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1. Introduction

Financial economics has undoubtedly achieved some of its most striking
results in the theory of option pricing, starting with the publication of two
seminal papers by Black and Scholes (1973) and Merton (1973). Another
approach based on arbitrage methods was introduced independently by Ross;
for basic results along this line cf. Cox and Ross (1976a). A further important
development is due to Harrison and Kreps (1979): They analyzed the valuation
of contingent claims in terms of martingale theory and thus clarified the
mathematical structure of the problem. '

There is, however, what Hakansson (1979, p. 722) called The Catch 22 of
Option Pricing: “A security can be unambiguously valued by reference of the
other securities in a perfect market if and only if the security being valued is
redundant in that market.” Indeed all preference-independent valuation for-
mulas assume that the asset to be valued is attainable, i.c., that it can be
perfectly duplicated by a dynamically adjusted portfolio of the existing assets.
“But if this is the case, the option adds nothing new to the market and no
social welfare can arise — the option is perfectly redundant ... . So we find
ourselves in the awkward position of being able to derive unambiguous values
only for redundant assets and unable to value options which do have social
value.” {Hakansson (1979), p. 723)1.}

1 Of course, as Hakansson points out, one can still use arbxtrage arguments to put bounds on the
value of a non-redundant asset as done, e.g., in Harrison and Kreps (1979) and Fgle and
Trautmann (1981).
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In this paper, our purpose is to extend the martingale approach of Harrison
- and Kreps.(1979) to contingent claims which are non-redundant. We are less
concerned here with valuation formulas than with how to use the existing

assets for an optimal hedge against the claim. To this end we introduce a class

of admissible portfolio strategies which generate a given contingent claim at
some terminal time 7. Due to the underlying martingale assumptions, the
expected terminal cost does not depend on the specific choice of the strategy. It
is therefore natural to look for admissible strategies which minimize risk in a
sequential sense. We show in Section 3 that this problem has a unique solution
where the risk is reduced to what we call the intrinsic risk of the claim, This

risk-minimizing strategy is mean-self-financing, i.e., the corrésponding cost
process is a martingale. A claim is attainable if and only if its intrinsic risk is
zero. In that particular case, the risk-minimizing strategy becomes self-financ-
ing, i.e., the cost process is constant, and we obtain the usual ‘arbitrage value of
the claim. In Section 4 we study the dependence on the hedger’s subjective
beliefs: It is shown how the strategy changes under an absolutely continuous
change of the underlying martingale measure.

In Section 5 we illustrate our results by computing explicitly the intrinsic
risk and the risk-minimizing strategy for a call option where the underlying
stock price follows a two-sided jump process. Contrary to jump processes
already studied in the literature [see, e.g., Cox and Ross (1976b)], this model is
not complete, and a typical call is non-redundant.

It is a pleasure to thank M. Schweizer who worked out a large part of the .

first example in Section 5; cf. Schweizer (1984).

2. Basic definitions

Let (£, #, P*) be a probability space, and let (£,), ., r denote a right-
-continuous family of o-algebras contained in #; %, is interpreted as the
collection of events which are observable up to time ¢. A stochastic process
Z=(Z)g, <7 is given by a measurable function Z on 2 X [0,T]. Z is
called adapted if Z, is #-measurable for each 0 < ¢ < T; it is called predict-
able if it is measurable with respect to the ¢-algebra & on @ X [0, T] which is
generated by the adapted processes with left-continuous paths. We refer to
Metivier (1982) for further details.
The evolution of stock prices will be described by a stochastxc process
= (X,)o <, <7 Which is adapted and whose paths are rlght-contmuous with
lmnts X,_ from the left.? The process Y = (Y,)q ¢, <y Of bond prices is fixed to

2For simplicity we only consider the one-dimensional case. The extension to an n-dimensional
stock process X = (X',..., X") is straightforward if the components of X are mutually orthogo-
nal; see, e.g., Schweizer (1984) For difficulties which can arise otherwise, see Mﬁuer (1984).
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be ¥, = 1. 3 We assume that P* is a martingale measure in the sense of
Hamson and Kreps (1979); i.e., we assume

