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Abstract

Given a convex function f and a set Q of probability measures, we consider the prob-

lem of minimizing the robust f -divergence infQ∈Q f(P |Q) over the class P of martingale

measures. Under mild conditions on P and Q we show that a minimizer exists within the

class P if limx→∞ f(x)/x = ∞. If limx→∞ f(x)/x = 0 then there is a minimizer in a class

P̄ of extended martingale measures defined on the predictable σ-field. We also explain

how both cases are connected to recent developments in the theory of optimal portfolio

choice, in particular to robust extensions of the classical expected utility criterion.
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1 Introduction

Over the last three decades concepts and methods of martingale theory have played a crucial

role in developing the mathematical analysis of financial risk. At the same time the field of

finance has become a source of new probabilistic problems which are of intrinsic mathematical

1We thank the IMA at the University of Minnesota for providing support and a stimulating environment

for our research in spring 2004.
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interest. In this paper our purpose is to analyze a projection problem for martingale measures

which arises in the context of optimal portfolio choice.

The notion of a martingale measure has helped to clarify the mathematical structure of

the efficient markets hypothesis. In its strong form, the hypothesis states that the price fluc-

tuation of liquid financial assets, modelled as a stochastic process on some filtered probability

space, is a martingale under the given probability measure R. In this case Doob’s systems

theorem would imply that there are no trading strategies with positive expected gain. In a

less restrictive version, the hypothesis only requires the absence of arbitrage opportunities,

i.e., of strategies which generate a positive expected gain without any downside risk. In this

form it is equivalent to the existence of an equivalent martingale measure, i.e., a probabil-

ity measure P ≈ R such that the price process is a local martingale under P ; see Delbaen

and Schachermayer [7] and Yan [44]. The model is called complete if there is exactly one

equivalent martingale measure. It was already shown by Jacod [25], in the Proceedings of

an AMS Symposium on the occasion of J. L. Doob’s 65th birthday, that uniqueness of the

martingale measure implies a representation property: Functionals of the price process can

be represented as stochastic integrals. In the financial interpretation such a functional is

viewed as a financial derivative, or a contingent claim. The integrand in the representation

specifies a trading strategy in the underlying assets which provides a perfect hedge of the

claim, and the arbitrage-free price of the claim is identified as the expectation under the

unique equivalent martingale measure. Most realistic models, however, are incomplete in the

sense that the representation property no longer holds, and so there is a whole class Pe of

equivalent martingale measures.

In its general form, our projection problem consists in finding a probability measure P0

in some class P of probability measures P � R which minimizes the robust f-divergence

f(P |Q) = inf
Q∈Q

f(P |Q) (1)

for some class Q of probability measures Q� R, i.e.,

f(P0|Q) = f(P|Q) := inf
P∈P

f(P |Q). (2)

Here f is a convex function, and

f(P |Q) := EQ

[
f

(
dP

dQ

)]
(3)

denotes the f -divergence between two measures P and Q. In the classical case with Q = {Q0}
the projection problem has been considered by many authors, for instance in the context of
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statistical inference; see Csiszár [4] for the case f(x) = x log x where the f -divergence reduces

to the relative entropy H(P |Q), Rüschendorf [37], or Liese and Vajda [32].

In the financial interpretation the problem of projecting a single measure Q0 on the

class Pe of equivalent martingale measures arises in the context of optimal portfolio choice.

Suppose we want to determine an optimal affordable claim H, given some initial capital x0

and the possibility of trading in the underlying liquid assets. Affordability translates into the

constraint

sup
P∈Pe

EP [H] ≤ x0. (4)

If preferences are specified in terms of a concave utility function u and a probabilistic model

Q0 ≈ R, an affordable claim is optimal if it maximizes the expected utility EQ0 [u(H)]. In

the complete case Pe = {P0} the solution is given by

H0 := (u′)−1

(
λ0
dP0

dQ0

)
, (5)

where λ0 is such that EP0 [H0] = x0. In the incomplete case, the optimal claim is of the

form (5) when P0 is chosen to be the f -projection of Q0 on Pe, where f(x) := v(λ0x) for

some λ0 > 0 and v denotes the convex conjugate of u; see, for instance, Karatzas and Shreve

[27], Frittelli [17], Bellini and Frittelli [3], Kramkov and Schachermayer [30] and [31], Goll

and Rüschendorf [21], Schachermayer [38], and also Gao, Lim, and Ng [19]. Thus the utility

maximization problem is reduced to the classical projection problem of minimizing the f -

divergence f(P |Q0) over the set Pe. Existence results for classical f -projections corresponding

to certain utility functions can be found in Frittelli [17] and Bellini and Frittelli [3]. Hugonnier,

Kramkov and Schachermayer [24] showed that for reasonably bounded claims the existence

of f -projections in the class of martingale measures is equivalent to the existence of unique

marginal utility based prices.

Our robust version of the projection problem is motivated by an extension of the classical

expected utility approach which takes model uncertainty into account. Instead of fixing a

single model Q0, we consider a whole class Q of probability measures Q� R and define our

preferences using the robust utility functional

U(H) := inf
Q∈Q

EQ[u(H)]. (6)

A microeconomic characterization of such utility functionals in terms of behavioral axioms

for the underlying preferences was given by Gilboa and Schmeidler [20]; see also Föllmer and

Schied [16] for their relation to the theory of convex risk measures. The robust version of the
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optimization problem consists in maximizing the functional U(H) under the constraint (4).

As shown in Gundel [22], its solution is of the classical form (5) if (P0, Q0) ∈ Pe ×Q solves

the robust projection problem (2) for the sets Pe and Q, i.e., if

f(P0|Q0) = f(P0|Q) = f(Pe|Q). (7)

In Section 2 we analyze the robust projection problem in its general form (2). Our main

result is Theorem 2.6. It states that a solution exists if

lim
x→∞

f(x)
x

= ∞, (8)

the set P is closed in variation, and the set Q is weakly compact. The key step is to show that

{f(·|·) ≤ c}, viewed as a subset of L1(R)×L1(R), is weakly compact. In the classical case with

Q = {Q0} this follows easily from (8) using the de la Vallée-Poussin compactness criterion.

In the general robust case the proof is more delicate. Instead of applying the compactness

criterion in terms of f , we have to construct an auxiliary convex function l satisfying (8) such

that the compactness condition in terms of l follows via Young’s inequality in an appropriate

Orlicz space. In Csiszár and Tusnády [5] existence results for robust projections were obtained

in two special cases: (i) for the relative entropy f(P |Q) = H(P |Q) on a finite set, and (ii)

for the squared L2-distance between the densities of P and Q.

In Section 3 we explain how the existence of a robust f -projection within the class Pe
yields the solution of the robust utility maximization problem defined by (6) and (4). This

section is largely expository: We follow Gundel [22], but we do not assume that all measures

in Q are equivalent. Moreover, our presentation is different and contains some additional

results, for example in Theorem 3.11 and Lemma 3.12. In particular we argue for a fixed

value x0 instead of using the duality properties of the maximal utility U(H), viewed as a

function of the initial capital x, as they were developed by Bellini and Fritelli [3], Goll and

Rüschendorf [21], Kramkov and Schachermayer [30], and Gundel [22].

However, the application of our general existence result for robust f -projections involves

Condition (8), and this amounts to the assumption that the utility function u is finite on the

whole real line. Without this condition a robust or even a classical projection within the class

Pe of equivalent martingale measures may not exist. Kramkov and Schachermayer [30] have

shown how to develop the duality between the classical problem of utility maximization and

the projection problem beyond the class Pe: A martingale measure P is identified with the

martingale of its densities with respect to the reference measure R, this class of martingales

is embedded in a suitable class of supermartingales, and the projection problem is solved in
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this larger class. Recently Quenez [36] and Schied and Wu [41] have extended this version of

the duality approach from the classical case with Q = {Q0} to the robust case.

In Section 4 we insist on the original idea of identifying the solution of the robust opti-

mization problem in terms of a martingale measure. In Cvitanic, Schachermayer, and Wang

[6] the solution of the projection problem is described as a finitely additive measure. Here we

use a different idea which goes back to Doob’s construction of conditional Brownian motions

corresponding to a harmonic function; see [9], Chapter 2.X. As shown in Föllmer [11], [12],

any supermartingale on a sufficiently rich filtered probability space can be represented as

a measure on the predictable σ-field; see also Föllmer [13] in the volume in honour of J.L.

Doob mentioned above. For such measures we introduce the notion of an extended martingale

measure. Theorem 4.5 shows how the robust projection problem can be solved in the class

P̄ of extended martingale measures. Corollary 4.8 describes the application to the robust

optimization problem. Some of the key arguments are essentially the same as in Quenez [36]

and Schied and Wu [41]. The main novelty is that here we insist on an appropriate notion of

a martingale measure.

2 Robust f-Projections

Let (Ω,F) be a measurable space and denote by M1(Ω) the set of probability measures on

(Ω,F). Let the function f : [0,∞) → R ∪ {∞} be convex and continuous. In order to define

the f -divergence of P ∈M1(Ω) with respect to Q ∈M1(Ω), we associate to f(·) the function

f(·, ·) on [0,∞)× [0,∞) defined by

f(x, y) :=


0 if x = y = 0

x lim
z→∞

f(z)
z if y = 0, x > 0

yf
(
x
y

)
if y > 0.

(9)

For an affine function l(x) = ax+ b on [0,∞) the associated function l(·, ·) on [0,∞)× [0,∞)

is given by l(x, y) = ax + by. Since f(·, ·) is the supremum of the affine functions l(·, ·)
associated to some affine function l on [0,∞) such that l ≤ f , f(·, ·) is lower semicontinuous

and convex on [0,∞)× [0,∞).

