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Abstract

We study the behavior of conditional risk measures along decreasing σ-
fields. Under a condition of consistency, we prove a non-linear extension of
backwards martingale convergence. In particular we show the existence
of a limiting conditional risk measure with respect to the tail field, we
describe its dual representation in terms of a limiting penalty function,
and we show that consistency extends to the tail field. Moreover, we
clarify the structure of global risk measures which are consistent with the
given sequence of conditional risk measures.

1 Introduction

Consider a filtration (Fn)n∈Z, indexed by the integers, on some measurable
space (Ω,F). In the forward direction we define the asymptotic σ-field F∞ :=
σ (

�
n Fn), in the backward direction the tail field F−∞ :=

�
n Fn.

For a given probability measure P and for any bounded measurable function
X on (Ω,F), let us denote by

ηn(X) := EP [−X|Fn] , n ∈ Z (1)

the conditional expectation of −X with respect to Fn under the measure P .
Since we are using the minus sign, the functional ηn can be regarded as the
special linear case of a conditional convex risk measure, as explained below.

Due to the projectivity of conditional expectations, the sequence (ηn)n∈Z is
consistent in the sense that

ηn(−ηn+1(X)) = ηn(X), n ∈ Z. (2)
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Martingale convergence forwards and backwards yields the existence of the limits

η∞(X) := lim
n↑∞

ηn(X), η−∞(X) := lim
n↓−∞

ηn(X)

P -a.s. and in L
1(P ), and these limits are identified as conditional expectations

η∞(X) = EP [−X|F∞] , η−∞(X) = EP [−X|F−∞]

with respect to the limiting σ-fields F∞ and F−∞. Again by projectivity, we
see that the consistency relation (2) extends to infinity in both directions, that
is,

ηn(−η∞) = ηn and η−∞(−ηn) = η−∞ (3)

for any n ∈ Z. Let us summarize these classical facts by saying that the sequence
(ηn)n∈Z is asymptotically precise in both directions.

In this paper, we study the question whether asymptotic precision extends
from the linear case of conditional expectation to the non-linear case of condi-
tional risk measures. For each n ∈ Z, let ρn denote a conditional convex risk
measure on L

∞(Ω,F , P ) with respect to Fn, and let

An :=
�
X ∈ L

∞(Ω,F , P )
�� ρn(X) ≤ 0

�

denote the corresponding acceptance set; see, e.g., [19, Chapter 11]. Under an
additional continuity assumption, the conditional risk measure ρn admits the
dual representation

ρn(X) = ess sup
Q � P

Q ≈ P onFn

(EQ [−X|Fn]− αn(Q)) (4)

with penalty function

αn(Q) = ess sup
X∈An

EQ [−X|Fn] .

In the special coherent case where ρn is also positively homogeneous, this reduces
to the representation

ρn(X) = ess sup
Q∈Qn

EQ [−X|Fn] (5)

with a suitable class Qn of probability measures Q. Under the additional con-
dition of comonotonicity, the coherent risk measure in (5) can also be regarded
as a conditional Choquet integral

ρn(X) =

�
(−X)dCn,

where Cn(A) := ρn(−IA) is a conditional Choquet capacity, in analogy to the
discussion in [19, Section 4.7]. Clearly, we recover the conditional expectation
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ηn(X) in (1) in the simple special case, where the set Qn reduces to the single
probability measure P .

Let us now assume that the sequence (ρn)n∈Z of conditional risk measures
is consistent in the sense of (2), i.e.,

ρn(−ρn+1(X)) = ρn(X), n ∈ Z (6)

for any X ∈ L
∞(Ω,F , P ). Consistency can be characterized in terms of the

acceptance sets (An)n∈Z, in terms of the penalty functions (αn)n∈Z, and also by
supermartingale criteria for the joint behavior of (ρn) and (αn); this is recalled
in Section 2.2.

In the forward direction, the behavior of the consistent sequence (ρn) along
the filtration (Fn)n≥0 has been studied in [17]. The supermartingale criteria for
consistency yield existence of the limit

ρ∞(X) := lim
n

ρn(X).

The question is whether ρ∞ has good properties as a conditional risk measure
with respect to F∞. In the case F∞ = F , asymptotic precision in the forward
direction amounts to the condition ρ∞(X) = −X. However, neither asymptotic
precision nor the weaker condition ρ∞(X) ≥ −X of asymptotic safety may hold;
see [17, Section 5] for criteria and for counterexamples.

In this paper, we focus on the backward direction, and so it is enough to
consider the filtration (Fn)n≤0. Under a mild condition on the penalties for
our reference measure P , we show in Section 3 that asymptotic precision is
indeed satisfied along decreasing σ-fields. More precisely, an application of the
supermartingale criteria for consistency yields the existence of the limit

ρ−∞(X) = lim
n↓−∞

ρn(X).

We then show that the functional ρ−∞ defines a conditional convex risk measure
with respect to the tail field F−∞, that this risk measure is continuous from
above, and that its dual representation (4) for n = −∞ is given by the limiting
penalty function

α−∞(Q) = lim
n

αn(Q).

