V4 in such a way that the remaining risk at time 0, measured by the expected

quadratic cost

E[(C1— Co)*] = E[(H — Vs — &1(X1 — X0))?],
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is minimized. But this simply means that we are looking for the best linear estimate
of H based on X; — X;y. Thus, the problem is solved by linear regression: The
optimal constants £, and V; are given by

Cov (H, X))
(2.21) £ = e
and
(2.22) Vo = E[H] - & E[X) — Xo).
In particular we obtain
(2.23) Co = E[C)] .

Thus, the optimal strategy is mean-self-financing: once we have determined the
initial value V; = C;, the additional cost Cy — Co 1s a random variable with
expectation E[Cy — Cy] = 0. By this optimal trading strategy, the remaining risk
is reduced to the minimal mean square prediction error

(2.24) Ruin = Var [H] — £} Var [X,] = Var [H)(1 - o(H, X1)?)

where ¢ denotes the correlation coefficient. This value Rpin may be viewed as the
intrinsic risk of the option H. It is this intrinsic risk, and not the a priors risk
measured by the variance Var [H] of H, on which any safety loading should be
based.

Note that the optimal strategy & = ¢ and V, = Hy can be read off immedi-
ately from the decomposition

(2.25) H=Hy+ (X, - Xo) + LH,

where LH has expectation 0 and is orthogonal to X; —X,. This decomposition is the
elementary analogue of (2.12). In retrospect, we can now describe the construction
in sections 2.1 and 2.2 as a sequential regression in continuous fime with respect

to the basic semimartingale (X,).

Looking back to the elementary example in section 1.3, we can now clearly
see its crucial point: The binary structure trivially implies a linear dependence
between H and X; — X,. Thus, the regression of H on X; — X, becomes a perfect
regression with L7 = 0, i.e., the model complete. In particular, the risk in (2.24)
is completely eliminated. As soon as we admit a third possibility for the value of
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X1{w), the situation becomes less pleasant: There will be an intrinsic risk, and
hedging should be viewed as a linear regression which is no longer perfect.

Let us conclude this elementary section with two elementary questions:

1) Why do we concentrate only on risk reduction (instead of applying, e.g.,
some mean-variance criterion)?

i1) Why do we insist on Vip = H?

Both questions refer to the investment problem faced by the option seller. The
answer is that this problem may be decomposed into a pure tnvestment problem
which does not take into account the option, and into the pure hedging problem
whose solution we have just sketched. Suppose in fact that the option H has been
sold for a price 7( H), and that the option seller invests the amount ¢ into the risky
asset. His gain is given by

G=(n(H) - H)+ (X1 - Xo)
= (m(H) = Ho) + (¢ = ") (X1 — X,) — LY.
If his decision is based on a mean-variance criterion of the form
E[G] — avar[G] = max,

then the optimal amount is given by

C__{H___ E[XI_XO]
N 2avar{X; — X,]’

But the right side coincides with the amount Cinv which would be invested with-
out taking into account the option. Thus, the optimal overall strategy splits into
the pure investment strategy (inv, and into the pure hedging strategy which was
determined above:

(226) C = Cl’nv + fH'

This splitting argument came out of a discussion with F. Dybvig. Its extension
to the general setting of the previous sections is discussed in Schweizer (1990b).

3. Pricing via Risk Exchange

In the complete situation of section 1, the fair price of a contingent claim A

was determined as the expected value

(3.1) E*[H]
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with respect to the unique martingale measure P* equivalent to P. From a modemn
actuarial point of view, the computation of the price in terms of a new measure may
actually look familiar. For example, a premium principle in terms of exponential
utility leads to the price

(3.2) E[H] = Ele*H H),

Z(a)

computed as the expected value of H with respect to a Esscher transform P of
P. Note, however, that any premium principle involving risk aversion would, as
in (3.2), result in a price which is greater than the expected value E[H]. On the
other hand, we could easily have E*[H] < E[H]. The crucial difference is this: A
premium principle like (3.2) is defined solely in terms of the distribution of H, while
(3.1) involves the underlying risky asset (X,). This conforms with the economic
point of view that the pricing of H should form part of a broader equilibrium

analysis.

3.1 Consistent pricing

In a model of economic equilibrium, a consistent price system at time 0 should
be given by a continuous positive linear functional on the commodity space £? =
L3(Q,F, P) of contingent claims, i.e., by a positive price density ¢ € £2. We
may assume that the corresponding measure P is normalized to be a probability
measure. Thus, the price of H € £? at time ¢ = 0 would be its expected value

(3.3) E[H]

with respect to P . We are leavin aside interest rates, and so prices at times ¢ > 0
should be computed as conditional expectations

(3.4) E[H|F))

with respect to the o-algebras F, describing the information available at time t.
But X is supposed to denote the price at time ¢ of the underlying financial asset
with value H = X7 at time T, and so we should have

(3.5) X, = E[X1|F).

