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Abstract

For a nice Markov process such as Brownian motion on a domain in IR
d, we prove a

representation of excessive functions in terms of expected suprema. This is motivated

by recent work of El Karoui [5] and El Karoui and Meziou [8] on the max-plus decom-

position for supermartingales. Our results provide a singular analogue to the non-linear

Riesz representation in El Karoui and Föllmer [6], and they extend the representation

of potentials in Föllmer and Knispel [10] by clarifying the role of the boundary behavior

and of the harmonic points of the given excessive function.
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1 Introduction

Consider a bounded superharmonic function u on the open disk S. Such a function admits

a limit u(y) in almost all boundary points y ∈ ∂S with respect to the �ne topology, and we

have

u(x) >
∫

u(y) µx(dy),

where µx denotes the harmonic measure on the boundary. The right-hand side de�nes

a harmonic function h on S, and the di�erence u − h can be represented as the potential

of a measure on S. This is the classical Riesz representation of the superharmonic function u.

In probabilistic terms, µx may be viewed as the exit distribution of Brownian motion on S
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starting in x, u is an excessive function of the process, the �ne limit can be described as a

limit along Brownian paths to the boundary, and the Riesz representation takes the form

u(x) = Ex[lim
t↑ζ

u(Xt) + Aζ ],

where ζ denotes the �rst exit time from S and (At)t>0 is the additive functional generating

the potential u− h; cf., e. g., Blumenthal and Getoor [4].

In this paper we consider an alternative probabilistic representation of the excessive func-

tion u in terms of expected suprema. We construct a function f on the closure of S which

coincides with the boundary values of u on ∂S and yields the representation

u(x) = Ex[ sup
0<t6ζ

f(Xt)], (1)

i. e.,

u(x) = Ex[ sup
0<t<ζ

f(Xt) ∨ lim
t↑ζ

u(Xt)]. (2)

Instead of Brownian motion on the unit disk, we consider a general Markov process with

state space S and life time ζ. Under some regularity conditions we prove in section 3 that

an excessive function u admits a representation of the form (1) in terms of some function

f on S. Under additional conditions, the limit in (2) can be identi�ed as a boundary value

f(Xζ) for some function f on the Martin boundary of the process, and in this case (2) can

also be written in the condensed form (1).

The representing function f is in general not unique. In section 4 we characterize the

class of representing functions in terms of a maximal and a minimal representing function.

These bounds are described in potential theoretic terms. They coincide in points where

the excessive function u is not harmonic, the lower bound is equal to zero on the set H of

harmonic points, and the upper bound is constant on the connected components of H.

Our representation (2) of an excessive function is motivated by recent work of El Karoui

and Meziou [8] and El Karoui [5] on problems of portfolio insurance. Their results involve

a representation of a given supermartingale as the process of conditional expected suprema

of another process. This may be viewed as a singular analogue to a general representation

for semimartingales in Bank and El Karoui [1], which provides a uni�ed solution to various

representation problems arising in connection with optimal consumption choice, optimal

stopping, and multi-armed bandit problems. We refer to Bank and Föllmer [2] for a survey

and to the references given there, in particular to El Karoui and Karatzas [7] and Bank and

Riedel [3]; see also Kaspi and Mandelbaum [11].

In the context of probabilistic potential theory such representation problems take the follow-

ing form: For a given function u and a given additive functional (Bt)t>0 of the underlying

Markov process we want to �nd a function f such that

u(x) = Ex[
∫ ζ

0

sup
0<t6ζ

f(Xt) dBt].

2



In El Karoui and Föllmer [6] this potential theoretic problem is discussed for the smooth

additive functional Bt = t ∧ ζ and for the case when u has boundary behavior zero. The

results are easily extended to the case where the random measure corresponding to the ad-

ditive functional satis�es the regularity assumptions required in [1].

Our representation (2) corresponds to the singular case Bt = 1[ζ,∞)(t) where the random

measure is given by the Dirac measure δζ . This singular representation problem, which does

not satisfy the regularity assumptions of [1], is discussed in Föllmer and Knispel [10] for the

special case of a potential u. The purpose of the present paper is to consider a general ex-

cessive function u and to clarify the impact of the boundary behavior on the representation

of u as an expected supremum. We concentrate on those proofs which involve explicitly the

boundary behavior of u, and we refer to [10] whenever the argument is the same as in the

case of a potential.

Acknowledgement. While working on his thesis in probabilistic potential theory, a topic

which is revisited in this paper from a new point of view, the �rst author had the great plea-

sure of attending the beautiful "Lectures on Prediction Theory" of Kazimierz Urbanik [12],

given at the University of Erlangen during the winter semester 1966/67. We dedicate this

paper to his memory.