E*[X2] <0, ' )
and
X,=EBE*X|%], O0st=sT, ¥))]

where E*[-|.%,] denotes the conditional expectation under P* with respect to
the o-algebra %, This means that X is a square-integrable martingale under
Px3 Let {X) =(X)DocrsT be the corresponding Meyer process, ie., the
unique predictable process with (X ), =0 and right-continuous increasing
paths such that X2 — (X) is a martingale;’ cf. Metivier (1982). We denote by
P} the finite measure on (2 X [0, T'], &) given by

Py[4] - E[fo "L,(t, 0) d(X3,(0)],

and by L2(P}) the class of predictable processes Z which, viewed as #-mea-
surable functions on & X [0, T'}, are square-integrable with respect to P§. Two
such processes will be considered as equal if they coincide P#-almost surely.

A trading strategy will be of the form @ = (£, 1) where § = (§,)o., <y and
N = (1,)9<. <7 describe the successive amounts invested into the stock and
into the bond. Thus,

,VE&,X:*- 1, . ) (3)

is the ualue of the portfolio at time t. We need the following technical -
assumptions.

Deﬁm'tion L = (§, 1) is called a strategy if

(@ ¢isa predlctab]e process, and & € LY(P}),

(b) 7 is adapted,

© V=£EX+1 has right-continuous paths and satisfies V, € L*(P*), 0 < ¢
<T

3As shown by Harrison and Kreps (1979), there is no loss of generality in making this
assumption, since their method of standardizing the bond process to unity allows also stochastic
interest rates.

In this paper we leave aside problems of viability, i.e., we only consider martingale measures
and do not study the case where the underlying probability distribution is only assumed to admit
an equivalent martingale measure. For the relationship between viability, absence of arbitrage
opportunities, and the existence of an equivalent martingale measure, we refer to Harrison and
Kreps (1979), Harrison and Pliska (1981), and Miiller g 984).

SE.g., if X is the Brownian Motion with variance o then (X)), equals a?



208 ’ Hans Féllmer and Dieter Sondermann

-Condition (a) allows to calculate the accumulated gain obtained fromthe
stock price fluctuation up to time ¢ as the stochastic integral

j:gsts, 0<tsT. - ’ (4)

For fixed ¢, the gain has expectation E*[ [/¢, d X,] = 0 and variance

E[( [ ’esdx,)zl - E[ [ '£3d<X>s]- - )

Viewed as a stochastic process, (4) defines a square-integrable martingale with
right-continuous paths, The accumulated cost of the strategy up to time ¢ can
now be defined as

¢=v-[hdx. | e

V=_W)ogi<r and C=(C)y., 1 are adapted processes with nght-contmu-
ous paths; they are called the value process and the cost process.

Remark 1. Consider a simple strategy where stock tradmg only occurs at
finitely many times, 0 < 1< -+ <¢,< T, ie,

s;(w) =Laf)upnl). ()

- where a; is %, -measurable Equation (7) means that the amount £, is fixed just
before the portfoho is actually changed, in accordance with predictability.
Since.

J&ax, = Z (X, —X,) +e(X, - X;,),

fort e (t,, t;11); the cost process (6) is given by

C=n+oX, - LafX, -X) ®

Jj<i

for t € (4, ¢,,,]. Since n is only assumed to be adapted, nmot necessarily
predictable, the value of 7, can be fixed after observing the situation at time ¢.
In particular, 5 can be used to keep the value process. V on a certain desired
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level V'*. For the class of mean-self-financing admissible strategies introduced-
below, this level ¥'* will not depend on the specific choice of £. In that case we
can justify definition (6), which is intuitive for simple strategies, by a passage
to the limit. Indeed, for any predictable process ¢ € L2(P}) there is a
sequence of simple predictable processes £” of the form (7) which converges to
£ in L2(P}), and (5) together with a maximal mequalny for martingales

implies that

sup |G~ C|= sup

0T 01T

fs"dx—fo'gdxl’

converges to zero in L2(P*).