Moreover, we show that the consistency condition (6) extends to −∞, that is,

ρ−∞(−ρn) = ρ−∞

for any n ≤ 0, in analogy to (3). In particular, these properties of asymptotic
precision in the backward direction hold for a consistent sequence of conditional
coherent risk measures, and also for the special case of conditional Choquet
integrals.

In the final Section 4 we study the structure of the set R of all global
(unconditional) risk measures ρ on L

∞(Ω,F , P ), which are consistent with the
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given sequence (ρn)n≤0. Under additional continuity conditions, we show that
such risk measures are of the form

ρ = ρ̂(−ρ−∞),

where ρ̂ is a convex risk measure on the tail field; the precise formulation is
given in Theorem 5 and Corollary 5.

Our discussion of the behavior of conditional convex risk measures along de-
creasing σ-fields is motivated by the problem of clarifying the structure of spatial
risk measures consistent with a given local specification in a large network. Un-
der a condition of local law-invariance, the local conditional risk measures must
be entropic, and then the problem can be solved explicitly, as shown in [15].
Without this condition, the main problem consists in extending the local speci-
fication to the tail-field, and this can be done by using the general convergence
results of the present paper. The application to spatial risk measures will be
discussed in [16].

2 Preliminaries

Throughout this paper we fix a probability space (Ω,F , P ). We write L
∞ :=

L
∞(Ω,F , P ) and denote byM1(P ) the set of all probability measures absolutely

continuous with respect to P .
In this section we recall some basic facts about conditional convex risk mea-

sures and about consistency that will be used later on. For further details see,
for example, [13, 4, 17, 5, 8, 1], and [19, Chapter 11].

2.1 Conditional convex risk measures

Let F0 be a sub-σ-field of F and write L
∞
0 := L

∞(Ω,F , P ).

Definition 1. A map
ρ0 : L∞ → L

∞
0

is called a conditional convex risk measure with respect to F0 if it satisfies the
following properties for any X,Y ∈ L

∞:

• Conditional cash invariance: For all X0 ∈ L
∞
0 ,

ρ0(X +X0) = ρ0(X)−X0

• Monotonicity: X ≤ Y ⇒ ρ0(X) ≥ ρ0(Y )

• Conditional convexity: For all λ ∈ L
∞
0 such that 0 ≤ λ ≤ 1,

ρ0(λX + (1− λ)Y ) ≤ λρ0(X) + (1− λ)ρ0(Y )

• Normalization: ρ0(0) = 0.
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A conditional convex risk measure ρ0 is called a conditional coherent risk mea-
sure if it has in addition the following property:

• Conditional positive homogeneity: For all λ ∈ L
∞
0 such that λ ≥ 0,

ρ0(λX) = λρ0(X).

Remark 1. A conditional convex risk measure ρ0 is uniquely determined by the
associated acceptance set

A0 :=
�
X ∈ L

∞ �� ρ0(X) ≤ 0
�
,

since
ρ0(X) = ess inf

�
Y ∈ L

∞
0

�� X + Y ∈ A0

�
. (7)

Thus ρn(X) has the financial interpretation of a capital requirement, namely the
minimal amount which should be added to the position X to make it acceptable.

Note that A0 is conditionally convex and solid, and that ρ0(0) = 0 implies
0 ∈ A0 and ess inf

�
X ∈ L

∞
0

�� X ∈ A0

�
= 0. Conversely, any set A0 with these

properties defines via (7) a conditional convex risk measure ρ0.

Under an additional continuity condition, the conditional convex risk mea-
sure ρ0 admits the following dual representation in terms of suitably penalized
probability measures Q ∈ M1(P ); this is also called the robust representation
of ρ0.

For any Q ∈ M1(P ) we define

α0(Q) := ess sup
X∈A0

EQ [−X|F0] . (8)

Q-almost surely, taking the essential supremum under Q. Clearly, α0(Q) is well
defined P -almost surely if Q is equivalent to P on F0, and in that case (8) can
be read as well as an essential supremum under P .

Remark 2. 1. Since 0 ∈ A0, we have α0(Q) ≥ 0 Q-a.s., and hence P -a.s.
if Q ≈ P on F0.

2. For any X ∈ L
∞ we have X + ρ0(X) ∈ A0, and so (8) implies

ρ0(X) ≥ EQ [−X|F0]− α0(Q) Q-a.s. (9)

for any Q ∈ M1(P ).

With this definition of the penalty function α0 the following equivalence
holds; see [13, 4, 17, 6, 8, 1], and [19].

Theorem 1. For a conditional convex risk measure ρ0 with respect to F0, the
following are equivalent:
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1. ρ0 has the robust representation

ρ0(X) = ess sup
Q ∈ M1(P )
Q ≈ P onF0

(EQ [−X|F0]− α0(Q)), X ∈ L
∞
, (10)

where the essential supremum is taken under P .

