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Abstract

Expected suprema of a function f observed along the paths of a nice Markov pro-

cess de�ne an excessive function, and in fact a potential if f vanishes at the boundary.

Conversely, we show under mild regularity conditions that any potential admits a re-

presentation in terms of expected suprema. Moreover, we identify the maximal and the

minimal representing function in terms of probabilistic potential theory. Our results

are motivated by the work of El Karoui and Meziou [7] on the max-plus decomposi-

tion of supermartingales, and they provide a singular analogue to the non-linear Riesz

representation in El Karoui and Föllmer [6].
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1 Introduction

For a nice Markov process such as Brownian motion on a bounded domain of IRd, we

consider the excessive function u de�ned by the expected suprema

u(x) := Ex[ sup
0<t<ζ

f(Xt)] (1)

of some function f ≥ 0 observed along the paths of the process up to its life time ζ. The

function u is excessive, and it is in fact a potential if f(Xt) converges to zero as t ↑ ζ.

Conversely, we show under mild regularity conditions that any potential u admits a repre-

sentation of the form (1) in terms of expected suprema.

In general, the representing function f is not uniquely determined by u. We show that

the maximal representing function is given by

Du(x) := inf
u(x)− PT u(x)

Px[T = ζ]
,
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where the in�mum is taken over all exit times T from open neighborhoods of x such that

Px[T = ζ] > 0. On the other hand, the minimal representing function is identi�ed as

Du 1Hc ,

where H is the set of points x such that u is harmonic in some neighborhood of x.

Our discussion of the existence problem is motivated by the work of El Karoui and Meziou

[7] and El Karoui [5] which involves a representation of a given supermartingale as a pro-

cess of conditional expected suprema of some other process. Such a representation is of

considerable interest, as illustrated by the �nancial applications discussed in [7]. Here we

translate some of the key arguments in [5] into the setting of probabilistic potential theory.

This is analogous to the non-linear Riesz representation

u(x) = Ex[
∫ ζ

0

sup
0≤s≤t

f(Xs) dt] (2)

in El Karoui and Föllmer [6] which can be seen as a special case of a general representation

theorem due to Bank and El Karoui [1]; see also Bank and Föllmer [2] for a survey. In the

Markovian setting, both (1) and (2) may be viewed as special cases of a representation

u(x) = Ex[
∫ ζ

0

sup
0≤s≤t

f(Xs) dAt]

with respect to a given additive functional (At)t≥0 of the underlying Markov process. In-

deed, in (2) the additive functional is given by At = t ∧ ζ, and in (1) it corresponds to

the random measure δζ . So far, representation results with respect to additive functionals

are only available under strong regularity assumptions which exclude the singular random

measure δζ ; cf. Knispel [8] for a discussion in the Markovian setting, where the random

measure dAt satis�es the conditions described in Remark 1.1 of Bank and El Karoui [1].

For this reason it seems useful to prove the existence of a representation for the case of the

random measure δζ in the context of probabilistic potential theory. Moreover, the present

paper contains new results related to the uniqueness problem which involve the harmonic

points of the function u.

2 Preliminaries

Let (Xt)t≥0 be a strong Markov process with locally compact metric state space (S, d), shift
operators (θt)t≥0, and life time ζ, de�ned on a stochastic base (Ω,F , (Ft)t≥0, (Px)x∈S). As
in El Karoui and Föllmer [6] we introduce an Alexandrov point ∆ and use the following

assumptions:

A1) The process (Xt)t≥0 is a Hunt process in the sense of [3] XVI.11 such that limt↑ζ Xt =
∆.

A2) The excessive functions of the process are lower-semicontinuous.

As a typical example, we could consider a Brownian motion on a bounded domain S ⊂ IR
d.
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Let us denote by T (x) the class of all exit times

TUc := inf{t ≥ 0|Xt 6∈ U} ∧ ζ

from open neighborhoods U of x ∈ S, and by T0(x) the subclass of all exit times from open

neighborhoods of x which are relatively compact. Note that ζ = TSc ∈ T (x).

For a measurable function u ≥ 0 on S and a stopping time T we use the notation

PT u(x) = Ex[u(XT );T < ζ].

Recall that u is excessive if Ptu ≤ u for any t > 0 and limt↓0 Ptu(x) = u(x) for any x ∈ S.

