
On Kiyosi Itô's Work and its Impact

by Hans Föllmer (Berlin)

About a week before the start of the International Congress, an anonymous participant in

a weblog discussion of potential candidates for the Fields medals voiced his concern that

there might be a bias against applied mathematics and went on to write: �I am hoping

that the Gauss prize will correct this obvious problem and they will pick someone really

wonderful like Kiyosi Itô of Itô Calculus fame�. Indeed this has happened: The

Gauss Prize 2006 for Applications of Mathematics

has been awarded to Kiyosi Itô �for laying the foundations of the theory of Stochastic

Di�erential Equations and Stochastic Analysis�. However, in his message to the Congress

Kiyosi Itô says that he considers himself a pure mathematician, and while he was delighted

to receive this honor, he was also surprised to be awarded a prize for applications of

mathematics. So why is the Gauss prize so appropriate in his case, and why was this

anonymous discussant who obviously cares about applied mathematics so enthusiastic ?

The statutes of the Gauss prize say that it is �to be awarded for

• outstanding mathematical contributions that have found signi�cant applications out-

side of mathematics, or

• achievements that made the application of mathematical methods to areas outside of

mathematics possible in an innovative way�.

My aim is to show why, on both accounts, Kiyosi Itô is such a natural choice.

Kiyosi Itô was born in 1915. The following photo was taken in 1942 when he was working

in the Statistical Bureau of the Japanese Government:

At this time he had just achieved a major breakthrough in the theory of Markov processes.

The results �rst appeared in 1942 in a mimeographed paper �Di�erential equations de-

termining a Markov process� written in Japanese (Zenkoku Sizyo Sugaku Danwakai-si).
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English versions and further extensions of these initial results were published between 1944

and 1951 in Japan; see [24]. These papers laid the foundations of the �eld which later

became known as Stochastic Analysis. A systematic account appeared in the Memoirs

of the American Mathematical Society in 1951 under the title �On stochastic di�erential

equations� [23], thanks to J.L. Doob who immediately recognized the importance of Itô's

work.

What was the breakthrough all about ? A Markov process is usually described in terms

of the transition probabilities Pt(x, A) which specify, for each state x and any time t ≥ 0,

the probability of �nding the process at time t in some subset A of the state space, given

that x is the initial state at time 0. These transition probabilities should satisfy the

Chapman-Kolmogorov equations

Pt+s(x, A) =

∫
Pt(x, dy)Ps(y, A).

For the purpose of this exposition we limit the discussion to the special case of a di�usion

process with state space Rd. A fundamental extension theorem of Kolmogorov guarantees,

for each initial state x, the existence of a probability measure Px on the space of continuous

paths

Ω = C([0,∞), Rd)

such that the conditional probabilities governing future positions are given by the transi-

tion probabilities, i.e.,

Px[Xt+s ∈ A|Ft] = Ps(Xt, A).

Here we use the notation Xt(ω) = ω(t) for ω ∈ Ω, and Ft denotes the σ-�eld generated

by the path behavior up to time t. In analytical terms, the in�nitesimal structure of the

Markov process is described by the in�nitesimal generator

L := lim
t↓0

Pt − I

t
. (1)

In the di�usion case, this operator takes the form

L =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

+
d∑

i=1

bi(x)
∂

∂xi

(2)

with a state-dependent di�usion matrix a = (aij) and a state-dependent drift vector

b = (bi), and for any smooth function f the function u de�ned by u(x, t) := Ptf(x)

satis�es Kolmogorov's backward equation

∂tu = Lu on Rd × (0,∞). (3)

Itô's aim was to reach a deeper understanding of the dynamics by describing the in�nite-

simal structure of the process in probabilistic terms. His basic idea was to

i) identify the �tangents� of the process, and to
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ii) (re-) construct the process pathwise from its tangents.

