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Abstract

A general theory is developed for the projection of martingale re-
lated processes onto smaller filtrations, to which they are not even
adapted. Martingales, supermartingales, and semimartingales retain
their nature, but the case of local martingales is more delicate, as il-
lustrated by an explicit case study for the inverse Bessel process. This
has implications for the concept of No Free Lunch with Vanishing Risk,
in Finance.

Introduction

It is a classic result, known as Stricker’s theorem, that if one considers a
semimartingale in a smaller filtration to which it is adapted then it remains
a semimartingale, although the decomposition may change. Recent develop-
ments in Mathematical Finance, and especially within the theory of credit
risk, has led to the consideration of the projection of processes onto small
filtrations to which they are no longer adapted. In this article we develop a
general theory of how these projections behave.

To be more precise, martingales, supermartingales, and quasimartingales
all retain their nature and are of course semimartingales in the smaller filtra-
tion. However the situation for local martingales is more delicate. Indeed,
even in the classic case of having the local martingale still adapted, Stricker
observed [31] that a local martingale need not remain a local martingale in a
smaller filtration. It only gets worse when considering optional projections
onto a filtration to which the local martingale is not adapted. We establish
what is in fact true, and provide an explicit case study for projections of
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the inverse Bessel (3) process. Another illustrative example is inspired by
recent results in credit risk theory.
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Filtration Shrinkage

There has been much work on the expansion of filtrations (see for example
Chapter 6 of [27]) but little has been done on the converse: the shrinkage
of filtrations. Perhaps the best known result in this direction is Stricker’s
Theorem:

Theorem 1 (Stricker’s Theorem). Let X be a semimartingale for a filtration
G and let F be a subfiltration of G such that X is adapted to F. Then X
remains a semimartingale for F.

One can see [31] or [24] for the original proof, or [27, p. 53] for a simpler
argument. In Stricker’s theorem, one assumes that X is adapted to the
smaller filtration; one may well ask if this is true for general semimartingales
for a filtration even smaller than the natural filtration of X itself. In this
paper, we show this result en passant, but what we are really interested in, is
what happens to local martingales when projected onto smaller filtrations.
We begin with a very elementary and well known result, which uses, as most
of our results do, the following caveat:

Caveat 1. If not stated otherwise, all filtrations in this paper will be assumed
to satisfy the usual hypotheses.1 Note that this assumption will not be made
in our discussion of local martingales viewed as measures on the predictable
σ-field.

Caveat 2. All processes X = (Xt)t≥0 under consideration for filtration
shrinkage will be implicitly assumed to possess the property that Xt ∈ L1 for
all t ≥ 0.

From now on we fix a filtration G on a given probability space (Ω,G, P )
and a subfiltration F of G.

1See [27, p. 3] for a definition of the usual hypotheses.
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Theorem 2. Let X be a martingale for the filtration G. Then the optional
projection of X onto F is again a martingale, for the filtration F.

Proof. First let us observe that on a time interval [0, n] we have that (Xt)0≤t≤n
is a uniformly integrable martingale of “Class (D).” Therefore for any F
stopping time τ bounded by n we have that the optional projection oXτ =
E{Xτ |Fτ}, and hence the optional projection is well defined on [0, t] for any
t ≤ n. Since n is arbitrary, it is well defined on [0,∞). Since the optional
projection of X onto F, denoted oX, at time t is a.s. equal to E(Xt|Ft), we
have that

E(oXt|Fs) = E(E(Xt|Ft)|Fs) = E(Xt|Fs)
= E(E(Xt|Gs)|Fs) = E(Xs|Fs)
= oXs

Theorem 3. Let X ≥ 0 be a supermartingale for G. Then oX is a super-
martingale for F.

Proof. For the optional projection for supermartingales, we need to be a
little more careful than for martingales. However since we assume here that
X is nonnegative, there is no problem (see for example [6, Paragraph 43, p.
115]). After this remark, the proof is identical to that of Theorem 2, with
equality replaced by less than or equal.

Our goal is to find general conditions on a local martingale for G which
ensure that it is also a local martingale for F. We first show the result for a
subclass of semimartingales known as quasimartingales, which is of interest
in its own right. Theorem 4 extends Stricker’s Theorem (Theorem 1), and
is due to Brémaud and Yor [2]. Theorem 9 in turn extends Theorem 4 to
the more general case of semimartingales. We need to recall a standard
definition:

Definition 1. A stochastic process X is a quasimartingale for G if

V ar(X,G) = sup
τ
V arτ (X,G) <∞,

where

V arτ (X,G) = E(
n∑
i=0

|E{Xti −Xti+1 |Gti}|)

for a finite partition τ = {t0, t1, . . . , tn}
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Theorem 4. If X is a quasimartingale for G then oX is a quasimartingale
for F, where oX denotes the optional projection of X onto F.