De�nition 2.1 An excessive function u ≥ 0 will be called a potential of class (D) if, for

any x ∈ S,

lim
t↑ζ

u(Xt) = 0 Px − a. s., (3)

and the family

{u(XT )|T ∈ T0(x)} is uniformly integrable with respect to Px. (4)

Proposition 2.1 Let f ≥ 0 be an upper-semicontinuous function on S. Then the function

u on S de�ned by the expected suprema

u(x) := Ex[ sup
0<t<ζ

f(Xt)]

is excessive, hence lower-semicontinuous. Moreover, u is a potential of class (D) if and

only if f satis�es the conditions

sup
0<t<ζ

f(Xt) ∈ L1(Px) (5)

and

lim
t↑ζ

f(Xt) = 0 Px − a. s. (6)

for any x ∈ S.

Proof. 1) Upper-semicontinuity of f ensures that sup0<t<ζ f(Xt) is measurable, and so u

is well de�ned as a measurable function on S. Since

Ptu(x) = Ex[EXt [ sup
0<s<ζ

f(Xs)]; t < ζ] = Ex[Ex[ sup
t<s<ζ

f(Xs)|Ft]; t < ζ]

= Ex[ sup
t<s<ζ

f(Xs); t < ζ],

we see that Ptu(x) ≤ u(x) and, by monotone convergence, limt↓0 Ptu(x) = u(x) for any

x ∈ S, i. e., u is excessive.

2) Suppose that f satis�es the conditions (5) and (6). Then u is �nite on S. Recall

that limt↑ζ u(Xt) exists Px-a. s. for any excessive function u. Take Tn as the exit time from
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Un, where (Un)n∈IN is a sequence of relatively compact open neighborhoods of x increasing

to S. Since 0 ≤ sup0<t<ζ f(Xt) ∈ L1(Px),

0 ≤ lim
n↑∞

u(XTn) = lim
n↑∞

Ex[ sup
Tn<s<ζ

f(Xs)|FTn ]

≤ lim
n↑∞

Ex[ sup
Tn0<s<ζ

f(Xs)|FTn ] = sup
Tn0<s<ζ

f(Xs) Px−a. s.

for any n0 due to the martingale convergence theorem, hence limt↑ζ u(Xt) = 0 Px-a. s. in

view of our assumption (6) on f . Moreover, {u(XT )|T ∈ T0(x)} is uniformly integrable

with respect to Px since

0 ≤ u(XT ) = Ex[ sup
T<t<ζ

f(Xt)|FT ] ≤ Ex[ sup
0<t<ζ

f(Xt)|FT ].

Thus u is a potential of class (D). Conversely, if u is a potential of class (D) then u(x) < ∞
due to condition (4), since u(x) ≤ limn↑∞ u(XTεn

) for the exit times Tεn ∈ T0(x) from the

open balls Uεn(x), where εn ↓ 0. Thus f satis�es condition (5). Moreover, (6) follows from

lim
t↑ζ

f(Xt) = lim
n↑∞

sup
Tn<s<ζ

f(Xs) = lim
n↑∞

Ex[ sup
Tn<s<ζ

f(Xs)|FTn ] = lim
n↑∞

u(XTn) = 0 Px−a. s.,

where the second identity is obtained by a martingale convergence argument. 2

Our purpose is to show that, conversely, any potential of class (D) admits a representation

of the form (1) in terms of some upper-semicontinuous function f satisfying the conditions

(5) and (6).

3 Existence of a representing function

Let u be a potential of class (D). In order to avoid additional technical di�culties, we also

assume that u is continuous. For convenience we introduce the notation uc := u ∨ c.

As a �rst step in our construction of a function f such that u can be represented in the

form (1), we consider the family of optimal stopping problems

Ruc(x) := sup
T∈T0(x)

Ex[uc(XT )] (7)

for c ≥ 0 and x ∈ S. Note that

uc(x) ≤ Ruc(x) = sup
T∈T0(x)

(Ex[u(XT );u(XT ) ≥ c] + cPx[u(XT ) < c]) ≤ u(x) + c < ∞

for any x ∈ S.

It is well known that the value function Ruc of the optimal stopping problem (7) can

be characterized as the smallest excessive function dominating uc; see, for example [9],

Theorem III.1. In particular, Ruc is lower-semicontinuous due to our assumption A2).

Moreover,

Ruc(x) ≥ Ex[uc(XT );T < ζ] + cPx[T = ζ] (8)
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for any stopping time T ≤ ζ, and equality holds for the �rst entrance time Dc
0 into the set

{Ruc = uc}; cf. for example [4], Theorem 2.76, or the proof of Lemma 4.1 in [6]. Rede�ning

Dc
0 as ζ on {Dc

0 < ζ, u(XDc
0
) < c}, we can rewrite the equality as

Ruc(x) = Ex[uc(XDc);Dc < ζ] + cPx[Dc = ζ], (9)

where

Dc := inf{t ≥ 0 | Xt ∈ A(c)} ∧ ζ

is the �rst entrance time into the set

A(c) := {Ruc = u}.