Definition 2.1. Let P , Q ∈ M1(Ω), and let R ∈ M1(Ω) be some reference measure such

that P,Q � R; for example, we may take R := (P + Q)/2. The f -divergence of P with
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respect to Q is defined as

f(P |Q) :=
∫
f

(
dP

dR
,
dQ

dR

)
dR.

Remark 2.2. Let P a and P s denote the absolutely continuous and the singular part in the

Hahn-Lebesgue decomposition of P ∈M1(Ω) with respect to Q ∈M1(Ω). Then

f(P |Q) =
∫
f

(
dP a

dQ

)
dQ+ lim

x→∞

f(x)
x

· P s[Ω] ∈ (−∞,∞]; (10)

note that the first term on the right-hand side is bounded from below by f(P a[Ω]) due to

Jensen’s inequality and that limx→∞ f(x)/x > −∞. In particular the f-divergence is well

defined, and it is independent of the choice of the reference measure R. If P � Q or if

limx→∞ f(x)/x = 0, then Equation (10) reduces to

f(P |Q) =
∫
f

(
dP a

dQ

)
dQ ∈ [f(P a[Ω]),∞].

Definition 2.3. For a subset P of M1(Ω) and Q ∈M1(Ω), PQ ∈ P is called an f -projection

of Q on P if it minimizes the f-divergence over the set P:

f(PQ|Q) = f(P|Q) := inf
P∈P

f(P |Q).

For a subset Q of M1(Ω) and P ∈M1(Ω), QP ∈ Q is called a reverse f -projection of P on

Q if it minimizes the f-divergence of P over the set Q:

f(P |QP ) = f(P |Q) := inf
Q∈Q

f(P |Q).

Finally, P0 ∈ P is called a robust f -projection of Q on P if it minimizes the robust f -

divergence f(P |Q) := infQ∈Q f(P |Q) over the set P:

f(P0|Q) = inf
P∈P

f(P |Q) =: f(P|Q),

i.e.,

inf
Q∈Q

f(P0|Q) = inf
P∈P

inf
Q∈Q

f(P |Q).

Remark 2.4. Since f(P |Q) = f̂(Q|P ) where f̂ : [0,∞) → R∪{∞} is the convex continuous

function defined by f̂(x) := xf(1/x), a reverse f-projection of P on Q may be viewed as an

f̂-projection of P on Q; see Liese and Vajda [32] and Gundel [22]. If f is strictly convex,

then so is f̂ . In this case there is at most one f-projection PQ of Q on P and at most one

reverse f-projection QP of P on Q.
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Let us now fix two convex subsets P and Q of M1(Ω). Our aim is to show that the robust

f -projection of Q on P exists under the following assumptions.

Assumption 2.5. All measures in P and Q are absolutely continuous with respect to some

reference measure R. The convex set

KP :=
{
dP

dR
: P ∈ P

}
is closed in L1(R), and the convex set

KQ :=
{
dQ

dR
: Q ∈ Q

}
is weakly compact in L1(R).

Note that KP is closed in L1(R) iff P is closed in variation, and this property implies that

the convex set KP is weakly closed in L1(R).

Theorem 2.6. Let Assumption 2.5 hold and assume furthermore that

lim
x→∞

f(x)
x

= ∞. (11)

Then there exists a robust f-projection P0 of Q on P. Moreover, there exists a reverse

f-projection Q0 of P0 on Q, i.e.,

f(P0|Q0) = f(P0|Q) = f(P|Q).

The proof will consist in three steps: First we show that the f -divergence is jointly lower

semicontinuous in P and Q, then we formulate a compactness criterion in terms of some

auxiliary function l, and in the third step we construct such a function l which has the

required properties.

Define

FR(φ, ψ) :=
∫
f(φ, ψ)dR

for F-measurable φ, ψ ≥ 0. Note that f(φ, ψ) ≥ bψ for some constant b since f(·) is convex

and finally increasing due to our assumption (11), hence bounded from below on [0,∞). Thus

FR(φ, ψ) ∈ (−∞,∞] is well defined. Note also that

f(P |Q) = FR

(
dP

dR
,
dQ

dR

)
for P , Q, R ∈ M1(Ω) such that P , Q � R. We will view FR as a functional on the closed

convex subset L1
+(R)× L1

+(R) of the Banach space L1(R)× L1(R).

The following result appears also in Liese and Vajda [32], Theorem 1.47, but with a

different proof.
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Lemma 2.7. Under Assumption (11) the functional FR is convex and weakly lower semi-

continuous on L1
+(R)× L1

+(R).

Proof. Convexity of FR follows from the convexity of f(·, ·) on [0,∞)2. In order to verify

weak lower semicontinuity, we have to show that the sets

Ac :=
{
(φ, ψ) ∈ L1

+(R)× L1
+(R) : FR(φ, ψ) ≤ c

}
are closed with respect to the weak product topology. But since Ac is convex, it is enough to

check that Ac is strongly closed; cf. Dunford, Schwartz [10], Theorem V.3.13. To this end,

take (φn, ψn) ∈ Ac (n ≥ 1) such that φn → φ and ψn → ψ in L1(R) as n tends to infinity.

Passing to subsequences if necessary, we may assume that both sequences converge R-almost

surely. Since f(φn, ψn) ≥ bψn and (ψn)n=1,2,... is uniformly integrable we can use the lower

semicontinuity of f on [0,∞)2 and Fatou’s lemma to conclude

FR(φ, ψ) =
∫
f( lim
n→∞

(φn, ψn))dR

≤
∫

lim inf
n→∞

f(φn, ψn)dR

≤ lim inf
n→∞

FR(φn, ψn) ≤ c.

Since φ, ψ ∈ L1
+(R) we see that (φ, ψ) ∈ Ac.

Remark 2.8. In particular the functional FR(dP/dR, ·) is weakly lower semicontinuous on

the weakly compact set KQ. This shows that a reverse f-projection QP of P on Q exists

for any P ∈ M1(Ω). Thus the existence of a robust f-projection of Q on P amounts to the

existence of some P0 ∈ P which minimizes the f-divergence f(P |QP ) over P.

Since FR(·, ·) is weakly lower semicontinuous on KP × KQ, the existence of a robust f -

projection will now follow if we can show that the set {(P,Q) : f(P |Q) ≤ c} is compact in

the weak product topology. To this end we prove the following criterion.

Lemma 2.9. Let l : [0,∞) → R be a positive increasing function such that limx→∞ l(x)/x =

∞. Let Assumption 2.5 hold and assume that for any constant c > 0 there is a constant

c0 > 0 such that for any P ∈ P

f(P |Q) ≤ c =⇒ ER

[
l

(
dP

dR

)]
≤ c0. (12)

Then there exist a robust f-projection P0 of Q on Pand a reverse f-projection Q0 of P0 on

Q.
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Proof. We may assume f(P|Q) < ∞ because otherwise every P ∈ P would be a robust

f -projection. Take c > f(P|Q). Since f(P |Q) = FR (dP/dR, dQ/dR) and since FR is weakly

lower semicontinuous by Lemma 2.7, it is enough to show that {(P,Q) ∈ P×Q : f(P |Q) ≤ c},
viewed as the subset

Cc := {(φ, ψ) : FR(φ, ψ) ≤ c} ∩ (KP ×KQ)

of L1(R)×L1(R), is weakly compact. Then FR attains its minimum in some (P0, Q0) ∈ P×Q,

which implies

f(P0|Q) = f(P0|Q0) = inf
P∈P

f(P |Q),

and so P0 is a robust f -projection of Q on P, and Q0 is its reverse f -projection.

Under Condition (12)

Cc ⊆ KP,c0 ×KQ,

where

KP,c0 := {φ ∈ KP : ER[l(φ)] ≤ c0}

is uniformly integrable by the de la Vallée-Poussin criterion, hence relatively compact in the

weak topology σ(L1(R), L∞(R)); see Dellacherie and Meyer [8], Theorems II.22 and II.25.

Since KQ is weakly compact by Assumption 2.5, Tychonov’s theorem implies that KP,c0×KQ
is relatively compact in the weak product topology, and so is Cc. But Cc is also weakly closed

due to the lower semicontinuity of FR and Assumption 2.5, and so Cc is in fact weakly

compact.

Remark 2.10. Consider the classical case Q = {Q0}. Then Condition (12) is trivially

satisfied for l = f and R = Q, and the preceding proof reduces to the standard argument for

the existence of a classical f-projection; see, e.g., Liese and Vajda [32], Proposition 8.5, and

in the relative entropy case f(x) = x log x Csiszár [4], Theorem 2.1.

Since KQ is assumed to be weakly compact, we can choose a function g : [0,∞) → [0,∞)

with limx→∞ g(x)/x = ∞ such that

sup
Q∈Q

ER

[
g

(
dQ

dR

)]
<∞, (13)

cf. Dellacherie and Meyer [8], Theorem II.22. Given the functions f and g, we are now going

to construct a suitable function l and at the same time a convex function h such that an

appropriate Young inequality with respect to h will allow us to obtain the estimate in terms

of l which is required in Lemma 2.9.
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For a convex function h on [0,∞) we denote by h∗ its Fenchel-Legendre transform on

[0,∞) defined by

h∗(x) := sup
y≥0
{xy − h(y)}. (14)

Lemma 2.11. There exist strictly increasing functions h and li (i = 1, 2) on [0,∞) with

initial value h(0) = li(0) = 0 such that the following properties hold:

(i) h is continuous, convex, strictly increasing, and limx→∞ h(x)/x = ∞.