Définition 2. A strategy @ = (£, 1) is called mean-self-financing if the corre-
sponding cost process C = (C,)o <, . r iS 8 martingale. -

Remark 2. A strategy ¢ = (&, 'q) is called self-financing if the cost process has
constant paths, i.e., if .

C=C, P*ras, O0<t<T )
t 0 :

Any self-financing strategy is clearly mean-self-financing. For a self-financing
strategy, the value process is of the form :

V= C0+L'£des, 0<t<T, , (10)

hence a square-integrable martingale. Self-financing strategies are the key tool
in the analysis of option pricing in “complete” security markets; cf. Harrison

~and Kreps (1979), Harrison and Pliska (1981;1983), and Miiller (1984). But in

many situations security markets are incomplete in the sense that there may not

- be any self-financing strategy which allows to realize a pre-assigned terminal

value V- = H. This is the reason why we introduce the broader concept of a
mean-self-financing strategy. As stated- in the following lemma, the value
process of a mean-self-financing strategy is again a martingale. But in general
we cannot expect that this martmgale can be represented as a stochastic
integral with respect to X as in (10).

Lemma 1. A strategy is mean-self-financing if and only if its value process is a
square-integrable martingale.
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Proof. 'The properties of a strategy as defined in Definition 1 imply.that the
process of accumulated gains

/'.fsts, 0<1<T,
0

is a square-integrable martingale, and that V,, 0 <t < T, is square-integrable.
Thus Lemma 1 is clear from (6). O
3. The intrinsic risk of contingent claims

Let us fix a contingent claim H € #*(P*). For example, H could be a call
option of the form H = (Xy — C)*.

Definition 3. A strategy is called admtsstble (wuh respect to H) if its value
process has tenmnal value

Vp=H, P*as. : (11)
For any admissible strategy @ = (£, n), the terminal cost is given by

Cr=H - [§,dX,. o (12)

0 N

In particular, the expected value,

E*[Cr] = E*[H],

" does not depend on the specific choice of the strategy as long as it is

admissible. We are now going to analyse which admissible strategies have

minimal risk in a suitable sense. As a first step in that direction, let us
determine all admissible strategies which

minimize the variance E* [(CT - E*[H])Z] ; (13)
the second step will consist in replacing (13) by a sequential procedure.
In view of (13), let us write the claim H in the form
H=E*[H]+f$;"dXs+H*, . (14)
0

with £* € L2(P#) where H* € L}(P*) has expectations zero and is orthogo-
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nal to the space { [{ £, d X[ € LZ(P,’(" )} of stochastic integrals with respect to’
X; cf. Metivier (1982) for the existence and uniqueness of this representation.

Theorem 1. An admissible strategy o = (£, ) has rﬁinimal variance
B*[(Cr - E[H)Y] = E*[(&+)], (15)

if and only if & = £*,

Proof. For an admissible strategy ¢ = ($, 1) we have, by (14),

Cr=H-~ j £dX,
= E*[H] + [[(&r - &)dX, + H*.
Y ‘ ,
Since H* is orthogonal to the stochastic integral on the right side, we obtain
. 2
B*{(cr- e la] - e e - e)ax )| + mefcar]
= +{ [er - £ a0, | + B[y,

Thus, the minimum E*[(H*)?] is assumed if and only if £=£* in
L¥(PE). O :

So far we can draw no conclusion concerning the process 1 = (%,)o<, <7
except that it must make the strategy admissible, i.e.,

nr=H — £, X, ' (16)

Example 1. One natural idea is to use a self-financing strategy during the
interval [0, T'), and to make up the balance at the end, i.e., to put

n=E*[H]+ [erdX,~&X, 0sisT, (17)

in addition to (16) so that

C, = E*[H] for 0<t<T,
=E*[H]+ H* for t=T. (18)
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This strategy would indeed realize the minimal variance E*[(C, — E*[H])?]
= E*[(H*)*]in (15).