At the level of stochastic processes, the role of �straight lines� is taken by processes

whose increments are independent and identically distributed over time intervals of the

same length. Such processes are named in honor of Paul Lévy. Kiyosi Itô had already

investigated in depth the pathwise behavior of Lévy processes by proving what is now

known as the Lévy-Itô decomposition [21]. In the continuous case and in dimension

d = 1, the prototype of such a Lévy process is a Brownian motion with constant drift,

whose increments have a Gaussian distribution with mean and variance proportional to the

length of the time interval. This process had been introduced in 1900 by Louis Bachelier

as a model for the price �uctuation on the Paris stock market, �ve years before Albert

Einstein used the same model in connection with the heat equation. A standard Brownian

motion, which starts in 0 and whose increments have zero mean and variance equal to the

length of the time interval, is also named in honor of Norbert Wiener who in 1923 gave

the �rst rigorous construction, and the corresponding measure on the space of continuous

paths is usually called Wiener measure. An explicit construction of a Wiener process with

time interval [0, 1] can be obtained as follows: Take a sequence of independent Gaussian

random variables Y1, Y2, . . . with mean 0 and variance 1, de�ned on some probability space

(Ω,F , P ), and some orthonormal basis (ϕn)n=1,2,... in L2[0, 1]. Then the random series

Wt(ω) =
∞∑

n=1

Yn(ω)

∫ t

0

ϕn(s) ds

is uniformly convergent and thus de�nes a continuous curve, P -almost surely. Wiener had

studied the special case of a trigonometric basis, and Lévy had simpli�ed the computations

by using the Haar functions. But the de�nitive proof that the construction works in full

generality was given by Itô and Nisio [32] in 1968.

In the case of a di�usion it is therefore natural to say that a �tangent� of the Markov

process in a state x should be an a�ne function of the Wiener process with coe�cients

depending on that state. Thus Itô was led to describe the in�nitesimal behavior of the

di�usion by a �stochastic di�erential equation� of the form

dXt = σ(Xt) dWt + b(Xt) dt. (4)

In d dimensions, the Wiener process is of the form W = (W 1, · · · , W d) with d independent

standard Brownian motions, and σ(x) is a matrix such that σ(x)σT (x) = a(x). The

second part of the program now consisted in solving the stochastic di�erential equation,

i.e., constructing the trajectories of the Markov process in the form

Xt(ω) = x +

∫ t

0

σ(Xs(ω)) dWs(ω) +

∫ t

0

b(Xs(ω)) ds. (5)

At this point a major di�culty arose. Wiener et al. had shown that the typical path of a

Wiener process is continuous but nowhere di�erentiable. In particular, a Brownian path is

not of bounded variation and thus cannot be used as an integrator in the Lebesgue-Stieltjes
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sense. In order to make sense out of equation (5) it was thus necessary to introduce what

is now known as the theory of �stochastic integration�.

In their introduction to the Selected Papers [24] of Kiyosi Itô, D. Stroock and S.R.S.

Varadhan write: �Everyone who is likely to pick up this book has at least heard that there

is a subject called the theory of stochastic integration and that K. Itô is the Lebesgue of

this branch of integration theory (Paley and Wiener were its Riemann)�. Wiener and

Paley had in fact made a �rst step, using integration by parts to de�ne the integral∫ t

0

ξs dWs := ξtWt −
∫ t

0

Ws dξs

for deterministic integrands of bounded variation, and then using isometry to pass to

deterministic integrands in L2[0, t]. But this �Wiener integral� is no help for the problem

at hand, since the integrand ξt = σ(Xt) is neither deterministic nor of bounded variation.

In a decisive step, Itô succeeded in giving a construction of much wider scope. Roughly

speaking, he showed that the stochastic integral∫ t

0

ξs dWs ≈
∑

i

ξti(Wti+1
−Wti) (6)

can be de�ned as a limit of non-anticipating Riemann sums for a wide class of stochastic

integrands ξ = (ξt). These sums are non-anticipating in two ways. First, the integrand is

evaluated at the beginning of each time interval. Secondly, the values ξt only depend on

the past observations of the Brownian path up to time t and not on its future behavior.

To carry out the construction, Kiyosi Itô used the isometry

E[(

∫ t

0

ξs dWs)
2] = E[

∫ t

0

ξ2
s ds].

This is clearly satis�ed for simple non-anticipating integrands which are piecewise constant

along a �xed partition of the time axis. The appropriate class of general integrands and

the corresponding stochastic integrals are obtained by taking L2-limits on both sides. In

particular the Itô integral has zero expectation, since this property obviously holds for

the non-anticipating Riemann sums in (6).

Once Kiyosi Itô had introduced the stochastic integral in this way, it was clear how to

de�ne a solution of the stochastic di�erential equation in rigorous terms. In order to prove

the existence of the solution, Itô used a stochastic version of the method of successive

approximation, having �rst clari�ed the dynamic properties of stochastic integrals viewed

as stochastic processes with time parameter t.