(ii) li is concave and limx→∞ li(x) = ∞ (i = 1, 2).

(iii) h(xl1(x)) ≤ f(x) for large enough x.

(iv) xh∗(l2(x)) ≤ g(x) for large enough x.

(v) l(x) := xl1(l2(x)) ≤ g(x) for large enough x.

Proof. We are going to use repeatedly the following simple fact: If ũ is a function on [0,∞)

such that limx→∞ ũ(x) = ∞, then there is a strictly increasing concave function u on [0,∞)

such that limx→∞ u(x) = ∞, u(0) = 0, and u(x) ≤ ũ(x) on [x1,∞) for some x1 ≥ 0. Indeed,

take a sequence 0 = x0 ≤ x1 < x2 < ... converging to infinity such that for n ≥ 1, ũ(x) ≥ n+1

for all x ≥ xn, and the sequence xn+1−xn increases in n ≥ 0. Define u(xn) := n and u linear

between xn and xn+1 for n ≥ 0. Then we have u(x) ≤ n+ 1 ≤ ũ(x) on [xn, xn+1) for n ≥ 1,

hence u is dominated by ũ on [x1,∞). Furthermore, u′(x) = (u(xn+1)−u(xn))/(xn+1−xn) =

1/(xn+1−xn) for x ∈ (xn, xn+1) for n ≥ 0. Since this fraction is non-increasing, u is concave.

In a first step we construct the convex function h. Since f is convex and limx→∞ f(x)/x =

∞, its left-hand derivative f ′− is non-decreasing and tends to infinity. In particular f ′− > 0

on [x0,∞) for some x0 ≥ 0. Take a non-decreasing function ζ : [0,∞) → [0,∞) that tends to

infinity, but satisfies limx→∞ ζ(x)/x = 0. Define

h′(x) := γ(x)f ′−(ζ(x)) (15)

on [x0,∞), where γ : [0,∞) → [0,∞) is decreasing, tending to 0, and such that h′ > 0 is

non-decreasing and tends to infinity. For example, we may choose ζ(x) :=
√
x and γ(x) :=

(f ′−(ζ(x)))−1/2.

Now define h such that (15) is satisfied on [x0,∞), and h is linear on [0, x0) with h(0) = 0

and h(x0) = x0h
′(x0). Then h is a convex function which has the required properties.

Moreover,

lim
x→∞

h(cx)
f(x)

= 0 for all c > 0. (16)
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Indeed, for c ∈ (0,∞) take α ≥ x0 such that ζ(y) ≤ y/c for y ≥ α. Then we have for cx ≥ α,

h(cx) = h(α) +
∫ cx

α
γ(y)f ′−(ζ(y))dy

≤ h(α) + γ(α)
∫ cx

α
f ′−

(y
c

)
dy

= h(α) + γ(α)c
(
f(x)− f

(α
c

))
.

Therefore,

lim sup
x→∞

h(cx)
f(x)

≤ cγ(α),

and this implies (16) since limα→∞ γ(α) = 0.

In order to construct the concave function l1, consider first the function l̃1 defined by

h(xl̃1(x)) = f(x), i.e., l̃1(x) := h−1(f(x))/x. Then limx→∞ l̃1(x) = ∞, because otherwise

there would be a c ∈ (0,∞) and a sequence (xn) tending to infinity such that

h(xnc) ≥ h(xn l̃1(xn)) = f(xn),

in contradiction to (16). As explained above, we can now choose a strictly increasing concave

function l1 such that l1(0) = 0, limx→∞ l1(x) = ∞, and l1(x) ≤ l̃1(x), hence h(xl1(x)) ≤ f(x)

for large enough x.

Finally we construct the concave function l2. Let h∗ be the Fenchel-Legendre transform

of h defined in (14). Then h∗ has the same properties as h specified in (i); see Neveu [34],

pages 193 and 194. First we define l̃2(x) on [0,∞) such that

h∗(l̃2(x)) =
g(x)
x

on (0,∞).

This implies limx→∞ l̃2(x) = ∞. We can now choose a strictly increasing concave function l2
such that l2(0) = 0, limx→∞ l2(x) = ∞ and l2(x) ≤ l̃2(x) ∧ l−1

1 (g(x)/x), hence xh∗(l2(x)) ≤
g(x) and xl1(l2(x)) ≤ g(x), for large enough x.

In order to conclude the proof of Theorem 2.6, we now show that the function l appearing

in part (v) of Lemma 2.11 allows us to apply the criterion in Lemma 2.9.

Lemma 2.12. The function l defined in Lemma 2.11 satisfies the conditions of Lemma 2.9.

Proof. Observe first that limx→∞ l(x)/x = ∞. Now let us fix P ∈ P and Q ∈ Q such that

f(P |Q) ≤ c for some c > 0. Then P � Q, and φ := dP/dQ and ψ := dQ/dR are well defined.
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Let x0 > 1 be such that Conditions (iii)-(v) in Lemma 2.11 are satisfied for x ≥ x0. In order

to verify Condition (12) we decompose the expectation on the right-hand side as follows:

ER

[
l

(
dP

dR

)]
= ER[l(φψ)]

= ER[l(φψ);φ ≤ x0] + ER[l(φψ);φ > x0, l2(ψ) > 1]

+ ER[l(φψ);φ > x0, l2(ψ) ≤ 1].

(17)

We are going to show that each of these three terms is bounded by some constant which only

depends on c but not on the specific choice of P and Q. Since li is concave with li(0) = 0 for

i = 1, 2, we have li(αx) ≤ αli(x) for any α ≥ 1, and this estimate will be used repeatedly.

On {φ ≤ x0} we have

l(φψ) ≤ l(x0ψ)

= x0ψl1(l2(x0ψ))

≤ x2
0ψl1(l2(ψ))

= x2
0l(ψ) ≤ x2

0(c1 + g(ψ)),

where c1 := sup{l(x) : x ≤ x0}, since l(x) ≤ g(x) for x ≥ x0, and so the first term above

satisfies

ER[l(φψ);φ ≤ x0] ≤ x2
0 (c1 + ER[g(ψ)]) ≤ x2

0

(
c1 + sup

Q∈Q
ER

[
g

(
dQ

dR

)])
,

which is finite by (13).

On {φ > x0, l2(ψ) > 1} we have

l1(l2(φψ)) ≤ l1(φl2(ψ)) ≤ l1(φ)l2(ψ),

and this implies

ER[l(φψ);φ > x0, l2(ψ) > 1] ≤ EQ[φl1(φ)l2(ψ)].

Now we use Young’s inequality to conclude that

EQ[φl1(φ)l2(ψ)] ≤ 2 · ||φl1(φ)||h · ||l2(ψ)||h∗ ;

see Neveu [34], Proposition IX.2.2. Here

||X||h := inf
{
a > 0 : EQ

[
h

(
|X|
a

)]
≤ 1
}
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denotes the Orlicz norm with respect to h and Q, and ||X||h∗ is defined in the same manner

in terms of h∗ and Q. But

||φl1(φ)||h ≤ max{1, EQ[h(φl1(φ))]}

(see Neveu [34], proof of Proposition IX.2.2), and

EQ[h(φl1(φ))] ≤ c2 + EQ[f(φ)]

= c2 + f(P |Q)

≤ c2 + c,

where c2 := sup{h(xl1(x)) : x ≤ x0}, since h(xl1(x)) ≤ f(x) for x ≥ x0. In the same way,

||l2(ψ)||h∗ ≤ max{1, EQ[h∗(l2(ψ))]},

and

EQ[h∗(l2(ψ))] = ER[ψh∗(l2(ψ))]

≤ c3 + ER[g(ψ)]

≤ c3 + sup
Q∈Q

ER

[
g

(
dQ

dR

)]
,

where c3 := sup{xh∗(l2(x)) : x ≤ x0}, since xh∗(l2(x)) ≤ g(x) for x ≥ x0. This yields the

desired bound for the second term on the right-hand side of Equation (17).

On {φ > x0, l2(ψ) ≤ 1} we have

l1(l2(φψ)) ≤ l1(φl2(ψ)) ≤ l1(φ),

and so the remaining term satisfies

ER[l(φψ);φ > x0, l2(ψ) < 1] ≤ ER[φψl1(φ)] = EQ[φl1(φ)].

Young’s inequality yields

EQ[φl1(φ)] ≤ 2 · ||φl1(φ)||h · inf
{
a > 0 : h∗

(
1
a

)
≤ 1
}
,

and we have already seen above that ||φl1(φ)||h is suitably bounded.

Remark 2.13. For special choices of functions f and g the construction of our auxiliary

function l may of course be simpler. Take for example f(x) = xα and g(x) = xβ with α,
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β > 1. Choose γ > 1 such that γ < α and (α−1)γ ≤ β(α−γ) and define l(x) = xγ. Condition

(12) now follows by applying Hölder’s inequality with exponents p = α/γ and q = α/(α− γ):
For P ∈ P, Q ∈ Q, and φ = dP/dQ, ψ = dQ/dR,

ER

[
l

(
dP

dR

)]
= ER [φγψγ ] = EQ

[
φγψγ−1

]
≤ EQ

[
φγp

]
1/pEQ

[
ψ(γ−1)q

]1/q
≤ f(P |Q)1/p

(
1 + ER

[
g

(
dQ

dR

)]1/q
)

;

see also Gundel [22], Lemma 4.

Proof of Theorem 2.6. Due to Lemma 2.12 we can apply Lemma 2.9 to conclude that a robust

f -projection P0 of Q on P and a reverse f -projection Q0 of P0 on Q exist.