Proof. We know by Rao’s theorem that a quasimartingale is a difference of
two submartingales [27, p. 118], hence the theorem follows from Theorem 3.

Local Martingales

The notion of a local martingale was first introduced by Itô and Watanabe
in [10].

Definition 2. A local martingale for G is a càdlàg process X adapted to the
filtration G such that there exists a sequence of stopping times (Tn)n≥1 in G
increasing to ∞ a.s. such that for each n, Xt∧Tn1{Tn>0} is a martingale for
G . A sequence (Tn)n≥1 of such stopping times is called a reducing sequence
or a localizing sequence.

We will dispense with the term 1{Tn>0} throughout this paper, since we
will assume all of our processes are non random at time t = 0, hence the
indicator term is not necessary.

We have the following two useful results concerning local martingales,
due to Kazamaki [19].

Theorem 5 (Krickeberg Decomposition for Local Martingales). Let X be a
local martingale. Then ‖ X ‖1≡ supnE(|XTn |), for every reducing sequence
of stopping times (Tn) with Tn < ∞ a.s. each n, and limn→∞ Tn = ∞. If
‖ X ‖1<∞, then there exist two positive local martingales X1 and X2 such
that

X = X1 −X2 and ‖ X ‖1=‖ X1 ‖1 + ‖ X2 ‖1,

and this decomposition is unique.

Theorem 6. A local martingale X is a quasimartingale if and only if
‖ X ‖1<∞.

We can use Kazamaki’s results to extend the result of Bŕemaud and Yor
(Theorem 4) to semimartingales. Before we do that, however, we should
clarify a detail concerning optional projections. We have the following result,
which can be found in [6, p. 116]. We state the result and also sketch its
proof here, for the reader’s convenience. Dellacherie and Meyer attribute
the result to Chen Pei-De. Recall that optional projections exist for any
nonnegative process.
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Theorem 7. Let X be a G measurable process, and suppose o|X| is indis-
tinguishable from a finite valued process, where the optional projection is
taken on F ⊂ G. If we let Y =o (X+)−o (X−), then Y defines an optional
projection of X.

Proof. It is useful to note that in order to verify the hypothesis that o|X|
s indistinguishable from a finite valued process, it suffices to use Meyer’s
section theorem and to check that for any stopping time τ we have that

E(|Xτ |1{τ<∞}|Fτ ) <∞ a.s.

This in turn is equivalent to verifying that E(Xτ1{τ<∞}|Fτ ) exists. But
this implies that

Yτ1{τ<∞} = E(Xτ1{τ<∞}|Fτ ) a.s.

which is formally the definition of the optional projection. That Y is
uniquely so characterized follows from another application of Meyer’s section
theorem.

The next theorem shows that if the projection of a semimartingale onto
a smaller filtration exists, then the projection is a semimartingale in the
smaller filtration. The following lemma will be needed in the proof of the
theorem (and again in the proof of Theorem 11), so we begin with it.

Lemma 8. Let X be a G measurable process, and suppose that the optional
projection onto F, oX, exists. Let T be a finite valued F stopping time. Then
o(Xt∧T ) = (oX)t∧T .

Proof. Let S be a finite valued F stopping time, and let XT denote the
stopped process Xt∧T , and also let Y = XT . By replacing S with S ∧ T if
necessary, we can assume without loss of generality that S ≤ T . Then

oYS = E(YS |FS) = E(XT
S |FS) = E(XT∧S |FS)

= E(XT∧S |FT |FS) = E(XT∧S |Ft∧S) (1)

by definition of the optional projection. On the other hand consider o(XT
S ).

We have
o(XT

S ) =o (Xt∧S) = E(XT∧S |FT∧S) (2)

and since the two right sides of (1) and (2) are equal, the lemma is proved.
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Theorem 9. Let X be a semimartingale for G such that o|X| exists and
is a finite valued process, where o|X| denotes the optional projection of |X|
onto the filtration F ⊂ G. Then oX exists by Theorem 7, and it is an F
semimartingale.