" We are now gomg to show that a sharper formulation of problem (13)
determines a unique admissible strategy @* = (£*, 7*) which has minimal risk
ina sequenual sense, and which will be different from the strategy consxdered
in Example 1.

Consider any strategy o =(§, n) Just before time ¢ < T we have accu-
mulated the cost C,.. The strategy tells us how to proceed at and beyond time
t. In particular, it fixes the present cost C, and determines the remaining cost

Cr=C.Letus measure the remaining risk by

Ry = E*[(C;- ¢)1%, . | (19)
- In view of (19), we might want to compare ¢ to any other strategy § which
coincides with ¢ at all times < 7 and which leads to the same terminal value

VT Let us call such a § an admissible continuation of ¢ at time 1.

, Deﬁmtton 4. A strategy ¢ is called rtsk-mzmm:zmg if @ at any time minimizes
the remammg nsk ie,forany0 <t < T, we have

R? < R¥,  P*as., o . (20)

for every admissible continuation § of ¢ at time .

"~ Remarks 3. (1) Any self-ﬁnancmg strategy <p is cleatly risk-minimizing since
RY=0.

(2) Suppose that 9= (¢, n) is a nsk-rmnmuzmg strategy which is also .

admissible; Then ¢ is in pamcular a solution of problem (13). In fact, (20) with
t= 0 implies that ¢ minimizes

E*[(¢r - 6] = B*{(Cr - E*[C,])] + (B*[C/] - G).

Thus, ¢ minimizes the variance of Cy and this implies £ = §* according to
Theorem 1. In addition we obtain the condition

= Gy - £8X, = E*[H] - £3X,.

The sequentlal version of this second fact will be prov1ded by Theorem 2
below. .

Lemma 2. An admissible risk-minimizing strategy is mean-self-financing.
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Proof “Consider a strategy ¢ = (£, 1) and a fixed time 0 < t, < T. Define
B, =m, t <ty and

A=+ [64X,-6X, 1<isT,

where ( C"',)(,Sv, < denotes a right-continuous version of the martingale
é=E*[C/% ], O0s<tsT

Then @ = (¢, %) is an admissible continuation. of ¢ at time tg, and its
remaining cost is given by

é.,"I' - éto = (CT ) + ( ~:,,)
This implies _ v
_ E*[(CT— zf] - *[ G) 19'7] +(¢,- ¢, )

Thus, ¢ is nsk-mmlmmng onlyif C, = C P*-a s. for any t, < T, ie, if g is
mean-self-financing. O

In order to formulate our final result, let us denote by V* = (V*) a
right-continuous version of the square-integrable martingale

V*=E*H|Z], 0s<t<T (21)

To the répresentat_ion (14) of the claim H corresponds the following sequential
representation of V'*;

V=V + [Erax, + Ny, (22)
R 0

where N* = E*[H*|#] is a square-integrable martingale with zero expecta-

tions which is orthogonal to X in the following sense,

Remark 4. Two squar'e-integrable mértingaleé M, and M, are called orthogo-
nal if their product M‘M2 is agam a martingale, and this is equlvalem to the
condition

(M, M,) = l(<Ml + Mz) — (M) — (My)) = 0. | (23) .

In view of (26) below the process R* = (R¥), defined as a rlght-commuous '
version of

R} = E*[(N7 - N2, ] = EX[(N*)7|F ] - (N*),, (24)
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- will be called the intrinsic risk process of the claim H. The expectation E*[R}]
coincides with the minimal vanance calculated in (15); let us call it the intrinsic
risk of the claim, o

Theorem 2. There exists a unique admtsszble strategy @* whxch is risk-minimiz-
mg, namely

= (§*,V* - £*X). (25)

For this strategy, the remaining risk at any tinie t < T is given by
R¥ =R*,  P*as, : : (26)

Proof. (1) Since the value process of the strategy (25) is given by the

martingale V'* in (21), the strategy is admissible. If ¢ is an admissible’