We conclude this section with a uniqueness result for robust f -projections.

Proposition 2.14. If f is strictly convex and f(P|Q) < ∞, then the density of the robust

f-projection P0 of Q on P with respect to its reverse f-projection Q0 is R-almost surely

unique.

Proof. Assume that P1 and P2 ∈ P are two robust f -projections of Q on P with reverse

f -projections Q1 and Q2. Then Pi � Qi due to Remark 2.2. Take γ ∈ (0, 1) and define

Pγ := γP1 + (1− γ)P2, Qγ := γQ1 + (1− γ)Q2,

φi :=
dPi
dQi

· 1{dQi/dR>0} +∞ · 1{dQi/dR=0,dPi/dR>0},

and ψi := dQi/dQγ for i = 1, 2. Note that γψ1 + (1− γ)ψ2 = 1 and γψ1φ1 + (1− γ)ψ2φ2 =

dPγ/dQγ . By convexity of f and minimality of P1 and P2,

f(Pγ |Q) ≥ γf(P1|Q) + (1− γ)f(P2|Q)

= EQγ [γψ1f(φ1) + (1− γ)ψ2f(φ2)]

≥ EQγ [f (γψ1φ1 + (1− γ)ψ2φ2)]

= f(Pγ |Qγ)

≥ f(Pγ |Q),

and so we have equality everywhere. But since f is strictly convex, the second inequality can

only reduce to an equality if φ1 = φ2 Qγ-almost surely. This means that φ1 = φ2 R-almost

surely on the set {dQγ/dR > 0}. On the set {dQγ/dR = 0} we have dPi/dR = 0 for i = 1, 2

R-almost surely since f(Pi|Qi) <∞, hence φ1 = φ2 = 0 R-almost surely.
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3 Robust Preferences and Least Favorable Martingale Mea-

sures

In this section we explain the connection between (robust) f -projections and one of the key

problems in Mathematical Finance, namely the choice of a portfolio which is optimal with

respect to certain (robust) preferences.

In its general form, the problem of optimal portfolio choice consists in finding a maximal

element with respect to a given preference order � over some convex class of “affordable” fi-

nancial positions or contingent claims, described as random variablesH on a given probability

space (Ω,F , R). Typically such a preference order admits a numerical representation

H � H̃ ⇐⇒ U(H) ≥ U(H̃)

in terms of some utility functional U . In order to specify the functional U we fix an increasing

concave utility function u : R → R ∪ {−∞}. We assume that u is strictly increasing, strictly

concave, and continuously differentiable on the interior (a,∞) := int{x : u(x) > −∞} of its

domain and satisfies the Inada condition

lim
x↘a

u′(x) = ∞, lim
x→∞

u′(x) = 0. (18)

Moreover we assume that u has regular asymptotic elasticity in the sense of Kramkov and

Schachermayer [30], Schachermayer [38], Frittelli and Rosazza [18], i.e.,

lim sup
x→∞

xu′(x)
u(x)

< 1 and, if a = −∞, lim inf
x→−∞

xu′(x)
u(x)

> 1. (19)

In the classical framework of “expected utility”, whose axiomatic foundations were clari-

fied by von-Neumann-Morgenstern and by Savage, the utility functional is of the form

U(H) = EQ[u(H)],

where Q is some probability measure on (Ω,F). In this paper we use a “robust” extension of

the expected utility approach which was introduced by Gilboa and Schmeidler [20]. Instead

of a single probabilistic model Q� R we take a whole class Q of such models and define the

preference order � via the utility functional

U(H) := inf
Q∈Q

EQ[u(H)].

Thus, model uncertainty is taken into account explicitly. As shown by Gilboa and Schmeidler

[20], such robust preferences can be characterized by certain behavioral axioms, and they
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resolve several well-known “paradoxa” which arise in the classical framework; see, for instance,

Karni and Schmeidler [28] or Föllmer and Schied [16], Chapter 2.5.

Assumption 3.1. The measures Q ∈ Q are absolutely continuous with respect to R, and the

class Q is equivalent to R in the sense that

R[A] = 0 ⇐⇒ Q[A] = 0 for all Q ∈ Q. (20)

Due to (20) the contingent claim H satisfies U(H) > −∞ only if

H ≥ a R− a.s. (21)

since a = inf{x : u(x) > −∞}. From now on we will only consider contingent claims with

this property.

The class of affordable contingent claims will be specified in terms of a financial market

model with d liquid financial assets and finite time horizon T . The price fluctuation of

these assets, properly discounted, is described by a d-dimensional positive semimartingale

(Xt)0≤t≤T on the probability space (Ω,F , R), equipped with a right-continuous filtration

(Ft)t≥0 such that FT = F and F0 is trivial for R. We assume that (Xt)0≤t≤T is locally

bounded, i.e., there exists a sequence of stopping times (τn)n=1,2,... such that (Xτn∧t)0≤t≤T is

bounded for each n and τn ↗ T R-almost surely.

Definition 3.2. A probability measure P � R is called an absolutely continuous martingale

measure if (Xt)0≤t≤T is a local martingale under P . If in addition P ≈ R, then P is called

an equivalent martingale measure. The class of absolutely continuous martingale measures

will be denoted by P, the class of equivalent martingale measures by Pe.

¿From now on we assume the existence of an equivalent martingale measure, i.e.,

Pe 6= ∅.

This assumption is equivalent to the absence of arbitrage opportunities; see Delbaen and

Schachermayer [7] and also Yan [43] and [44] for precise versions of this equivalence and

for different choices of the numéraire which is used to define the discounted price process

(Xt)0≤t≤T .

Remark 3.3. Since the price process (Xt)0≤t≤T is assumed to be locally bounded, the class P
of absolutely continuous martingale measures is closed in the sense of Assumption 2.5 since

their densities φ can be characterized by the conditions ER[φXτ ] = X0 for stopping times

τ ≤ T such that Xτ ∈ L∞(R); see, for instance, Frittelli [17] or Bellini and Frittelli [3].
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Let us fix an initial wealth x0 > a. Consider a contingent claim H, given as an FT -

measurable random variable at the final time T such that (21) holds.

Definition 3.4. Let us say that H is affordable with limited downside risk if there exist

some P ∈ Pe such that H ∈ L1(P ) and a trading strategy in the underlying liquid assets,

described by a d-dimensional predictable and suitably integrable process (ξt)0≤t≤T , such that

the corresponding value process

Vt := x0 +
∫ t

0
ξsdXs (0 ≤ t ≤ T ) (22)

satisfies

Vt ≥ EP [H|Ft] (0 ≤ t ≤ T ) (23)

and in particular VT ≥ H R-almost surely. For P0 ⊆ P such that P0 ∩ Pe 6= ∅ we will say

that the strategy has P0-limited downside risk if H ∈ L1(P ) and (23) holds for any P ∈ P0.

Note that the value process (22) is a local martingale under any P ∈ P, and that it is a

supermartingale under any P ∈ P0. This implies the constraint

sup
P∈P0

EP [H] ≤ x0 (24)

for any contingent claim H which is affordable with P0-limited downside risk.

Remark 3.5. Suppose that the contingent claim H is bounded from below by some constant

c. If H is affordable with limited downside risk, then the corresponding value process is

bounded from below by c, and hence (23) is in fact satisfied for all P ∈ Pe. In particular the

constraint (24) is satisfied for P0 = Pe. A key result in the theory of superhedging implies

that, conversely, a claim which is bounded from below and satisfies the constraint (24) for

P0 = Pe is in fact affordable with Pe-limited downside risk. More precisely, there exists a

trading strategy whose value process (Vt) is bounded from below and satisfies VT ≥ H R-

almost surely, and this implies (23) for any P ∈ P since (Vt) is a P -supermartingale. See,

for instance Kramkov [29], Delbaen and Schachermayer [7], or Yan [43], and also Föllmer

and Kramkov [15] and Föllmer and Kabanov [14] for an extension to trading strategies with

convex constraints. Moreover, if the supremum supP∈Pe
EP [H] is assumed by some P ∈ Pe,

then H is even attainable by some trading strategy in the sense that H = VT ; see Ansel and

Stricker [1], Theorem 3.2.

We are going to discuss the problem of maximizing the robust utility

U(H) := inf
Q∈Q

EQ[u(H)] (25)
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under the constraint

sup
P∈P0

EP [H] ≤ x0 (26)

for a suitable choice of the set P0. It will turn out that the resulting contingent claim H0

is in fact affordable by means of a strategy with P0-limited downside risk, and this may be

viewed as an extension of the superhedging result recalled in Remark 3.5.

Recall that the utility function u is finite on (a,∞) for some a ∈ [−∞,∞). From now on

we assume that

a = 0 or a = −∞ (27)

and that

u(∞) := lim
x→∞

u(x) = ∞ or u(∞) = 0; (28)

In view of our optimization problem this is no loss of generality since we can shift the origin

along the two axes if necessary.

In order to connect this robust optimization problem to our discussion of robust f -

projections, let us introduce the convex conjugate function v : [0,∞) → R ∪ {∞} of the

concave utility function u:

v(y) := sup
x>a
{u(x)− xy} = u(I(y))− yI(y), (29)

where I := (u′)−1 : (0,∞) → (a,∞) is decreasing from ∞ to a. Note that v(0) :=

limx↘0 v(x) = u(∞), that v is finite and differentiable with v′ = −I on (0,∞), and that

lim
x→∞

v(x)
x

= lim
x→∞

v′(x) = −a. (30)

due to the Inada condition (18). Moreover, our Assumption (19) of regular asymptotic

elasticity implies that for any λ > 0 there are constants a(λ) and b(λ) such that

v(λx) ≤ a(λ)v(x) + b(λ)(x+ 1); (31)

see, for instance, Schachermayer [38] or Frittelli and Rosazza [18]. We define vλ(x) := v(λx)

for λ > 0, and we denote by

vλ(P |Q) = vλ(P a|Q)− aλP s[Ω]

the vλ-divergence of P ∈ P with respect to Q ∈ Q; for λ = 1 we simply write v(P |Q).

