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Abstract

We analyse financial market models in which agents form their demand for an asset on
the basis of their forecasts of future prices and where their forecasting rules may change
over time, as a result of the influence of other traders. Agents will switch from one rule to
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1 Introduction

One of the major difficulties with standard models of asset markets and particularly of

foreign exchange markets is that it is difficult to explain the appearance of “bubbles” which

grow and then burst. There is a substantial literature on “rational bubbles”; see, e.g., Evans

(1991). Such models suffer, in general, from the lack of an underlying market framework

and also from the fact that such bubbles will be permanently explosive. Other papers

have shown how prices can be correlated with apparently irrelevant exogenous variables,

“sunspots” for example (Cass and Shell (1983)), and Woodford (1990) has shown that

individuals can rationally learn to believe that sunspots play the role of fundamentals and,

as a consequence these beliefs will be fulfilled. Typically, the analysis in such examples

wishes to show that prices will settle to some equilibrium, albeit a “wrong” one.

Our aim here is to take a rather different approach and to show how agents may change

their expectations as they learn and, given the self reinforcing aspect of their expectations,

prices will move with the expectations. It may also be the case that agents will cease

for some periods to believe in any fundamentals and that they will become “chartists”

or trend chasers. In this case markets detach themselves from any fundamentals for a

period but then return; for a good overview of theoretical aspects and empirical evidence

for this see Hunter, Kaufman, and Pomerleano (2003). Such a vision fits well with the

burgeoning econometrics literature on “switching regimes” (Hamilton (1989)) and provides

an economic framework for this phenomenon.

As agents switch from one belief to another there will be periods where there is con-

siderable heterogeneity of expectations, consistent with empirical observations; see Chionis

and MacDonald (2002). Yet, over time, agents cannot be said to be behaving irrationally.

Heterogeneous expectations are also necessary to explain other phenomena. Without them,

one could not explain as Bacchetta and van Wincoop (2003) point out, the enormous vol-

ume of trade on financial markets. Spot trading on foreign exchange markets in 2001 was

approximately $1.2 trillion per day, for example.

What we suggest then, is that changes in the distribution of expectations play a key role

in explaining the evolution of prices. Yet, in the standard “representative agent” model

there is no place for any heterogeneity of expectations and many authors have suggested

that this is the reason for the poor predictive power of such models. This argument has

been made in particular for the foreign exchange market and evidence for this is given by

Meese and Rogoff (1983), Frankel and Rose (1995) and Cheung, Chinn, and Pascual (2002).

Once we accept the idea that expectations can be heterogeneous, it seems that we have

to move away from the standard “rational expectations” framework. One idea, pioneered

by Long et al. (1989, 1990), is simply to introduce agents who systematically have “wrong”
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expectations but who may survive nevertheless. Kurz (1994, 1997) introduced the notion

of rational belief equilibria where agents’ beliefs about the probabilistic structure of some

stock prices may be wrong as long as they are compatible with the stationary distribu-

tion suggested by the available data. In his model agents can “learn” this distribution in

the sense that empirical averages converge to their expected values under the stationary

measure.

Another alternative is to introduce dispersed information into the model. One ap-

proach suggested by Townsend (1983) is to have symmetrically dispersed information and

to analyse the consequences of “higher order expectations,” i.e., expectations about others’

expectations. The idea here is that a small amount of non-fundamental trade may generate

considerable volatility since traders perceive movements in asset prices as conveying infor-

mation about future values of fundamentals; see Allen, Morris, and Shin (2003). Again,

despite the more sophisticated reasoning attributed to agents, a certain degree of irrational

behaviour is needed to generate the results. An alternative explanation of the dynamics

of asset market prices is that based on the idea of a dependence on market organization.

Bottazi et al. (2004) analyse the consequences of different types of organization, for exam-

ple Walrasian or “order book,” for the resulting price dynamics. We will remain within the

Walrasian temporary equilibrium framework although it would certainly be interesting to

anlayse other market forms.

The aim of this paper is to analyse a model in which

• expectations can be heterogeneous, consistent with empirical observations,

• where agents learn from their experience of using different rules, how to form their

expectations,

• where agents are not systematically wrong,

• and where significant departures from fundamentals can occur but where there is

always a return to fundamentals.

However, this return should not be, and is not, in our model, permanent. If agents

learn about the true fundamentals and the prices then adhere to those fundamentals as

in Bacchetta and van Wincoop (2003), bubble-like departures would cease to occur. In

our model such bubbles will continue to develop and to burst. This gives a more realistic

meaning to the widely held view, that “in the long run fundamentals matter;” see Mark

(1995). Prices will inevitably return to those implied by the fundamentals but will just as

inevitably leave them again. This is, of course consistent with the fact, that on average, in

the short run fundamentals are poor predictors of prices.
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But these reflections leave us with a puzzle. Is there any appropriate notion of equilib-

rium in such markets? If there is, it cannot be thought of as a deterministic state around

which there are fluctuations. Nor can it be thought of as a single price path towards which

the market price will converge after some time. Instead, we use a probabilistic notion of

equilibrium where the distribution of state variables does not change through time. If the

equilibrium is unique, then the dynamics is even ergodic. This means that time averages

converge to their expected values under the unique stationary distribution.

A number of models have been constructed in which agents change their views as time

passes and in some of these the changes can be self reinforcing. A particularly relevant

contribution is that of Brock and Hommes (1997) in which agents can use one of two

predictors. One of them is costly but when all agents use it the process is stable. The

other is cheaper but when used by many individuals induces unstable behaviour of the

price process. Thus their model has periods of stability interspersed with bubble like

behaviour. They present analytical results to characterise this possibly chaotic behaviour

of their system. Brock et al. (2002) study the evolution of a model with many types of

agents. These authors, like us, focus on the limit distribution of an evolutionary process.

In their case the limit distribution is over types of agents whereas our limit distribution is

over prices and the performance of predictors. They have as their fundamental benchmark

the rational expectations equilibrium whereas we have in mind the idea that there is an

equilibrium value of some exogenous economic variable that plays this role.

The papers by Alós-Ferrer and Ania (2004), Hens and Schenk-Hoppé (2003), and Lux

and Schornstein (2004) are also related to our approach. Alós-Ferrer and Ania (2004)

analyse a game in which players have to decide how to allocate their portfolios among

assets with a given matrix of returns. There is a unique Nash equilibrium in pure strategies

in which agents allocate their wealth across assets proportional to their expected returns.

It is shown that there can be prolonged departures from this equilibrium when a strategy

which involves a wrong view of the world has a “lucky run.” Nevertheless the system

always comes back after sufficient time to the fundamentals. However, their system does

not exhibit the self reinforcing properties of herding that characterise our model. Hens

and Schenk-Hoppé (2003) analyse portfolio selection rules in incomplete financial markets

where the dynamics of investors’ wealth shares can be described by a random dynamical

system, i.e., by a difference equation in a random environment which is given exogenously

and thus does not share the self reinforcing contagion properties of our model. Lux and

Schornstein (2004) present a model of a two country foreign exchange market which shares

some of the features of our framework. These authors also use a learning rule to study

the evolution of different types of behaviour. In their model agents learn by using genetic
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algorithms. We justify the changes in the proportions by varying the probability of agents

choosing a rule as a function of the efficiency of the rule in the past.