In order to complete his program, Itô had to verify that his solution of the stochastic

di�erential equation indeed yields a pathwise construction of the given Markov process.

To do so, Itô invented a new calculus for smooth functions observed along the highly non-

smooth paths of a di�usion. In particular he proved what is now known as Itô's formula.

In fact there are nowadays many practioners who may not know or may not care about

Lebesgue and Riemann, but who do know and do care about Itô's formula.
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In 1987 Kiyosi Itô received the Wolf Prize in Mathematics. The laudatio states that �he

has given us a full understanding of the in�nitesimal development of Markov sample paths.

This may be viewed as Newton's law in the stochastic realm, providing a direct translation

between the governing partial di�erential equation and the underlying probabilistic mecha-

nism. Its main ingredient is the di�erential and integral calculus of functions of Brownian

motion. The resulting theory is a cornerstone of modern probability, both pure and ap-

plied�. The reference to Newton stresses the fundamental character of Itô's contribution

to the theory of Markov processes. Let us also mention Leibniz in order to emphasize the

fundamental importance of Itô's work from another point of view. In fact Itô's approach

can be seen as a natural extension of Leibniz's algorithmic formulation of the di�eren-

tial calculus. In a manuscript written in 1675 Leibniz argues that the whole di�erential

calculus can be developed out of the basic product rule

d(XY ) = XdY + Y dX, (7)

and he writes: �Quod theorema sane memorabile omnibus curvis commune est�. In parti-

cular, this implies the rule dX2 = 2XdX and, more generally,

df(X) = f ′(X)dX (8)

for a smooth function f observed along the curve X. Since the 19th century we know, of

course, that these rules are not �common to all (continuous) curves�, since a continuous

curve does not have to be di�erentiable. But it was Kiyosi Itô who discovered how these

rules can be modi�ed in such a way that they generate a highly e�cient calculus for the

non-di�erentiable trajectories of a di�usion process. In Itô's calculus, the classical rule

dX2 = 2XdX is replaced by

dX2 = 2XdX + d〈X〉,
where

〈X〉t = lim
n

∑
ti∈Dn
ti<t

(Xti+1
−Xti)

2 (9)

denotes the quadratic variation (along dyadic partitions) of the path up to time t. Lévy

had shown that a typical path of the Wiener process has quadratic variation 〈W 〉t = t.

Itô proved that the solution of the stochastic di�erential equation (4) for d = 1 admits a

quadratic variation of the form

〈X〉t =

∫ t

0

σ2(Xs) ds. (10)

He then went on to show that the behavior of a function f ∈ C2 observed along the paths

of the solution is described by the rule

df(X) = f ′(X)dX +
1

2
f ′′(X) d〈X〉, (11)

which is now known as Itô's formula. Note that a continuous curve of bounded variation

has quadratic variation 0, and so Itô's formula may indeed be viewed as an extension of

the classical di�erentiation rule (8).
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More generally, the classical product rule (7) becomes a special case of Itô's product rule

d(XY ) = XdY + Y dX + d〈X, Y 〉,

where 〈X, Y 〉 denotes the quadratic covariation of X and Y , de�ned in analogy to (9) or,

equivalently, by polarization:

〈X, Y 〉 =
1

2
(〈X + Y 〉 − 〈X〉 − 〈Y 〉).

For a smooth function f on Rd × [0,∞) and a continuous curve X = (X1, · · · , Xd) such

that the quadratic covariations 〈X i, Xj〉 exist, the d-dimensional version of Itô's formula

takes the form

df(X, t) = ∇xf(X, t) dX + ft(X, t) dt +
1

2

d∑
i,j=1

fxixj
(X, t) d〈X i, Xj〉. (12)

Let us now come back to the original task of identifying the solution of the stochastic

di�erential equation (4) as a pathwise construction of the original Markov process. In a

�rst step, Itô showed that the solution is indeed a Markov process. Moreover he proved

that the solution has quadratic covariations of the form

〈X i, Xj〉t =

∫ t

0

∑
k

σi,k(Xs)σj,k(Xs) ds.

Thus Itô's formula for a smooth function observed along the paths of the solution reduces

to

df(X, t) = ∇xf(X, t)σ(X) dW + (L+
∂

∂t
)f(X, t) dt, (13)

where L is given by (2). In order to show that L is indeed the in�nitesimal generator of

the Markovian solution process, it is now enough to take a smooth function on Rd and to

use Itô's formula in order to write

Ex[f(Xt)− f(X0)] = Ex[

∫ t

0

∇xf(Xs)σ(Xs) dWs +

∫ t

0

Lf(Xs) ds].