Note that A(c) is closed since Ruc is lower-semicontinuous and u is assumed to be contin-

uous.

We are now going to study the dependence of Ruc(x) and of Dc on the parameter c,

in analogy to the discussion in El Karoui and Föllmer [6].

Lemma 3.1 For any x ∈ S, Ruc(x) is increasing, convex and Lipschitz-continuous in c,

and

lim
c↑∞

(Ruc(x)− c) = 0. (10)

Moreover, the map c 7→ Dc is increasing and Px-a. s. left-continuous.

Proof. 1) Since c 7→ uc(x) = u(x) ∨ c is an increasing and convex function which satis�es

uc(x) ≤ ua(x) + |c − a| for a, c ≥ 0, monotonicity, convexity and Lipschitz-continuity of

c 7→ Ruc(x) follow immediately from de�nition (7). Moreover,

0 ≤ lim
c↑∞

(Ruc(x)− c) ≤ lim
c↑∞

sup
T∈T0(x)

Ex [u(XT );u(XT ) > c] = 0

due to our assumption (4) on u.

2) By monotonicity of the mapping c 7→ Ruc the sets A(c) decrease in c, and so the

stopping times Dc are increasing in c. In order to prove the left-continuity of c 7→ Dc, we

�x an arbitrary c > 0 and a strictly increasing sequence (cn)n∈IN converging to c. Clearly,

D∗ := lim
n↑∞

Dcn ≤ Dc ≤ ζ.

Let us verify the converse inequality Dc ≤ D∗ Px-a. s.. By monotonicity of Ruc(x) in c we

obtain the estimate

0 ≤ (Rucn − u)(x) ≤ (Rucn+m − u)(x)

for any x ∈ S, hence

0 ≤ (Rucn − u)(XDcn+m ) ≤ (Rucn+m − u)(XDcn+m ) = 0 on {D∗ < ζ}

since A(cn+m) is closed. By quasi-left-continuity of our Hunt process (Xt)t≥0 and by lower-

semicontinuity of Rucn we get

0 ≤ (Rucn − u)(XD∗) ≤ lim
m↑∞

(Rucn − u)(XDcn+m ) = 0 Px − a. s. on {D∗ < ζ},
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hence

(Ruc − u)(XD∗) = lim
n↑∞

(Rucn − u)(XD∗) = 0 Px − a. s. on {D∗ < ζ}

by continuity of Ruc in c. This shows Dc ≤ D∗ Px-a. s. on {D∗ < ζ}, and clearly we have

D∗ = Dc on {D∗ = ζ}. 2

The function c 7→ Ruc(x) is convex, hence almost everywhere di�erentiable. The prop-

erties of the optimal stopping times Dc allow us to determine the derivatives explicitly.

Lemma 3.2 The derivative ∂−Ruc(x) from the left-hand side of Ruc(x) with respect to

c > 0 is given by

∂−Ruc(x) = Px[Dc = ζ].

Proof. For any 0 ≤ a < c, the representation (9) for the parameter c combined with the

inequality (8) for the parameter a and for the stopping time T = Dc implies

Ruc(x)−Rua(x) ≤ Ex[uc(XDc)− ua(XDc);Dc < ζ] + (c− a)Px[Dc = ζ].

Since

u(XDc) = Ruc(XDc) ≥ c > a on {Dc < ζ},

the previous estimate simpli�es to

Ruc(x)−Rua(x) ≤ (c− a)Px[Dc = ζ].

This shows ∂−Ruc(x) ≤ Px[Dc = ζ]. In order to prove the converse inequality, we use the

estimate

Ruc(x)−Rua(x) ≥ (c− a)Px[Da = ζ]

obtained by reversing the role of a and c in the preceding argument. Moreover, Lipschitz-

continuity of c 7→ Ruc(x) yields
⋃

a<c{Da = ζ} = {Dc = ζ}, and this implies

∂−Ruc(x) ≥ lim
a↑c

Px[Da = ζ] = Px[Dc = ζ]. 2

Let us now introduce the function f∗ de�ned by

f∗(x) := sup{c|x ∈ A(c)} (11)

for any x ∈ S. Note that f∗(x) ≥ c is equivalent to Ruc(x) = u(x) due to the continuity of

Ruc(x) in c.

Lemma 3.3 The function f∗ is upper-semicontinuous and satis�es 0 ≤ f∗ ≤ u. Moreover,

limt↑ζ f∗(Xt) = 0 Px-a. s. for any x ∈ S.