There are many other models in which agents have different forecasting rules, and these

are often summarized as “chartist” and “fundamentalist” views, following on from the

seminal article of Frankel and Froot (1986). For instance, Böhm and Wenzelburger (2002)

consider the performance of efficient portfolios in a setting where current prices depend on

the heterogenous expectations about future prices. Many such models, when simulated,

generate time paths of prices which switch from one expectations regime to another and

which generate “realistic” time series, but no analytical characterization of their properties

is available.

What we will show is that, despite the fact that the balance between the numbers of

agents holding different expectations is constantly changing we can nevertheless characterise

the structure of this process in the long term. Thus we do not have to rely on simulations

to understand the nature of the process and we do not simply have to argue as some have

done that, in such situations, “anything can happen”.

Our model involves agents who may use one of a number of predictors which they might

obtain from financial “gurus”, for example, to forecast future prices of an asset. They learn

in the following sense. They evaluate the performance of the gurus over time and their

probability of choosing a given guru will be related to the latter’s success. There is a

substantial literature on such adaptive learning rules which are associated with “discrete

choice” models; see, e.g., Anderson et al. (1992). Different forms of these rules have been

used and accounts are given in Weisbuch, Chenevez, Kirman, and Nadal (1998) and Brock

and Durlauf (2001a, 2001b). In addition, there is a self reinforcing aspect of the model

which leads to agents concentrating on one of the gurus for a period. Nevertheless, after

some time the guru in question may fall out of fashion and another will replace him. It is

clear that the prices will be modified as the distribution of expectations changes. It is also

clear that if each guru is characterised by a forecast, then the price will tend to return to a

particular fundamental, that the prices will shift from being near one of these fundamentals

to another. In such a case it is reasonable to expect the price process to be ergodic, and

in fact this will follows as a special case from our main result. An appropriate equilibrium

notion would be the limit distribution of this process, and one could think of the average

time spent in each subset of the price space as characterizing the structure of the process.

However, once we introduce chartists who extrapolate from previous prices there is no a

priori reason that the process should not explode. Our main result shows that, if we limit

the probability that individuals will follow chartist rules appropriately, we can still show

that our price process is ergodic. Thus, the process has a unique stationary distribution,
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and time averages converge to their expected value under the stationary measure. In our

model prices will not stay in some compact set. They will blow up every once in a while

but will always return to the underlying fundamentals. Thus, chartists will be temporarily

destabilizing but their influence will not take over the market for ever. The presence of the

chartists is revealed by the nature of the limit distribution and this is illustrated in figures

1 and 2. In the first we show the approximately normal distribution which results when

there are no chartists and, in the second, we see evidence of fatter tails.

The structure of the paper is as follows. In Section 2 we introduce our discrete-time

model for the microstructure of financial price fluctuations. The logarithmic stock price in

period t will be determined by the market clearing condition of zero total excess demand.

Individual demand involves liquidity demand and an assessment of what an adequate price

in the following period should be. The individual assessments are based on the recommen-

dations of the gurus. Assuming a log-linear structure for the demand, we obtain a class

of log-linear stock price processes in a random environment. The random environment

is generated by an underlying stochastic process describing the agents’ liquidity demand

and the agents’ and the gurus’ profiles, and by a stochastic process which describes the

agents’ individual choices of an expert. The latter process is assumed to be endogenous, in

contrast to Föllmer and Schweizer (1993) and Horst (2004) where the agents’ choices are

exogenous, without any feedback from past prices. In our setting agents evaluate the gurus’

performance before making their investment decision. An agent’s propensity to follow a

specific guru depends on the guru’s current performance level. Performances are measured

by a weighted sum of past profits which would have been generated by the gurus’ recom-

mendations. This dependence of the agents’ choices on the gurus’ performances introduces

a feedback from past asset prices into the random environment.

Mathematically, the logarithmic price process can be viewed as one component of a

Markov chain {ξt} associated to an iterated function system. Iterated function systems

have been extensively analyzed in the mathematical literature (Barnsley and Elton (1988),

Steinsaltz (1999)), and in connection with learning models (Norman (1972), Karlin (1953)).

Under a mean contraction condition Barnsley, Demko, Elton, and Geronimo (1988) and

Norman (1972) give sufficient conditions for existence and uniqueness of stationary dis-

tributions for the Markov chain {ξt}. This mean contraction property, however, is not

satisfied in our case because a guru’s profit depends in a highly non-linear manner on stock

prices. The key to our existence result is a partial average contraction property which

only holds for the price component, but not for the entire Markov chain. We show that

the price-performance process {ξt} has a stationary distribution if we limit the probability

that the agents adopt a trend chasing strategy. The proof of ergodicity turns out to be
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more involved. The key observation is that we can measure the experts’ performance on

a different scale without altering the dynamics of stock prices. This allows us to apply

a comparison argument: we compare our price-performance process with some reference

process whose convergence can be established using standard methods from the theory of

iterated function systems. The results are stated in Section 3 and the proofs are given in

Section 4.

2 A temporary equilibrium model for asset prices

We consider a financial market model with a finite set A of economic agents trading a single

risky asset. The price evolution of the asset will be described by a sequence of temporary

price equilibria. In reaction to a proposed price p in period t the agent a ∈ A forms a

random excess demand ea
t (p, ω). The actual asset price Pt(ω) will be determined by the

market clearing condition of zero total excess demand. Thus, we obtain a random sequence

{Pt(ω)}t∈N of temporary price equilibria on an underlying probability space (Ω,F ,P) de-

fined by the implicit equation

∑

a∈A
ea

t (Pt(ω), ω) = 0. (1)

Individual excess demand will involve some exogenous liquidity demand and an endoge-

nous amount obtained by comparing, on a logarithmic scale, the proposed price with some

reference level. As explained below, an agent will use a reference level recommended by

some expert, and the choice of an expert will depend on the expert’s performance.

2.1 Reference levels

We take a pragmatic approach to specify the demand. As in, e.g., Garman (1976) or Lux

(1995), we do not formulate an individual optimization problem under budget constraints

for the agents. Instead, we start right away with individual demand functions. We assume

that the excess demand of the agent a ∈ A in period t is the sum of two components.

The first component, denoted by ηa
t (ω), is an exogeneous random liquidity demand. The

second component depends on the deviation of the proposed price p from some benchmark,

or reference level, which the agent adopts for period t. In this paper, we consider the

simplest case where the dependence is linear on a logarithmic scale. Thus, we assume that

the individual excess demand of the agent a ∈ A takes the log-linear form

ea
t (p, ω) := ca

t (ω)
(
Ŝa

t (ω)− log p
)

+ ηa
t (ω) (2)
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with nonnegative coefficients ca
t (ω), where Ŝa

t denotes the logarithmic reference level chosen

for period t. We assume that

ct(ω) :=
∑

a∈A
ca
t (ω) > 0,

and define

ηt(ω) :=
1

ct(ω)

∑

a∈A
ηa

t (ω).

The logarithmic equilibrium price

St(ω) := log Pt(ω)

is then determined via (1) and (2) as an aggregate,

St(ω) =
1

ct(ω)

∑

a∈A
ca
t (ω)Ŝa

t (ω) + ηt(ω), (3)

of individual price assessments and liquidity demands.