Recalling that the Itô integral appearing on the right-hand side has zero expectation,

dividing by t and passing to the limit, we see that the in�nitesimal generator associated

to the transition probabilities of the Markovian solution process as in (1) coincides with

the partial di�erential operator L de�ned by (2). With a similar application of Itô's

formula, Kiyosi Itô also showed that the solution of the stochastic di�erential equation

satis�es Kolmogorov's backward equation (3).

This concludes our sketch of Itô's construction of Markov processes as solutions of a

corresponding stochastic di�erential equation. Let us emphasize, however, that we have

outlined the argument only in the special case of a time-homogeneous di�usion process.

In fact, Kiyosi Itô himself succeeded immediately in solving the problem in full generality,
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including time-inhomogeneous Markov processes with jumps and making full use of his

previous analysis of general Lévy processes. For a comprehensive view of the general

picture we refer to D. Stroock's book Markov Processes from K. Itô's Perspective [46]

and, of course, to Kiyosi Itô's original publications [24].

At this point let us make a brief digression to mention a parallel approach to the construc-

tion of di�usion processes which was discovered by Wolfgang Doeblin. Born in Berlin in

1915, son of the prominent Jewish writer Alfred Döblin who took his family into exile

in 1933, he studied mathematics in Paris and published results on Markov chains which

became famous in the �fties. It was much less known, however, that he had also worked

on the probabilistic foundation of Kolmogorov's equation. In February 1940, while serving

in the French army and shortly before he took his life rather than surrender himself to the

German troops, Wolfgang Doeblin sent a manuscript to the Academy of Sciences in Paris

as a pli cacheté. This sealed envelope was �nally opened in May 2000. The manuscript

contains a representation of the paths of the di�usion process where the stochastic integral

on the right hand side of equation (5) is replaced by a time change of Brownian motion.

While Doeblin's approach does not involve the theory of stochastic integration which was

developed by Kiyosi Itô and which is crucial for the applications described below, it does

provide an alternative solution to the pathwise construction problem, and it anticipates

important developments in martingale theory related to the idea of a random time change;

see Bru and Yor [4] for a detailed account of the human and the scienti�c aspects of this

startling discovery.

Over the last 50 years the impact of Itô's breakthrough has been immense, both within

Mathematics and over a wide range of applications in other areas. Within Mathematics,

this process took some time to gain momentum, at least in the West. On receiving Itô's

manuscript On stochastic di�erential equations, J.L. Doob immediately recognized its

importance and made sure that it was published in the Memoirs of the AMS in 1951.

Moreover, in his book on Stochastic processes [9] which appeared in 1953, Doob devoted

a whole chapter to Itô's construction of stochastic integrals and showed that it carries

over without any major change from Brownian motion to general martingales. But when

Kiyosi Itô came to Princeton in 1954, at that time a stronghold of probability theory with

William Feller as the central �gure, his new approach to di�usion theory did not attract

much attention. Feller was mainly interested in the general structure of one-dimensional

di�usions with local generator

L =
d

dm

d

ds
,

motivated by his intuition that a �one-dimensional di�usion traveler makes a trip in accor-

dance with the road map indicated by the scale function s and with the speed indicated by

the measure m�; see [30]. Together with Henry McKean, at that time a graduate student

of Feller, Kiyosi Itô started to work on a probabilistic construction of these general di�u-

sions in terms of Lévy's local time. This program was carried out in complete generality

in their joint book Di�usion Processes and Their Sample Paths [31], a major landmark in

the development of probability theory in the sixties. At that time I was a graduate student
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at the University of Erlangen, and when a group of us organized an informal seminar on

the book of Itô and McKean we found it very hard to read. But then we were delighted to

discover that Itô's own Lectures on Stochastic Processes [25] given at the Tata Institute

were much more accessible; see also [26] and [27]. This impression was fully con�rmed

when Professor Itô came to Erlangen in the summer of 1968: We thoroughly enjoyed the

stimulating style of his lectures as illustrated by the following photo (even though it was

taken ten years later at Cornell University), and also his gentle and encouraging way of

talking to the graduate students.