Proof. In order to show that f∗ is upper-semicontinuous, we consider a sequence (xn)n∈IN

converging to x such that limn↑∞ f∗(xn) = c > 0. Then xn ∈ A(cn) for some sequence

(cn)n∈IN such that cn ↑ c. Since the decreasing sets A(cn) are closed, we obtain x ∈ A(cn)
for any n, hence f∗(x) ≥ c. The estimate 0 ≤ f∗(x) ≤ u(x) follows from Ru0 = u and

Ruc(x) ≥ uc(x) > u(x) for any c > u(x). Moreover, f∗(Xt) converges to zero as t ↑ ζ since

f∗ ≤ u, due to our assumption (3) on u. 2

We are now ready to derive a representation of the value functions Ruc in terms of the

function f∗.
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Theorem 3.1 For any c ≥ 0 and any x ∈ S,

Ruc(x) = Ex[ sup
0≤t<ζ

f∗(Xt) ∨ c] = Ex[ sup
0<t<ζ

f∗(Xt) ∨ c]. (12)

Proof. By Lemma 3.2 and (10) we get

Ruc(x)− c =
∫ ∞

c

− ∂
∂α (Ruα(x)− α) dα =

∫ ∞

c

Px [Dα < ζ] dα.

Since

{Dc+ε < ζ} ⊆ { sup
0≤t<ζ

f∗(Xt) > c} ⊆ {Dc < ζ}

for any c ≥ 0 and for any ε > 0,

Ruc(x)− c =
∫ ∞

c

Px[Dα < ζ] dα ≥
∫ ∞

c

Px[ sup
0≤t<ζ

f∗(Xt) > α] dα

≥
∫ ∞

c

Px[Dα+ε < ζ] dα = Ruc+ε(x)− (c + ε).

By continuity of c 7→ Ruc we obtain

Ruc(x)− c ≥
∫ ∞

c

Px[ sup
0≤t<ζ

f∗(Xt) > α] dα ≥ lim
ε↓0

(Ruc+ε(x)− (c + ε)) = Ruc(x)− c,

hence

Ruc(x) =
∫ ∞

c

Px[ sup
0≤t<ζ

f∗(Xt) > α] dα + c = Ex[ sup
0≤t<ζ

f∗(Xt)− sup
0≤t<ζ

f∗(Xt) ∧ c + c]

= Ex[ sup
0≤t<ζ

f∗(Xt) ∨ c].

Moreover, we can conclude that

Ruc(x) = lim
t↓0

Pt(Ruc)(x) = lim
t↓0

Ex[ sup
t≤s<ζ

f∗(Xs) ∨ c; t < ζ] = Ex[ sup
0<s<ζ

f∗(Xs) ∨ c]

since Ruc is excessive, i. e., Ruc(x) also admits the second representation in equation (12).2

As a corollary we see that f∗ is a representing function for u.

Corollary 3.1 The potential u admits the representations

u(x) = Ex[ sup
0≤t<ζ

f∗(Xt)] = Ex[ sup
0<t<ζ

f∗(Xt)] (13)

in terms of the upper-semicontinuous function f∗ ≥ 0 de�ned by (11). Moreover,

f∗(x) ≤ sup
0<t<ζ

f∗(Xt) Px − a. s.

for any x ∈ S.

Proof. Note that u = Ru0 since u is excessive. Applying Theorem 3.1 with c = 0 we obtain

u(x) = Ru0(x) = Ex[ sup
0≤t<ζ

f∗(Xt)] = Ex[ sup
0<t<ζ

f∗(Xt)].
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In particular we get

sup
0≤t<ζ

f∗(Xt) = sup
0<t<ζ

f∗(Xt) Px−a. s.,

and this implies f∗(x) ≤ sup0<t<ζ f∗(Xt) Px-a. s. for any x ∈ S. 2

We have thus shown that u admits a representing function which is regular in the following

sense:

De�nition 3.1 Let us say that a nonnegative function f on S is regular if it is upper-

semicontinuous and satis�es the conditions

lim
t↑ζ

f(Xt) = 0 Px − a. s.

and

f(x) ≤ sup
0<t<ζ

f(Xt) Px − a. s. (14)

for any x ∈ S.

Note that a regular function f also satis�es the inequality

f(XT ) ≤ sup
T<t<ζ

f(Xt) Px−a. s. on {T < ζ} (15)

for any stopping time T , due to the strong Markov property.

Let us now derive an alternative description of the representing function f∗ in terms of

the given excessive function u. To this end, we introduce the superadditive operator

Du(x) := inf
u(x)− PT u(x)

Px[T = ζ]
,

where the in�mum is taken over all exit times T from open neighborhoods of x such that

Px[T = ζ] > 0.

Proposition 3.1 The functions f∗ and Du coincide. In particular x 7→ Du(x) is regular

on S.