Note that v(P |Q) < ∞ implies Q � P whenever v(0) = u(∞) = ∞ and P � Q whenever

a = −∞.
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For P ∈ P and Q ∈ Q with densities φ := dP/dR and ψ := dQ/dR we denote by

dP

dQ
:=

φ

ψ
1{ψ>0} +∞ · 1{ψ=0,φ>0}

the generalized Radon-Nikodym density of P with respect to Q. Note that

I

(
λ
dP

dQ

)
= I

(
λ
dP a

dQ

)
1Ac + a1A,

where A := {ψ = 0, φ > 0} is the support of the singular part of P . In particular

I(λdP/dQ) = I(λdP a/dQ) R-almost surely if a = 0, or if a = −∞ and v(P |Q) <∞.

Lemma 3.6. For P ∈ P and Q ∈ Q the following conditions are equivalent:

(i) v(P |Q) <∞,

(ii) vλ(P |Q) <∞ for any λ > 0,

(iii) For any λ > 0 the contingent claim

Hλ := I

(
λ
dP

dQ

)
satisfies

Hλ ∈ L1(P ) and u(Hλ) ∈ L1(Q), (32)

(iv) H−
λ ∈ L

1(P ) and u(Hλ)+ ∈ L1(Q) for any λ > 0.

Proof. The equivalence of (i) and (ii) follows from (31). In order to check the equivalence

of (ii) to (iv), define ρ := dP a/dQ and note that (ii) is equivalent to aP s[Ω] > −∞ and

EQ[v(λρ)] <∞ for any λ > 0. For 0 < λ1 < λ < λ2, the two estimates

v (λiρ) ≥ v (λρ) + v′ (λρ) (λi − λ)ρ on {0 < ρ <∞}

for i = 1, 2 show that v′ (λρ) ρ ∈ L1(Q) and hence I (λρ) ∈ L1(P a) and Hλ = I (λρ)+a ·1A ∈
L1(P ), as soon as (ii) holds. Since u(Hλ) = u(I(λρ)) Q-almost surely and

u(I(λρ)) = v(λρ) + λρI (λρ) (33)

by (29), Condition (ii) also implies u(Hλ) ∈ L1(Q). Clearly, (iii) implies (iv). Conversely,

(33) allows us to verify (ii) as soon as u+(Hλ) ∈ L1(Q) and H−
λ ∈ L

1(P ). Indeed, v−(λρ) ∈
L1(Q) by convexity of v and v+(λρ) ≤ u+(I(λρ)) + λρH−

λ . Moreover, if a = −∞, then

|a|P s[Ω] ≤ EP [H−
λ ], hence P � Q and vλ(P |Q) = EQ[v(λρ)] <∞.
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Remark 3.7. Consider the following standard choices of a utility function u:

(i) u(x) = log x on (0,∞) (logarithmic utility),

(ii) u(x) = 1
γx

γ on (0,∞), 0 6= γ ∈ (−∞, 1) (power utility),

(iii) u(x) = − 1
αe
−αx on R1, α ∈ (0,∞) (exponential utility).

The corresponding divergences vλ(P |Q) are given by

(i) H(Q|P )− (1 + log λ),

(ii) 1
βλ

−βEQ

[(
dQ
dP

)β]
for β = γ

1−γ ,

(iii) λ
α (H(P |Q) + log λ− 1),

where

H(P |Q) :=

EQ
[
dP
dQ log

(
dP
dQ

)]
if P � Q,

∞ otherwise

denotes the relative entropy of P with respect to Q. In particular vλ(P |Q) < ∞ for all

λ > 0 as soon as P and Q satisfy the corresponding condition (i) H(Q|P ) < ∞, (ii)

1/βEQ
[
(dQ/dP )β

]
<∞, or (iii) H(P |Q) <∞.

For fixed P ∈ P and Q ∈ Q such that P ≈ Q, it is well known how to solve the

classical problem of maximizing the expected utility EQ[u(H)] under the simple constraint

EP [H] ≤ x0; see, for instance, Karatzas and Shreve [27]. For the convenience of the reader

we summarize the solution in a slightly more general form, which will then be extended to

the robust case. Note that here we only assume that v(P |Q) <∞.

Theorem 3.8. Suppose that P ∈ P and Q ∈ Q are such that v(P |Q) <∞.

(i) The function h : (0,∞) → R1 defined by

h(λ) := vλ(P |Q) + λx0

is strictly convex and continuously differentiable with derivative

h′(λ) = x0 − EP

[
I

(
λ
dP

dQ

)]
. (34)

In particular h attains its minimum in the unique value λP,Q > 0 such that

EP

[
I

(
λP,Q

dP

dQ

)]
= x0.
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(ii) The contingent claim

HP,Q := I

(
λP,Q

dP

dQ

)
∈ L1(P )

maximizes the expected utility EQ[u(H)] under the constraint EP [H] ≤ x0, and the maximizer

is R-almost surely unique on the set {dP/dR > 0} ∪ {dQ/dR > 0}. The maximal expected

utility is given by vλP,Q
(P |Q) + λP,Qx0:

max
H:EP [H]≤x0

EQ[u(H)] = EQ[u(HP,Q)]

= vλP,Q
(P |Q) + λP,Qx0

= min
λ>0

{vλ(P |Q) + λx0}.

(35)

Proof. The function g(λ) := v(λ) + λx0 is strictly convex and differentiable on (0,∞) with

g(0) = v(0) = u(∞), g′ = x0 − I, g′(0+) = −∞, and limλ→∞ g′(λ) = x0 − a > 0, hence

limλ→∞ g(λ) = ∞. In particular g is bounded from below. For ρ = dP a/dQ, Jensen’s

inequality implies

h(λ) = EQ [v (λρ) + λx0ρ] + x0λP
s[Ω]

≥ EQ [g (λρ)] ≥ g(λ)

since Ps[Ω] = 0 if a = −∞ and v(P |Q) <∞, and x0 > 0 if a = 0. Note that g′ (λρ) ρ ∈ L1(Q)

for any λ > 0 by Lemma 3.6. Using the monotonicity of g′ in order to get an integrable bound,

we can apply Fubini’s theorem to conclude

h(λ2) = h(λ1) + EQ

[∫ λ2

λ1

g′ (λρ) ρdλ
]

+ x0P
s[Ω](λ2 − λ1)

= h(λ1) +
∫ λ2

λ1

EPa

[
g′ (λρ)

]
dλ+ x0P

s[Ω](λ2 − λ1)

= h(λ1) + x0(λ2 − λ1)−
∫ λ2

λ1

EP

[
I

(
λ
dP

dQ

)]
dλ,

and this implies (34). Moreover, h(·) attains its unique minimum in some λ := λP,Q > 0

such that h′(λ) = 0 since h′ is continuous by (32), h(∞) = g(∞) = ∞, and since (34) implies

h′(0+) = −∞ by monotone convergence. Since I is strictly decreasing, the minimizing value

λP,Q is uniquely determined by the condition

EP

[
I

(
λ
dP

dQ

)]
= x0.
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Finally, any H ∈ L1(P ) such that H ≥ a R-almost surely and EP [H] ≤ x0 satisfies

EQ[u(H)] ≤ EQ[u(H)] + λ(x0 − EP [H])

= EQ [u(H)− λρH] + λx0 − λEP s [H]

≤ EQ [v (λρ)] + λx0 − λaP s[Ω]

= vλ(P |Q) + λx0

= EQ [v (λρ) + λρI(λρ)] + λ (x0 − EPa [I(λρ)]− aP s[Ω])

= EQ

[
u

(
I

(
λ
dP

dQ

))]
+ λ

(
x0 − EP

[
I

(
λ
dP

dQ

)])
,

(36)

for any λ > 0, and the two inequalities reduce to equalities iff λ = λP,Q and H = HP,Q due

to (29). The uniqueness on the set {dP/dR > 0} ∪ {dQ/dR > 0} follows from the strict

concavity of u.

¿From now on we assume

v(P|Q) <∞, (37)

and we consider the robust divergences vλ(P|Q) for λ > 0. As shown in Gundel [22], Theorem

2, the function λ 7→ vλ(P|Q)+λx is convex on (0,∞), and it follows as in the proof of Theorem

3.8 (i) that it attains its minimum in some positive value λ0.

Remark 3.9. In all three cases considered in Remark 3.7,

vλ(P|Q) = vλ(P0|Q0) for any λ > 0

whenever P0 is a robust v-projection of Q on P and Q0 is its reverse projection. In such

a situation we can simply apply Theorem 3.8, and the minimizing value of λ is given by

λ0 := λP0,Q0.

Let us write f := vλ0 . Note that f(P|Q) < ∞ due to Assumption (37) and Lemma 3.6.