2 Preliminaries

Let (Xt)t>0 be a strong Markov process with locally compact metric state space (S, d), shift
operators (θt)t>0, and life time ζ, de�ned on a stochastic base (Ω,F , (Ft)t>0, (Px)x∈S) and
satisfying the assumptions in [6] or [10]. In particular we assume that the excessive func-

tions of the process are lower-semicontinuous. As a typical example, we could consider a

Brownian motion on a domain S ⊂ IR
d.

For any measurable function u > 0 on S and for any stopping time T we use the nota-

tion

PT u(x) := Ex[u(XT );T < ζ].

Recall that u is excessive if Ptu 6 u for any t > 0 and limt↓0 Ptu(x) = u(x) for any x ∈ S.

In that case the process (u(Xt)1{t<ζ})t>0 is a right-continuous Px-supermartingale for any

x ∈ S such that u(x) < ∞, and this implies the existence of

uζ := lim
t↑ζ

u(Xt) Px−a. s..

Let us denote by T (x) the class of all exit times

TU := inf{t > 0|Xt 6∈ U} ∧ ζ

from open neighborhoods U of x ∈ S, and by T0(x) the subclass of all exit times from open

neighborhoods of x which are relatively compact. Note that ζ = TS ∈ T (x). For T ∈ T (x)
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and any measurable function u > 0 we introduce the notation

uT := u(XT )1{T<ζ} + lim
t↑ζ

u(Xt)1{T=ζ}

and

P̃T u(x) := Ex[uT ] = PT u(x) + Ex[lim
t↑ζ

u(Xt);T = ζ].

We say that a function u belongs to class (D) if for any x ∈ S the family {u(XT )|T ∈ T0(x)}
is uniformly integrable with respect to Px. Recall that an excessive function u is harmonic

on S if PT u(x) = u(x) for any x ∈ S and any T ∈ T0(x). A harmonic function u of class (D)

also satis�es u(x) = P̃T u(x) for all T ∈ T (x), and u is uniquely determined by its boundary

behavior:

u(x) = Ex[lim
t↑ζ

u(Xt)] = Ex[uζ ] for any x ∈ S. (3)

Proposition 2.1 Let f > 0 be an upper-semicontinuous function on S and let φ > 0 be

F-measurable such that φ = φ ◦ θT Px-a. s. for any x ∈ S and any T ∈ T0(x). Then the

function u on S de�ned by the expected suprema

u(x) := Ex[ sup
0<t<ζ

f(Xt) ∨ φ] (4)

is excessive, hence lower-semicontinuous. Moreover, u belongs to class (D) if and only if u

is �nite on S. In this case u has the boundary behavior

uζ = lim
t↑ζ

f(Xt) ∨ φ = fζ ∨ φ Px − a. s., (5)

and u admits a representation (2), i. e., a representation (4) with φ = uζ .

Proof. It follows as in [10] that u is an excessive function. If u(x) < ∞ then

sup
0<t<ζ

f(Xt) ∨ φ ∈ L1(Px).

Thus {u(XT )|T ∈ T0(x)} is uniformly integrable with respect to Px, since

0 6 u(XT ) = Ex[ sup
T<t<ζ

f(Xt) ∨ (φ ◦ θT )|FT ] 6 Ex[ sup
0<t<ζ

f(Xt) ∨ φ|FT ]

for all T ∈ T0(x). Conversely, if u belongs to class (D) then u is �nite on S since by lower-

semicontinuity

u(x) 6 Ex[ lim
n↑∞

u(XTεn
)] 6 lim

n↑∞
Ex[u(XTεn

)] < ∞,

for εn ↓ 0, where Tεn ∈ T0(x) denotes the exit time from the open ball Uεn(x).

In order to verify (5), we take a sequence (Un)n∈IN of relatively compact open neighbor-

hoods of x increasing to S and denote by Tn the exit time from Un. Since u is excessive and

�nite on S we conclude that

lim
t↑ζ

f(Xt) ∨ φ = lim
n↑∞

sup
Tn<s<ζ

f(Xs) ∨ (φ ◦ θTn)

= lim
n↑∞

Ex[ sup
Tn<s<ζ

f(Xs) ∨ (φ ◦ θTn)|FTn ]

= lim
n↑∞

u(XTn) = uζ Px−a. s.,
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where the second identity follows from a martingale convergence argument.