This means that the process (X,) is a martingale under P. In the complete case, a

martingale measure equivalent to P is uniquely determined, and so we get P = p*.
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Thus, a consistent price system on a complete financial market necessarily leads to

the valuation (3.1) of contingent claims.

In a typical model of risk theory, where the stochastic process (X¢) involves
jumps of varying size, the situation will be tncomplete. Thus, there will be several
equivalent martingale measures. Delbaen and Haezendonck (1989) develop a sys-
tematic approach to principles of premium calculation based on different choices of
the martingale measure. For a discussion of option pricing with a view to premium
rating in Insurance see also Taylor (1989) and Sondermann (1988).

In the context of general economic equilibrium theory, the question of pricing
in incomplete financial markets is an area of very active research. Geanakoplos
(1990) and Duffie (1991) give a survey of its present scope. Here we shall mention
just a few of its probabilistic aspects.

3.2 Pricing and parametric models

We have argued that a consistent price mechanism should be of the form (3.1)
for some martingale measure P* equivalent to P. In the incomplete case, such a
martingale measure is no longer unique, and so we are faced with a choice. The
following recipe may look tempting. Suppose that we have reasons to choose the
underlying model P from a parametric family Py (A € A) of equivalent probability
measures on ({2, F). For example, in the complete case of section 1 we could take
the class Py (A € A) of all geometric Brownian motions with fixed variance o2 and
varying drift parameter A = m. Suppose that there is exactly one such measure
Py which turns (X;) into a martingale. Then it may seem natural to choose

(3.6) P* = P,.

as our price system; cf. Brennan (1979). In the complete case, this leads necessarily
to the correct answer. In the incomplete case, we have to check whether this choice
is consistent with an economic equilibrium approach. Let us now recall the basic
equilibrium argument for risk ezchanges between individual agents maximizing
expected utility. It goes back to Arrow (1953); cf. Borch (1960), Pesonen (1984)
and Bihlmann (1984) for its relevance in actuarial literature, and Duffie (1988,
1991) for a systematic exposition from the point of view of mathematical economics.

3.3 Risk exchanges

We go back to a two-period model. Consider a finite set I of economic agents
with utility functions u; (i € I') . Each agent i holds risky assets whose pay-off at
time t = 1 is given by a random variable W; on (Q,F) . These assets are traded
at time ¢ = 0. The result will be a new allocation Y; (1 € I) of assets such that
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3.7) D Yi=Y"w=w

vhere W denotes the resulting total wealth. Agent i evaluates the possible out-
comes at time ¢ = 1 in terms of a probability measure P; on (2, F). We assume
that P; is given by a density of the form ; = 9i(W) with respect to a common
reference measure P. A price system, given by a probability measure Q on (9, F),
and an allocation Y; (t € I) define an equilibrium if, for each 7 € I, the random

vaniable Y; maximizes
(3.8) Eilui(Y)] = Elui(Y)y)

under the constraint

(3.9) / YdQ = / WidQ.

Granting some regularity, the first-order conditions for such an equilibrium arc
(3.0) Elui(¥)2) = Bilv(Y)) [ 24Q) = JEZE

for any bounded measurable Z. This implies

(3.11) Q~P (iel

and the identification

(312) w(Yoi = cip (i €1)

of the density ¢ of Q with respect to P. Note that in such an equilibrium the
presence of one risk neutral agent 7 with constant u; would imply Q = P ie.,
the price system would be given by the valuation P; of this risk neutral agent.

In general, @ involves an intricate aggregation of individual preferences and
expectations. In fact, (3.12) and (3.7) imply v = f(W) with

(3.13) (log f)' = —a+ )" (%(log g:),

where a; = —(log u4;)(Y;) denotes the risk aversion of agent ¢ at the level Y; and o
is defined by a~! = Yo7l Asan example, consider the case where individual util-
ities are exponential with constant risk aversion @; (1 € I). Then the aggregation
of individual utilities and expectations takes the form

(3.14) o = Z(la)e“"sz, ¥ =[],
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L.e., the price system @ belongs to the ezponential family with respect to W and
the aggregate measure dP == dP.