2. ρ0 is continuous from above, i.e.,

Xk � X P -a.s =⇒ ρ0(Xk) � ρ0(X) P -a.s

for X ∈ L
∞ and any sequence (Xk) ⊆ L

∞.

Remark 3. The penalty function α0 is minimal in the following sense: If the
representation (10) holds with some function α̃0, then

α̃0(Q) ≥ α0(Q) P -a.s. (11)

for any Q ∈ M1(P ) such that Q ≈ P on F0. Indeed, (10) implies

α̃0(Q) ≥ EQ [−X|F0]− ρ0(X) = EQ [−(X + ρ0(X))|F0] P -a.s.,

and hence (11) in view of (8), since X + ρ0(X) ∈ A0.

Remark 4. Continuity from above is equivalent to the following condition, also
called the Fatou property:

ρ0(X) ≤ lim inf
k→∞

ρ0(Xk)

for any uniformly bounded sequence (Xk) ⊂ L
∞ which converges P -a.s. to some

X ∈ L
∞. We say that ρ0 has the Lebesgue property, if the inequality in the

preceding condition can be replaced by the equality

ρ0(X) = lim
k→∞

ρ0(Xk).

The Lebesgue property holds if and only if ρ0 is not only continuous from above
but also continuous from below, that is,

Xk � X P -a.s =⇒ ρ0(Xk) � ρ0(X) P -a.s..

Moreover, it can be shown that the Lebesgue property is equivalent to the condi-
tion that the essential supremum in (10) is actually attained by some measure
Q depending on X; for a proof in the unconditional case F0 = {Ω, ∅} see [12,
Theorem 2].

The proof of Theorem 1 shows that the robust representation in (10) can
actually be refined in the sense that we can use a smaller set of probability
measures; see, e.g., [17] or [19, Chapter 11].
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Corollary 1. If ρ0 is continuous from above then we have

ρ0(X) = ess sup
Q∈Q0

(EQ [−X|F0]− α0(Q)), X ∈ L
∞
,

where
Q0 :=

�
Q ∈ M1(P )

�� Q = P on F0, EQ[α0(Q)] < ∞
�
.

Remark 5. In the special case F0 = {Ω, ∅}, the preceding discussion reduces
to standard definitions and basic facts for (unconditional) convex risk measures

ρ : L∞ → R

on the Banach space L
∞; see, [2, 3, 10, 18, 20], and also [19, Chapter 4].

2.2 Consistency

Let us now fix two sub-σ-fields F0 ⊆ F1 of F . For i = 0, 1, we write L
∞
i :=

L
∞(Ω,Fi, P ), and we consider a conditional convex risk measure ρi : L∞ → L

∞
i

with respect to Fi.

Definition 2. We say that the conditional risk measures ρ0 and ρ1 are consis-
tent if

ρ0 = ρ0(−ρ1),

that is, if ρ0 (−ρ1(X)) = ρ0(X) for all X ∈ L
∞.

From now on we assume that both ρ0 and ρ1 are continuous from above.
Let Ai and αi denote the acceptance set and the minimal penalty function
corresponding to ρi. Consistency of ρ0 and ρ1 can then be characterized in
terms of the acceptance sets, in terms of the minimal penalty functions, and in
terms of the joint behavior of (ρi) and (αi). To this end, consider the restriction
of ρ0 to the subspace L

∞
1 of L∞ and denote by

A0,1 :=
�
X ∈ L

∞
1

�� ρ0(X) ≤ 0 P -a.s.
�

the acceptance set and by

α0,1(Q) := ess sup
X∈A0,1

EQ [−X|F0] , Q ∈ M1(P )

the minimal penalty function associated to this restriction in analogy to (8). As
shown in [11, 17, 5, 8, 9, 6, 1], consistency can now be characterized as follows

Theorem 2. The following conditions are equivalent:

1. ρ0 and ρ1 are consistent.

2. A0 = A0,1 +A1.

3. For any Q ∈ M1(P ),

α0(Q) = α0,1(Q) + EQ[α1(Q) | F0 ] Q-a.s.
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4. For X ∈ L
∞ and any Q ∈ M1(P ),

EQ[ ρ1(X) + α1(Q) | F0] ≤ ρ0(X) + α0(Q) Q-a.s..

Remark 6. All our penalty functions are non-negative, since we have assumed
that all our risk measures are normalized. Thus property (3) of Theorem 2
implies that

α0(Q) ≥ EQ[α1(Q)|F0] Q-a.s. for all Q ∈ M1(P ). (12)

In particular, (αi(Q))i=0,1 is a non-negative supermartingale with respect to Q

for all Q ∈ M1(P ) such that EQ [α0(Q)] < ∞. Note that the consistency cri-
terion (3) of Theorem 2 provides, in addition to the supermartingale inequality
(12), a special form of the predictable increasing process in the Doob decompo-
sition of (αi)i=0,1.