Proof. If f∗(x) > c then Ruc(x) = u(x), and in view of (8) this implies

u(x)− PT u(x) = Ruc(x)− Ex[u(XT );T < ζ]

≥ cPx[T = ζ] + Ex[uc(XT );T < ζ]− Ex[u(XT );T < ζ]

≥ cPx[T = ζ]

for any T ∈ T (x). Thus Du(x) ≥ c, and this yields f∗(x) ≤ Du(x). In order to prove the

converse inequality, we take c > 0 such that f∗(x) < c and de�ne Tc ∈ T (x) as the �rst

exit time from the open neighborhood {f∗ < c} of x. Then

u(x) < Ruc(x) = Ex[ sup
0≤t<ζ

f∗(Xt) ∨ c]

= cPx[Tc = ζ] + Ex[ sup
Tc≤t<ζ

f∗(Xt);Tc < ζ] = cPx[Tc = ζ] + PTcu(x).

Since u is excessive, this yields

0 ≤ u(x)− PTcu(x) < cPx[Tc = ζ]

and in particular Px[Tc = ζ] > 0, hence Du(x) < c. This shows Du(x) ≤ f∗(x). 2
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4 The minimal and the maximal representing function

In this section we discuss the question to which extent a representing function f is deter-

mined by the given excessive function u. For this purpose we introduce the notation

P̃T g(x) := Ex[g(XT );T < ζ] + Ex[lim
t↑ζ

g(Xt);T = ζ].

Note that

P̃T uc(x) := Ex[uc(XT );T < ζ] + cPx[T = ζ]

for any c ≥ 0 due to condition (4).

Theorem 4.1 Suppose that u admits the representation

u(x) = Ex[ sup
0<t<ζ

f(Xt)]

for any x ∈ S, where f is regular on S. Then f satis�es the bounds

f∗ ≤ f ≤ f∗ = Du,

where the function f∗ is de�ned by

f∗(x) := inf{c ≥ 0|∃ T ∈ T (x) : P̃T uc(x) ≥ u(x)}

for any x ∈ S.

Proof. For any T ∈ T (x) we get

u(x)− PT u(x) = Ex[ sup
0<t<ζ

f(Xt)]− Ex[ sup
T<t<ζ

f(Xt);T < ζ]

≥ Ex[ sup
0<t<ζ

f(Xt);T = ζ] ≥ f(x)Px[T = ζ]

due to our assumption (14) on f , hence f(x) ≤ Du(x). In order to verify the lower bound,

take c > f(x) and let Tc ∈ T (x) denote the �rst exit time from {f < c}. Since

c ≤ sup
Tc<t<ζ

f(Xt) = sup
0<t<ζ

f(Xt) Px−a. s. on {Tc < ζ}

due to property (15) of f , we obtain

P̃Tc(u
c)(x) = Ex[uc(XTc)1{Tc<ζ} + c1{Tc=ζ}] = Ex[ sup

Tc<t<ζ
f(Xt)1{Tc<ζ} + c1{Tc=ζ}]

≥ Ex[ sup
0<t<ζ

f(Xt)] = u(x),

hence c ≥ f∗(x). This yields f∗(x) ≤ f(x). 2

The following example shows that the two bounds for the representing function f in Theo-

rem 4.1 may both be strict. In particular, the representing function may not be unique.

Example 4.1 Consider a Brownian motion on the interval S = (0, 3) and an upper-

semicontinuous function f on S with f(1) = f(2) = 1 which equals zero in (0, 1)∪(2, 3) and
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takes values in (0, 1) for x ∈ (1, 2). Denoting by Tb := inf{t ≥ 0|Xt = b} the �rst passage

time at level b, we can write

sup
0<t<ζ

f(Xt) = 1(0,1)(x)1{T1<T0} + 1[1,2](x) + 1(2,3)(x)1{T2<T3} Px − a. s. .

This shows that the excessive function u de�ned by (1) is given by

u(x) =


x , x ∈ (0, 1)
1 , x ∈ [1, 2]

3− x, x ∈ (2, 3)
.

In this one-dimensional situation Ruc coincides with the concave envelope of uc = u ∨ c

on S. Thus we obtain f∗(x) = 1[1,2](x) due to (11). Moreover, f∗(x) = 1{1,2}(x) by

inspection, hence f∗(x) < f(x) < f∗(x) for x ∈ (1, 2). Note also that f is regular since

f(x) ≤ sup0<t<ζ f(Xt) Px-a. s. for any x ∈ S.

We are now going to derive an alternative description of f∗ which will allow us to identify

f∗ as the minimal representing function for u.