As in Kirman (1998) the choice of the reference level will be based on the recommen-

dations Ri
t of some financial experts or gurus i ∈ I := {1, 2, . . . , m}. More precisely, we

assume that the choice of agent a ∈ A in a given period t consists in following one of the

gurus, i.e.,

Ŝa
t (ω) ∈ {R1

t (ω), . . . , Rm
t (ω)}.

Later on, we will specify how the successive choices are generated by a probabilistic learning

scheme based on the gurus’ performance.

We denote by xa
t ∈ I the individual choice of the agent a ∈ A at date t ∈ N. Thus, xa

t = i

means that Ŝa
t = Ri

t. Given the current configuration of individual states xt := (xa
t )a∈A,

the associated weighted empirical distribution πt := (πi
t)i∈I is defined by

πi
t :=

1

ct(ω)

∑

a∈A
ca
t (ω)1{i}(x

a
t ) (i ∈ I). (4)

In terms of these empirical distributions, the logarithmic equilibrium price in period t + 1

defined via (3) takes the form

St(ω) =
∑
i∈I

πi
tR

i
t(ω) + ηt(ω). (5)

Let us now be more specific about the experts’ recommendations Ri
t. We associate to

each guru i ∈ I his subjective perception F i
t (ω) of the underlying fundamental value. The
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expert’s recommendation is based on his expectation that, on a logarithmic scale, the asset

price will move towards a weighted average of his individual assessment of the fundamental

value and an observed past price trend. We focus on the simplest case where the past price

trend is represented by the logarithmic price increment. Thus, the reference level suggested

by expert i for the following period t is given by

Ri
t(ω) := St−1(ω) + αi

t(ω)[F i
t (ω)− St−1(ω)] + βi

t(ω)[St−1(ω)− St−2(ω)]. (6)

The random coefficients αi
t and βi

t may be viewed as the gurus’ current estimates of the

speed of price adjustments. These quantities are not necessarily non-negative. If, for

example, βi
t < 0, then guru i’s recommendation incorporates an “anti-cyclic” component

as in, e.g., Brock and Hommes (1997).

Remark 2.1 An example that fits into our framework is that developed in Kirman, Ric-

ciotti, and Topol (2003). In this case there are two countries and the individuals must

decide as to how to split their portfolio between safe domestic assets and foreign assets

which carry the exchange rate risk. There is a fundamentalist guru in each country each of

whom forecasts the exchange rate with some fundamental but each has noise in its forecast.

In addition there is a chartist guru who extrapolates. This generates an exchange rate series

with periods of transient behavior as observed in real exchange data; see, e.g., Bartolini and

Giorgianni (1999).

The following example shows how the specific model in Kirman (1998) fits into our

framework.

Example 2.2 Consider a situation where three experts are active on the financial market.

The gurus i = 1, 2 adopt a purely fundamentalist point of view with constant level F i. This

means that their recommendations are solely based on the expectation that the logarithmic

asset price will move closer to their assessment of the stocks’ fundamental value. Thus,

βi
t = 0 (i = 1, 2), and so

Ri
t := St−1 + αi

t[F
i − St−1] (i = 0, 1). (7)

The third guru is described as a trend chaser or chartist. Thus α3
t = 0, and

R3
t := St−1 + β3

t [St−1 − St−2]. (8)

In our general framework, we introduce the aggregate quantities

αt :=
∑
i∈I

αi
tπ

i
t, βt :=

∑
i∈I

βi
tπ

i
t and F t :=

∑
i∈I

αi
tπ

i
tF

i. (9)
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In view of (5) and (6) the dynamics of the sequence of temporary logarithmic price equilibria

is governed by a linear recursive relation of the form

St = F (St−1, St−2, τt+1) :=
[
1− αt + βt

]
St−1 − βtSt−2 + F t + ηt, (10)

in a random environment described by the sequence

τt := (xt, γt, ηt) (11)

where γt := ((ca
t )a∈A, (αi

t, β
i
t)i∈I , (F

i
t )i∈I). The random environment summarizes the stochas-

tic evolution {xt}t∈N of the agents’ choices, the experts’ and the agents’ profiles as described

by the process {γt}t∈N, and the noise trading {ηt}t∈N.

Remark 2.3 If all the adjustment factors αi
t and βi

t vanish, then we have Ŝa
t = St−1 for

all agents a ∈ A, and the price dynamics on a logarithmic scale reduces to the equation

St = St−1 + ηt.

In particular, the dynamics of logarithmic prices reduces to a simple random walk model

if the aggregate liquidity demand is modelled as a sequence of independent and identically

distributed random variables. This is nothing else than the discretized version of the Black-

Scholes model.

Example 2.4 Let us return to the situation described in Example 2.2 assuming for sim-

plicity that F 1 = 0 and F 2 = 1. If only the two fundamentalist gurus are active on the

market, then the resulting fluctuation of logarithmic asset prices is described by the linear

equation

St = [1− αt] St−1 + F t + ηt with F t := π2
t α

2
t . (12)

In this case the sequence of temporary price equilibria may be viewed as an Ornstein-

Uhlenbeck process in a random environment. If αi
t ∈ (0, 1), then 0 < 1− αt < 1, and stock

prices behave in a mean-reverting manner. In the presence of chartists then the sequence

{St}t∈N follows the recursive dynamics

St =
[
1− αt + βt

]
St−1 − βtSt−2 + F t + ηt. (13)

Thus, the asset price process behaves in a mean-reverting manner in periods when the

majority of the agents adopts a fundamentalist benchmark, i.e., whenever βt < αt. In

periods where the impact of trend chasers becomes so strong that the multiplier of St is

larger than 1, i.e., if βt > αt, then stock prices may behave in a transient manner.
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As illustrated in the preceding example, the price process defined through (10) behaves

in a mean-reverting manner in periods where the impact of technical trading on the for-

mation of price equilibria is weak enough. In periods with a distinct trend chasing effect,

however, stock prices may become transient. Economically this feature can be viewed as

the temporary occurrence of bubbles or crashes generated by trend chasing. Nevertheless

we shall see that the overall behavior of the price process will be ergodic if the destabilizing

effects resulting from the presence of chartists are on average not too strong.

Remark 2.5 The specific assumptions of a log-linear structure of the demand functions in

(2) and the gurus’ recommendations in (6) were made primarily for analytical convenience.

Our convergence result for the resulting log-linear price dynamics will be based on a general

mean contraction argument, and this argument carries over to more general asset price

processes induced by a more general class of demand functions and reference levels.

2.2 Performance measures

In our financial market model, asset prices are induced by an underlying stochastic process

{ηt}t∈N describing the agents’ liquidity demand, by the process {xt}t∈N describing the

agents’ individual choices of an expert, and by the experts’ and the agents’ profiles as

described by the process {γt}t∈N. The process {γt}t∈N is assumed to be exogenous. If, in

addition, the process {xt}t∈N is modelled as an exogenous stochastic processes, then we are

in the situation of Föllmer and Schweizer (1993); see also Föllmer (1994) or Horst (2004).