Condition (12) is equivalent to weak consistency of (ρi)i=0,1, that is, to the
condition that

ρ1(X) ≤ 0 =⇒ ρ0(X) ≤ 0

for any X ∈ L
∞; cf. [1, Proposition 8]. Note that weak consistency amounts to

the relaxation A1 ⊆ A0 of the consistency criterion (2) in Theorem 2. For other
relaxations of the strong notion of consistency in Definition 2 see, for example,
[26, 27, 25, 24, 1, 14], and in the law-invariant case [28].

In Section 4 we are going to use the Lebesgue property of conditional risk
measures that was introduced in Remark 4, and we will apply the criterion of
Proposition 1. This involves the following notion of strong sensitivity; see also
[24].

Definition 3. We call a conditional convex risk measure ρ0 strongly sensitive
with respect to P if

P [ρ0(X) < ρ0(Y )] > 0

whenever X,Y ∈ L
∞ satisfy X ≥ Y P -a.s. and P [X > Y ] > 0.

Proposition 1. Let ρ0 and ρ1 be consistent, and assume that ρ0 has the
Lebesgue property and is strongly sensitive. Then ρ1 inherits the Lebesgue prop-
erty and is strongly sensitive.

Proof. For X ∈ L
∞ and a uniformly bounded sequence (Xk) in L

∞ such that
Xk → X P -a.s., the Fatou property of ρ1 yields

ρ1(X) ≤ lim inf
k

ρ1(Xk) ≤ lim sup
k

ρ1(Xk) P -a.s.. (13)

To prove the Lebesgue property of ρ1, we have to show that

ρ1(X) = lim sup
k

ρ1(Xk) P -a.s..
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In view of (13), this will follow from

ρ0(−ρ1(X)) = ρ0(− lim sup
k

ρ1(Xk)),

due to the strong sensitivity of ρ0. Indeed, using consistency, monotonicity of
ρ0 applied to (13), and first the Fatou property and then the Lebesgue property
of ρ0, we obtain

ρ0(X) = ρ0(−ρ1(X)) ≤ ρ0(− lim sup
k

ρ1(Xk))

= ρ0(lim inf
k

ρ1(−Xk)) ≤ lim inf
k

ρ0(−ρ1(Xk))

= lim inf
k

ρ0(Xk) = ρ0(X).

To see that ρ1 is strongly sensitive, take X,Y ∈ L
∞ such that X ≥ Y and

P [X > Y ] > 0. Then we have P [ρ1(X) < ρ1(Y )] > 0, since ρ1(X) = ρ1(Y )
P -a.s. would imply

ρ0(X) = ρ0(−ρ1(X)) = ρ0(−ρ1(Y )) = ρ0(Y )

in contradiction to the strong sensitivity of ρ0.

3 Backwards Convergence

From now on we fix a filtration (Fn)n≤0 on our probability space (Ω,F , P ).
Thus, the σ-fields Fn ⊆ F are decreasing as n decreases to −∞. We denote by

F−∞ :=
�

n≤0

Fn

the corresponding tail field and write L
∞
n = L

∞(Ω,Fn, P ).
Let (ρn)n≤0 be a sequence of conditional convex risk measures

ρn : L∞ → L
∞
n .

We denote by An the acceptance set of ρn, and we assume that each ρn is
continuous from above. Thus ρn admits a dual representation (10) in terms of
its minimal penalty function αn. We also assume that the sequence is consistent
in the sense that

ρn(−ρn+1) = ρn (14)

for all n < 0.

Example 1. For β ≥ 0 consider the conditional entropic risk measures (ρn)n≤0

defined by

ρn(X) :=
1

β
logEP

�
e
−βX |Fn

�
; (15)
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for β = 0 this is interpreted as the linear case (1), that is, as the limiting case
of (15) as β decreases to 0. For β > 0, the corresponding penalty functions are
given by

αn(Q) =
1

β
Hn(Q|P ),

where Hn(Q|P ) denotes the conditional relative entropy with respect to Fn; see
[17] or [19, Chapter 11]. It is easy to check that the sequence (ρn)n≤0 is con-
sistent. Note that ρn is law-invariant in the sense that ρn(X) only depends
on the conditional distribution of X with respect to Fn under P . Conversely,
law-invariance together with consistency implies that the risk measures ρn are
entropic, if the parameter β is allowed to be tail-measurable with values in [0,∞);
see [15] and also [22]. In this special entropic case, the sequence (ρn)n≤0 admits
an immediate extension

ρ−∞(X) =
1

β
logEP

�
e
−βX |F−∞

�

to the tail field, and the properties of asymptotic precision are clearly satisfied.

Remark 7. In general, let (ρ̃n)n≤0 be any sequence of conditional convex risk
measures, not necessarily consistent. Defining recursively

ρ0 := ρ̃0 and ρn := ρ̃n(−ρn+1) for n < 0,

we obtain a sequence (ρn)n≤0 which is indeed consistent.