De�nition 4.1 Let us say that a point x0 ∈ S is harmonic for u if the mean-value property

u(x0) = Ex0 [u(XTε)] (16)

holds for x0 and for some ε > 0, where Tε denotes the �rst exit time from the ball Uε(x0).
We denote by H the set of all points in S which are harmonic with respect to u.

From now on we assume that balls are regular in the following sense:

The exit laws from balls, de�ned as µU
x := Px ◦ T−1

ε for x ∈ U := Uε(x0), have the

following properties:

A3) µU
x ≈ µU

y for all x, y ∈ U

A4) If Un := Uεn(x0) and εn ↓ d(x0, x1) then µUn
x1

converges weakly to δx1 as n ↑ ∞.

Note that both assumptions are satis�ed for d-dimensional Brownian motion.

Lemma 4.1 H coincides with the set of all points x0 ∈ S such that u is harmonic in some

open neighborhood G of x0, i. e., the mean-value property

u(x) = Ex[u(XTε)]

holds for all x ∈ G and all ε > 0 such that Uε(x) ⊂ G. In particular H is an open set.

Proof. If u is harmonic in some open neighborhood G of x0 then the mean-value property

(16) holds for x0 and for ε small enough, and this shows x0 ∈ H. In order to prove the

converse inclusion, we �x x0 ∈ H and a corresponding ε > 0 such that u(x0) = Ex0 [u(XTε)].
Then the function h de�ned by h(x) := Ex[u(XTε)] is harmonic on Uε(x0) and satis�es h ≤ u

on Uε(x0) since u is excessive. It remains to show that u ≥ h on Uε(x0). To this end, take

x1 ∈ Uε(x0) and choose a sequence 0 < εn < ε, n ∈ IN, decreasing to d(x0, x1). Denoting

by Tεn the exit time from Un := Uεn(x0), we obtain

u(x0) ≥ Ex0 [u(XTεn
)] ≥ Ex0 [h(XTεn

)] = Ex0 [EXTεn
[u(XTε)]] = Ex0 [u(XTε)] = u(x0).
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This implies u(XTεn
) = h(XTεn

) Px0-a. s., hence Px1-a. s. due to our assumptionA3). Thus

h(x1) = Ex1 [h(XTεn
)] = Ex1 [u(XTεn

)].

Using (4) and A4) we can conclude

h(x1) = lim
n↑∞

Ex1 [u(XTεn
)] = lim

n↑∞

∫
u dµUn

x1
= u(x1),

since u is continuous and bounded on U1. 2

Proposition 4.1 For any x ∈ S,

f∗(x) = f∗(x)1Hc(x). (17)

In particular f∗ is upper-semicontinuous. Moreover,

f∗(x) = f∗(x) = Du(x) = 0 (18)

for any x ∈ H\H0, where

H0 := {x ∈ H|Px[THc < ζ] = 1}.

Proof. 1) For x ∈ H there exists ε > 0 such that Uε(x) ⊂ S and u(x) = Ex[u(XTε)] =
P̃Tε(u∨0)(x), and this implies f∗(x) = 0. Now suppose that x ∈ Hc, i. e., u is not harmonic

in x. Note �rst that

u(x) > Ex[u(XT );T < ζ] (19)

for any T ∈ T (x). Indeed, if T is the �rst exit time from some open neighborhood G of x

then

Ex[u(XT );T < ζ] = Ex[EXTε
[u(XT );T < ζ]] ≤ Ex[u(XTε)] < u(x)

for any ε > 0 such that Uε(x) ⊆ G. In view of Theorem 4.1 we have to show f∗(x) ≥ f∗(x),
and we may assume f∗(x) > 0. Choose c > 0 such that f∗(x) > c. Then there exists ε > 0
such that Ruc+ε(x) = u(x), i. e.,

P̃T uc+ε(x) ≤ u(x) (20)

for any T ∈ T (x) in view of (8). Fix δ ∈ (0, ε) and T ∈ T (x). If T < ζ and u(XT ) ≥ c + δ

Px-a. s. then

P̃T uc+δ(x) = Ex[u(XT );T < ζ] < u(x)

due to (19). On the other hand, if Px[T = ζ] + Px[u(XT ) < c + δ;T < ζ] > 0 then

P̃T uc+δ(x) < P̃T uc+ε(x) ≤ u(x)

due to (20). Thus we obtain u(x) > P̃T (uc+δ)(x) for any T ∈ T (x), hence f∗(x) ≥ c + δ.

This concludes the proof of (17). Upper-semicontinuity of f∗ follows immediately since f∗

is upper-semicontinuous and Hc is closed.