In this case the dynamics of the logarithmic stock price process (10) can be described

by an affine equation in an exogenous random environment. Such equations have been

extensively investigated in the mathematical literature; see, e.g., Brandt (1986), Kesten

(1973), Vervaat (1979) or Horst (2001). An analysis of the diffusion limit can be found in

Föllmer and Schweizer (1993) and Horst (2004). From an economic point of view, however,

it is desirable to study situations where the process of individual choices is generated

endogenously. In this section we specify a probabilistic learning mechanism where the

agents’ decisions are based on the perceived performance of the financial experts.

A guru’s performance index is defined as a weighted average of the profits his recom-

mendations would have generated in the past. To make this more precise, we introduce the

one-period profits obtained by multiplying the price increment with that part of the excess

demand which is based on the guru’s recommendation. Specifically, the profit of guru i’s
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trading strategy generated in period t is given by

P i
t := (Ri

t − St−1)(e
St − eSt−1) (14)

=
[
αi

t(F
i
t − St−1) + βi

t(St−1 − St−2)
] (

eSt − eSt−1
)

=: P i(St−1, St−2, τt);

note that the notation makes sense in view of (10). The sequence {Pt}t∈N will be called

the profit process where Pt := (P i
t )i∈I . An agent’s propensity to choose the benchmark Ri

t

will depend on the discounted sums of past profits associated with the experts’ recommen-

dations.

Definition 2.6 Let 0 < α < 1 be a discount factor. The process {U i
t}t∈N defined by U i

0 = 0

and

U i
t = αU i

t−1 + (1− α)P i
t = (1− α)

t∑
j=0

αt−jP i
j (15)

is called the performance measure associated with the expert i ∈ I. The stochastic process

{Ut}t∈N = {(U i
t )i∈I}t∈N is called the performance process.

Remark 2.7 Alternatively, the performance an agent a ∈ A associates with a guru i ∈ I

could be based on his individual experience with the expert i. Such a situation is captured

by a performance index of the form

Ua,i
t = αUa,i

t−1 + (1− α)P i
t 1{i}(x

a
t ). (16)

In the sequel we focus on performance measures of the form (15). However, all our results

carry over to performance measures of the type (16).

We assume that an agents’ propensity to follow the recommendation of the guru i ∈ I

depends on the current performance vector Ut = (U i
t )i∈I . The conditional probability

Q(Ut; xt+1) (17)

of the new configuration of individual states (xa
t+1)a∈A given the actual performance Ut is

described by a stochastic kernel Q from Rm to IA. We denote the conditional probability

that the agent a ∈ A adopts the advice of the guru i ∈ I in the following period t + 1 by

qa,i(Ut) ∈ (0, 1) where
∑
i∈I

qa,i ≡ 1.

In a situation where the agents adopt the advice of the guru i ∈ I independently of the

choices of the other agents, the kernel Q is determined by the agents’ choice functions as the
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following example illustrates. In this case the agents’ choice function have an interactive

structure, but the transition to a new configuration itself is made independently by different

agents. Our framework is flexible enough to allow for an additional correlation in the

transition probabilities.

Example 2.8 Suppose that the agent a ∈ A takes his decision independently of the choices

of the other agents.In this case the distribution Q(Ut; ·) takes the product from

Q(u; ·) =
∏

a∈A
Qa(u; ·), (18)

where Qa(u; ·) denotes the probability measure (qa,i(u))i∈I on the set I = {1, . . . , m}. The

agents’ choice functions qa,i could, for instance, take the logit form

qa,i(u) =
eui

eu1 + · · ·+ eum ; (19)

see Weisbuch et al. (1998) for a systematic discussion of such choice functions.

2.3 The associated Markov chain

We view the logarithmic price process {St}t∈N as the first component of the Markov chain

ξt := (St, St−1, Ut)

with state space E := Rm+2. The dynamics of the process {ξt}t∈N can be described by a

recursive relation of the form

ξt+1 = V (ξt, τt+1) (20)

in the random environment {τt}t∈N defined by (10) where the map V is given by

V (ξt, τt+1) :=




F (St, St−1, τt+1)

St

αUt + P (St, St−1, τt+1).




In order to obtain the Markov property of the process {ξt}t∈N, we introduce the following

assumption on the exogeneous part of the random environment.

Assumption 2.9 The random variables (γt, ηt) (t ∈ N) are integrable and identically dis-

tributed with law ν. Moreover, (γt+1, ηt+1) is independent of ξ0, . . . , ξt and xt+1.
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This assumption implies that, given the history up to time t and in particular the present

state ξt = (St, St−1, Ut), the random variable τt+1 = (xt+1, γt+1, ηt+1) has the distribution

Z(ξt; ·) := Q(Ut; ·)⊗ ν. (21)

Thus, {ξt}t∈N can be viewed as a Markov chain whose transition operator Π acts on bounded

measurable functions f according to

Πf(ξ) =

∫
f ◦ V (ξ, τ)Z(ξ, dτ). (22)

In other words, the transition probability Π(ξ; ·) is defined as the distribution of V (ξ, τ)

where τ is a random vector with distribution Z(ξ; ·).

Assumption 2.10 The stochastic kernel Q is Lipschitz continuous in the sense that

sup
x
|Q(u1; x)−Q(u2; x)| ≤ L̂‖u1 − u2‖ (23)

for some L̂ < ∞.

It is easy to check that the previous condition holds if, for instance, the agents adopt

the advices of the experts independently of each other and if their choice functions qa,i

are Lipschitz continuous. As will be shown in Lemma 4.2, this Lipschitz condition for Q

guarantees that the Markov chain {ξt}t∈N has the Feller property. This means that the

function Πf is continuous for any bounded continuous f . In other words, the measure

Π(ξ; ·) is continuous in ξ with respect to the weak topology for probability measures on E.

For an initial state ξ0 = ξ, we denote by Pξ the corresponding probability measure on

the canonical path space for the Markov chain {ξt}t∈N.

3 Ergodicity of the Price-Performance Process

Our aim is to establish existence and uniqueness of a stationary distribution of the Markov

chain {ξt}t∈N. A probability measure µ is a stationary distribution for the price-performance

process if µΠ = µ. In this case the sequence {ξt}t∈N is stationary under the law

Pµ(·) :=

∫

E

Pξ(·)µ(dξ).

In Section 3.1 we show the existence of a stationary distribution for the process {ξt}t∈N
in situations where the impact of trend chasing on the formation of equilibrium prices is

not too strong. Under additional conditions on the experts’ profiles we prove in Section

13



3.2 that this measure is unique, and this implies that the Markov chain {ξt}t∈N is ergodic;

see, e.g., Breiman (1968), Chapter 7.2. Ergodicity means that time averages converge to

expectations under the unique stationary distribution µ, i.e.,

lim
T→∞

1

T

T−1∑
t=0

f(ξt) =

∫
f(ξ)µ(dξ) Pµ-a.s. (24)

and hence Pξ-a.s. for µ-a.e. initial state ξ ∈ E. In fact, we will obtain convergence for every

initial state ξ and every bounded continuous function f : E → R.