Proof. Since X is a G semimartingale, let X = M +A be a decomposition,
with M a local martingale and A a process with paths of finite variation.
For the local martingale M we let (τn)n=1,2,... be a reducing sequence of
stopping times, so that (Mt∧τn)t≥0 is a uniformly integrable martingale for
each n ≥ 1. Let us fix an n, and let Mn

t ≡ Mt∧τn . Note that we have
E(|Mn

∞|) = E(|Xt∧τn |) <∞, and by Jensen’s inequality we have ‖Mn ‖1<
∞. Therefore by Krickeberg’s decomposition we have two uniquely deter-
mined positive martingales M1,n,M2,n such that Mn = M1,n −M2,n and
‖ Mn ‖1=‖ M1,n ‖1 + ‖ M2,n ‖1. We now take the optional projection of
each, and we have

oMn =o M1,n −oM2,n on [0, τn]. (3)

Since the Krickeberg decomposition is unique, and the optional projection
is also uniquely defined, we can combine equations (3) using that

oMn+1
t∧τn =o Mn

t∧τn

by Lemma 8 to define oM on [0,∞). By Theorem 12 we know that oM i,n is
a nonnegative supermartingale for i = 1, 2. Therefore oM is the difference of
two supermartingales, whence a semimartingale. The finite variation term
A is easier: for A G optional it is a classical result due to Dellacherie that we
can decompose A into increasing, nonnegative optional processes such that
At = A−−A−, and moreover |dA|t = A+

t +A−t . (It is of course the fact that
A+ and A− can be taken optionally measurable that is due to Dellacherie;
it is due to Lebesgue that we can do this path by path for each fixed ω.)
Therefore since o|X| exists and is finite by hypothesis which implies oX is
well defined by Theorem 7, and we have seen that oM exists and is finite
valued, by linearity we have that

oA =o X −oM

exists as well, and is uniquely defined. Since A+ is an increasing process,
so also is oA+, and analogously for A− and oA−, hence oA =o A+ −o A−
is a finite variation process, and also a semimartingale. Therefore oX is a
smemimartingale.
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Among many other results, Stricker [31] showed the following:

Theorem 10. Let X be a positive local martingale for G, and assume that
X is adapted to the subfiltration F. Then X then X is also a local martingale
for F.

Corollary 1. If X is a local martingale for G with ‖ X ‖1< ∞, and if X
is adapted to F, then X is also a local martingale for F.

Proof. Since ‖ X ‖1< ∞ we know that X is a quasimartingale, hence a
fortiori a special semimartingale, and the result follows from Theorem 10.

It is interesting to note that when a local martingale is no longer assumed
to be positive, Stricker gives an example to show that even in the case where
X is adapted to the smaller filtration, one nevertheless needs the extra
assumption that X is a special supermartingale in the smaller filtration to
ensure that X remains a local martingale in the smaller filtration.

When X is not adapted to the smaller filtration F, the situation is more
complicated, as our case study for the inverse Bessel process will show.

The next theorem is our main result in this section:

Theorem 11. Let X be a local martingale for the filtration G, and let oX
denote the optional projection of X onto the subfiltration F. oX is a local
martingale for F if there exists a sequence of reducing stopping times (Tn)n≥1

for X in G which are also stopping times in F. Conversely, if X is positive
and oX is a local martingale for F, then a reducing sequence of stopping
times for oX in F is also a reducing sequence for X in G.

Proof. Since Mn
t = Xt∧Tn is a martingale for G, the optional projection of

Mn onto F is also a martingale for F . Since Tn is a stopping time in F, so
also is t∧Tn. Using Lemma 8, we have oXt∧Tn =o Mn

t , and therefore oXt∧Tn

is a martingale for F, for each n, and we have that oX is a local martingale
for F with reducing sequence (Tn).

For the converse, suppose oX is a positive local martingale for F . Let
(τn)n≥1 be a reducing sequence. Then (τn)n≥1 are also stopping times for the
filtration G, and if Yt =o Xt∧τn , then Y is a positive martingale, hence its
expectation is 1. But E(Xt∧τn) = E(oXt∧τn) = E(Yt) = E(X0) is constant,
and this coupled with the hypothesis that X is positive, gives that Xt∧τn
is a martingale for G, because a positive local martingale with constant
expectation is a true martingale.
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Corollary 2. Let X be a local martingale for the filtration G and let E ⊂ F
be a subfiltration of F ⊂ G. If both X and the optional projection of X
onto E are local martingales, then the projection of X onto F is also a local
martingale.