In view of (5) we have

{φ 6 sup
0<t<ζ

f(Xt)} = {uζ 6 sup
0<t<ζ

f(Xt)} Px−a. s.

and φ = uζ on {φ > sup0<t<ζ f(Xt)} Px-a. s.. Thus we can write

u(x) = Ex[ sup
0<t<ζ

f(Xt);φ 6 sup
0<t<ζ

f(Xt)] + Ex[φ;φ > sup
0<t<ζ

f(Xt)]

= Ex[ sup
0<t<ζ

f(Xt);uζ 6 sup
0<t<ζ

f(Xt)] + Ex[uζ ;uζ > sup
0<t<ζ

f(Xt)]

= Ex[ sup
0<t<ζ

f(Xt) ∨ uζ ]. 2

In the next section we show that, conversely, any excessive function u of class (D) admits a

representation of the form (2), where f is some upper-semicontinuous function on S.

3 Construction of a representing function

Let u > 0 be an excessive function of class (D). In order to avoid additional technical dif-

�culties, we also assume that u is continuous. For convenience we introduce the notation

uc := u ∨ c.

Consider the family of optimal stopping problems

Ruc(x) := sup
T∈T0(x)

Ex[uc(XT )] (6)

for c > 0 and x ∈ S. It is well known that the value function Ruc of the optimal stopping

problem (6) can be characterized as the smallest excessive function dominating uc. In

particular, Ruc is lower-semicontinuous. Moreover,

Ruc(x) > Ex[uc(XT );T < ζ] + Ex[lim
t↑ζ

uc(Xt);T = ζ] = P̃T uc(x) (7)

for any stopping time T 6 ζ, and equality holds for the �rst entrance time into the closed

set {Ruc = uc}; cf. for example the proof of Lemma 4.1 in [6].

The following lemma can be veri�ed by a straightforward modi�cation of the arguments

in [10]:

Lemma 3.1 1) For any x ∈ S, Ruc(x) is increasing, convex and Lipschitz-continuous in c,

and

lim
c↑∞

(Ruc(x)− c) = 0. (8)

2) For any c > 0,
Ruc(x) = Ex[uc

Dc ] = P̃Dcuc(x), (9)

where Dc := inf{t > 0 | Ruc(Xt) = u(Xt)} ∧ ζ is the �rst entrance time into the closed set

{Ruc = u}. Moreover, the map c 7→ Dc is increasing and Px-a. s. left-continuous.
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Since the function c 7→ Ruc(x) is convex, it is almost everywhere di�erentiable. The following

identi�cation of the derivatives is similar to Lemma 3.2 of [10].

Lemma 3.2 The left-hand derivative ∂−Ruc(x) of Ruc(x) with respect to c > 0 is given by

∂−Ruc(x) = Px[uζ < c, Dc = ζ].

Proof. For any 0 6 a < c, the representation (9) for the parameter c combined with the

inequality (7) for the parameter a and for the stopping time T = Dc implies

Ruc(x)−Rua(x) 6 Ex[uc(XDc)− ua(XDc);Dc < ζ] + Ex[uc
ζ − ua

ζ ;Dc = ζ].

Since

u(XDc) = Ruc(XDc) > c > a on {Dc < ζ}

and uc
ζ − ua

ζ 6 (c− a)1{uζ<c}, the previous estimate simpli�es to

Ruc(x)−Rua(x) 6 (c− a)Px[uζ < c, Dc = ζ].

This shows ∂−Ruc(x) 6 Px[uζ < c, Dc = ζ]. In order to prove the converse inequality, we

use the estimate

Ruc(x)−Rua(x) > (c− a)Px[uζ < a, Da = ζ]

obtained by reversing the role of a and c in the preceding argument. This implies

∂−Ruc(x) > lim
a↑c

Px[uζ < a, Da = ζ] = Px[uζ < c, Dc = ζ]

since
⋃

a<c
{Da = ζ} = {Dc = ζ} on {uζ < c}, due to the Lipschitz-continuity of Ruc(x) in c.2

Let us now introduce the function f∗ de�ned by

f∗(x) := sup{c|x ∈ {Ruc = u}} (10)

for any x ∈ S. Note that f∗(x) > c is equivalent to Ruc(x) = u(x) due to the continuity of

Ruc(x) in c. It follows as in [10], Lemma 3.3, that the function f∗ is upper-semicontinuous

and satis�es 0 6 f∗ 6 u.

We are now ready to derive a representation of the value functions Ruc in terms of the

function f∗. In the special case of a potential u, where uζ = 0 and uc
ζ = c Px-a. s., our

representation (11) reduces to Theorem 3.1 of [10].