3.1 Existence of Stationary Distributions

In order to prove the existence of an invariant distribution for the Markov chain {ξt}t∈N, we

first introduce a condition which limits the impact of trend chasing. For a given performance

level u, the expected impact of fundamentalist and trend chasing behavior, respectively, is

measured by the quantities

α(u) := E[αt+1|Ut = u] =
∑
i∈I

∑

a∈A
αa,iqa,i(u)

and

β(u) := E[βt+1|Ut = u] =
∑
i∈I

∑

a∈A
βa,iqa,i(u)

where

αa,i := E[αi
tc
−1
t ca

t ] and βa,i := E[βi
tc
−1
t ca

t ]

Note that the coefficients αa,i and βa,i only depend on the distribution of γ and not on the

time t, and that, due to Assumption 2.9

E[αt+1|ξ0, . . . , ξt] = α(Ut) and E[βt+1|ξ0, . . . , ξt] = β(Ut).

In order to guarantee the existence of a stationary distribution for the price-performance

process, we need to put a quantitative bound on the impact of trend chasers on the forma-

tion of equilibrium prices.

Assumption 3.1

sup
u
|1− α(u) + β(u)|+ sup

u
|β(u)| < 1 (25)

Remark 3.2 Suppose that the experts’ profiles (αi
t, β

i
t)i∈I are independent of the agents’

profiles (ca
t )a∈A. Then

α(u) =
∑
i∈I

∑

a∈A
E[αi

t]E[c−1
t ca

t ]q
a,i(u) ≥ min

i
E[αi

t]

14



since
∑

i∈I qa,i(u) = 1 and
∑

a∈A E[c−1
t ca

t ] = 1. This shows that condition (25) is always

satisfied if the agents only adopt fundamentalist beliefs, i.e., if

βi
t = 0 and E[αi

t] > 0 for all i ∈ I.

The following example illustrates what we mean by saying that Assumption (25) puts

a quantitative bound on the impact of chartists.

Example 3.3 Let us return to the situation described in Example 2.2. Suppose that ca
1 ≡ 1,

that Eαi
t = α for i = 1, 2 and Eβ3

t = β and define q := supa,u qa,3(u). Then (25) reduces to

2βq < α(1− q).

If, for example, α = 3
4

and β = 1
2
, this condition is satisfied for

q <
3

7

i.e., if an individual agent adopts with sufficiently high probability a fundamentalist bench-

mark, independently of the performance of the experts.

We are now ready to state our existence result. The proof of the following theorem will

be given in Section 4 below.

Theorem 3.4 Under Assumptions 2.9, 2.10, and 3.1, the Markov chain {ξt}t∈N has an

invariant distribution.

3.2 Uniqueness of Stationary Distributions

So far, we have established the existence of stationary distributions for the price utility

process {ξt}t∈N under the assumption that the impact of trend chasing on the dynamics of

asset prices is not too strong. In this section we state additional conditions which guarantee

uniqueness of the stationary distribution.

Assumption 3.5 (i) The probability measures Q(u; ·) are uniformly positive in the sense

that Q(u; x) ≥ δ for some δ > 0 and all u ∈ Rm and every configuration of individual

states x.

(ii) The law of the random variables ηt is defined through a strictly positive density on R
and the random variables γt are uniformly bounded.

(iii) The measure Π2(ξ; ·) is absolutely continuous with respect to Lebegues measure.
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(iv) For any two sequences {ξn}n∈N and {ξ̂n}n∈N converging to the same limit, the measures

Π2(ξn; ·) and Π2(ξ̂n; ·) are not singular to each other for all sufficiently large n.

We are now going to state our main result. Its proof requires some preparation and will

be carried out in Section 4.2 below.

Theorem 3.6 Under Assumptions 2.9, 3.1 and 3.5 the Markov chain {ξt}t∈N has a unique

stationary distribution µ, and

lim
T→∞

1

T

T−1∑
t=0

f(ξt) =

∫
f(ξ)µ(dξ) Pξ-a.s.

for all bounded continuous functions f and each initial state ξ ∈ E.

Let us comment on our Assumption 3.5. Part (i) is satisfied if, for instance, the agents

take their decisions independently of each other given the actual performance vector u and

if the choice functions take the modified logit form

qa,i(u) = (1− δ̂)
eui

eu1 + · · ·+ eum +
δ̂

m
for some δ̂ > 0. (26)

Part (iii) implies that the joint distribution of (St, St−1, Ut) given the past is absolutely

continuous to Lebesgue measure. This would be easy if we would add independent and

identically distributed “measurement errors” εi
t with absolutely continuous distributions in

the definition of the performance measures, i.e, if we would consider performance processes

of the form

U i
t = αU i

t−1 + (1− α)P i
t + εi

t.

If, in addition, we would require that the density of εi
t is strictly positive, then Π2(ξ; ·)

would even be equivalent to Lebesgue measure on E, and the proof of uniqueness would be

straightforward. We prefer, however, to retain the precise definition (15) of the performance

process. In such a situation, Assumption 3.5 (iii) can be justified in terms of conditions

on the experts’ profiles. The conditional distribution of Ut given St 6= St−1 and the past

is absolutely continuous if the conditional distribution of the random vector (Ri
t)i∈I is

absolutely continuous, given the past up to time t − 1 if St−1 6= St−2. This is clearly the

case under mild conditions on the distribution of (αi
t, β

i
t , F

i
t )i∈I . By Assumption 3.5 (i), each

empirical distribution of individual states has strictly positive probability. Hence it follows

from (5) and Assumption 3.5 (ii) that the conditional distribution of (Ri
t)i∈I , given the

past up to time t− 1 and also the logarithmic stock price St, is still absolutely continuous

if St 6= St−1 6= St−2. Thus, (14) shows that the random vector (U i
t )t∈N has an absolute
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continuous distribution, given St, St−1 and the past up to time t − 1 if St 6= St−1 6= St−2.

The latter condition holds almost surely, and so Π2(ξ; ·) has a density. Assumption 3.5 is

satisfied if, for instance, at least some components of the experts’ profiles have continuous

densities.

Example 3.7 Let us return to the situation described in Example 2.2 where the agents can

choose between two fundamentalist and a chartist trading strategy, and assume that ca
t ≡ 1

and that the random variable γ0 = (α1
0, α

2
0, β

3
0) has a continuous density g. It follows from

the transformation formula for Lebesgue integrals that the conditional distribution of ξt+2,

given ξt has a density fξt and that the set {fξt > 0} is open. By direct calculation using

Assumption 3.5 (ii) and the fact that γ0 has a continuous density we see that there exists

ζ ∈ {fξt > 0} and ε > 0 such that

ζ ∈ {fξ̂ > 0} for all ‖ξt − ξ̂‖ < ε.

Thus, for any two sequences {ξn}n∈N and {ξ̂n}n∈N converging to the same limit ξ∞ there

exists ζ ∈ {fξ∞ > 0} and N ∈ N such that

ζ ∈ {fξn > 0} ∩ {fξ̂n
> 0} for all n ≥ N.

This shows that Assumption 3.5 (iv) is satisfied because the sets {fξn > 0} and {fξ̂n
> 0}

are open.

Assumption 3.5 does not yet guarantee that the price-performance measure admits a

unique stationary distribution. Hence additional arguments will be needed in order to

establish the uniqueness result.