Suppose that the robust f -projection P0 of Q on P and its reverse f -projection Q0 exist. For

P ∈ P, Q ∈ Q, and α ∈ (0, 1], we define Pα := αP + (1− α)P0, Qα := αQ+ (1− α)Q0,

Q0 : = {Q ∈ Q : f(P0|Qα) <∞ for some α ∈ (0, 1]}

⊇ {Q ∈ Q : f(P0|Q) <∞} ,
(38)

and

P0 : = {P ∈ P : f(Pα|Q0) <∞ for some α ∈ (0, 1]}

⊇ {P ∈ P : f(P |Q0) <∞} .
(39)
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Let us first consider the reduced problem of maximizing

U0(H) := inf
Q∈Q0

EQ[u(H)] (40)

under the constraint

sup
P∈P0

EP [H] ≤ x0. (41)

Remark 3.10. (i) If a > −∞ as for the logarithmic and the power utility functions, then

P0 = P. (42)

Indeed, take P ∈ P and define ρ0 := dP a0 /dQ0, ρ := dP a/dQ0, and ρα := dP aα/dQ0 for

α ∈ (0, 1). Since f = vλ0 is convex with derivative f ′(x) = −λ0I(λ0x) ≤ −λ0a,

f(ρα) ≤ f(ρ0)− f ′(ρα)(ρ0 − ρα)

≤ f(ρ0) + λ0I(λ0(1− α)ρ0)ρ0 − λ0aρα on {0 < ρα <∞}.

Since ρ0I(λρ0) ∈ L1(Q0) for any λ > 0 by Lemma 3.6, we obtain f(ρα) ∈ L1(Q0) for any

α ∈ (0, 1), hence f(Pα|Q0) = EQ0 [f(ρα)]− aλP sα[Ω] <∞ and P ∈ P0.

(ii) If u is bounded from above as for the exponential utility function, then

Q0 = Q. (43)

Indeed, take Q ∈ Q and define θ0, θ, and θα as the densities of the absolutely continuous

parts of Q0, Q, and Qα with respect to P0. Recall from Remark 2.4 that

f(P0|Qα) = f̂(Qα|P0) = f̂ ′(∞)Qsα[Ω] +
∫
f̂(θα)dP0

for f̂(x) := xf(1/x). Note that f̂ ′(∞) = f(0) = v(0) = u(∞) and that

f̂ ′(x) = v

(
λ0

x

)
+
λ0

x
I

(
λ0

x

)
= u

(
I

(
λ0

x

))
. (44)

As above we see that

f̂(θα) ≤ f̂(θ0)− u

(
I

(
λ0

1− α
ρ0

))
θ0 + u(∞)θα on {0 < θα <∞}.

Since u (I (λρ0)) ∈ L1(Q0) for any λ > 0 by Lemma 3.6, we obtain f̂(θα) ∈ L1(P0) and

f̂(Qα|P0) = EP0 [f̂(θα)] + u(∞)Qsα[Ω] <∞ for any α ∈ (0, 1), hence Q ∈ Q0.

Let us now show how the existence of a robust f -projection P0 of Q on P yields the

solution of the reduced optimization problem.
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Theorem 3.11. Assume that a robust f-projection P0 of Q on P and its reverse f-projection

Q0 on Q exist. Then the robust utility maximization problem defined by (40) and (41) has

the solution

H0 := I

(
λ0
dP0

dQ0

)
, (45)

and the solution is R-almost surely unique on the set {dP0/dR > 0} ∪ {dQ0/dR > 0}. The

maximal value of the robust utility is given by

U0(H0) = f(P|Q) + λ0x0.

Moreover, the contingent claim H0 is affordable with P0-limited downside risk if P0 ≈ Q0 ≈ R.

Proof. For any H ≥ a satisfying the constraint (41), the estimate (36) applied to P0, Q0, and

λ > 0 shows that

U0(H) = inf
Q∈Q0

EQ[u(H)] ≤ EQ0 [u(H)]

≤ inf
λ>0
{vλ(P0|Q0) + λx0}

= vλ0(P0|Q0) + λ0x0

= EQ0 [u (H0)] + λ0(x0 − EP0 [H0]),

where we have used (29) in the last step. Note that λ 7→ vλ(P0|Q0)+λx0 attains its minimum

in λ0. Thus, Theorem 3.8 implies that EP0 [H0] = x0, and this yields

U0(H) ≤ vλ0(P0|Q0) + λ0x0

= EQ0 [u (H0)] .

Lemma 3.12 shows that H0 satisfies the constraint (41) and that

EQ0 [u (H0)] = U0(H0) = min
Q∈Q0

EQ [u (H0)] .

This concludes the proof that H0 is optimal, with U0(H0) = vλ0(P0|Q0) + λ0x0.

In order to show uniqueness, assume that H̃ ≥ a solves the problem defined by (40) and

(41). Then we have EP0 [H̃] ≤ x0 and hence

inf
Q∈Q

EQ[u(H̃)] ≤ EQ0 [u(H̃)] ≤ EQ0 [u(H0)].

The second inequality holds strictly unless H̃ = H0 R-almost surely on {dP0/dR > 0} ∪
{dQ0/dR > 0}. This follows from the fact that H0 maximizes EQ0 [u(H)] under the constraint
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EP0 [H] ≤ x0 and from the uniqueness result in Theorem 3.8. But the strict inequality

is a contradiction to EQ0 [u(H0)] = infQ∈QEQ[u(H0)]. Thus H̃ = H0 R-almost surely on

{dP0/dR > 0} ∪ {dQ0/dR > 0}.
Moreover, we obtain from Goll and Rüschendorf [21], Theorem 3.2, that

H0 = x0 +
∫ T

0
ξsdXs (46)

for some trading strategy (ξt)0≤t≤T such that the corresponding value process Vt :=
∫ t
0 ξsdXs

(0 ≤ t ≤ T ) is a P0-martingale; this representation is based on results due to Yor [45]

and Jacod [26]. For any P ∈ P0 the value process is a local martingale under P , and the

conditional estimates (49) show that it is bounded from below by the P -martingale EP [H0|Ft],
0 ≤ t ≤ T . Thus, H0 is affordable with P0-limited downside risk if P0 ≈ Q0 ≈ R. Uniqueness

follows from the strict concavity of u, and this is consistent with the uniqueness result in

Proposition 2.14 for a strictly convex function f .

The following Lemma was used in the proof of Theorem 3.11; it extends the arguments

in Goll and Rüschendorf [21], Theorem 5.1.

Lemma 3.12. Let P0 be a robust f-projection of Q on P, and let Q0 be the reverse f-

projection of P0 on Q. Then the contingent claim H0 defined by (45) has the following

properties:

H0 := I

(
λ0
dP0

dQ0

)
∈ L1(P ) for all P ∈ P0,

u(H0) ∈ L1(Q) for all Q ∈ Q0,

EP0 [H0] = max
P∈P0

EP [H0], (47)

and

EQ0 [u(H0)] = min
Q∈Q0

EQ[u(H0)]. (48)

If P ≈ Q0 for some P ∈ P0, then P0 ≈ Q0. If in addition Q0 ≈ R, then for all t ∈ [0, T ] and

P ∈ P0,

EP0 [H0|Ft] ≥ EP [H0|Ft] R− a.s. (49)

Proof. Take P ∈ P0, ρ := dP a/dQ0, and ρ0 := dP a0 /dQ0. Due to our assumption a = 0 or

a = −∞ we have f(P |Q0) = f(P a|Q0) if f(P |Q0) < ∞. Since P0 is an f -projection of Q0

on P and f := vλ0 is differentiable on (0,∞), a criterion in Rüschendorf [37], Theorem 5, for

f -projections implies

EQ0

[
f ′(ρ0)(ρ− ρ0)

]
≥ 0. (50)
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For the convenience of the reader we include the argument: Define Pα := αP + (1 − α)P0

and ρα := dP aα/dQ0. The function α 7→ f(ρα) is convex on [0, 1], and so

Zα :=
f(ρα)− f(ρ0)

α

is increasing in α and decreasing to Z0 = f ′(ρ0)(ρ − ρ0) as α ↘ 0. By definition of P0

there is α0 ∈ (0, 1] such that Zα0 ∈ L1(Q0), and Zα is bounded by Zα0 for α ≤ α0.

By monotone convergence we obtain Z0 ∈ L1(Q0) and EQ0 [Z0] ≥ 0, since EQ0 [Zα] =

α−1 (f(Pα|Q0)− f(P0|Q0)) ≥ 0 for any α > 0.

In our situation we have f ′(x) = −λ0I(λ0x) and f ′(ρ0)ρ0 ∈ L1(Q0) by Lemma 3.6,

hence f ′(ρ0)ρ ∈ L1(Q0) and H0 ∈ L1(P ) since Z0 ∈ L1(Q0). Moreover, Inequality (50) and

Assumption (27) allow us to conclude

EP

[
f ′
(
dP0

dQ0

)]
≥ EP0

[
f ′
(
dP0

dQ0

)]
, (51)

and this amounts to the inequality

EP [H0] ≤ EP0 [H0]. (52)

In order to verify (48) take f̂(x) := xf(1/x). Then Q0 is the f̂ -projection of P0 on Q, and

f̂ ′ (dQ0/dP0) = u(H0) due to (44). Note that due to our assumption u(∞) = 0 or u(∞) = ∞
we have f(P0|Q) = f(P0|Qa) for any Q ∈ Q with f(P0|Q) < ∞. Q0-integrability of u(H0)

follows from Lemma 3.6. Now we apply the argument above in terms of f̂ , reversing the role

of the sets Q and P to obtain

EQ[u(H0)] ≥ EQ0 [u(H0)].

Q-integrability of u(H0) for Q ∈ Q0 follows as above.

In order to show that P0 ≈ Q0 take P ∈ P0 with P ≈ Q0. If P0 is not equivalent to Q0,

then P (dP0/dQ0 = 0) > 0 and hence EP [H0] = ∞ since I(0) = ∞. But in view of (52) this

is a contradiction to H0 ∈ L1(P0).