2) Take x ∈ H\H0 and consider a sequence Gn, n ∈ IN, of relatively compact open neigh-

borhoods of x such that Gn ↗ H as n ↑ ∞. Let Tn := TGc
n
denote the �rst exit time from

11



Gn. Then Tn ↗ THc , hence XTn
converges to XTHc Px-a. s. on {THc < ζ} due to the

quasi-left-continuity of our Hunt process (Xt)t≥0. But this shows

u(x) = lim
n↑∞

Ex[u(XTn)] = Ex[ lim
n↑∞

u(XTn)] = Ex[u(XTHc );THc < ζ] = PTHc u(x)

in view of our assumptions (3) and (4) on u. Since THc ∈ T (x) satis�es Px[THc = ζ] > 0
for x ∈ H\H0, we obtain

0 ≤ f∗(x) ≤ f∗(x) = Du(x) ≤ u(x)− PTHc u(x)
Px[THc = ζ]

= 0. 2

Our next goal is to show that u admits a representation in terms of f∗.

Lemma 4.2 For any stopping time T0 the following conditions are satis�ed Px-a. s. on

{T0 < ζ} ∩ {XT0 ∈ H0}:

i) T1 := T0 + THc ◦ θT0 < ζ

ii) f∗(XT1) = sup
T0<t≤T1

f∗(Xt).

Proof. Since the exit time T := THc from H satis�es Py[THc < ζ] = 1 for any y ∈ H0, the

�rst assertion follows from

Px[{T1 < ζ} ∩ {T0 < ζ,XT0 ∈ H0}] = Ex[PXT0
[T < ζ];T0 < ζ,XT0 ∈ H0].

In order to verify property ii), note that

Px[f∗(XT1) = sup
T0<t≤T1

f∗(Xt);T0 < ζ,XT0 ∈ H0]

= Ex[PXT0
[f∗(XT ) = sup

0<t≤T
f∗(Xt)];T0 < ζ,XT0 ∈ H0].

It is therefore enough to show that

Λ∗T := sup
0<t≤T

f∗(Xt) = f∗(XT ) Py−a. s.

for any y ∈ H0. Clearly, we have f∗(XT ) ≤ Λ∗T . Since T < ζ Py-a. s., the representation

(12) allows us to conclude

u(y) = Ey[ sup
0<t<ζ

f∗(Xt)] = Ey[EXT
[Λ∗T ∨ sup

0<t<ζ
f∗(Xt)]]

= Ey[RuΛ∗
T (XT )] ≥ Ey[u(XT )] = u(y),

i. e., Ey[RuΛ∗
T (XT )] = Ey[u(XT )]. In view of RuΛ∗

T (XT ) ≥ u(XT ) this implies RuΛ∗
T (XT ) =

u(XT ) Py-a. s. or, equivalently, f∗(XT ) ≥ Λ∗T Py-a. s.. 2

We are now ready to prove that f∗ is the minimal representing function for u.

Proposition 4.2 For any x ∈ S and any upper-semicontinuous function f such that f∗ ≤
f ≤ f∗,

sup
0<t<ζ

f∗(Xs) = sup
0<t<ζ

f(Xt) = sup
0<t<ζ

f∗(Xt) Px − a. s., (21)

and so f is a regular representing function for u. In particular we obtain the representation

u(x) = Ex[ sup
0<t<ζ

f∗(Xt)],

and f∗ is the minimal regular function yielding a representation of u.

12



Proof. Let us �rst prove (21) for x ∈ H. Since 0 ≤ f∗ ≤ f ≤ f∗, it is enough to show that

sup0<t<ζ f∗(Xt) ≥ c Px-a. s. on {Tc < ζ} for �xed c > 0, where Tc denotes the exit time

from the open set {f∗ < c}. Note �rst that

sup
0<t<ζ

f∗(Xt) ≥ f∗(XTc
) = f∗(XTc) ≥ c Px−a. s. on {Tc < ζ} ∩ {XTc ∈ Hc},

due to (17). On {Tc < ζ} ∩ {XTc ∈ H} we have XTc ∈ H0 Px-a. s. due to (18) since

f∗(XTc) ≥ c > 0. Lemma 4.2 allows us to conclude that T1 := Tc + THc ◦ θTc
satis�es

T1 < ζ Px-a. s. and

sup
0<t<ζ

f∗(Xt) ≥ f∗(XT1) = f∗(XT1)

= sup
Tc<t≤T1

f∗(Xt) ≥ f∗(XTc) ≥ c Px−a. s. on {Tc < ζ} ∩ {XTc ∈ H}

due to (17). This concludes the proof of (21) for x ∈ H. In particular, we obtain

supeT<t<ζ

f∗(Xt) = supeT<t<ζ

f(Xt) = supeT<t<ζ

f∗(Xt) Px−a. s. on {T̃ < ζ,X eT ∈ H} (22)

for any stopping time T̃ , due to the strong Markov property.