* continuation of ¢* at time ¢, then its cost process satisfies
Cr=G= [~ )X, + NF - N2 + V2 - ¥,

due to (22). The orthogonality of X and N * implies
Eel(cr- 6% ] = B+ [T - 6?0007,

+RE + (V- V), @7)

and in particulag_ (26). This shows that ¢* is risk-minimizing.
(2) Let § = (£, §) be any admissible strategy which is nsk-mmmuzmg This
» 1mphes § = £*, as pointed out in Remark 3. By Lemma 2, rp is mean-self-
financing, and so its value process Visa martmgale Since ¢ is admissible,
V' must coincide with the martingale V'* defined in (21), and this imiplies
n* = V* — £*X. Thus, a risk-minimizing admissible strategy is umquely de-
termmed by (25) u]

As a special case of Theorem 2 we obtain the following characterization of
attainable contingent claims [cf. Harrison and Kreps (1979)).

Corollary 1. - The following statements are equivalent:

(1) The risk-minimizing admissible strategy ¢* is self-financing.
(2) The intrinsic risk of the contingent claim H is zero.

(3) The contingent claim H is attainable, i.e.,

H=EB*[H]+ [grdX,, Pras. (28)
0
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Proof Pt is self-financing if and only if the remalmng risk at any time is
given by R?" = 0. By (26), this is equivalent to R* = 0,0 < ¢ < 7, and this
means that the intrinsic risk is zero. Remark 4 shows that R% = 0 is eqmvalent
to the condition N* =0, 0 < ¢ < T, in the representation (22), and this is
equivalent to (28). O

4. Changing the measure

Let us now see how the risk-minimizing strategy is affected by an absolutely
continuous change of the underlying martingale measure.

Let P be any martingale measure which is absolutely continuous with
respect to P*. Thus, the process X is again a square-integrable martingale
under P. Let us also assume that our contingent claim H € L?(P*) is again

'square-integrable under P. Then the representation (22) and Theorem 2,

applied to P instead of P¥, show that the risk-minimizing strategy under P is
given by ¢ = (§, V — {X), with

V.= E[HIZ, ] = Vo + [£,dX,+ N, | (29)

Let us now describe how § is related to £* In order to simplify the
exposition we add the technical assumption

£* e L3(Py). o - (30)

While X is again a martingale under P, the martingale property of (N*) in
(22) may be lost. In general, we have the Doob decomposition

N*=M=+ A, ’ . (31)
where M = (M,) is a martingale under P and 4 = (4,) is a predictable
process with 4, = 0 and with right-continuous paths of bounded variation; cf. -
Metivier (1982). Let us introduce the predictable processes £ and ¢4 defined
by

(M, Xy = [E¥d(X), and (M4, Xy = [ ’s;‘ & X),,
0 0

0<t<T,
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where M* denotes a right-continuous version of the martingale

M? =E[4,1% ], 0<t<T.

Theorem 3.  The risk-minimizing strategy under P is given by ¢ = (§,V — ¢X)
with ‘ '

and
V=V*+M!—4, O0<t<T. -(33)
Proof. Consider the representation (14) of the contingent claim, i.e.,
' T
H=E*[H]+ [grdX, + H*, (34)
o .
P*.a.s., hence P-as.. Since
" H*=Nf=M;+A4, Pas,
" (30) and (34) imply E[H] = E*[H] + E[ 4], hence
. T ) L
H=E[H]+ ['¢2dX, + My + A - B[ 4;]
, 0 (35)
~E[H]+ [[(¢* + "+ ¢%),dX, + Ny, Pas,
0 . ’
where we put'
=M, + M/ —fo'(sM+ ¢4),dX, - E[4,], 0st<T.
By the definition of £¥ and ¢4,

(R, Xy, = (M, Xy, + (M4, X, - [+ 64,400,
=0, 0<t<T,

i.e., N is orthogonal to X. Thus, (32) follows from (35), and N coincides with

E=E*+EM+ ¢, _ ‘ (%)
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the orthogonal martingale N introduced in (29). Moreover, (35) implies that v

Vi o+ Mf - A, =B*[H] + [£2dX, + M, + M}
0

= E[H] + fo'(e* +EM + £4),dX, + N,

O0<r<T,

is a right-continuous version of the martingale ‘
V,=E[H|#]), 0<:<T,
and this determines n=V-§¢X. O

Corollary 2. If both M and M* are orthogonal to X, then we have § = §*.