Now assume that at time t = 0 each agent i € I holds ¢; shares of our risky
asset so that W; = Xy and W = Xp. Suppose also that each agent believes
in geometric Brownian motion with drift parameter m; and fixed volatility o. We
denote by P; the corresponding distribution and take as reference measure the
martingale measure P* with m* = 0. Let us also assume constant proportional
risk aversion, ie., ui(z) = 277 with some §; > 0. Then (3.12) takes the form

(3.15) Y7 Wt = e

In the special case #; = # and m; = Bo? we get ¢ =1 and Y; = W, ie., there is
no incentive to trade. In particular, the price system Q is given by the martingale
measure P*. Thus, the recipe (3.6) is confirmed under these special assumptions.
In discrete time, this is sometimes viewed as a justification for applying the Black
Scholes formula even though the situation is now incomplete; of. Rubinstein (1976)
and Brennan (1979). In continuous time, the argument may be used to conclude
that our basic model (1.7) of geometric Brownian motion is sustained in an economy
where all agents have the same constant proportional risk aversion, and all believe
in this model. This very special choice of the microeconomic model thus leads to a
rational ezpectations equilibrium, i.e., to an equilibrium of plans, prices and price
expectations; cf. Kreps (1982) and Bick (1987).

So we see that recipe (3.6) may work, but that its validity should be viewed as
a rather lucky coincidence. Independent of this special question, the equilibrium
analysis of risk exchanges is important in many other ways. For example, it can be
used to explain the demand for portfolio insurance in the sense of section 1.1, ie.,
for claims Y; which are defined by convez functions of the underlying asset. Thus,
it helps to answer the question “ Who should buy portfolio insurance?”; cf. Leland

(1980) and Miller (1989).

The analysis of sequential risk exchanges should also play an important part
in reaching a deeper understanding of the standard reference model (1.7) for the
underlying price fluctuations. In fact, a rigorous derivation of this model from mi-
croeconomic assumptions is one of the fundamental problems in this area. We have
just seen one possible approach to this problem in terms of rational expectations
equilibria. But this involves a very delicate balance of individual preferences and
expectations, and so it does not really explain why geometric Brownian motion
should be viewed as a robust fundamental model. Let us now look at this question

from some other points of view.
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4. The choice of P

So far, the stochastic model (R, F, P) for price fluctuations of our risky asset
has been fixed in advance, and our discussion of hedging strategies has been based
on this model. We have seen that these strategies are to some extent independent of
the specific choice of P; this is indeed one of the attractive features of the theory.
But this independence does not go too far. For example, in the context of the
standard model (1.7) the strategy does not depend on the drift but it does depend

on the volatility.

Let us now have a closer look at the underlying randomness.

4.1 Options as a source of Brownian motion

In his thesis “Théorie de la Spéculation”, L. Bachelier (1900) introduced Brow-
nian motion as a model for the price fluctuation of a risky asset in a speculative
market. A rigorous construction of the corresponding measure P on the path space

Q2 = C[0,1] was given by N. Wiener (1923). Thus, we could say that Bachelier chose
(4.1) P = Wiener measure on C[0,T]

with some variance parameter o as his stochastic model; the price fluctuation is
given by the coordinate process Xt(w) = w(t). This choice was based on a loose
equilibrium argument which concluded that (X¢) should be a martingale under
P; of. also Samuelson (1965). From this qualitative assumption, one can derive
the specific model (4.1) if one also requires homogeneous increments. An exact
argument is provided by Lévy’s theorem: If (X) is a martingale under P such that
the increments have stationary conditional variance, then P is a Wiener measure.

If the martingale property is assumed for the discounted process (Xe™ ™), and
if homogeneity is required for relative rather than absolute increments, then the
preceding argument leads to geometric Brownian motion described by the stochas-
tic differential equation

(4.2) dX = o XdW + mXdt
with respect to a standard Brownian motion (W1). Its explicit solution is given by
(4.3) X = XgeoWit(m=307t,

This model, advocated by Samuelson (1964) and others since the fifties, has served
as the basic reference model for fluctuations on a speculative market in continuous
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time. We have seen how Black and Scholes formulated their option pricing formula

in the context of this model.

It is interesting to note that Bachelier’s main concern was the computation of
a premium for certain financial instruments including options; Brownian motion is
introduced as a model with a view toward this end. In this sense, we might say that
options motivated the appearance of Brownian motion. A formula for the price of
an option appears on p.51 in Bachelier (1900): It can be regarded as the normal
analogue of the log-normal Black-Scholes formula. But this is just a coincidence,
due to the fact that Bachelier has already chosen the martingale measure. His
pricing argument is based on the classical prescription (1.4) and does not involve
the deeper idea of dynamical hedging.