In order to show the conditional estimate (49) for P ∈ P0 and t ∈ (0, T ), we write

ρ0 = ρ0,tρ̂0,t where ρ0,t := dP a0 /dQ0|Ft
and ρ̂0,t is the conditional density with respect to Ft.

In the same way we define ρt, ρ̂t, ρα,t and ρ̂α,t. Due to (31) we have on {ρα,t > 0}

f(ρ0,tρ̂α,t) = f

(
ρ0,t

ρα,t
ρα,tρ̂α,t

)
≤ a

(
ρ0,t

ρα,t

)
f(ρα,tρ̂α,t) + b

(
ρ0,t

ρα,t

)
(ρα,tρ̂α,t + 1)

= a

(
ρ0,t

ρα,t

)
f(ρα) + b

(
ρ0,t

ρα,t

)
(ρα + 1).
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For α ∈ (0, α0] we have EQ0 [f(ρα)|Ft] < ∞ Q0-almost surely, and this implies that also

EQ0 [f(ρ0,tρ̂α,t)|Ft] <∞ Q0-almost surely on {ρα,t > 0}. If f(0) = 0, then f(ρ0,tρ̂α,t) = 0 on

{ρα,t = 0} due to the definition of ρα,t. If f(0) = ∞, then ρα,t > 0 R-almost surely. Hence

EQ0 [f(ρ0,tρ̂α,t)|Ft] <∞ Q0-almost surely on Ω. Furthermore,

EQ0 [f(ρ0,tρ̂α,t)|Ft] ≥ EQ0 [f(ρ0,tρ̂0,t)|Ft] Q0 − a.s.

Indeed, the measure P̃ with density

ρ̃ :=

ρ0,tρ̂α,t on A

ρ0 on Ac

with A := {EQ0 [f(ρ0,tρ̂α,t)|Ft] < EQ0 [f(ρ0,tρ̂0,t)|Ft]} belongs to P, and Q0[A] > 0 would

imply

f(P̃ |Q0) = EQ0 [f(ρ̃)] = EQ0 [EQ0 [f(ρ̃)|Ft]] < EQ0 [f(ρ0)] = f(P0|Q0)

which contradicts the minimality of P0. We can now repeat the argument above, with

Zα,t :=
f(ρ0,tρ̂α,t)− f(ρ0)

α

instead of Zα, to obtain

ρ0,tEQ0 [f
′(ρ0)(ρ̂t − ρ̂0,t)|Ft] ≥ 0 Q0 − a.s.

Since Q0 ≈ R, P0 ≈ R and hence ρ0,t > 0 R-almost surely, the proof of (49) is complete.

Remark 3.13. Equation (47) shows that the robust f-projection P0 of Q on P is indeed

a least favorable pricing measure for the optimal claim H0. In the same manner, Equation

(48) allows us to view Q0 as a least favorable measure for the utility evaluation of H0. If

Q0 minimizes the reverse f-divergence of P0 over the set Q simultaneously for all convex

functions f , then Q0 is in fact a least favorable measure in the sense of Huber and Strassen

[23]; see Schied [39] and [40] for a more detailed discussion of the connection between robust

utility maximization, risk measures, and the robust Neyman-Pearson lemma.

Clearly, the solution of the reduced problem provides the solution of the original optimiza-

tion problem for the utility functional U defined in (25) as soon as Q0 = Q. This condition

is satisfied in the classical case where Q consists of a single measure. Recall from part (ii) of

Remark 3.10 that it also holds if u is bounded from above.
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Corollary 3.14. Suppose that Q is weakly compact in the sense of Assumption 2.5 and

satisfies Q = Q0, and that the utility function u is finite on R. Then the robust optimization

problem defined by (25) and (26) has the unique solution

H0 := I

(
λ0
dP0

dQ0

)
,

where P0 is a robust f-projection of Q on P and Q0 is its reverse projection on Q. The

contingent claim H0 is affordable with P0-limited downside risk if P0 ≈ Q0 ≈ R.

Proof. If u is finite on R, then a = −∞. This implies limx→∞ f(x)/x = −a = ∞, and the

same property holds for f = vλ0 . Recall from Remark 3.3 that the set KP is closed. Thus

both parts of Assumption 2.5 are satisfied in our case. We can therefore apply Theorem 2.6

in order to obtain the existence of a pair (P0, Q0) ∈ P × Q that minimizes f(P |Q) over the

sets P and Q. Thus the assumptions of Theorem 3.11 are verified, hence H0 is the solution

of the original optimization problem defined by (25) and (26).

Remark 3.15. The compactness assumption on the set Q can be motivated as follows. Note

first that our robust utility functional U , defined by (25) for some class of measures Q� R,

remains unchanged if we pass to the weak closure of KQ in L1(R). Thus it is no loss of

generality to assume that Q is weakly closed. Weak compactness of Q is now equivalent to

uniform integrability of KQ, and hence to the condition

∀ ε > 0 ∃ δ > 0 such that R[A] < δ =⇒ Q[A] < ε ∀ Q ∈ Q; (53)

see, for example, Dellacherie and Meyer [8], Theorem II.19. This condition means that all

models in Q agree that an event is highly unlikely if it has sufficiently small probability under

the reference measure R.

Clearly, Corollary 3.14 includes the case of exponential utility functions. But it does not

cover the remaining cases considered in Remark 3.7 where a = 0, hence limx→∞ f(x)/x = 0.

In order to formulate an existence result for such cases we are now going to extend our setting

and in particular the notion of a martingale measure.

4 Extended Martingale Measures

In this section we enlarge our initial probability space by introducing an additional default

time ζ, defined as the second coordinate ζ(ω, s) := s on the product space Ω̄ := Ω× (0,∞].
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Let

F̄ := σ({A× (t,∞] : A ∈ Ft, t ≥ 0})

denote the predictable σ-field on Ω̄, where Ft := FT for t > T ; the predictable filtration

(F̄t)t≥0 is defined in the same manner. An adapted process Y = (Yt)t≥0 on (Ω,F , (Ft)t≥0)

will be identified with the adapted process Ȳ = (Ȳt)t≥0 on (Ω̄, F̄ , (F̄t)t≥0) defined by Ȳt :=

YtI{ζ>t}, i.e.,

Ȳt(ω, s) := Yt(ω)1(t,∞](s) (t ≥ 0).

To a probability measure Q on (Ω,F) corresponds the probability measure Q̄ := Q× δ∞ on

(Ω̄, F̄). Conversely, for any probability measure Q̄ on (Ω̄, F̄) we define its projections Qt on

(Ω,Ft) by

Qt[A] := Q̄[A× (t,∞]] (A ∈ Ft).

In order to introduce the class P̄ of extended martingale measures, let us denote by V(x0)

the class of all non-negative value processes V = (Vt)t≥0 of the form (22) with Vt := VT for

t ≥ T , i.e.,

Vt = x0 +
∫ t∧T

0
ξsdXs ≥ 0 (t ≥ 0),

and by V̄(x0) the class of the corresponding processes V̄ = (V̄t)t≥0.

Definition 4.1. A probability measure P̄ on (Ω̄, F̄) will be called an extended martingale

measure if

(i) P t � R on Ft (t ≥ 0),

(ii) Under P̄ , any V̄ ∈ V̄(x0) is a supermartingale with respect to (F̄t)t≥0.

We denote by P̄ the class of all extended martingale measures.

Clearly, for any martingale measure P ∈ P the corresponding measure P̄ := P × δ∞ on

(Ω̄, F̄) belongs to P̄.

We are going to use the representation of a right-continuous non-negative supermartingale

Z = (Zt)t≥0 with Z0 = 1 as a probability measure P̄Z on (Ω̄, F̄) such that

P̄Z [A× (t,∞]] = ER[Zt;A] (54)

for A ∈ Ft and t ≥ 0; see Föllmer [12]. This requires a regularity assumption on the

underlying filtration, for instance in the following form.
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Assumption 4.2. (Ft)t≥0 is the right-continuous modification of a standard system (F0
t )t≥0

in the sense of Parthasarathy [35] V, i.e., (i) each (Ω,F0
t ) is a standard Borel space, and (ii)

any decreasing sequence of atoms Ai of Fti for 0 ≤ t1 ≤ t2 ≤ ... has a non-void intersection.

Remark 4.3. (i) For any probability measure P̄ on (Ω̄, F̄) whose projections satisfy Condition

(i) of Definition 4.1, the adapted process Z = (Zt)t≥0 defined by

Zt :=
dP t

dR
(t ≥ 0) (55)

is a right-continuous non-negative supermartingale on the filtered probability space (Ω,F ,
(Ft)t≥0, R) with Z0 = 1. Conversely, any such supermartingale induces a probability measure

P̄Z on (Ω̄, F̄) via (54) if the underlying filtered space (Ω,F , (Ft)t≥0) is rich enough, for

example in the sense of Assumption 4.2; see Föllmer [12] and also Föllmer [11], Meyer

[33], Azéma and Jeulin [2], and Stricker [42]. For any supermartingale Y = (Yt)t≥0 on

(Ω,F , (Ft)t≥0, R), the process Ū = (Ūt)t≥0 defined by

Ūt(ω, s) :=
Yt
Zt

1{Zt 6=0}1(t,∞](s)

is a P̄Z-supermartingale. Conversely, if the process Ū with Ūt = Ut1{ζ>t} is a supermartingale

under P̄Z , then Y := UZ is an R-supermartingale; see Föllmer [11], Proposition 4.2.