Our goal in this section is to extend the sequence (ρn)n≤0 to a conditional
convex risk measure ρ−∞ with respect to the tail field, to show that this risk
measure is continuous from above, and to identify its dual representation. To
this end we will make use of the supermartingale properties implied by the
consistency condition (14), as they are stated in Theorem 2 and Remark 6.

Theorem 3. Let us assume

sup
n≤0

EP [αn(P )] < ∞. (16)

Then the limit
ρ−∞(X) := lim

n↓−∞
ρn(X)

exists P -a.s. and in L
1(P ) for all X ∈ L

∞. Moreover, the resulting map

ρ−∞ : L
∞ → L

∞(Ω,F−∞, P )

defines a conditional convex risk measure with respect to the tail-field F−∞, and
it satisfies the consistency condition

ρ−∞ = ρ−∞(−ρn) (17)

for all n ≤ 0.
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Proof. Fix X ∈ L
∞. Due to our assumption (16), Theorem 2 together with

Remark 6 shows that (αn(P ))n≤0 is a backwards supermartingale under P which
is bounded in L

1(Ω,F , P ). In view of part (4) of Theorem 2, the same is true
for the process

Vn(P,X) := ρn(X) + αn(P ), n ≤ 0,

since it is bounded from below by −�X�∞ and satisfies

sup
n≤0

EP [Vn(P,X)] ≤ �X�∞ + sup
n≤0

EP [αn(P )] < ∞.

Applying supermartingale convergence backwards under P , we obtain the exis-
tence of finite limits

V−∞(P,X) := lim
n↓−∞

Vn(P,X) (18)

and
α−∞(P ) := lim

n↓−∞
αn(P )

both P -a.s. and in L
1(P ); cf. [23]. This yields the existence of the limit

ρ−∞(X) := lim
n↓−∞

ρn(X) = V−∞(P,X)− α−∞(P ) (19)

both P -a.s. and in L
1(P ). Moreover, we have |ρ−∞(X)| ≤ �X�∞, and it is easy

to check that the resulting map

ρ−∞ : L
∞ → L

∞(Ω,F−∞, P )

has the properties of a conditional convex risk measure with respect to the tail
field F−∞, as stated in Definition 1. To prove the consistency property (17) of
ρ−∞, note that property (14) of the sequence (ρn) implies

ρ−∞(−ρn(X)) = lim
m↓−∞

ρm(−ρn(X)) = lim
m↓−∞

ρm(X) = ρ−∞(X)

for any X ∈ L
∞ and n ≤ 0.

In the preceding proof, we can replace the reference measure P by any mea-
sure Q belonging to the set

QP :=

�
Q ∈ M1(P )

�� Q = P on F−∞, sup
n≤0

EQ[αn(Q)] < ∞
�
.

This yields the following result.

Corollary 2. For any Q ∈ QP , the limit

α−∞(Q) := lim
n↓−∞

αn(Q) (20)

exists Q-a.s and in L
1(Q), and we have

EQ [α−∞(Q)] = lim
n↓−∞

EQ[αn(Q)] < ∞.
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Let us denote by

αn,n+1(Q) := ess sup
X∈An∩L∞

n+1

EQ [−X|Fn]

the one-step penalty function of Q ∈ M1(P ) for n ≤ 0; we put L
∞
1 := L

∞ so
that α0,1(Q) = α0(Q).

Lemma 1. For any Q ∈ QP the limit α−∞(Q) in (20) is given by

α−∞(Q) = EQ

�
0�

l=−∞
αl,l+1(Q)|F−∞

�
, (21)

and we have
α−∞(Q) = lim

n↓−∞
EQ [αn(Q)|F∞] (22)

Q-a.s. and in L
1(Q).

Proof. Iterating condition (3) of Theorem 2 for l = n, . . . ,−1, we obtain

αn(Q) = αn,n+1(Q) + EQ [αn+1(Q)|Fn] = EQ

�
0�

l=n

αl,l+1(Q)|Fn

�
(23)

for any n ≤ 0. Combining monotone convergence with martingale convergence
(“Hunt’s lemma”), we obtain

α−∞(Q) = lim
n↓−∞

αn(Q) = EQ

�
0�

l=−∞
αl,l+1(Q)|F−∞

�

Q-a.s. and in L
1(Q). Moreover, (23) implies

EQ [αn(Q)|F−∞] = EQ

�
0�

l=n

αl,l+1(Q)
��F−∞

�
,

and so equation (22) follows by monotone convergence.