4.2 Absence of arbitrage

From the point of view of mathematical economics, one would like to see a
more rigorous derivation of the underlying stochastic model. There is one basic
result in that direction. Roughly speaking, it asserts that the absence of arbitrage
opportunities implies the existence of an equivalent martingale measure P* ~ P.
More precisely, consider elementary trading strategies with pay-off

T n—1
/‘de = z 51‘()(1.41 - Xii)
2 1=0

where 0 <t, < -+ < t, <1, and where §; is bounded and F;,-measurable. Such a
strategy ¢ provides an arbitrage opportunity if it has a pay-off

T
(4.4) /de >0 P —a.s.
0 .
which does not reduce to
T
(4.5) /{dX =0 P —a.s.
0

Now suppose that P admits an equivalent martingale measure P*. Then the mar-
T

tingale property of X under P* implies E*[[£édX] = 0; this is a special case of
0

Doob’s fundamental systems theorem for martingales. Since P* ~ P, (4.4) holds
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T
also P* — a.s., and so we can conclude that {£dX =0 P* - a.s., hence (4.5).
0

Thus, the existence of an equivalent martingale measure P* ~ P implies the ab-
sence of arbitrage, i.e., the implication (4.4) = (4.5) for any elementary trading
strategy. Conversely, absence of arbitrage essentially implies the existence of an
equivalent martingale measure. This was observed by Harrison and Kreps (1979),
and it should be viewed as a converse to Doob’s theorem. In discrete time, a rigor-
ous proof can be given in a rather straightforward manner; cf. Dalang, Morton and
Willinger (1990). In continuous time, it involves deep results from the theory of
semimartingales. Here is a precise statement due to Stricker (1990). For p € [1, 00)
and ¢7! + p~! = 1, the following two statements are equivalent:

(4.6) {/{dXI{ elementary } N L7 = {0}

*

dP
(4.7) 3 martingale measure P* &~ P with density 2 € L9,

Some open questions remain. In particular, it would be nice to have a construction
of P* as a limit of suitably chosen martingale measures in discrete time, where

existence is straightforward.

The equivalence of (4.6) and (4.7) extends to financial mairkets with a finite
number of risky assets X1,---, X™ where a martingale measure P* is defined by the
property that each process (X*) becomes a martingale under P*. As an illustration,
recall the elementary example of section 1.3 with r = 0. The martingale measure
P* is uniquely determined by the condition Xy = E*[Xr]. Let us now introduce
the option H as a second marketable asset, with value Vr = H at the terminal
time T and some market price Vy = 7(H) at the initial time 0. For this extended
financial market with two asset processes X and V', a martingale measure P must
satisfy the two conditions E[XT] = X and E[VT] = V,. The first implies P = P,
and so the second reduces to 7(H) = E*[H]. In the case n(H) # E*[H] there
would be no martingale measure, and in section 1.3 we have scen that there would

indeed be an arbitrage opportunity.

From a mathematical point of view, the equivalence of (4.6) and (4.7) is a
beautiful and deep result. Note, however, that there remains a considerable gap
between the requirement (4.7) and the specific choice of a model such as (4.3). In
fact, almost any probability space which one might think of as a model for the
price fluctuations of one single asset would be compatible with (4.7). With a view
to reducing this gap, let us now sketch some more specific arguments.
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4.3 Some further remarks

As in section 3 we consider a financial market with a finite set I of economic

agents. Given a price p proposed at time t, these agents form their demands
(4.8) di(w,p)  (1€1)

based on the previous price Xi-1(w), and on preferences, budget constraints and
price expectations which all depend on the updated information available at time
t. Thus, di(-,p) is Fy-measurable. The new price X¢(w) at time t is given by the
equilibrium value p such that

(4.9) !-}-[Zdi(w,ﬁ) =1,

el

if the available stock per capita is normalized to 1. Under standard i.i.d. assump-
tions on the random variables in (4.8), one can establish asymptotic normality of
X as the number [I] of agents becomes large. In fact, the equilibrium price X (w)
has the structure of an M-estimator in robust stalistics, and one can simply ap-
ply well-known asymptotical results for such estimators; cf. e.g., Huber (1981).
For a direct proof of asymptotic normality of equilibrium prices in large random
economies see Bhattacharja and Majumdar (1973). A passage from discrete to
continuous time, with suitable rescaling, would lead to a diffusion model, i.e., to a
probability measure P on the basic path space ) = C[0,T). This is one possible
approach to (4.3).

