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ETH Zürich

Departement Mathematik

ETH-Zentrum, HG G 51.2

CH – 8092 Zürich
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Abstract: Suppose discounted asset prices in a financial market are given by a P -semi-

martingale S. Among all probability measures Q that turn S into a local

Q-martingale, the minimal entropy martingale measure is characterised by the

property that it minimises the relative entropy with respect to P . Via convex

duality, it is intimately linked to the problem of maximising expected expo-

nential utility from terminal wealth. It also appears as a limit of p-optimal

martingale measures as p decreases to 1. Like for most optimal martingale mea-

sures, finding its explicit form is easy if S is an exponential Lévy process, and

quite difficult otherwise.
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Consider a stochastic process S = (St)t≥0 on a probability space (Ω,F , P ) and adapted to

a filtration IF = (Ft)t≥0. Each St takes values in IRd and models the discounted prices at

time t of d basic assets traded in a financial market. An equivalent local martingale measure

(ELMM) for S, possibly on [0, T ] for a time horizon T < ∞, is a probability measure Q

equivalent to the original (historical, real-world) measure P (on FT , if there is a T ) such

that S is a local Q-martingale (on [0, T ], respectively); see eqf04/007 [equivalent martingale

measure and ramifications]. If S is a nonnegative P -semimartingale, the fundamental theorem

of asset pricing says that the existence of an ELMM Q for S is equivalent to the absence-of-

arbitrage condition (NFLVR) that S admits no free lunch with vanishing risk; see eqf04/002

[fundamental theorem of asset pricing].

Definition. Fix a time horizon T < ∞. An ELMM QE for S on [0, T ] is called minimal

entropy martingale measure (MEMM) if QE minimises the relative entropy H(Q|P ) over all

ELMMs Q for S on [0, T ].

Recall that the relative entropy is defined as

H(Q|P ) :=

{
EP

[
dQ
dP log dQ

dP

]
if Q¿ P ,

+∞ otherwise.

This is one example of the general concept of an f -divergence of the form

Df (Q|P ) :=

{
EP

[
f
(
dQ
dP

)]
if Q¿ P ,

+∞ otherwise,

where f is a convex function on [0,∞); see [49], [26], or [22] for a number of examples. The

minimiser Q∗,f of Df ( · |P ) is then called f -optimal ELMM .

In many situations arising in mathematical finance, f -optimal ELMMs come up via du-

ality from expected utility maximisation problems; see eqf04/009[expected utility maximiza-

tion], eqf14/008 [expected utility maximization]. One starts with a utility function U (see

eqf03/007 [utility function]) and obtains f (up to an affine function) as the convex conjugate

of U , i.e.

f(y)− αy − β = sup
x

(
U(x)− xy

)
.

Finding Q∗,f is then the dual to the primal problem of maximising the expected utility

ϑ 7→ E


U


x0 +

T∫

0

ϑr dSr
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from terminal wealth over allowed investment strategies ϑ. Moreover, under suitable condi-

tions, the solutions Q∗,f and ϑ∗,U are related by

(1)
dQ∗,f

dP
= const. U ′


x0 +

T∫

0

ϑ∗,Ur dSr


 .

More details can for instance be found in [41], [46], [67], [26], [68]. Relative entropy comes up

with fE(y) = y log y when one starts with the exponential utility functions Uα(x) = −e−αx
with risk aversion α > 0. The duality in this special case has been studied in detail in [8],

[18], [40].

Since fE is strictly convex, the minimal entropy martingale measure is always unique. If

S is locally bounded, the MEMM (on [0, T ]) exists if and only if there is at least one ELMM

Q for S on [0, T ] with H(Q|P ) < ∞; see [21]. For general unbounded S, the MEMM need

not exist; [21] contains a counterexample, and [1] shows how the duality above will then fail.

In [21] it is also shown that the MEMM is automatically equivalent to P , even if it is defined

as the minimiser of H(Q|P ) over all P -absolutely continuous local martingale measures for S

on [0, T ], provided only that there exists some ELMM Q for S on [0, T ] with H(Q|P ) < ∞.

Moreover, the density of QE with respect to P on FT has a very specific form; it is given by

(2)
dQE

dP

∣∣∣∣
FT

= ZET = Z0 exp




T∫

0

ϑEr dSr




for some constant Z0 > 0 and some predictable S-integrable process ϑE . This has been

proved in [21] for models in finite discrete time and in [28] and [26] in general; see also [23]

for an application to finding optimal strategies in a Lévy process setting. Note, however, that

the representation (2) only holds at the time horizon, T ; the density process

ZEt =
dQE

dP

∣∣∣∣
Ft

= EP
[
ZET

∣∣Ft
]
, 0 ≤ t ≤ T,

is usually quite difficult to find. We remark that the above results on the equivalence to P

and the structure of the fE-optimal QE both have versions for more general f -divergences;

see [26]. (Essentially, (2) is the relation (1) in the case of exponential utility; but it can also

be proved directly without using general duality.)