Out next goal is to show that the conditional risk measure ρ−∞ has the Fatou
property, and that the minimal penalty function in its dual representation is
given by the limits α−∞(Q) for Q ∈ QP . To this end we consider the functional
ρP : L

∞ → R defined by

ρP (X) := EP [ρ−∞(X)] . (24)

Lemma 2. ρP is a convex risk measure, and it has the Fatou property.
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Proof. It is easy to see that ρP has the properties of a convex risk measure. It
remains to prove the Fatou property. Take X ∈ L

∞ and a uniformly bounded
sequence (Xk)k∈N such that Xk → X P -a.s.. For any n ≤ 0, the Fatou property
of ρn implies that the functional Vn(P, ·) has the Fatou property as well. Thus
we obtain

EP [Vn(P,X)] ≤ lim inf
k

EP [Vn(P,Xk)] ≤ lim inf
k

EP [V−∞(P,Xk)]

for all n, where the last inequality follows from the supermartingale property of
(Vn(P,Xk))n≤0. Using the supermartingale convergence in (18), this implies

EP [V−∞(P,X)] ≤ lim inf
k

EP [V−∞(P,Xk)] .

Subtracting EP [α−∞(P )] from both sides and recalling (19), we obtain the
Fatou property for ρP :

EP [ρ−∞(X)] ≤ lim inf
k

EP [ρ−∞(Xk)] .

Theorem 4. Under our assumptions (16) and (14), the conditional convex risk
measure ρ−∞ has the Fatou property, and it admits the representation

ρ−∞(X) = ess sup
Q∈QP

(EQ [−X|F−∞]− α−∞(Q)) , X ∈ L
∞

in terms of the limiting penalty function α−∞ in (20) and (21). Moreover, α−∞
coincides with the minimal penalty function of ρ−∞, i.e.,

α−∞(Q) = ess sup
X∈A−∞

EQ [−X|F−∞] P -a.s. (25)

for any Q ∈ QP , where

A−∞ :=
�
X ∈ L

∞ �� ρ−∞(X) ≤ 0
�

denotes the acceptance set of ρ−∞.

Proof. To prove the Fatou property, we show that ρ−∞ is continuous from
above. Take X ∈ L

∞ and a decreasing sequence (Xk) in L
∞ with Xk � X

P -a.s.. Monotonicity of ρ−∞ yields

ρ−∞(X) ≥ lim
k

ρ−∞(Xk) P -a.s.. (26)

On the other hand, the unconditional convex risk measure ρP in (24) is contin-
uous from above by Lemma 2 and Remark 4. This implies

EP [ρ−∞(X)] = ρP (X) = lim
k

ρP (Xk) = lim
k

EP [ρ−∞(Xk)]

= EP

�
lim
k

ρ−∞(Xk)

�
,
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using monotone convergence in the last step. Combined with (26) this yields

ρ−∞(X) = lim
k

ρ−∞(Xk) P -a.s.,

and hence the Fatou property of ρ−∞. By Corollary 1 it follows that ρ−∞ has
the robust representation

ρ−∞(X) = ess sup
Q∈QP

(EQ [−X|F−∞]− α̃−∞(Q)) , X ∈ L
∞
,

where we denote by α̃−∞(Q) the right-hand side of (25).
For a given Q ∈ QP , we now show that α̃−∞(Q) = α−∞(Q) P -a.s.. Note

first that, due to (17) and Theorem 2,

α̃−∞(Q) = α̃−∞,n(Q) + EQ [αn(Q)|F−∞]

≥ EQ [αn(Q)|F−∞] Q-a.s.

for any n ≤ 0, where α̃−∞,n(Q) ≥ 0 denotes the minimal penalty function of
ρ−∞ restricted to Fn. This implies

α̃−∞(Q) ≥ α−∞(Q) P -a.s., (27)

using equation (22) in Lemma 1 and the equality of Q and P on F−∞. To
obtain the converse inequality, take any X ∈ L

∞. We have

ρn(X) ≥ EQ [−X|Fn]− αn(Q) Q-a.s.

for any n ≤ 0 by Remark 2, and hence

ρ−∞(X) = lim
n

ρn(X) ≥ lim
n

(EQ [−X|Fn]− αn(Q))

= EQ [−X|F−∞]− α−∞(Q) Q-a.s..

Since Q = P on F−∞, we obtain

ρ−∞(X) ≥ EQ [−X|F−∞]− α−∞(Q) P -a.s.. (28)

This holds for all Q ∈ QP , and so we get

ρ−∞(X) = ess sup
Q∈QP

(EQ [−X|F−∞]− α̃(Q)−∞)

≤ ess sup
Q∈QP

(EQ [−X|F−∞]− α−∞(Q))

≤ ρ−∞(X),

where we have used (27) for the first and (28) for the second inequality. The
resulting equality shows that ρ−∞ has a robust representation with penalty
function α−∞. Since α̃−∞ is the minimal penalty function, we obtain α̃−∞(Q) ≤
α−∞(Q) P -a.s. for any Q ∈ QP . Combined with (27), this yields equality (25).

14



Thus we have shown backwards convergence of ρn as n → −∞ to a nice
conditional risk measure ρ−∞ with respect to the tail field. This can be seen
as a backward analogue to the properties of asymptotic safety and asymptotic
precision in the forward direction for a consistent sequence (ρn)n≥0 along a
filtration (Fn)n≥0; see the discussion in [17, Section 5]. As shown in [17, Theo-
rem 5.4], asymptotic safety can be characterized in terms of various asymptotic
properties of acceptance sets and of penalty functions as n tends to ∞. The
following corollary states backward analogues to those properties as n tends to
−∞.