Proof. By Remark 4 we get (M, X) = (M4, X) =0, hence £ ={4 =0
Py-as.. O :

Remarks 5. (1) If X is a martingale with continuous paths, then (M, X) can
be evaluated pathwise as a quadratic variation and coincides with (N'*, Xy =0
P*-as., hence P-a.s. This implies §¥ = 0 Py-a.s., hence )

£=§* 4+ &4, (36)

(2) If P is a martingale measure in the stricter sense that it also preserves the

martingale property of N'*, then we have 4 = 0, hence

=6+ Y, - ' U
and '

Ve=V* _ A (38)
If X has continuous paths then we can conclude, due to step (1), that the
risk-minimizing strategy is completely preserved.

(3) An example in Section 5 will show that £ = £* may occur even if the
martingale property of N* is lost under P.

5. Two examples

We illustrate the preceding results by two examples where the process Xisa
two-sided jump process. In both cases, the stock process X will be defined in
terms of two independent Poisson processes N* and N~ with parameter
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A* >0 on some probability siaace (8, F, P*); (%)g<:<r Will denote the
- smallest right-continuous family of o-algebras whlch makes N * and N™
adapted :

Remark 6. The underlying stochastic model can be characterized as follows:
The paths of N* are nght-commuous and piecewise constant with jumps of

size 1, and under P* the two processes

MEf=N*r-X% 0<t<T, (39)

are square-integrable martingales with

(M%), =M, (M*, M~y =0. S (40) -

It is also-well-known that M* and M~ form a basis, i.e., any square-integrable
martingale with respect to P* and (%) is of the form :

M, = M, + fler amy + [ an;, | (41)
\vvherev.‘;*, ié the uniqﬁe predictable proces§ in LX(P* X dr) such that
(M, MY, = A fo s+ ds. ‘ (42)
Iﬁ §ur first example we .suppose that the stock process X is of the form -
X=x,+N*"- N‘¥xo+M+— M-, ' - (43)
: Thus, X is a square-integrable martingale with
(Xy,=2¥1, 0s<t<T, o (@)

whose paths are piecewise constant with jumps of size +1.
Now let H € #?(P*) be a contingent claim of the form

CH=h(X;). (45)
The Markov property of X implies that the value process is of the form

V*(0) = EX[H|F (@) = v*(X,(0), 1), (46)
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v*(x, 1) = gzh(xw)l’*[(zvr -N*) - (N; - N) = y]

[a(T - )]+ “
-1
= Th(x+y) § emva-nl
yezZ k,1=0 K
k=Imy
" Putting
A (x, 1) = v*(x £ 1,1) — v*(x,t), ' (48)
we obtain the following proposition. .
Proposition 1. The risk-minimizing strategy (25} is determined by
A* - A" , '
i = (X 0) » | (49)
and the intrinsic risk process is given by
* » «| [T+ -)? | | :
Ry =5 B¥| [{(4%+ 87X, x) dslE|; (50)

note that R¥ can be calculated epriéitly in the manner of (47).

Proof. (1) The process Z = M* + M~ is a square-integrable martingale with

(Z), = 2N\*, and Z is orthogonal to X since

X -Z=(M*"-M)YM+M)=(M*)- (M)
is a martingale due to (39). In the representation (41), the basis (M*, M) can
thus be replaced by the basis (X, Z). In particular, we can represent the
process V;* = E*[H|#,],0 < ¢t < T, in the form .