Remark 3.8 Some of the assumptions in Theorems 3.4 and 3.6 were made primarily for

analytical convenience and to reduce notational complexity. They can be relaxed without

altering the model’s qualitative features. For instance, we can allow more general patterns

of trend chasing: with a suitable modification of our stability condition (25) we may as well

assume that the experts’ benchmarks are of the form

R̂i
t+1 := St + αi

t[F
i − St] +

l∑
j=0

βi,j
t [St−j − St−j−1]

for some l ∈ N. Our results also carry over to models in which the dynamics of the

experts’ assessments of fundamental values are described by mean reverting random walks

fluctuating around long run fundamentals F
i
.
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4 Proof of Existence and Uniqueness

The key to our results on existence and uniqueness of stationary distributions will be

a contraction property in two steps for the two-dimensional logarithmic price process

(St, St−1)t∈N; one step is not enough, due to the deterministic dependence in the second

component. Given a state ξt = (St, St−1, Ut) and two successive values (τt+1, τt+2) of the

environment, the resulting prices (St+2, St+1) after two iterations are specified by the map

W (ξt, τt+1, τt+2) := (F (·, St, τt+2) ◦ F (St, St−1, τt+1), F (St, St−1, τt+1)) .

Lemma 4.1 Under Assumption 3.1 the map W is a mean contraction in the sense that
∫ ∫

‖W (ξ, τ1, τ0)−W (ξ̂, τ1, τ0)‖Z(V (ξ, τ0); dτ1)Z(ξ; dτ0) ≤ r‖ξ − ξ̂‖ (27)

for some r < 1 and all ξ, ξ̂ ∈ E.

Proof. Let us introduce a 2× 2 matrix At and a 2-dimensional vector Bt by

At :=

(
1− αt + βt −βt

1 0

)
and Bt :=

(
F t + ηt

0

)
,

respectively, where the quantities αt, βt, and F t are defined in (9). With this notation,

W (ξt, τt, τt−1) = At+1At

(
St

St−1

)
+ At+1Bt + Bt.

Let us now put

%0 := sup
u
|1− α(u) + β(u)| and %1 := sup

u
|β(u)| (28)

and

A :=

(
%0 %1

1 0

)

Then the absolute value of each entry in the matrix
∫

AtZ(ξt; dτ) is bounded from above

by the corresponding entry of the matrix A because

∣∣Eξt [1− αt+1 + βt+1]
∣∣ = |1− α(Ut) + β(Ut)| ≤ %0 and

∣∣Eξt [βt]
∣∣ = |β(Ut)| ≤ %1.

The absolute value of each entry of the matrix
∫

At+1AtZ(V (ξt, τt); dτt+1)Z(ξt; dτt) is then

bounded by the respective entry of the matrix

A2 =

(
%2

0 + %1 %0%1

%0 %1

)
.
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This proves our assertion because, due to Assumption 3.1 the row-sum norm of the latter

matrix is strictly less than 1. 2

For the existence result we need the Feller property of the stochastic kernel Π and here

we use our Assumption 2.10 on the stochastic kernel Q.

Lemma 4.2 Under the assumptions of Theorem 3.4 the Markov process {ξt}t∈N has the

Feller property.

Proof. Let {ξn}n∈N be a sequence in E such that limn→∞ = ξ. It is enough to show that

lim
n→∞

Πf(ξn) = Πf(ξ)

for every bounded Lipschitz continuous function f : E → R. To this end, we first apply

the Lipschitz property (23) of the product kernel Q in order to obtain

|Πf(ξn)− Πf(ξ)| =

∣∣∣∣
∫

f ◦ V (ξn, τ)Z(ξn, dτ)−
∫

f ◦ V (ξ, τ)Z(ξ, dτ)

∣∣∣∣

≤
∫
|f ◦ V (ξn, τ)− f ◦ V (ξ, τ)|Z(ξ, dτ) + L‖f‖∞‖ξn − ξ‖

where ‖ · ‖∞ denotes the usual sup-norm. Hence it suffices to show that

lim
n→∞

∫
|f ◦ V (ξn, τ)− f ◦ V (ξ, τ)|Z(ξ, dτ) = 0.

To this end, we fix ε > 0 and a compact set K such that Z(ξ; Kc) < ε. Denoting by L(f)

the Lipschitz constant of the map f , we obtain

∫
|f ◦ V (ξn, τ)− f ◦ V (ξ, τ)|Z(ξ, dτ) ≤ L(f)

∫

K

|V (ξn, τ)− V (ξ, τ)|Z(ξ, dτ) + 2ε‖f‖∞
≤ L(f) sup

n,τ∈K
‖V (ξn, τ)− V (ξ, τ)‖+ 2ε‖f‖∞.

Hence the assertion follows from uniform continuity of V on compact sets. 2

4.1 Proof of Existence of Stationary Distributions

Let Pξ denote the distribution of the Markov chain {ξt}t∈N with initial state ξ. We are now

going to show that the sequence {ξt}t∈N is tight under Pξ, i.e., that

lim
c→∞

sup
t
Pξ[‖ξt‖ ≥ c] = 0.

This tightness property together with the Feller property of the stochastic kernel Π will

imply that the process {ξt}t∈N admits an invariant measure.
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Proposition 4.3 If the assumptions of Theorem 3.4 (i) are satisfied, then the sequence

{ξt}t∈N is tight under Pξ.

Proof. Let us first show that the sequence {St}t∈N is tight, i.e., that

lim
c→∞

sup
t
Pξ[|St| ≥ c] = 0. (29)

To this end, we put % := supu E[|F t||Ut = u]. Using the notation introduced in (28) we

define an almost surely non-negative stochastic process {St}t∈N by Si = |Si| (i = 0, 1) and

St+1 =
1∑

i=0

%iSt−i + % + |ηt| (t = 2, 3, . . .).

Since E[|1−α(u)+β(u)||St] ≤ %0, E[β(u)|St−1] ≤ %1, and E|Si| = ESi for i = 0, 1 it follows

by induction that

E|St+1| ≤ E [|1− α(u) + β(u)||St|] + E [β(u)|St−1|] + % + E|ηt|
≤ E [|St| · E[|1− α(u) + β(u)||St]] + E [|St−1| · E[|β(u)||St−1]] + % + E|ηt|
≤ %0E|St|+ %1E|St−1|+ % + E|ηt|
≤ ESt+1

for all t ∈ N. Thus, (29) follows from Tchebychev’s inequality if we can show that

sup
t
ESt < ∞. (30)

In order to prove (30), we put ζt = (St, St−1), and introduce a sequence {Bt}t∈N of inde-

pendent and identically distributed 2-dimensional random vectors and a 2 × 2 matrix A

by

Bt :=

(
% + |ηt|

0

)
and A :=

(
%0 %1

1 0

)
,

respectively. For any initial price vectors x = (S1, S0) and y = (Ŝ1, Ŝ0), the R2-valued

stochastic sequences {ζx

t }t∈N and {ζy

2t}t∈N starting in x and y, respectively, satisfy almost

surely the recursive relations

ζ
x

t+1 = Aζt + Bt and ζ
y

2t = A2ζ2t−2 + AB2t−2 + B2t−1 (t ∈ N).

In particular, we have the explicit representation

ζ
x

t+1 =
t−1∑
j=0

(
t−1∏

i=t−j

A

)
Bt−j−1 + At−1x. (31)
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By Assumption 3.1, the row-sum norm of the matrix A2 are strictly smaller than one.