Theorem 3.1 For any c > 0 and any x ∈ S,

Ruc(x) = Ex[ sup
06t<ζ

f∗(Xt) ∨ uc
ζ ] = Ex[ sup

0<t<ζ
f∗(Xt) ∨ uc

ζ ]. (11)

Proof. By Lemma 3.2 and (8) we get

Ruc(x)− c =
∫ ∞

c

− ∂
∂α (Ruα(x)− α) dα =

∫ ∞

c

(1− Px[uζ < α,Dα = ζ]) dα.
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Since

{Dc+ε < ζ} ⊆ { sup
06t<ζ

f∗(Xt) > c} ⊆ {Dc < ζ}

for any c > 0 and for any ε > 0,

Ruc(x)− c =
∫ ∞

c

(1− Px[uζ < α,Dα = ζ]) dα

>
∫ ∞

c

(1− Px[uζ 6 α, sup
06t<ζ

f∗(Xt) 6 α]) dα

>
∫ ∞

c

(1− Px[uζ < α + ε,Dα+ε = ζ]) dα

= Ruc+ε(x)− (c + ε).

By continuity of c 7→ Ruc we obtain

Ruc(x)− c >
∫ ∞

c

(1− Px[ sup
06t<ζ

f∗(Xt) ∨ uζ 6 α]) dα

> lim
ε↓0

(Ruc+ε(x)− (c + ε)) = Ruc(x)− c,

hence

Ruc(x) =
∫ ∞

c

Px[ sup
06t<ζ

f∗(Xt) ∨ uζ > α] dα + c

= Ex[ sup
06t<ζ

f∗(Xt) ∨ uζ − ( sup
06t<ζ

f∗(Xt) ∨ uζ) ∧ c + c]

= Ex[ sup
06t<ζ

f∗(Xt) ∨ uc
ζ ].

Moreover, we can conclude that

Ruc(x) = lim
t↓0

Pt(Ruc)(x) = lim
t↓0

Ex[ sup
t6s<ζ

f∗(Xs) ∨ uc
ζ ; t < ζ] = Ex[ sup

0<s<ζ
f∗(Xs) ∨ uc

ζ ]

since Ruc is excessive, i. e., Ruc(x) also admits the second representation in equation (11).2

As a corollary we see that f∗ is a representing function for u.

Corollary 3.1 The excessive function u admits the representations

u(x) = Ex[ sup
06t<ζ

f∗(Xt) ∨ uζ ] = Ex[ sup
0<t<ζ

f∗(Xt) ∨ uζ ] (12)

in terms of the upper-semicontinuous function f∗ > 0 de�ned by (10). Moreover,

f∗(x) 6 sup
0<t<ζ

f∗(Xt) ∨ uζ Px − a. s.

for any x ∈ S.

Proof. Note that u = Ru0 since u is excessive. Applying Theorem 3.1 with c = 0 we obtain

u(x) = Ru0(x) = Ex[ sup
06t<ζ

f∗(Xt) ∨ uζ ] = Ex[ sup
0<t<ζ

f∗(Xt) ∨ uζ ].

In particular we get

sup
06t<ζ

f∗(Xt) ∨ uζ = sup
0<t<ζ

f∗(Xt) ∨ uζ Px−a. s.,

and this implies f∗(x) 6 sup0<t<ζ f∗(Xt) ∨ uζ Px-a. s. for any x ∈ S. 2
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Remark 3.1 Under additional regularity conditions, the underlying Markov process admits

a Martin boundary ∂S, i. e., a compacti�cation of the state space such that limt↑ζ u(Xt) can
be identi�ed with the values f(Xζ) for a suitable continuation of the function f to the Martin

boundary; cf.,e. g., [9], (4.12) and (5.7). In such a situation the general representation (12)

may be written in the condensed form (1).

Corollary 3.1 shows that u admits a representing function which is regular in the following

sense:

De�nition 3.1 Let us say that a nonnegative function f on S is regular with respect to u

if it is upper-semicontinuous and satis�es the condition

f(x) 6 sup
0<t<ζ

f(Xt) ∨ uζ Px − a. s. (13)

for any x ∈ S.

Note that a regular function f also satis�es the inequality

f(XT ) 6 sup
T<t<ζ

f(Xt) ∨ uζ Px−a. s. on {T < ζ} (14)

for any stopping time T , due to the strong Markov property.

4 The minimal and the maximal representation

Let us �rst derive an alternative description of the representing function f∗ in terms of the

given excessive function u. To this end, we introduce the superadditive operator

Du(x) := inf{c > 0|∃ T ∈ T (x) : P̃T uc(x) > u(x)}.

Proposition 4.1 The functions f∗ and Du coincide. In particular, x 7→ Du(x) is regular

with respect to u.