Ve = v+ [erax, + [traz, (s1)
_ 0 o
where £* and {* are determined by the equations

(v*, X>,=2A* j:E;"ds,_ - : (52)
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~and
(V> Z), =28 [trds. : (53)
o ,
By (22) and (24), the risk process is given by

R =,Ef[f’T(§s*)2 K27, ]
| (s4)

=2\ E*[ [y dsi#, }

(2) In order to calculate £* and ¢* via (52) and (53), we mtroduce the
quadratic variation processes

vy xl,= ¥ (av¥), (AX),,

Ogs<st

and

[v*z],= ¥ (4av*),(a2),,

Ossst
where we put

(AX) (@) = X(0) - X,_(0), etc.

The process (V'*, X) can be characterized as the unique predictable process
such that [V* X] - (V* X) is a martingale; cf. Metivier (1982). But since

e, X1, = T (A*(X,,s)8,N" = A~(X,_, s)A,N")
Oss<t - ,
-t t
=fA+(X_,s)dM; —jA-(X-_,s)dM;
0 0 .
. 3 ’
+x«f(4+ - A°)(X,_,s)ds,
A
we see that '

(V*, Xy, = x*fo'(r - A7)(X,_,s)ds,
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and this together with (52) implies (49). Since

v*,zl,= ¥ (A*(X,.,s)4,N*+A~(X,_,s)A,N"),

0<sst
we obtain in the same way .

& —N—“f-(x, 1), | ' (55)

~and this implies (50) due to (54). O

Remarks 7. (1) To replace P* by an equivalent martingale measure P means
that we replace A* by any A > 0. Under P, the process Z = M* + M~ is now
of the form Z = N + B with

N,= N} +N- —2\t, B,=2(A— M)

.The martingale M is orthogonal to X and this implies £ = 0 since M, =

f{t*dN, is also orthogonal to X. Thus, (32) reduces to
5 = &* + $A ’ ) (56)
just as in | the continuous case (36) with 4, = 2(A — A*) [/ ¢{*ds.

(2) By (56), the risk-minimizing strategy remains unchanged if and only if
the martingale

-2\ - A*)E[forf,*dslfz ]

is orthogonal to X. Consider, for example, the special case H = X2, Since
E*[X}Z, | = X7+ 20(T - 1),

we obtain A¥(x,¢) = +2x + 1, hence {*(w) = 1 by (55). In particular, M%
is orthogonal to X, and the risk-minimizing strategy,

() =2X,_(v), : (57)

does not depend on the specific choice of A > 0. The value process V, = X? +
2A(T — t) does depend on A, and so does the intrinsic risk process R, =
N(T - 1)
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In our second example we assume that the security process X is governed by
the stochastic differential equation

~ dX=8X_(dN*-dN"), o ’ - (58)
' with some § > 0. For a given initial value x, > 0, (58) implies
X,=x,(1+8)"1-8)%, o0s<t<T (59)

By (58), X is a square-integrable martingale with

(XY, =282>\f'X,2_ds, 0<t<T.
0

”The value process V'* associated to the contingént claim (45) is again of the
form (46), now with the function

”’;("”)’% ¥ A(x(1+8)4(1 - s)’)'e*ZA'<%4r>M

kil=0 ki
' (60)
Defining Ai és beféré in (48), we obtain the follbwing proposition.
Proposition 2. The risk-minimizing strategy (24) is determined by
. A=
CLT vt U )
and the iritrin;ic risk process ;'s given by
= e[ [Ty e | @
wherev
C (A 1 A-
&= (é +:sz),(_x—’ 2, | (63)
and

Z,=(1+8)" N g-2sr, : (64)
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Proof. We have dX 8X (dM *— dM"). The process Z defined in (64) is a
solution of

dZ = 8Z_(dM* + dM"~),

and this implies that X and Z are two orthogonal martmgales which may be
used as a basis. Proceeding exactly as in the proof of Proposition 1, we obtain

(V*, X, =»/;’sx,,(4+ —47)(X,_, 5)ds,
and

(V*, 2y, = fo'szs_(A+ +‘A"‘)(X _,5)ds,

hence (61) and (63). O
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