Ironically, however, neither stochastic integrals nor stochastic di�erential equations were

mentioned anywhere in the book, in the Tata lecture notes, or in his talks in Erlangen.

The situation began to change in the sixties, �rst in the East and then in the West.

G. Maruyama [40] and I.V. Girsanov [18] used stochastic integrals in order to describe

the transformation of Wiener measure induced by an additional drift. First systematic

expositions of stochastic integration and of stochastic di�erential equations appeared in

E.B. Dynkin's monograph [10] on Markov processes and, following earlier work of I.I.

Gihman [16], [17] where some results of Itô had been found independently, in Gihman and

Skorohod [19]. Kunita and Watanabe [34] clari�ed the geometry of spaces of martingales

in terms of stochastic integrals. In the West, H.P. McKean published his book Stochastic

Integrals [41] (dedicated to K. Itô) in 1969, and P.A. Meyer, C. Dellacherie, C. Doléans-

Dade, J. Jacod and M. Yor started their systematic development of stochastic integration

theory in the general framework of semimartingales; see, e.g. [8]. As a result, Stochastic

Analysis emerged as one of the dominating themes of Probability Theory in the seventies.

At the same time it began to interact increasingly with other mathematical �elds. For

example, J. Eells, K.D. Elworthy, P. Malliavin and others explored the idea of stochastic

parallel transport presented by Kiyosi Itô at the ICM in Stockholm [28] and began to shape

the new �eld of stochastic di�erential geometry; see, e.g., [12] and [13]. Connections to

statistics, in particular to estimation and �ltering problems for stochastic processes, were

developed by R.S. Liptser and A.N. Shiryaev [35].

In�nite-dimensional extensions of stochastic analysis began to unfold in the eighties.
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Measure-valued di�usions and �superprocesses� arising as scaling limits of large systems

of branching particles became an important area of research where the techniques of Itô

calculus were crucial; see, e.g., [6], and [14]. Stochastic di�erential equations were studied

in various in�nite-dimensional settings, see, e.g., [1] and [5]. With his lectures Founda-

tions of Stochastic Di�erential Equations in In�nite Dimensional Spaces [29], given at

ETH Zurich and at Lousiana State University, Kiyosi Itô himself made signi�cant con-

tributions to this development. In fact, in his foreword to [24] Kiyosi Itô says that �it

became my habit to observe even �nite-dimensional facts from the in�nite-dimensional

viewpoint�. Paul Malliavin developed the stochastic analysis of an in�nite-dimensional

Ornstein-Uhlenbeck process and showed that this approach provides powerful new tools

in order to obtain regularity results for the distributions of functionals of the solutions of

stochastic di�erential equations [37]. His ideas led to what is now known as the Malliavin

calculus, a highly sophisticated methodology with a growing range of applications which

emerged in the eighties and nineties as one of the most important advances of stochastic

analysis; see, e.g., [38] and [42].

While the impact of Itô's ideas within mathematics took some time to become really felt,

their importance was recognized early on in several areas outside of mathematics. I will

brie�y mention some of them in anecdotical form before I describe one case study in more

detail, namely the application of Itô's calculus in Finance. Already in the sixties engi-

neers discovered that Itô's calculus provides the right concepts and tools for analyzing the

stability of dynamical systems perturbed by noise and to deal with problems of �ltering

and control. When I was an instructor at MIT in 1969/70, stochastic analysis did not

appear in any course o�ered in the Department of Mathematics. But I counted 4 courses

in Electrical Engineering and 2 in Aeronautics and Astronautics in which stochastic di�er-

ential equations played a role. The �rst systematic exposition in Germany was the book

Stochastische Di�erentialgleichungen [2] by Ludwig Arnold, with the motion of satellites

as a prime example. It was based on seminars and lectures at the Technical University

Stuttgart which he was urged to give by his colleagues in Engineering. In the seventies

the relevance of Itô's work was also recognized in physics and in particular in quantum

�eld theory. When I came to ETH Zurich in 1977, Barry Simon gave a series of lectures

for Swiss physicists on path integral techniques which included the construction of Itô's

integral for Brownian motion, an introduction to stochastic calculus, and applications to

Schrödinger operators with magnetic �elds; see chapter V in [45]. When Kiyosi Itô was

awarded a honorary degree by ETH Zurich in 1987, this was in fact due to a joint initia-

tive of mathematicians and physicists. In another important development, the methods

of Itô's calculus were crucial in analyzing scaling limits of models in population genetics

in terms of measure-valued di�usions; see, e.g., [44] and the chapter on genetic models in

[15], and [14].