Proof. Recall that f∗(x) > c is equivalent to Ruc(x) = u(x). Thus f∗(x) > c yields

u(x) = Ruc(x) > P̃T uc(x)

for any T ∈ T (x) due to (7). This amounts to Du(x) > c, and so we obtain f∗(x) 6 Du(x).
In order to prove the converse inequality, we take c > f∗(x) and de�ne Tc ∈ T (x) as the

�rst exit time from the open neighborhood {f∗ < c} of x. Then

u(x) < Ruc(x) = Ex[ sup
06t<ζ

f∗(Xt) ∨ uc
ζ ]

= Ex[ sup
Tc6t<ζ

f∗(Xt) ∨ uζ ;Tc < ζ] + Ex[uc
ζ ;Tc = ζ]

= Ex[EXTc
[ sup
06t<ζ

f∗(Xt) ∨ uζ ] ∨ c;Tc < ζ] + Ex[uc
ζ ;Tc = ζ]

= Ex[uc(XTc);Tc < ζ] + Ex[uc
ζ ;Tc = ζ] = P̃Tcu

c(x),

hence Du(x) 6 c. This shows Du(x) 6 f∗(x). 2
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Remark 4.1 A closer look at the preceding proof shows that

Du(x) = inf{c > 0|∃ T ∈ T (x) : u(x)− PT u(x) < Ex[uc
ζ ;T = ζ]}.

For any potential u of class (D) we have uζ = 0 Px-a. s., and so we get

Du(x) = inf
u(x)− PT u(x)

Px[T = ζ]
,

where the in�mum is taken over all exit times T from open neighborhoods of x such that

Px[T = ζ] > 0. Thus our general representation in Corollary 3.1 contains as a special case

the representation of a potential of class (D) given in [10].

We are now going to identify the maximal and the minimal representing function for the

given excessive function u.

Theorem 4.1 Suppose that u admits the representation

u(x) = Ex[ sup
0<t<ζ

f(Xt) ∨ uζ ]

for any x ∈ S, where f is regular with respect to u on S. Then f satis�es the bounds

f∗ 6 f 6 f∗ = Du,

where the function f∗ is de�ned by

f∗(x) := inf{c > 0|∃ T ∈ T (x) : P̃T uc(x) > u(x)}

for any x ∈ S.

Proof. Let us �rst show that f 6 f∗ = Du. If f(x) > c then we get for any T ∈ T (x)

u(x) = Ex[ sup
0<t<ζ

f(Xt) ∨ uc
ζ ] > Ex[ sup

T<t<ζ
f(Xt) ∨ uc

ζ ;T < ζ] + Ex[uc
ζ ;T = ζ]

> Ex[Ex[ sup
T<t<ζ

f(Xt) ∨ uζ |FT ] ∨ c;T < ζ] + Ex[uc
ζ ;T = ζ] = P̃T uc(x)

due to our assumption (13) on f and Jensen's inequality. Thus Du(x) > c, and this yields

f(x) 6 Du(x). In order to verify the lower bound, take c > f(x) and let Tc ∈ T (x) denote
the �rst exit time from {f < c}. Since

c 6 f(XTc) 6 sup
Tc<t<ζ

f(Xt) ∨ uζ = sup
0<t<ζ

f(Xt) ∨ uζ Px−a. s. on {Tc < ζ}

due to property (14) of f , we obtain

P̃Tcu
c(x) = Ex[uc(XTc);Tc < ζ] + Ex[uc

ζ ;Tc = ζ]

= Ex[Ex[ sup
Tc<t<ζ

f(Xt) ∨ uζ |FTc ] ∨ c;Tc < ζ] + Ex[uc
ζ ;Tc = ζ]

= Ex[ sup
Tc<t<ζ

f(Xt) ∨ uζ ;Tc < ζ] + Ex[ sup
0<t<ζ

f(Xt) ∨ uc
ζ ;Tc = ζ]

> Ex[ sup
0<t<ζ

f(Xt) ∨ uζ ] = u(x),

hence c > f∗(x). This implies f∗(x) 6 f(x). 2

The following example shows that the representing function may not be unique, and that it

is in general not possible to drop the limit uζ in the representation (2).
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Example 4.1 Let (Xt)t>0 be a Brownian motion on the interval S = (0, 3). Then the

function u de�ned by

u(x) =


x , x ∈ (0, 1)

1
2x + 1

2 , x ∈ [1, 2]
1
4x + 1, x ∈ (2, 3)

is concave on S, hence excessive. Here the maximal representing function f∗ takes the form

f∗(x) = 1
21[1,2)(x) + 1[2,3)(x),

and f∗ is given by f∗(x) = 1
21{1}(x) + 1{2}(x). In particular we get for any x ∈ (2, 3)

u(x) > Ex[ sup
0<t<ζ

f∗(Xt)].