For n ≤ 0, we denote by

A−∞,n := A−∞ ∩ L
∞
n

the acceptance set of ρ−∞ restricted to Fn, and by

α−∞,n(Q) := ess sup
X∈A−∞,n

EQ [−X|Fn] ,

the corresponding minimal penalty function for Q ∈ QP .

Corollary 3. 1.
�

n A−∞,n = L
∞
+ (F−∞).

2. limn↓−∞ α−∞,n(Q) = 0 Q-a.s. for all Q ∈ QP .

(3) A position X ∈ L
∞ belongs to A−∞ if and only if there exists a uniformly

bounded sequence Xn ∈ An, n ≤ 0, such that ∃ limn↓−∞ Xn ≤ X.

Proof. Since each ρn and hence ρ−∞ is normalized, we obtain L
∞
+ (F−∞) ⊆

A−∞,n for any n ≤ 0, and this shows the inclusion “⊇” in (1). Conversely,
if X ∈ A−∞ is Fn-measurable for all n ≤ 0, then X is F−∞-measurable, and
conditional cash invariance of ρ−∞ yields −X = ρ−∞(X) ≤ 0 P -a.s.. This
proves (1).

By Theorem 2 combined with (25), the consistency relation

ρ−∞(−ρn) = ρ−∞

in Theorem 3 implies

α−∞(Q) = α−∞,n(Q) + EQ [αn(Q)|F−∞]

for any Q ∈ QP , and so the convergence in (2) follows from the second equality
in Lemma 1.

In order to prove (3), take X ∈ A−∞. Note that Xn := X+ρn(X) ∈ An for
all n ≤ 0, that the sequence (Xn) is uniformly bounded by 2�X�∞, and that
limn Xn = X + ρ−∞(X) ≤ X. Conversely, let X ∈ L

∞ satisfy the condition
X ≥ limn Xn for some uniformly bounded sequence (Xn) such that Xn ∈ An

for each n ≤ 0. Since ρn(Xn) ≤ 0, monotonicity and the Fatou property of ρ−∞
together with the consistency condition ρ−∞(−ρn) = ρ−∞ yield

ρ−∞(X) ≤ ρ−∞(lim
n

Xn) ≤ lim inf
n

ρ−∞(Xn)

= lim inf
n

ρ−∞(−ρn(Xn)) ≤ 0,

and so X belongs to A−∞.
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For the rest of this section we focus on the special case where each ρn is
coherent. Let us denote by Me

1(P ) the class of all probability measures Q on
(Ω,F) which are equivalent to P .

Definition 4. A class Q ⊆ Me
1(P ) of probability measures on (Ω,F) is called

stable with respect to the filtration (Fn)n≤0 if, for any Q1, Q2 ∈ Q and any
n ≤ 0, the probability measure Q defined by

EQ [X] := EQ1 [EQ2 [X|Fn]]

belongs again to Q.

Corollary 4. Under assumptions (16) and (14), the conditional risk measure
ρ−∞ defined in Theorem 3 is coherent if and only if each ρn, n ≤ 0, is coherent.
In this case both ρn and ρ−∞ have robust representations in terms of the set

Qe
P := QP ∩Me

1(P ) =
�
Q ≈ P

�� α−∞(Q) = 0
�
,

i.e.,
ρn(X) = ess sup

Q∈Qe
P

EQ [−X|Fn] , X ∈ L
∞

for n ≤ 0 and n = −∞. Moreover, the set Qe
P is stable, and the process

(ρn(X))n≤0 is a backward Q-supermartingale for any Q ∈ Qe
P .

Proof. It is straightforward to see that the limiting risk measure ρ−∞ is coher-
ent, if each ρn is coherent. The converse as well as all other statements of the
corollary follow from Theorem 4 and [17, Corollary 4.12], due to the consistency
condition (17).

Remark 8. Under an additional condition of comonotonicity, a conditional
version of the arguments in [19, Corollary 4.95] shows that the coherent risk
measures ρn can be interpreted as conditional Choquet integrals

ρn(X) =

�
(−X)dCn,

that is, as Choquet integrals with respect to the conditional submodular capacity
Cn defined by

Cn(A) := ρn(−IA)

for any A ∈ F ; see also [7] and the references therein. If these conditional
Choquet integrals are consistent in the sense of (14), then Theorem 4 shows
that they converge along our decreasing σ-fields, that is,

lim
n

�
XdCn =

�
XdC−∞ P -a.s.

for any X ∈ L
∞.
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4 The structure of global risk measures consis-
tent with (ρn)n≤0

Let us denote by R the class of all convex risk measures ρ on L
∞ which are

consistent with the sequence (ρn)n≤0, that is, ρ satisfies the condition

ρ = ρ(−ρn), n ≤ 0. (29)

Note that R �= ∅, since the risk measure ρP defined in (24) belongs to R.
From now on we focus on risk measures ρ ∈ R which have the Lebesgue

property. We denote be RL the class of all those risk measures, and by RL,S the
subclass of all ρ ∈ RL which are strongly sensitive in the sense of Definition 3.
In this section, our aim is to clarify the structure of the sets RL and RL,S .