Recall the fairly standard notation that for a process X, ∆Xs = Xs −Xs−,
the jump of X at time s.

Theorem 12. Let X > 0 be a local martingale relative to (P,G). Let oX be
its optional projection onto the subfiltration F. Then oX is a supermartin-
gale. Assume that it is special, with canonical decomposition oXt = Mt−At,
that 〈M,M〉 exists, and that dAt � d〈M,M〉t with predictable density pro-
cess (cs). Assume that cs∆Ms > −1. Denote by Z the unique solution
of

Zt = 1 +
∫ t

0
Zs−csdMs.

Since cs∆Ms > −1 we know that Z is a strictly positive process. Assume
in addition that Z is in fact a martingale, and that the probability measure
Q, defined consistently by the density Zt on Gt for each t ≥ 0, admits an
extension to G. Then oX is a local martingale with respect to Q in the
smaller filtration F.

Proof. By the predictable version of the Meyer-Girsanov theorem (cf [27, p.
135]) we have that under Q the process

Mt −
∫ t

0

1
Zs−

d〈Z,M〉s = Mt −
∫ t

0

1
Zs−

Zs−csd〈M,M〉s

= Mt −
∫ t

0
csd〈M,M〉s

= Mt −At

is a local martingale in the filtration F.

Example 1. Suppose that, in the context of the preceding theorem, we have

|E(Xt −Xs|Gs)| ≤ K(t− s)

for any s < t. Then we also have

E(oXt −o Xs|Fs) = E(E(Xt|Ft)− E(Xs|Fs)|Fs)
= E(Xt −Xs|Fs)
= E(E(Xt −Xs|Gs)|Fs)
≤ K(t− s).
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It follows fairly easily that oX is special with a canonical decomposition
oXt = Mt − At, and that the paths t 7→ At are continuous a.s. Therefore
[oX,oX] = [M,M ], and it follows that 〈oX,oX〉 = 〈M,M〉. We can in
principle find A from oX itself via the Laplacian approach: define

Aht =
1
h

∫ t

0
(oXs − E(oXs+h|Fs)ds =

1
h

∫ t

0
(oXs − E(Xs+h|Fs)ds

and then we know that limh→0A
h
T = AT with convergence in L1, whenever

oX is in Class D. (See, e.g.,[27, p. 150].) Our Lipschitz hypothesis implies
that the paths of A are absolutely continuous a.s., as well. If we further
assume d〈oX,oX〉t � dt, then we can write

At =
∫ t

0
hsds and 〈oX,oX〉t =

∫ t

0
jsds

and then
cs =

dAs
d〈oX,oX〉s

=
hs
js

1{js 6=0}.

Therefore letting Z solve Zt = 1+
∫ t
0 Zs−csd(oXs+As) and assuming that Z

is in fact a positive martingale, we obtain for each finite horizon T an equiv-
alent risk neutral measure for (oX,F), in the sense of No Free Lunch with
Vanishing Risk; cf. Delbaen and Schachermayer [5]. This sort of approach
is useful in the modelling of credit risk (see, e.g., [3] and [13]).

One may ask what happens in the case of discrete time. This issue
is moot in the following sense: P.A. Meyer showed in 1972 ([22]) that all
discrete time local martingales are in fact martingales, up to the usual inte-
grability assumption. More precisely, he proved the following result:

Theorem 13. Let (Xn)n∈N be a process adapted to an underlying filtration
(Fn)n∈N such that X0 ∈ L1. Then the following are equivalent:

1. X is a local martingale;

2. For each n one has E(|Xn+1||Fn) <∞ a.s., and E(Xn+1|Fn) = Xn.

Supermartingales as measures on product space

In this section we show how the preceding results on optional projections
can be derived from the identification of quasi- and supermartingales as
measures on the product space

Ω̄ = Ω× (0,∞]
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endowed with the predictable σ-field; cf. [7], [8], and [23].

Let PG and PF denote the predictable σ-fields on Ω̄ which are associated
to the right-continuous filtrations G and F ⊂ G, respectively. In this section
we do not assume that the filtrations are completed, because we are going to
introduce new measures. The second component ζ(ω, t) := t will be viewed
as a lifetime.