Moreover, due to Assumption 2.9 the random variables AB2t−2 + B2t−1 (t ∈ N) are inde-

pendent, identically distributed and integrable. Thus, independently of the initial value

ζ0 = y ∈ R2, the sequence {ζy

2t}t∈N converges in distribution and in L1 to

ζ :=
∞∑

t=1

(ABt + Bt+1)
t−1∏
j=1

A2j

due to a fundamental convergence theorem by Kesten (1973), see also Embrechts, Klüppel-

berg and Mikosch (1997), Proposition 8.4.3. Now, we wish to show that the entire sequence

{E|ζx

t |}t∈N converges to E|ζ| independently of the starting point. To this end, it suffices to

show that

lim
t→∞

E|ζy

2t+1| = E|ζ|
This, however, follows from the convergence of the processes {ζx

2t}t∈N because

ζ
y

2t+1 = ζ
Ay+B1

2t P-a.s.

Thus,

lim
t→∞

E|ζx

t | = E|ζ|,
and this shows (29). We are now ready to prove tightness of the sequence {ξt}t∈N. Due to

(29) and because of Theorem 3.7.2 in Ethier and Kurtz (1986), there exists, for any ε > 0,

a compact set K ⊂ R∞ such that

Pξ[{St}t∈N ∈ K] ≥ 1− ε. (32)

Since the random variables (αi
t, β

i
t , F

i
t ) (t ∈ N) is independent of the price process and

because P is continuous, it follows from (32) and from the compact containment condition

(Ethier and Kurtz (1986), Remark 3.7.3) that there exists a compact set K̃ such that

P[{(St, St−1, Ut)}t∈N ∈ K̃] ≥ 1− ε.

This proves our assertion. 2

We are now ready to prove existence of a stationary distribution for the Markov chain

{ξt}t∈N.

Proof of Theorem 3.4: Since the sequence of probability measures {Πt(ξ; ·)}t∈N is tight

for any starting point ξ ∈ E, the sequence {νξ
t }t∈N defined by

νξ
t :=

1

t

t∑
j=1

Πj(ξ; ·) (33)
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is tight, too. Hence, it follows from Prohorov’s theorem (Shiryaev (1989), Theorem 3.2.1)

that the sequence {νξ
t }t∈N has an accumulation point ν with respect to the topology of

weak convergence for probability measures on E. Since the stochastic kernel Π has the

Feller property, it follows from standard arguments that ν is a stationary distribution for

our Markov chain; see, e.g. Meyn and Tweedie (1993), Chapter 12 for details. 2

4.2 Proof of Uniqueness of Stationary Distributions

In this section we establish the ergodicity result stated in Theorem 3.6. Our proof is based

on a comparison argument. In a first step we use results from the theory of iterated function

systems in order to show that a suitably transformed Markov chain {ξ̂t}t∈N with state space

Ê := [−1, 1]2 × Rm

converges in distribution to a unique stationary measure. In a second step we show that

convergence of the sequence {ξ̂t}t∈N implies that the price-performance process {ξt}t∈N has

a unique stationary distribution.

In order to describe the dynamics of the sequence {ξ̂t}t∈N we fix a strictly increasing

continuously differentiable transformation function G : R → [−1, 1] with continuously

differentiable inverse whose derivative G′ satisfies |G′| ≤ 1, and introduce a vector of

modified profit functions P̂ (·, τ) : Ê → Rm by

P̂ (S1, S0, τ) := P (·, S1, τ) ◦G ◦ F (S0, S1, τ)

where τ = (x, γ, η) and F is defined in (10). The map P̂ may be viewed as the experts’ profit

function if logarithmic stock prices are transformed by G. Since the random variables γt

are uniformly bounded, the modified profit functions P̂ (·, τ) : [−1, 1]2 → Rm+1 are globally

Lipschitz continuous:
∣∣∣P̂ (S1, S0, τ)− P̂ (S̃1, S̃0, τ)

∣∣∣ ≤ R‖(S1, S0)− (S̃1, S̃0)‖. (34)

The evolution of the sequence

ξ̂t = (Ŝt, Ŝt−1, Ût)

is now described by the stochastic difference equation

ξ̂t+1 = V̂ (ξ̂t, τt+1) where τt+1 ∼ Z(ξ̂t; ·),
and the map V̂ is given by

V̂ (ξ̂t, τt+1) :=




G ◦ F (Ŝt, Ŝt−1, τt+1)

Ŝt

αÛt + (1− α)P̂ (Ŝt, Ŝt−1, τt+1)


 .
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Let us now show that the transformed Markov chain {ξ̂t}t∈N is ergodic.

Proposition 4.4 The Markov process {ξ̂t}t∈N converges in law to a unique stationary mea-

sure.

As a first step towards the proof we can apply similar arguments as in the proof of

Proposition 4.3 to show that the Markov chain {ξ̂t}t∈N is tight, and that it has a stationary

distribution µ̂. In order to prove uniqueness we measure an expert’s performance on a

different scale. More specifically, we consider a suitably “rescaled” Markov chain {ξ̂L
t }t∈N

which coincides in law with the Feller process {ξ̂t}t∈N, and whose convergence in distribution

can be shown by standard arguments from the theory of iterated function systems. In order

to define the {ξ̂L
t }t∈N for a fixed L > R, we introduce the maps

P̂L(Ŝ1, Ŝ0, τ) :=
1

L
P̂ (Ŝ1, S̃0, τ).

In view of (34) these maps are contractions uniformly in τ . For θ := R
L

< 1 we have

∣∣∣P̂L(Ŝ1, Ŝ0, τ)− P̂L(S̃1, S̃0, τ)
∣∣∣ ≤ θ‖(Ŝ1, Ŝ0)− (S̃1, S̃0)‖. (35)

Let us now put

ξ̂L
t = (ŜL

t , ŜL
t−1, Û

L
t ),

and consider the Markov chain {ξ̂L
t }t∈N on Ê that is defined through the non-linear recursive

relation

ξ̂L
t+1 = V̂ L(ξ̂L

t , τt+1) where τt+1 ∼ ẐL(ξ̂L
t ; ·) := Q(LÛL

t ; ·)⊗ ν(·), (36)

and the map V̂ L is defined by

V̂ L(ξ̂L
t , τt+1) :=




G ◦ F (ŜL
t , ŜL

t−1, τt+1)

Ŝt

αÛL
t + (1− α)P̂L(ŜL

t , ŜL
t−1, τt+1)


 .

Given the initial performance levels 1
L
u and u for the processes {ÛL

t }t∈N and {Ût}t∈N, respec-

tively, and given the evolution of both the modified logarithmic price process {(ŜL
t , ŜL

t−1)}t∈N
and the environment {τt}t∈N, an induction argument shows that

ÛL
t+1 = αÛL

t +
1− α

L
P̂ (Ŝt, Ŝt−1, τt) = α

1

L
Ût +

1− α

L
P̂ (Ŝt, Ŝt−1, τt) =

1

L
Ût+1.

As shown by the following lemma, our rescaling does not alter the distribution of the price

process, if we modify the agents choice probabilities according to (36).