(ii) Let P̄ = P̄Z be a probability measure on (Ω̄, F̄ ) such that (54) holds. It follows from

part (i) that P̄ is an extended martingale measure if and only if

ZV is an R-supermartingale for any V ∈ V(x0). (56)

Thus our class P̄ of extended martingale measures corresponds exactly to the class of su-

permartingales which appear in the duality approach of Kramkov and Schachermayer to the

problem of maximizing expected utility in incomplete financial markets; see [30], page 6.

Lemma 4.4. Let (P̄n)n≥1 be a sequence in the set P̄. Then there is a sequence P̄n,0 ∈
conv(P̄n, P̄n+1, ...) (n = 1, 2, ...) and a measure P̄0 ∈ P̄ such that

dP Tn,0
dR

∣∣∣∣∣
FT

−→ dP T0
dR

∣∣∣∣
FT

R− a.s. (57)

Proof. Let Zn be the supermartingale which corresponds to P̄n via (55). By Föllmer and

Kramkov [15], Lemma 5.2, there are processes

Zn,0 ∈ conv(Zn, Zn+1, ...) (n = 1, 2, ...)
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and a right-continuous non-negative supermartingale Z such that Zn,0 is Fatou convergent

to Z on the set of rational points, i.e.,

Zt = lim sup
s↓t,s∈Q

lim sup
n→∞

Zn,0s = lim inf
s↓t,s∈Q

lim inf
n→∞

Zn,0s

R-almost surely for t ≥ 0. In particular Zn,0T converges to ZT R-almost surely because Zn,0

is constant for t ≥ T for every n ≥ 1. Furthermore, V Zn,0 is Fatou convergent to the

supermartingale V Z for every V ∈ V(x0). Thus, part (ii) of Remark 4.3 shows that the

probability measure P̄0 := P̄Z belongs to P̄, and this completes the proof.

Let us now formulate a general projection result for the class P̄ of extended martingale

measures and for the class

Q̄ := {Q× δ∞ : Q ∈ Q}.

Let f : (0,∞) → R be a strictly convex function such that

lim
x→∞

f(x)
x

= 0. (58)

In this case the definition of f(·, ·) in (9) simplifies to

f(x, y) :=

0 if y = 0

yf
(
x
y

)
if y > 0,

f(·, ·) is continuous on (0,∞)× [0,∞), and the f -divergence of P̄ ∈ P̄ with respect to Q̄ ∈ Q̄
is given by

f(P̄ |Q̄) = EQ

[
f

(
d(P∞)a

dQ

)]
= EQ

[
f

(
d(P T )a

dQ

)]
= f(P T |Q)

due to Remark 2.2 and our assumption FT = F , where (P T )a is the absolutely continuous

part of P T with respect to Q.

Theorem 4.5. Let Q be weakly compact in the sense of Assumption 2.5, and let f satisfy

Condition (58). Then there exist a robust f-projection P̄0 of Q̄ on P̄ and its reverse f-

projection Q̄0, i.e.,

f(P̄0|Q̄0) = f(P̄|Q̄) = inf
P̄∈P̄

inf
Q∈Q

f(P T |Q).

Proof. Let (Qn)n≥1 ⊆ Q and (P̄n)n≥1 ⊆ P̄ be such that f(P̄n|Q̄n) converges to the infimum

of the values f(P̄ |Q̄) for P̄ ∈ P̄ and Q ∈ Q, and define

ψn :=
dQn
dR

.
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By Delbaen and Schachermayer [7], Lemma A1.1, we can choose

ψn,0 ∈ conv(ψn, ψn+1, ...) (n = 1, 2, ...)

and a function ψ0 such that

ψn,0 −→ ψ0 R− a.s.

Since the set KQ is weakly compact we have ψ0 ∈ KQ, i.e., ψ0 is the density of some measure

Q0 ∈ Q. Due to Lemma 4.4 we can also choose

P̄n,0 ∈ conv(P̄n, P̄n+1, ...) (n = 1, 2, ...)

and P̄0 ∈ P̄ such that (57) holds.

Define φn,0 := dP Tn,0/dR
∣∣
FT

and φ0 := dP T0 /dR
∣∣
FT

. Note first that

f(P̄0|Q̄0) = ER [f (φ0, ψ0)]

= ER

[
lim
ε→0

f (φ0 + ε, ψ0)
]

= lim
ε→0

ER [f (φ0 + ε, ψ0)]

by monotone convergence, since f(·, y) is continuous and decreasing on [0,∞) and

ER [f (φ0 + ε, ψ0)] = EQ0

[
f

(
φ0 + ε

ψ0

)]
≥ f(1 + ε) > −∞

by Jensen’s inequality. For any ε > 0 if follows as in Schied and Wu [41], Lemma 3.6, that the

set {f−(φ+ ε, ψ) : φ ∈ KP̄ , ψ ∈ KQ} is uniformly integrable, whereKP̄ :=
{
dP T /dR : P̄ ∈ P̄

}
.

This implies

ER [f (φ0 + ε, ψ0)] = ER

[
lim
n→∞

f(φn,0 + ε, ψn,0)
]

= ER

[
lim
n→∞

f+(φn,0 + ε, ψn,0)
]
− ER

[
lim
n→∞

f−(φn,0 + ε, ψn,0)
]

≤ lim inf
n→∞

ER[f(φn,0 + ε, ψn,0)]

≤ lim inf
n→∞

ER[f(φn,0, ψn,0)]

≤ lim inf
n→∞

ER[f(φn, ψn)] = f(P̄|Q̄).

The first equality follows from the continuity of f(· + ε, ·) on [0,∞)2, the first inequality

follows from Fatou’s lemma (applied to the first term) and Lebesgue’s theorem (applied to

the second term) and the last one from the convexity of f(·, ·). This shows that f(·|·) attains

its minimum in (P̄0, Q̄0).
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Remark 4.6. Uniqueness of the density dP T0 /dQ0 holds as in Proposition 2.14 if the function

f is strictly convex.

Let us now return to the utility maximization problem. In view of Corollary 3.14 we

assume that the utility function u is given on (0,∞). Thus the convex conjugate function v

of u as defined in (29) satisfies Condition (58) due to (30).

Since {u > −∞} ⊆ [0,∞), a contingent claim is relevant for our utility maximization

problem only if it is non-negative. In this case affordability reduces to the price constraint

(24) for P0 = Pe as explained in Remark 3.5. In fact the price constraint also includes the

class P̄ of extended martingale measures:

Lemma 4.7. For a contingent claim H ≥ 0 the following conditions are equivalent:

(i) supP∈Pe
EP [H] ≤ x0.

(ii) There exists a value process V ∈ V(x0) such that VT ≥ H R-almost surely.

(iii) The corresponding claim H̄ := H1{ζ>T} satisfies the constraint

sup
P̄∈P̄

EP̄ [H̄] ≤ x0.

Proof. The equivalence of (i) and (ii) is a key result in the theory of superhedging as recalled

in Remark 3.5. To check that (ii) implies (iii) note that for any V ∈ V(x0) the process (V̄t) is

a P̄ -supermartingale with V̄T ≥ H̄ P̄ -almost surely because P̄ [V̄T ≥ H̄] = P T [VT ≥ H] and

P T � R. Since P × δ∞ ∈ P̄ for any P ∈ Pe, (iii) implies (i).

As in Section 3 we denote by λ0 > 0 a minimizer of vλ(P̄|Q̄) + λx0 and define the class

Q0 as in (38). Our aim is to maximize the robust utility

U0(H) = inf
Q∈Q0

EQ[u(H)] (59)

over all contingent claims H ≥ 0 such that H̄ := H1{ζ>T} satisfies the constraint

sup
P̄∈P̄

EP̄ [H̄] ≤ x0. (60)

Corollary 4.8. Let Q be weakly compact in the sense of (2.5). Then there exists a solution

to the utility maximization problem defined by (59) and (60). It is given by

H0 := I

(
λ0
dP T0
dQ0

)
,

where P̄0 is the robust vλ0-projection of Q̄ on P̄ and Q̄0 = Q0×δ∞ is its reverse vλ0-projection.

H0 is affordable in the sense that it satisfies the conditions of Lemma 4.7.
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Proof. For P̄ ∈ P̄, Q̄ = Q× δ∞ ∈ Q̄, and H ∈ L1(P T ) such that EP̄ [H̄] = EPT [H] ≤ x0 we

obtain

EQ[u(H)] ≤ EQ

[
u(H)− λH

d(P T )a

dQ

]
− λE(PT )s [H] + λx0

≤ vλ(P̄ |Q̄) + λx0

in analogy to (36). Since limx→∞ v(x)/x = a = 0, Theorem 4.5 ensures the existence of a

robust vλ0-projection P̄0 of Q̄ on P̄. We can now continue as in the proof of Theorem 3.11

to conclude that EP̄0
[H̄0] = EPT

0
[H0] = x0 and

U0(H) ≤ vλ0(P̄0|Q̄0) + λ0x0

= EQ0 [u(H0)].

It follows from Lemma 3.12 and Remark 3.10 that

EP̄0
[H̄0] = max

P̄∈P̄
EP̄ [H̄0],

that EQ̄0
[u(H̄0)] = minQ̄∈Q̄0

EQ̄[u(H̄0)]. Thus H0 solves the optimization problem defined by

(59) and (60).

References

[1] Ansel, J. P., Stricker, C: Couverture des actifs contingents et prix maximum. Ann. Inst.
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[19] Gao, Y., Lim, K. G., Ng, K. H.: An Approximation Pricing Algorithm in an Incomplete

Market: A Differential Geometric Approach. Finance and Stochastics 8, No. 4, 501-523

(2004).
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