I will now describe the application of Itô's calculus in Finance which began around 1970

and which has transformed the �eld in a spectacular manner, in parallel with the explosive

growth of markets for �nancial derivatives. Consider the price �uctuation of some liquid

�nancial asset, modeled as a stochastic process S = (St)0≤t≤T on some probability space
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(Ω,F , P ) with �ltration (Ft)0≤t≤T . Usually S is assumed to be the solution of some

stochastic di�erential equation (4), and then the volatility of the price �uctuation as

measured by the quadratic variation process 〈X〉 is governed by the state-dependent

di�usion coe�cent σ(x) as described in equation (10). The best-known case is geometric

Brownian motion, where the coe�cients are of the form σ(x) = σx and b(x) = bx. This

is known as the Black-Scholes model, and we will return to this special case below. In

general, the choice of a speci�c model involves statistical and econometric considerations.

But it also has theoretical aspects which are related to the idea of market e�ciency.

In its strong form, market e�ciency requires that at each time t the available information

and the market's expectations are immediately �priced in�. Assuming a constant interest

rate r, this means that the discounted price process X = (Xt)0≤t≤T de�ned by Xt =

St exp(−rt) satis�es the condition

E[Xt+s|Ft] = Xt.

In other words, the discounted price process is assumed to be a martingale under the given

probability measure P , and in this case P is called a martingale measure with respect to

the given price process. In this strong form market e�ciency has a drastic consequence:

There is no way to generate a systematic gain by using a dynamic trading strategy. This

follows from Itô's theory of the stochastic integral, applied to a general martingale instead

of Brownian motion. Indeed, a trading strategy speci�es the amount ξt of the underlying

asset to be held at any time t. It is then natural to say that the resulting net gain at the

�nal time T is given by Itô's stochastic integral

VT =

∫ T

0

ξt dXt ≈
∑

i

ξti(Xti+1
−Xti).

Note in fact that the non-anticipating construction of the Itô integral matches exactly the

economic condition that each investment decision is based on the available information

and is made before the future price increment is known. But if X is a martingale under

the given probability measure P , as it is required by market e�ciency in its strong form,

then the stochastic integral inherits this property. Thus the expectation of the net gain

under P is indeed given by

E[VT ] = 0.

There is a much more �exible notion of market e�ciency, also known as the �absence of

arbitrage opportunities�. Here the existence of a trading strategy with positive expected

net gain is no longer excluded. But it is assumed that there is no such pro�t opportunity

without some downside risk, i.e.,

E[VT ] > 0 =⇒ P [VT < 0] 6= 0.

As shown by Harrison and Kreps [20], and then in much greater generality by Delbaen and

Schachermayer [7], this relaxed notion of market e�ciency is equivalent to the condition
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that the measure P , although it may not be a martingale measure itself, does admit an

equivalent martingale measure P ∗ ≈ P .

Equivalent martingale measures provide the key to the problem of pricing and hedging

�nancial derivatives. Such derivatives, also known as contingent claims, are �nancial

contracts based on the underlying price process. The resulting discounted outcome can

be described as a nonnegative random variable H on the probability space (Ω,FT , P ).

The simplest example is a European call-option with maturity T , where H = (XT − c)+

only depends on the value of the stock price at the �nal time T . A more exotic example

is the look-back option given by the maximal stock price observed up to time T .

For simple di�usion models such as the Black-Scholes model the equivalent martingale

measure P ∗ is in fact unique, and in this case the �nancial market model is called complete.

In such a complete situation any contingent claim H admits a unique arbitrage-free price,

and this price is given by the expectation E∗[H] under the martingale measure P ∗. As

shown by Jacod and Yor in the eighties, uniqueness of the equivalent martingale measure

P ∗ is indeed equivalent to the fact that each contingent claim H admits a representation

as a stochastic integral of the underlying price process:

H = E∗[H] +

∫ T

0

ξt dXt. (14)

This result may in fact be viewed an an extension of a fundamental theorem of K. Itô

on the representation of functionals of Brownian motion as stochastic integrals. For a

simple di�usion model it is actually a direct consequence of Itô's formula, as we will see

below. In �nancial terms, the representation (14) means that the contingent claim H

admits a perfect replication by means of a dynamic trading strategy, starting with the

initial capital E∗[H]. But this implies that the correct price is given by the initial capital,

since otherwise there would be an obvious arbitrage opportunity.