The history of the minimal entropy martingale measure QE is not straightforward to

trace. A general definition and an authoritative exposition are given by Frittelli in [21]. But

the idea of so-called minimax measures to link martingale measures via duality to utility

maximisation already appears for instance in [30], [31] and [41]; see also [8]. Other early

contributors include Miyahara [53], who used the term “canonical martingale measure”, and

Stutzer [70]; some more historical comments and references are contained in [71]. Even
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before, in [20], it was shown that the property defining the MEMM is satisfied by the so-

called minimal martingale measure if S is continuous and the so-called mean-variance tradeoff

of S has constant expectation over all ELMMs for S; see also eqf04/015 [minimal martingale

measure]. The most prominent example for this occurs when S is a Markovian diffusion; see

[53].

After the initial foundations, work on the MEMM has mainly concentrated on three

major areas. The first aims to determine or describe the MEMM and in particular its density

process ZE more explicitly in specific models. This has been done, among others, for

– stochastic volatility models: see [9], [10], [35], [62], [63], and compare also eqf19/019 [mod-

elling and measuring volatility], eqf08/017 [Barndorff-Nielsen/Shephard (BNS) models];

– jump-diffusions ([54]); and

– Lévy processes (compare eqf02/004 [Lévy processes]), both in general and in special set-

tings: see [36] for an overview and [42], [43] for some examples. In particular, many

studies have considered exponential Lévy models (see eqf08/031 [exponential Lévy mod-

els]) where S = S0 E(L) and L is a Lévy process under P . There, existence of the MEMM

QE reduces to an analytical condition on the Lévy triplet of L. Moreover, QE is then

given by an Esscher transform (see eqf21/024 [Esscher transform]) and L is again a Lévy

process under QE ; see for instance [13], [19], [24], [39].

For continuous semimartingales S, an alternative approach is to characterise ZE via semi-

martingale backward equations or backward stochastic differential equations; see [50], [52].

The results in [56], [57] use a mixture of the above ideas in a specific class of models.

The second major area is concerned with convergence questions. Several authors have

proved in several settings and with various techniques that the minimal entropy martingale

measure QE is the limit, as p ↘ 1, of the so-called p-optimal martingale measures obtained

by minimising the f -divergence associated to the function f(y) = yp. This line of research

was initiated in [27], [28], and later contributions include [39], [52], [65]. In [45], [60], this

convergence is combined with the general duality (1) to utility maximisation in order to

obtain convergence results for optimal wealths and strategies as well.

The third and by far most important area of research on the MEMM is centered on its

link to the exponential utility maximisation problem; see [8], [18] for a detailed exposition

of this issue. More specifically, the MEMM is very useful when one studies the valuation

of contingent claims by (exponential) utility indifference valuation; see eqf04/011 [utility

indifference valuation]. To explain this, we fix an initial capital x0 and a random payoff

H due at time T . The maximal expected utility one can obtain by trading in S via some

strategy ϑ, if one starts with x0 and has to pay out H in T , is

sup
ϑ
E


U


x0 +

T∫

0

ϑr dSr −H




 =: u(x0;−H),
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and the utility indifference value xH is then implicitly defined by

u(x0 + xH ;−H) = u(x0; 0).

Hence xH represents the monetary compensation required for selling H if one wants to achieve

utility indifference at the optimal investment behaviour. If U = Uα is exponential, its mul-

tiplicative structure makes the analysis of the utility indifference value xH tractable, in re-

markable contrast to all other classical utility functions. Moreover, u(x0;−H) as well as xH

and the optimal strategy ϑ∗H can be described with the help of a minimal entropy martingale

measure (defined here with respect to a new, H-dependent reference measure PH instead of

P ). This topic has first been studied in [4], [58], [59], [64]; later work has examined intertem-

porally dynamic extensions ([5], [51]), descriptions via BSDEs in specific models ([6], [51]),

extensions to more general payoff structures ([38], [47], [48], [61]), etc.; see also [29], [37], [69].

Apart from the above, there are a number of other areas where the minimal entropy

martingale measure has come up; these include

– option price comparisons ([7], [11], [32], [33], [34], [55]);

– generalisations or connections to other optimal ELMMs ([2], [14], [15], [66]); see also

eqf04/015 [minimal martingale measure] and [20];

– utility maximisation with a random time horizon ([12]);

– good deal bounds ([44]); see also eqf04/016 [good-deal bounds];

– a calibration game ([25]).

There are also many papers who simply choose the MEMM as pricing measure for option

pricing applications; especially in papers from the actuarial literature, this approach is often

motivated by the connections between the MEMM and the Esscher transformation. Finally,

we mention that the idea of looking for a martingale measure subject to a constraint on

relative entropy also naturally comes up in calibration problems; see for instance [3], [16],

[17], and compare eqf05/009 [calibration], eqf08/002 [model calibration].
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[20] H. Föllmer and M. Schweizer (1991), “Hedging of contingent claims under incomplete

information”, in: M. H. A. Davis and R. J. Elliott (eds.), “Applied Stochastic Analysis”,

Stochastics Monographs, Vol. 5, Gordon and Breach, London, 389–414

[21] M. Frittelli (2000a), “The minimal entropy martingale measure and the valuation prob-

lem in incomplete markets”, Mathematical Finance 10, 39–52

[22] M. Frittelli (2000b), “Introduction to a theory of value coherent with the no-arbitrage

principle”, Finance and Stochastics 4, 275–297

[23] T. Fujiwara (2004), “From the minimal entropy martingale measures to the optimal

strategies for the exponential utility maximization: the case of geometric Lévy processes”,
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