It remains to prove (21) for x ∈ Hc. To this end, we denote by T̂ the �rst exit time

from Hc. Since, by Proposition 4.1, f∗ and f∗ coincide on Hc, the identity (21) holds on

the set {T̂ = ζ}. On the other hand, using again Proposition 4.1, we have

sup
0<t<ζ

f∗(Xt) ∨ uζ = sup
0<t≤bT f∗(Xt) ∨ supbT<t<ζ

f∗(Xt) ∨ uζ

= sup
0<t≤bT f∗(Xt) ∨ supbT<t<ζ

f∗(Xt) ∨ uζ on {T̂ < ζ}. (23)

By de�nition of T̂ , on {T̂ < ζ} there exists a sequence of stopping times T̂ < Tn < ζ,

n ∈ IN, decreasing to T̂ such that XTn ∈ H, and so we can conclude that

supbT<t<ζ

f∗(Xt) ∨ uζ = lim
n↑∞

sup
Tn<t<ζ

f∗(Xt) ∨ uζ

= lim
n↑∞

sup
Tn<t<ζ

f∗(Xt) ∨ uζ

= supbT<t<ζ

f∗(Xt) ∨ uζ Px−a. s. on {T̂ < ζ}

due to (22). Combined with (23) this yields (21) on {T̂ < ζ}. Thus we have shown that

(21) holds as well for any x ∈ Hc.

In particular f is a representing function for u. Moreover,

f(x) ≤ f∗(x) ≤ sup
0<t<ζ

f∗(Xt) = sup
0<t<ζ

f(Xt) Px−a. s.

for any x ∈ S due to (21), and so f is a regular function on S. 2

Corollary 4.1 Let f be any regular representing function for u. Then

Ruc(x) = Ex[ sup
0<t<ζ

f(Xt) ∨ c] (24)

for any x ∈ S and for any c ≥ 0.

13



Proof. In view of (21) the claim follows immediately from the representation (12) of Ruc.2

Remark 4.1 Let us go back to the simple Example 4.1 in order to illustrate the preceding

results. Here the set H of harmonic points for u is given by (0, 1) ∪ (1, 2) ∪ (2, 3). Our

observation above that f∗ = 0 on H and f∗ = f∗ on Hc = {1, 2} is explained by the general

Proposition 4.1. Moreover, we have H0 = (1, 2) and f∗ = f∗ = 0 on H\H0 = (0, 1)∪ (2, 3),
in accordance with equation (18).

References

[1] Bank, P.; El Karoui, N. (2005): "A Stochastic Representation Theorem with Applica-

tions to Optimization and Obstacle Problems," in The Annals of Probability 32(1B),

1030-1067.

[2] Bank, P.; Föllmer, H. (2003): "American Options, Multi-armed Bandits, and Optimal

Consumption Plans: A Unifying View," in Paris-Princeton Lectures on Mathematical

Finance 2002, Lecture Notes in Mathematics 1814, 1-42. Springer, Berlin.

[3] Dellacherie, C.; Meyer, P. (1987): "Probabilités et potentiel, Chapitres XII-XVI:

Théorie du potentiel associée à une résolvante, Théorie des processus de Markov,"

Hermann, Paris.

[4] El Karoui, N. (1981): "Les aspects probabilistes du contrôle stochastique," in Ninth

Saint Flour Probability Summer School-1979 (Saint Flour, 1979), Lecture Notes in

Mathematics no. 876, 73-238, Springer, Berlin.

[5] El Karoui, N. (2004): "Max-Plus Decomposition of Supermartingale - Ap-

plication to Portfolio Insurance," http://www.ima.umn.edu/talks/workshops/4-12-

16.2004/el_karoui/IMA2004.pdf.

[6] El Karoui, N.; Föllmer, H. (2005): "A non-linear Riesz representation in probabilistic

potential theory," in Annales de l'Institut Henri Poincaré (B) Probabilités et Statis-

tiques 41(3), 269-283.

[7] El Karoui, N. ; Meziou, A. (2006): "Constrained optimization with respect to stochas-

tic dominance - Application to portfolio insurance,"Mathematical Finance 16(1), 103-

117.

[8] Knispel, T. (2004): "Eine nichtlineare Riesz-Darstellung bezüglich additiver Funk-

tionale im potentialtheoretischen Kontext," Diploma Thesis, Humboldt University

Berlin.

[9] Shiryaev, A.N. (1973): "Statistical Sequential Analysis," Transl. Math. Monographs

38, AMS, Providence.

14