Under some regularity conditions on G of topological type (see [8]), an
adapted right-continuous process X is a quasimartingale for G if and only
if there is a unique signed measure PX with finite total variation on the
predictable σ-field PG such that

PX(At × (t,∞]) = E(Xt;At) (4)

for any t ≥ 0 and At ∈ Gt. X is a non-negative supermartingale iff the
measure PX is non-negative, it is a martingale iff PX(ζ <∞) = 0, and it is
a potential iff PX(ζ = ∞) = 0. Moreover, a non-negative supermartingale
X is a local martingale if and only if there is an increasing sequence of
stopping times (Tn) in G which predicts the lifetime ζ. For X0 = 1 this
means that PX is a probability measure on PG such that

PX(Tn < ζ for any n, ζ = lim
n
Tn) = 1. (5)

Clearly, the restriction of PX to the σ-field PF ⊂ PG takes the form

PX(At × (t,∞]) = E(oXt;At) (6)

for any t ≥ 0 and At ∈ Ft, and so we have

PX |PF = P
oX .

This yields alternative proofs of Theorems 2, 3, and 4, since the properties
of being concentrated on ζ = ∞, of having finite total variation, and of
being positive are obviously preserved if the measure PX is restricted to the
smaller σ-field PF. Theorem 8 follows in a similar manner: If the lifetime
ζ is predicted by a sequence of stopping times (Tn) in the subfiltration F
then property ( 5) can be read as a property of the restriction of PX to
the smaller σ-field PF, i.e., as a property of P

oX , and hence as the local
martingale property of the optional projection oX.
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A case study: The inverse Bessel process

In this section we focus on the inverse Bessel (3) process, viewed as a func-
tional of three-dimensional Brownian motion, and we study its optional
projections onto the subfiltrations generated by one or two of the three
Brownian components. The inverse Bessel process is in fact one of the first
examples of a local martingale which appeared in the literature as soon as
the notion of a local martingale had been introduced.

Let (Bt)t≥0 = (B1
t , B

2
t , B

3
t )t≥0 denote a standard three-dimensional Brow-

nian motion starting at some point x0 6= 0, say at x0 = (1, 0, 0). Then
(‖ Bt ‖)t≥0 is a Bessel (3) process with initial value 1. It is well known that
the inverse Bessel process

Mt :=‖ Bt ‖−1, t ≥ 0,

is a local martingale which is localized by the stopping times

Tn = inf{t > 0| ‖ Bt ‖≤
1
n
}.

Note that M is not a martingale since (as can be seen as consequence of (8))

E(Mt) = 2Φ(
1√
t
)− 1 (7)

converges to 0 as t tends to ∞ a.s. and in L1; here and in the sequel
Φ denotes the distribution function of a N(0, 1) random variable. Thus
M is a potential, but the local martingale property shows that it is not
a potential of class (D). Much is known about the inverse Bessel process,
and one can consult (as one example among many) the recent article [26]
or the classic text [29]. See also the earlier references [21] and [17] where
the inverse Bessel process is used to illustrate the fact that a uniformly
integrable process is not necessarily of class (D).

One way of checking the local martingale property is to apply Itô’s
formula, first to U :=‖ B ‖ and then to M = U−1. This yields dU =
dW + U−1dt and

dM = −M2dW,

where dW := M(B, dB) defines a one-dimensional Wiener process, due to
Lévy’s characterization of the Wiener process as a continuous local martin-
gale with quadratic variation 〈W,W 〉 = t. Each stopped process MTn∧t,
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t ≥ 0, is a martingale since it is bounded by n, and the stopping times Tn
converge to ∞ since any point is polar for Brownian motion in R3. Thus
we have verified that M is indeed a local martingale. Alternatively, we
can see that the inverse Bessel process is a strict local martingale as a con-
sequence of a result of Mijatović and Urusov [25] or alternatively of Blei
and Engelbert [1]. Indeed it follows from their results that the solution of
dM = σ(M)dW is a strict local martingale if

∫∞
c xσ−2(x)dx <∞ for some

c > 0. Since in the case of the inverse Bessel process σ(x) = −x2, it meets
this criterion and hence is a (strict) local martingale.

Instead of applying stochastic calculus, we can also argue in terms of
probabilistic potential theory, as it was done in [23]. To this end, note that
the three-dimensional Green function h(x) =‖ x ‖−1 satisfies

∆h = −4πδ0

(in the distributional sense). In particular, h is harmonic on R3\{0}. Thus
the process M = h(B) obtained by observing the function h along the paths
of three-dimensional Brownian motion is a bounded martingale up to each
stopping time Tn, and so it is indeed a local martingale.