In the �nancial context, the crucial insight that arbitrage-free prices of derivatives should

be computed as expectations under an equivalent martingale measure goes back to Black

and Scholes [3]. They considered the problem of pricing a European call-option of ge-

ometric Brownian motion and realized that the key to the solution is provided by Itô's

formula. More generally, suppose that the price �uctuation is modeled by a stochastic

di�erential equation (4) and that the contingent claim is of the form H = h(XT ) with

some continuous function h. Note �rst that we can rewrite Itô's formula (13) as

df(X, t) = ∇xf(X, t) dX + (L∗ +
∂

∂t
)f(X, t) dt

in terms of the operator L∗ = L − b∇x. Thus the contingent claim can be written as

H = f(x, 0) +

∫ T

0

∇xf(Xt, t) dXt (15)

if the function f on Rd× [0, T ] is chosen to be a solution of the partial di�erential equation

(L∗ +
∂

∂t
)f = 0 (16)
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with terminal condition f(·, T ) = h. The representation (15) shows that the contingent

claim admits a perfect replication, or a perfect hedge, by means of the strategy ξt =

∇xf(Xt, t). Therefore its arbitrage-free price is given by E∗[H] = f(x, 0). In the same

way, the arbitrage-free price at any time t is given by the value f(Xt, t). Thus Itô's formula

provides an explicit method of computing the hedging strategy and the arbitrage-free price

which involves the associated partial di�erential equation (16).

This approach can be extended to arbitrarily exotic derivatives. Indeed, applying the

preceding argument stepwise to products of the form H =
∏

hi(Xti) and using an ap-

proximation of general derivatives by such �nitely based functionals, one obtains the

crucial representation (14) of a general contingent claim H as a stochastic integral of the

underlying di�usion process. While this approach clari�es the picture from a conceptual

point of view, the explicit computation of the price and the hedging strategy usually be-

comes a major challenge when moving beyond the simple case of a call option. At this

stage additional methods of numerical analysis and of stochastic analysis may be needed.

In particular, the Malliavin calculus and the analysis of �cubature on Wiener space� de-

veloped by T. Lyons have started to play an important role in this context; see, e.g.,

Malliavin and Thalmaier [39] and Lyons and Victoir [36].

New conceptual problems arise as soon as the �nancial market model becomes incomplete,

i.e., if the martingale measure P ∗ is no longer unique. This happens if, for example, the

driving Brownian motion in (4) is replaced by a general Lévy process as in Itô's original

work, or if volatility becomes stochastic in the sense that the di�usion coe�cient σ is

replaced by a stochastic process. The issue of pricing and hedging �nancial derivatives

in such an incomplete setting has led to new optimization problems and has opened new

connections to convex analysis and to microeconomic theory. It has also become the

source of new directions in martingale theory. In particular it has led to new variants of

some fundamental decomposition theorems such as the Kunita-Watanabe decomposition

and the Doob-Meyer decomposition, and it has motivated the systematic development

of the theory of backward stochastic di�erential equations; see, e.g., [33] and [11]. In

all these rami�cations, however, Itô's stochastic analysis continues to provide the crucial

concepts and tools.

In the beginning we recalled the statutes of the Gauss prize. We can now see more clearly

why each and every one of their requirements is so well met by Kiyosi Itô's contributions.

In the �rst place, these contributions are outstanding and in fact of fundamental impor-

tance from a strictly mathematical point of view. Secondly, they have found signi�cant

applications outside of mathematics as illustrated by the preceding case study: There is

no doubt that the �eld of quantitative �nance has been thoroughly transformed by the

basic insights provided by Itô's calculus, both on a conceptual and on a computational

level. Finally, this transformation of the �eld has paved the way to the innovative applica-

tion of a wide range of mathematical methods, not only from stochastic analysis but also,

following in their wake, methods from PDE's, convex analysis, statistics, and numerical

analysis.
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In their introduction to [24] quoted above, Stroock and Varadhan say that Kiyosi Itô

�has molded the way in which we all think about stochastic processes�. When this was

written, �we all � referred to a rather small group of specialists. Over the last three

decades this group has increased dramatically, both within and beyond the boundaries of

mathematics. And I am sure that there is overwhelming agreement with the anonymous

weblog discussant that the Gauss prize has been awarded to �someone really wonderful�.
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