Let us look at a simple special case; here we keep the number |I| of agents
fixed. For an agent 7 € I, denote by &;(w) the amount of the risky asset held at
time ¢ — 1, and assume that the demand is given by

di(w,p) = &i(w) + ci(w) (pi(w) — p),

where

pi(w) = Xem1(w)(1 + ri(w))

denotes the price expected for period t + 1, based on the updated information
available at time t. The resulting equilibrium price X¢(w) =p is given by

Xi(w) = Xeea(w)(1 + Ro(w))

where Ry(w) is a mixture of the returns ri(w) (i € I) expected at time ¢ for period
t + 1. Suppose that R, is independent of Fi—1 with stationary distribution. A
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suitable exponential version of the invariance principle as in Duffie and Protter
(1988) then leads to the basic reference model (4.3) of geometric Brownian motion.

The previous i.i.d. assumptions correspond to the idea that the speculative
traders are identical in their behavior, except for a random fluctuation in their
demand pattern. The structure of the model becomes more involved, but probably
also more realistic, if one distinguishes different types of behavior. Black (1986) ad-
vocates a distinction between information traders and noise traders. In the words
of Keynes, an information trader, or fundamentalist, would “purchase investments
on the best long term expectations he can find”. Noise traders react to fluctua-
tions in the price, e.g., by extrapolation, even though these may be purely random.
The basic claim is that the presence of fundamentalists alone would not explain
what we actually observe. This claim can be substantiated in a rather striking
manner. In Smith et al. (1988), experiments are reported where all uncertainty
about the fundamentals is eliminated: Agents are faced with an i.i.d. stream of
dividends D, (t =1,..,T), and they are provided with all the information about
the distribution. Thus, all uncertainty is eliminated from the formation of price
expectations insofar these are solely based on dividend forecasts. In a purely fun-
damentalist model, the resulting price process should become deterministic. But
in fact “fourteen out of twenty-two experiments exhibit price bubbles followed by
crashes with respect to intrinsic dividend value”. This is compared “to a panic of
the sort that sometimes occurs in a crowded theatre”. The authors express their
doubt that these critical phenomena can be formulated in terms of a conventional
model for price dynamics. But over the last 20 years, there has been great progress
in understanding phenomena of this kind in the context of probabilistic models
for large systems with many interacting components. This suggests a different
approach, based on the idea of stochastic interaction in the formation of random
demands of individual agents. In the context of a static equilibrium analysis as
in (4.9), Markov random field models for interacting preferences were introduced
in Follmer (1974). Recently, the use of such models in dynamic stochastic games
n economics was advocated in Durlauf (1989) and Kelly (1989). The application
of stochastic interaction models to financial markets seems particularly appropri-
ate. It presents a challenge for present research, both from an economic and a

probabilistic point of view.

One can also try to model the effects of interaction in a simpler way, without
invoking ideas from the theory of Markov random fields. Suppose, for example,
that the proportion of noise traders is random and follows some Markov chain;
such models are investigated in joint work with A. Kirman. Then the price fluctu-
ation will be a diffusion process in a random environment. Now suppose that the
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equilibrium distribution of this Markov chain is U-shaped. This implies that, most
of the time, either the fundamentalists or the noise traders will prevail. During a
fundamentalist regime, prices will follow a stable pattern dominated by a recurrent
drift toward the perceived fundamental level. But if the proportion shifts so that
noise traders take over, the drift will become transient, and this will lead to the
spontaneous appearance of bubbles and crashes.

In the context of such models, one can begin to study the impact of Black-
Scholes traders who simply apply the Black-Scholes recipe as if the underlying
price process would follow a logarithmic Brownian motion. For such a trader, the
demand for stock is a technical demand of the form

di(w,p) = fi(p,t)

which only depends on the proposed price p and on the present mixture of call and
put options in his portfolio. The above invariance principle would lead to a non-
linear modification of the drift in the basic reference model of logarithmic Brownian
motion. Due to the shape of the hedge ratio ¢ in (1.26), this modification of the
drift has a transient effect. Thus, the impact of technical traders on the underlying
price process is similar to the effect of noise traders although their motivation is
quite different. For a fixed proportion of technical traders, this modification of the
drift would not change the structure of the optimal hedging strategies. But if this
proportion is random, in analogy to the previous model, then we would get again a
diffusion in a random environment. In particular, we would get a random variance.
As we have seen in section 2, the model would become incomplete, and so there
would be strong reasons to reconsider the strategies.

In any case, there seems to be a need for a thorough look at the probabilistic
structure of basic price fluctuations. This is a challenging program in itself. But it
would also lead to a reconsideration of hedging strategies. Furthermore, it would
be a crucial step towards a more rigorous analysis of the impact of such strategies

on the underlying price process.
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