Remark 1. In view of equation (4), with X = M = h(B), the measure
PM associated to the local martingale M can be identified with Doob’s h-
path process P h, i.e.,

PM (At × (t,∞]) = E(h(Xt);At) = Eh(At ∩ {ζ > t})

for t ≥ 0 and At ∈ Gt. Under P h the life time ζ is finite a.s., since M
is a potential. More precisely, P h can be viewed as a conditioning of the
original Brownian motion B to go to the origin in finite time, driven by the
stochastic differential equation

dB = dBh −∇ log h(B)dt = dBh − B

||B||2
dt,

where Bh is a three-dimensional Brownian motion under P h.

We are now going to look at the optional projection N of the local mar-
tingale M onto the smaller filtrations F generated, respectively, by the two-
dimensional Brownian motion (B1, B2) and the one-dimensional Brownian
motion B1. Our aim is to check whether the supermartingale N inherits the
local martingale property or not. To this end, we compute in both cases the
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Doob-Meyer decomposition of N , and we also clarify the structure of the
corresponding measure PN on the predictable σ-field PF .

Note first that, in view of (7), the local martingale property is clearly lost
if we take the trivial filtration where the optional projection simply consists
in taking the expectations Nt = E(Mt). In this case, the measure PN is
simply the probability measure on the positive half-line with distribution
function F (t) = 1− E(Mt).

Let us now consider the case F = σ(B1) where the subfiltration F is
generated by the one-dimensional Brownian motion B1.

Theorem 14. The optional projection N of the inverse Bessel process M
onto the filtration F = σ(B1) is a supermartingale, but it is not a local
martingale. More precisely:

i) The process N is a supermartingale of the form Nt = u(B1
t , t), where

u(x, t) =

√
2π
t

exp(
x2

2t
)(1− Φ(

|x|√
t
)) (8)

for t > 0 and u(x, 0) = x−1. The function u is space-time superharmonic
on R× [0,∞) and satisfies

(
1
2
∂2

∂x2
+
∂

∂t
)u = −1

t
δ0 (9)

on R× (0,∞) (in the distributional sense).

ii) N is a potential of class (D) of the form

Nt = 1 +
∫ t

0
ux(B1

s , s)dB
1
s −

∫ t

0

1
s
dL0

s (10)

= E(
∫ ∞
t

1
s
dL0

s|Ft), (11)

where L0 denotes the local time of B1 at 0. In particular, N is a martingale
up to the time that B1 hits 0, but not a local martingale.

Proof. Since M is a nonnegative local martingale in the filtration G, it
is a fortiori a supermartingale. Therefore its projection onto the shrunken
filtration F is a nonnegative supermartingale by Theorem 3. Let us compute
its Doob-Meyer decomposition N = Y − A where Y is a local martingale
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and A is a predictable increasing process such that A0 = 0. To this end, we
observe that

Nt = E(Mt|Ft)

= E(2,3){
(
(B1

t )2 + (B2
t )2 + (B3

t )2
)− 1

2 }
= u(B1

t , t)

where E(2,3) denotes expectation with respect to the second and third coor-
dinates; the second line is justified by the independence of B1 with (B2, B3).
The function u is clearly given by

u(x, t) =
∫ ∞

0

(
x2 + tr2

)− 1
2 re−r

2/2dr.

Using the change of variables y2 = x2/t+ r2 we obtain its explicit form (8)
.

It is now straightforward to check that u is a solution of the PDE (9).
Applying a time-dependent version of the Itô-Tanaka formula (see, e.g., [9]),
we obtain equation (10). Thus N admits the Doob-Meyer decomposition
N = Y −A with

Yt = 1 +
∫ t

0
ux(B1

s , s)dB
1
s , At =

∫ t

0

1
s
dL0

s.

Note that A∞ is integrable because E(At) ≤ E(Yt) ≤ Y0 = 1. Since Mt

converges to 0 in L1 as t tends to ∞, the same is true for N , and this
implies

lim
t→∞

Yt = A∞ =
∫ ∞

0

1
s
dL0

s in L1.

In contrast to the local martingale M which is not of class (D), the process
N = u(B1, ·) remains bounded for t ≥ t0 in view of (8). This allows us to
conclude that the local martingale Y is in fact of class (D), and that it is
given by

Yt = E(
∫ ∞

0

1
s
dL0

s|Ft).

This implies the second formula in part ii), and so we have identified N as
the potential of class (D) generated by the increasing process A.