This shows that we have to include uζ into the representation of u. Moreover, for any x ∈ S

sup
0<t<ζ

f∗(Xt) ∨ uζ = sup
0<t<ζ

f∗(Xt) ∨ uζ > f∗(x) > f∗(x) Px − a. s.,

and so f∗ is a regular representing function for u. In particular, the representing function

is not unique.

We are now going to derive an alternative description of f∗ which will allow us to identify

f∗ as the minimal representing function for u.

De�nition 4.1 Let us say that a point x0 ∈ S is harmonic for u if the mean-value property

u(x0) = Ex0 [u(XTε
)]

holds for x0 and for some ε > 0, where Tε denotes the �rst exit time from the ball Uε(x0).
We denote by H the set of all points in S which are harmonic with respect to u.

Under the regularity assumptions of [10], the set H coincides with the set of all points x0 ∈ S

such that u is harmonic in some open neighborhood G of x0, i. e., the mean-value property

u(x) = Ex[u(XTUε(x))]

holds for all x ∈ G and all ε > 0 such that Uε(x) ⊂ G; cf. Lemma 4.1 in [10]. In particular,

H is an open set.

The following proposition extends Proposition 4.1 in [10] from potentials to general excessive

functions.

Proposition 4.2 For any x ∈ S,

f∗(x) = f∗(x)1Hc(x). (15)

In particular, f∗ is upper-semicontinuous.

10



Proof. For x ∈ H there exists ε > 0 such that Uε(x) ⊂ S and u(x) = Ex[u(XTUε(x))] =
P̃TUε(x)u

0(x), and this implies f∗(x) = 0. Now suppose that x ∈ Hc, i. e., u is not harmonic

in x. Let us �rst prove that

P̃T u(x) < u(x) for all T ∈ T (x). (16)

Indeed, if T is the �rst exit time from some open neighborhood G of x then

P̃T u(x) = Ex[EXTUε(x)
[u(XT );T < ζ] + EXTUε(x)

[uζ ;T = ζ]]

6 Ex[Ru0(XTUε(x))] = Ex[u(XTUε(x))] < u(x)

for any ε > 0 such that Uε(x) ⊆ G. In view of Theorem 4.1 we have to show f∗(x) > f∗(x),
and we may assume f∗(x) > 0. Choose c > 0 such that f∗(x) > c. Then there exists ε > 0
such that Ruc+ε(x) = u(x), i. e.,

P̃T uc+ε(x) 6 u(x) (17)

for any T ∈ T (x) in view of (7). Fix δ ∈ (0, ε) and T ∈ T (x). If

Px[u(XT ) 6 c + δ;T < ζ] + Px[uζ 6 c + δ;T = ζ] > 0

we get the estimate

P̃T uc+δ(x) = Ex[uc+δ(XT );T < ζ] + Ex[uc+δ
ζ ;T = ζ] < P̃T uc+ε(x) 6 u(x).

On the other hand, if Px[u(XT ) 6 c + δ;T < ζ] = Px[uζ 6 c + δ;T = ζ] = 0 then

P̃T uc+δ(x) = Ex[u(XT );T < ζ] + Ex[uζ ;T = ζ] = P̃T u(x) < u(x)

due to (16). Thus we obtain u(x) > P̃T uc+δ(x) for any T ∈ T (x), hence f∗(x) > c + δ.

This concludes the proof of (15). Upper-semicontinuity of f∗ follows immediately since f∗

is upper-semicontinuous and Hc is closed. 2

Our next purpose is to show that f∗ is constant on connected components of H.

Proposition 4.3 For any x ∈ H,

f∗(x) = ess inf
Px

f∗T , (18)

where T denotes the �rst exit time from the maximal connected neighborhood H(x) ⊆ H of

x. In particular, f∗ is constant on H(x).

Proof. 1) Let us �rst show that for a connected open set U ⊂ S and for any x, y ∈ U , the

measures Px and Py are equivalent on the σ-�eld describing the exit behavior from U :

Px ≈ Py on F̂U := σ({gTU
|g measurable on S}). (19)

Indeed, any A ∈ F̂U satis�es 1A◦θTε = 1A if Tε denotes the exit time from some neighborhood

Uε(x) such that Uε(x) ⊂ U . Thus

Px[A] = Ex[1A ◦ θTε ] =
∫

Pz[A]µx,ε(dz),
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where µx,ε is the exit distribution from Uε(x). Since µx,ε ≈ µy,ε by assumption A3) of

[10], we obtain Px ≈ Py on F̂U for any y ∈ Uε(x). For arbitrary y ∈ U we can choose

x0, . . . , xn and ε1, . . . , εn such that x0 = x, xn = y, xk ∈ Uεk
(xk−1) and Uεk

(xk−1) ⊂ U .