Lemma 3. For any ρ ∈ RL the consistency condition (29) extends to the tail
field F−∞, that is,

ρ(−ρ−∞) = ρ.

Proof. For any X ∈ L
∞ the sequence (ρn(X))n≤0 is uniformly bounded by

�X�∞ and P -a.s. convergent to ρ−∞(X). Combining (29) with the Lebesgue
property of ρ, we obtain

ρ(−ρ−∞(X)) = lim
n

ρ(−ρn(X)) = ρ(X). (30)

Proposition 2. We have RL,S �= ∅ if and only if the conditional risk mea-
sure ρ−∞ has the Lebesgue property and is strongly sensitive in the sense of
Definition 3.

Proof. Suppose that RL,S �= ∅. For any ρ ∈ RL,S , we have ρ(−ρ−∞) = ρ due
to Lemma 3. Applying Proposition 1 to ρ and to F1 := F−∞ we see that ρ−∞
has the Lebesgue property and is strongly sensitive.

Conversely, the Lebesgue property of ρ−∞ implies that the risk measure ρP

defined in (24) belongs to RL. If, moreover, ρ−∞ is strongly sensitive in the
sense of Definition 3, then ρ := ρP is strongly sensitive as well.

Our description of the risk measures in RL and RL,S will involve the condi-
tional risk measure ρ−∞ with respect to the tail filed F−∞ and an unconditional
risk measure on the tail field. More precisely, let us denote by R̂ the class of
convex risk measures ρ̂ on L̂

∞ := L
∞(Ω,F−∞, P ) which have the Lebesgue

property on L̂
∞, and by R̂L,S the subclass of all ρ̂ ∈ R̂L which are strongly

sensitive on L̂
∞.

Theorem 5. Suppose that ρ−∞ has the Lebesgue property. Then the class RL

has the following structure:

RL =
�
ρ̂(−ρ−∞)

�� ρ̂ ∈ R̂L

�
. (31)
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Proof. Take any ρ ∈ RL, and denote by ρ̂ the restriction of ρ to L̂
∞. Clearly, ρ̂

belongs to R̂L, and Lemma 3 implies

ρ = ρ(−ρ−∞) = ρ̂(−ρ−∞).

This shows the inclusion “⊆” in (31).
Conversely, take any ρ̂ ∈ R̂L. Then ρ := ρ̂(−ρ−∞) defines a convex risk

measure on L
∞. We have ρ ∈ R since

ρ(−ρn(X)) = ρ̂(−ρ−∞(−ρn(X))) = ρ̂(−ρ−∞(X)) = ρ(X)

due to (17). Moreover, ρ has the Lebesgue property on L
∞. Indeed, for any

uniformly bounded sequence (Xk) in L
∞ such thatXk → X P-a.s., the Lebesgue

property of ρ−∞ implies

ρ−∞(X) = lim
k

ρ−∞(Xk) P -a.s.,

hence
ρ(X) = ρ̂(−ρ−∞(X)) = lim

k
ρ̂(−ρ−∞(Xk)) = lim

k
ρ(Xk)

due to the Lebesgue property of ρ̂.

Corollary 5. If RL,S �= ∅, then

RL,S =
�
ρ̂(−ρ−∞)

�� ρ̂ ∈ R̂L,S

�
.

Proof. By Proposition 2, the existence of some ρ ∈ RL,S implies that ρ−∞
has the Lebesgue property and is strongly sensitive. For any ρ ∈ RL,S , the

restriction ρ̂ of ρ to L̂
∞ clearly belongs to R̂L,S , and we have ρ = ρ̂(−ρ−∞) due

to (30).
Conversely, take ρ̂ ∈ R̂L,S . Then Theorem 5 shows that ρ := ρ̂(−ρ−∞)

belongs to RL. Moreover, ρ is strongly sensitive. Indeed, for X and Y in L
∞

with X ≤ Y P-a.s.and P [X < Y ] > 0, we obtain ρ−∞(X) ≥ ρ−∞(Y ) P-a.s.and
P [ρ−∞(X) > ρ−∞(Y )] > 0 due to Proposition 2, and so the strong sensitivity
of ρ̂ implies

ρ(X) = ρ̂(−ρ−∞(X)) > ρ̂(−ρ−∞(Y )) = ρ(Y ).

Remark 9. Throughout this paper, we have worked with a fixed probability
measure P . In the spatial setting of [16], the single measure P will be replaced
by a whole class P of probability measures, namely the class of Gibbs measures
with given local conditional probabilities. This will require a refined analysis,
where conditional risk measures with respect to P are replaced by risk kernels,
and where the results of the present paper will be used as building blocks.
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