Remark 2. Note that the increasing process in the Doob-Meyer decompo-
sition of N has paths which are singular with respect to Lebesgue measure,
while the local martingale term has a quadratic variation process which is
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absolutely continuous. Thus from a Mathematical Finance perspective, the
inverse Bessel process M does not yield arbitrage, but its projection N onto
the smaller filtration F = σ(B1) does in fact yield arbitrage opportunities.
See for example [28, pp. 180-183] for a fuller explanation of why this affects
the absence or presence of arbitrage opportunities.

Remark 3. In view of ( 6) and ( 10) the measure PN is given by

PN (At × (t,∞]) = E(Nt;At) = E(
∫ ∞
t

1
s
dL0

s;At)

for any t ≥ 0 and At ∈ Ft. Thus PN has a natural extension

PN = P ⊗ 1
t
dL0

t

from the predictable σ-field PF to the product σ-field on Ω× (0,∞]. This de-
scription of PN admits the following interpretation: Observing only the first
coordinate of Doob’s conditional Brownian motion P h = PM introduced in
Remark 1, we see a one-dimensional Brownian motion with time-dependent
drift ∂ log u which is killed at the rate 1

t dL
0
t .

We have seen that the local martingale property is lost if we project the
inverse Bessel process M onto the subfiltration generated by only one of the
three Brownian components. The situation changes if we consider the larger
subfiltration F = σ(B1, B2) generated by two of the components: Since the
point (0, 0) is polar for two-dimensional Brownian motion, we do no longer
have a local time appearing in the Doob-Meyer decomposition.

Theorem 15. The optional projection N of the inverse Bessel process M
onto the filtration F = σ(B1, B2) is a again a local martingale. More pre-
cisely:

i) The process N is a supermartingale of the form

Nt = u(B1
t , B

2
t , t) (12)

with

u(x, y, t) =
1√
2πt

exp(
x2 + y2

4t
)K0(

x2 + y2

4t
), (13)

where K0 denotes the modified Bessel function of the second kind. The func-
tion u is space-time superharmonic on R2× [0,∞) and space-time harmonic
on (R2 − {(0, 0)})× (0,∞).
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ii) N is is a local martingale which is localized by the increasing sequence of
stopping times

Tn = inf{t > 0|(B1
t )2 + (B2

t )2 ≤ 1
n
} (14)

with Tn ↗∞ P -a.s.

Proof. It follows as in the preceding proof that N is given by (12) with

u(x, y, t) =
∫ ∞
−∞

(
x2 + y2 + tz2

)− 1
2

1√
2π
e−

z2

2 dz. (15)

This takes the explicit form described by (13). Since K0 is a solution of the
Bessel equation

K
′′
n(z)z2 +K

′
n(z)z +Kn(z)(z2 − n2) = 0,

for n = 0, it is easy to check the stated properties of u. Since u is space-
time harmonic outside of the origin, and since any point is polar for two-
dimensional Brownian motion, it follows that N is a local martingale which
is localized by the sequence in (Tn) in (14).

Alternatively, we can check the local martingale property directly by
applying Theorem 11, since the sequence (Tn) clearly localizes the original
local martingale M . This yields, without any explicit computation via (13),
space-time harmonicity of the function u in (15) outside of the origin.

Remark 4. The measure PN describes a two-dimensional Brownian motion
W = (B1, B2) conditioned to go to the origin in finite time, driven by the
stochastic differential equation

dW = dW u −∇ log u(W, t)dt,

where W u is a two-dimensional Brownian motion under PN .

We conclude our discussion of the Bessel (3) process with the following
example of filtration shrinkage which is due to T. Jeulin and M. Yor [16].

Example 2. If B is a standard one dimensional Brownian motion starting
at 0, with its natural filtration G, then for all t ≥ 0 we define St = sups≤tBs,
and Ut = 2St − Bt. J. Pitman’s theorem is that U is a Bessel (3) process.
If we define F to be the natural filtration of W = (Wt)t≥0, where W is the
Brownian motion given by:

Wt = Ut −
∫ t

0

1
Us
ds,
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then in the filtration G, W is a semimartingale with decomposition W =
V +A, where V = W −A is a martingale, and At = 2St −

∫ t
0 U
−1
s ds. That

is, we have the two semimartingale decompositions:

Ut = Vt + (2St −
∫ t

0

1
Us
ds) in the filtration G;

Ut = Wt +
∫ t

0

1
Us
ds in the filtration F.

Both W and V are Brownian motions in their respective filtrations. Note
that dSt ⊥ dt a.s.; that is the paths are singular. From the perspective of
Mathematical Finance, U admits arbitrage in the filtration G, but does not
admit arbitrage in the smaller filtration F.