Hence Pxk
≈ Pxk−1 on F̂U , and this yields (19).

2) For x ∈ H let c(x) be the right-hand side of equation (18). In order to verify f∗(x) 6 c(x),
we take a sequence of relatively compact open neighborhoods (Un(x))n∈IN of x increasing to

H(x) and denote by Tn the �rst exit time from Un(x). Since f∗ is upper-semicontinuous on

S, we get the estimate

lim
n↑∞

f∗(XTn) 6 f∗(XT )1{T<ζ} + lim
t↑ζ

f∗(Xt)1{T=ζ} = f∗T Px−a. s.,

hence Px[limn↑∞ f∗(XTn) < c] > 0 for any c > c(x). Thus, there exists n0 such that

Px[Ruc(XTn0
) > u(XTn0

)] = Px[f∗(XTn0
) < c] > 0, and this implies

u(x) = Ex[u(XTn0
)] < Ex[Ruc(XTn0

)] 6 Ruc(x)

since Ruc is excessive. But this amounts to f∗(x) < c, and taking the limit c ↘ c(x) yields
f∗(x) 6 c(x).

3) In order to prove the converse inequality, we use the fact that for any c < c(x)

Ex[uc(X eT )] 6 u(x) for all T̃ ∈ T0(x), (20)

which is equivalent to Ruc(x) = u(x). Thus we get f∗(x) > c for all c < c(x), hence
f∗(x) = c(x) in view of 2). Since c(x) = c(y) for any y ∈ H(x) due to (19), we see that f∗

is constant on H(x).

It remains to verify (20). To this end, note that for any y ∈ H(x) we have c < c(x) =
c(y) 6 f∗T Py−a. s. due to (19). Thus, f∗(XT ) > c Py-a. s. on {T < ζ} for any y ∈ H(x),
and this yields

uc(XT ) 6 Ruc(XT ) = u(XT ) Py−a. s. on {T < ζ}.

Moreover, we get c < f∗ζ 6 uζ Py-a. s. on {T = ζ}. Let us now �x T̃ ∈ T0(x). Since

X eT ∈ H(x) on {T̃ < T}, we can conclude that

Ex[uc(X eT ); T̃ < T ] = Ex[P̃T u(X eT ) ∨ c; T̃ < T ]

6 Ex[EX eT [uc(XT );T < ζ] + EX eT [uc
ζ ;T = ζ]; T̃ < T ]

= Ex[EX eT [u(XT );T < ζ] + EX eT [uζ ;T = ζ]; T̃ < T ]

= Ex[uT ; T̃ < T ]. (21)

On the other hand, we have {T 6 T̃} ⊆ {T < ζ}, and by the Px-supermartingale property

of (Ruc(Xt)1{t<ζ})t>0 we get the estimate

Ex[uc(X eT ); T̃ > T ] 6 Ex[Ruc(X eT ); T̃ > T ] 6 Ex[Ruc(XT ); T̃ > T ]

= Ex[u(XT ); T̃ > T ] = Ex[uT ; T̃ > T ],
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where the �rst equality follows from f∗(XT ) > c(x) > c Px-a. s. on {T < ζ}. In combination

with (21) this yields

Ex[uc(X eT )] 6 Ex[uT ] = u(x). 2

Remark 4.2 A point x ∈ S is harmonic with respect to u if and only if there exists ε > 0
such that f∗ is constant on Uε(x) ⊂ S. Indeed, Proposition 4.3 shows that this condition

is necessary. Conversely, take x ∈ Hc and assume that there exists ε > 0 such that f∗ is

constant on U2ε(x) ⊂ S. Then the exit time T := TUε(x) satis�es

P̃T u(x) = Ex[u(XT )] = Ex[ sup
T<t<ζ

f∗(Xt) ∨ uζ ] = Ex[ sup
0<t<ζ

f∗(Xt) ∨ uζ ] = u(x)

in contradiction to (16).

Our next goal is to show that f∗ is the minimal representing function for u.

Theorem 4.2 Let f be an upper-semicontinuous function on S such that f∗ 6 f 6 f∗.

Then f is a regular representing function for u. In particular we obtain the representation

u(x) = Ex[ sup
0<t<ζ

f∗(Xt) ∨ uζ ],

and f∗ is the minimal regular function yielding a representation of u.

Proof. Let us show that

sup
0<t<ζ

f∗(Xt) ∨ uζ = sup
0<t<ζ

f(Xt) ∨ uζ = sup
0<t<ζ

f∗(Xt) ∨ uζ Px−a. s. (22)

for any x ∈ S. To this end, suppose �rst that x ∈ H. We denote by Tc the exit time from

the open set {f∗ < c}. Since 0 6 f∗ 6 f 6 f∗, it is enough to show that for �xed c > f∗(x)

sup
0<t<ζ

f∗(Xt) ∨ uζ > c Px−a. s. on {Tc < ζ}. (23)

By (15) we see that

sup
0<t<ζ

f∗(Xt) > f∗(XTc) = f∗(XTc) > c Px−a. s. on {Tc < ζ,XTc ∈ Hc}.

On the set A := {Tc < ζ,XTc ∈ H} we use the inequality

f∗(XTc) 6 f∗T Px−a. s. on A (24)

for T := Tc +TH ◦ θTc which follows from Proposition 4.3 combined with the strong Markov

property. Using (15) and (24) we obtain

sup
0<t<ζ

f∗(Xt) > f∗(XT ) = f∗(XT ) > f∗(XTc) > c Px−a. s. on A ∩ {T < ζ}

and

uζ > f∗ζ > f∗(XTc) > c Px−a. s. on A ∩ {T = ζ},
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hence sup0<t<ζ f∗(Xt) ∨ uζ > c Px-a. s. on A. This concludes the proof of (23) for x ∈ H,

and so (22) holds for any x ∈ H. In particular, we have

supeT<t<ζ

f∗(Xt) ∨ uζ = supeT<t<ζ

f∗(Xt) ∨ uζ Px−a. s. on {T̃ < ζ,X eT ∈ H} (25)

for any stopping time T̃ , due to the strong Markov property.

Let us now �x x ∈ Hc and denote by T̂ the �rst exit time from Hc. Since the func-

tions f∗ and f∗ coincide on Hc due to Proposition 4.2, the identity (22) follows immediately

on the set {T̂ = ζ}. On the other hand, using again Proposition 4.2, we get

sup
0<t<ζ

f∗(Xt) ∨ uζ = sup
0<t6 bT f∗(Xt) ∨ supbT<t<ζ

f∗(Xt) ∨ uζ (26)

= sup
0<t6 bT f∗(Xt) ∨ supbT<t<ζ

f∗(Xt) ∨ uζ on {T̂ < ζ}.

By de�nition of T̂ , on {T̂ < ζ} there exists a sequence of stopping times T̂ < Tn < ζ, n ∈ IN,

decreasing to T̂ such that XTn ∈ H. Thus,

supbT<t<ζ

f∗(Xt) ∨ uζ = lim
n↑∞

sup
Tn<t<ζ

f∗(Xt) ∨ uζ

= lim
n↑∞

sup
Tn<t<ζ

f∗(Xt) ∨ uζ

= supbT<t<ζ

f∗(Xt) ∨ uζ Px−a. s. on {T̂ < ζ}

due to (25). Combined with (26) this yields (22) on {T̂ < ζ}. Thus we have shown that

(22) holds as well for any x ∈ Hc.

In particular, f is a representing function for u. Moreover,

f(x) 6 f∗(x) 6 sup
0<t<ζ

f∗(Xt) ∨ uζ = sup
0<t<ζ

f(Xt) ∨ uζ Px−a. s.

for any x ∈ S due to (22), and so f is a regular function on S with respect to u. In view of

Theorem 4.1 we see that f∗ is the minimal regular representing function for u. 2

Remark 4.3 Suppose that u admits a representation of the form

u(x) = Ex[ sup
0<t<ζ

f(Xt)] (27)

for all x ∈ S and for some regular function f on S. Then f satis�es the bounds f∗ 6 f 6

f∗, due to Theorem 4.1 combined with proposition 2.1 for φ = 0. Clearly such a reduced

representation, which does not involve explicitly the boundary behavior of u, holds if and only

if uζ 6 sup0<t<ζ f(Xt) Px-a. s.. In particular, this is the case for a potential u where uζ = 0,
in accordance with the results in [10]. Example 4.1 shows that a reduced representation (27)

is not possible in general. If u is harmonic on S, (27) would in fact imply that u is constant

on S. Indeed, harmonicity of u on S implies that f∗ = c on S for some constant c due to

Proposition 4.3, hence

Ex[ sup
0<t<ζ

f(Xt)] 6 c 6 Ex[uζ ] = u(x)

due to f 6 f∗ 6 u and (3), and so (27) would imply u(x) = c for all x ∈ S.
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