Implications for Finance

It is instructive to give an example from economics as to how the issue
of filtration shrinkage might arise “naturally.” The idea of this example is
taken from [12]. We do not try to force this example into the inverse Bessel
format, since we give it only to yield the intuition involved. Imagine one
observes (in filtration F) a stock price of the form

dXt = σdBt + b(t,Xt)dt. (16)

where b is assumed to be bounded. Suppose a group of large investors
decides to buy or sell the stock whenever it crosses the level c, so as to keep
the price steady at c. This could happen for example if a company spins
off a subsidiary and supports its stock price at a given level c by buying a
fraction α of shares when it falls below the level c, and another fraction β of
investors, wishing to unload the spinoff, sells the stocks when it rises above
the level c. For simplicity, assume α = β.

Let {0 = t < t1 < · · · < tn = T} be a partition of the time interval
[0, T ], and suppose the stock is observed at these times. If Xti < c and
Xti+1 > c, then a sale of proportion α occurs with an assumed price impact
of α(Xti+1 − c) = α|Xti+1 − c|. If Xti > c and Xti+1 < c, then a purchase
of proportion α occurs with an assumed price impact of α(c − Xti+1) =
α|Xti+1−c|. The cumulative effect on the stock price X by such a repurchase
plan will be

n−1∑
i=1

α|Xti+1 − c|1{sign(Xti+1−c)6=sign(Xti−c)}.
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Let αLct denote the limit, assuming for the moment we know it exists:

αLct = lim
‖πn‖→0

α
∑
ti∈πn

|Xti+1 − c|1{sign(Xti+1−c)6=sign(Xti−c)}. (17)

The impact of this repurchase plan yields a “new” price process:

dYt = σdBt + b(t,Xt)dt+ αdLct . (18)

The next theorem gives us that the limit of (17) actually does exist:

Theorem 16. The process αLct exists as a limit in u.c.p (uniform conver-
gence on compact time sets, in probability). Moreover, t → Lct is singular
with respect to dt, a.s., and is the local time of X at the level c.

Proof. Since b is assumed bounded, by Girsanov’s theorem there exists P ∗

equivalent to P such that X is a P ∗ continuous local martingale; hence X
is Brownian motion by Lévy’s theorem. Let us take σ = 1, so that X is
standard Brownian motion. Then by [9, p. 160] we have the limit (17)
exists in ucp, and Lc is the local time of X at level c.

Therefore the observer naturally thinks there is an arbitrage opportunity
provided by this behavior of the group of large traders. But perhaps in
the larger filtration G, which the observer does not see, more is happening
that renders the perceived large trader behavior to be simply the actions of
traders who ultimately are price takers rather than effectively large traders
whose actions significantly affect the price. So the observer correctly sees
the local time using his limited vision in the F , but reality shows that in the
larger filtration G, the perceived arbitrage opportunity is in fact illusory.

Let us mention a second example. An approach to the modelling of
credit risk that is quite current is that of reduced form models. An attempt to
relate reduced form models as simply projections of structural models onto a
smaller filtration is outlined in [11], and carried out to some extent in [3] and
more generally in [13]. In this approach, it is implicit that the risk neutral
measure of the original underlying process is still used for the projected
process. This is not a problem since in the papers mentioned one is dealing
with martingales. But once the underlying is a strict local martingale, care
must be taken, since if the projected process is not a local martingale then
the measure is no longer a risk neutral measure (or “equivalent martingale
measure” as they are often called). There still may exist a risk neutral
measure, if one can use (for example) a procedure such as the one indicated
in Theorem 12. Theorem 15 provides an example. However this is not true in
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general, as is shown in Theorem 14. If one is dealing with positive processes,
as we are in our treatment of local martingales, then one need not consider
the seemingly more general situation of sigma martingales (see, e.g., [27]
for a definition and properties of sigma martingales), since a positive sigma
martingale is a local martingale.

The issue of martingales (which behave nicely in filtration shrinkage)
as opposed to local martingales (which we have seen here need not behave
nicely) is related to the existence of financial bubbles (see any of [4],[14],[15]
or [20]), where if the price process is a strict local martingale it can indicate
the presence of a bubble.
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