23



Lemma 4.5 Given the initial vectors (S1, S0, Lu) and (S1, S0, u) for the processes {ξ̂t}t∈N
and {ξ̂L

t }t∈N, respectively, we have

(
Ŝt, Ŝt−1,

1

L
Ût

)
Law
=

(
ŜL

t , ŜL
t−1, Û

L
t

)
(t ∈ N). (37)

Proof. The assertion, is obvious for t = 1. Let us therefore assume that (37) holds for all

k ≤ t and denote by µ̂t and µ̂L
t the distribution of the random vectors

(
Ŝt, Ŝt−1,

1
L
Ût

)
and(

ŜL
t , ŜL

t−1, Û
L
t

)
, respectively. For any bounded continuous function f we obtain

∫
fdµ̂L

t+1 =

∫ ∫
f ◦ V̂ L(ŜL

t , ŜL
t−1, Û

L
t , τt+1)Z

L(ŜL
t , ŜL

t−1, Û
L
t ; dτt+1)dµ̂L

t

=

∫ ∫
f ◦ V̂ L(Ŝt, Ŝt−1,

1

L
Ût, τt+1)Z(Ŝt, Ŝt−1, Ût; dτt+1)dµ̂t

=

∫
fdµ̂t+1

where the second equality follows from the induction hypothesis along with (36). This

shows

(ŜL
t+1, Ŝ

L
t , ÛL

t+1)
Law
= (Ŝt+1, Ŝt, Ût+1).

2

In order to prove convergence of the transformed Markov chain {ξ̂t}t∈N it is now enough

to show that the rescaled process {ξ̂L
t }t∈N converges in distribution as t → ∞. Thus,

Proposition 4.4 is a direct consequence of the following lemma.

Lemma 4.6 The Markov chain {ξ̂L
t }t∈N converges in law to a unique limiting distribution.

The proof uses results from the theory of iterated function systems. An iterated function

system is of the form

Σ = (M1,M2, V, Z)

where M1 and M2 are measurable spaces, where V : M1 ×M2 → M1 is a measurable map

and where Z is a stochastic kernel from M1 to M2. Such a system Σ induces an associated

Markov chain {ξt}t∈N on the state space M1 by the recursive relation

ξt+1 = V (ξt, %t+1) where %t+1 ∼ Z(ξt; ·).

Note that the conditional distributions of the driving stochastic process {%t}t∈N are allowed

to depend on the current states of the induced process {ξt}t∈N. This feedback effect is crucial

for our purposes. Without it, our notion of an iterated function system would reduce to a
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random dynamical system in the sense of Arnold (1998) where “noise is something given

to us and not at our disposal”.

An iterated function system is called mean contractive if M1 is a metric state space

with metric d and if there exists θ < 1 such that
∫

d(V (ξ, %), V (ξ̂, %))Z(ξ; d%) ≤ θd(ξ, ξ̂) (38)

for all ξ, ξ̂ ∈ M1. Convergence results for Markov chains associated to mean-contractive

iterated function systems have been established under a Lipschitz condition on the trans-

formation V and under the Lipschitz condition

‖Z(ξ; ·)− Z(ξ̂; ·)‖TV ≤ Rd(ξ, ξ̂)

on the stochastic kernel Z with respect to the total variation norm ‖ · ‖TV by Barnsley

and Elton (1988), Barnsley et al. (1988) and Norman (1972) among others. The results

by Barnsley et al. (1988) and Norman (1972) easily extend to systems which are mean-

contractive in two steps as in (27). However, they do not apply to the iterated function

system defined through (20) and (21). The first reason is that the profit functions in (14)

and thus the map V in (20) are not global Lipschitz continuous. The profit functions are

only locally Lipschitz continuous, i.e., Lipschitz continuous on compact sets. Secondly,

Barnsley et al. (1988) study iterated function systems where M2 is a finite set, while

Norman (1972) allows for an uncountable set M2 but assumes that the state space M1 of

the associated Markov chain is bounded. Neither condition is satisfied in our case. This is

why we first analyze the modified chain {ξ̂t}t∈N, and then compare {ξt}t∈N to {ξ̂t}t∈N.

Proof of Lemma 4.6: By (35) and (36), the process {ξ̂L
t }t∈N can be viewed as the

Markov chain associated to the mean-contractive iterated function system

Σ̂L := (Ê,R× Γ× Am, V̂ L, ẐL).

In order to show that the Markov chain {ξ̂L
t }t∈N has a unique invariant measure, we denote

by µ̂L,ξ
t the conditional distribution of the random variable ξ̂L

t , given ξ̂L
0 = ξ, and f : Ê → R

is a bounded continuous function.

In view of (37) the Feller process {ξ̂L
t }t∈N on the state space Ê has an stationary dis-

tribution µ̂L. For each ε > 0 there exists a compact set K ⊂ Ê such that µ̂L(Kc) < ε.

Since
∣∣∣∣
∫

fdµ̂L,ξ
t −

∫
fdµ̂L

∣∣∣∣ ≤ sup
ξ1,ξ2∈K

∣∣∣∣
∫

fdµ̂L,ξ1
t −

∫
fdµ̂L,ξ2

t

∣∣∣∣ + 2‖f‖∞µ̂L(Kc)
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it suffices to prove existence of a constant T ∈ N that satisfies

sup
t≥T

sup
ξ1,ξ2∈K

∣∣∣∣
∫

fdµ̂L,ξ1
t −

∫
fdµ̂L,ξ2

t

∣∣∣∣ < ε. (39)

In fact, it is enough to prove vague convergence of the sequence {µ̂L,ξi
t }t∈N to µ̂L, i.e., to

prove (39) for all Lipschitz continuous functions with compact support.

Since the modified profit functions are uniformly bounded and because α < 1 there

exists a constant K̂ < ∞ such that

sup
ξ∈K

Pξ{|ξ̂L
t | ≤ K̂ for all t ∈ N} = 1.

For all starting points ξ ∈ K, the Markov chain {ξ̂t}t∈N may thus be viewed as a Feller

process associated to a mean-contracting iterated function system on the bounded state

space Ẽ. Hence (39) follows from Theorem 4.1.1 in Norman (1972).

The precise argument goes as follows: Let {ξ̃L
t }t∈N the Markov chain on the compact

state space Ẽ which is defined through the recursive relation

ξ̃L
t+1 = Ṽ (ξ̃L

t , τt+1) where τt+1 ∼ ẐL(ξ̃L
t ; ·)

and the map Ṽ is given by

Ṽ (ξ̃L
t , τt+1) :=




G ◦ F (S̃L
t , S̃L

t−1, τt+1)

S̃t

max
{

min
{(

αŨL
t + (1− α)P̂L(S̃L

t , S̃L
t−1, τt+1)

)
, K̂

}
,−K̂

}


 .

Given a common initial value ξ ∈ K for the processes {ξ̂L
t }t∈N and {ξ̃L

t }t∈N we have

ξ̂L
t

Law
= ξ̃L

t for all t ∈ N.

The Feller process {ξ̃L
t }t∈N on the bounded state space Ẽ may be viewed as the Markov

chain associated to the iterated function system

Γ̃ =
(
Ẽ,R× Γ× Am, Ṽ , ẐL

)
.

This system is mean contractive of order two in the sense of (27). Moreover (23) yields

Lipschitz continuity of the stochastic kernel ẐL:

‖ẐL(ξ1; ·)− ẐL(ξ2; ·)‖V ≤ LL̂‖ξ1 − ξ2‖.
Since Q(u; ·) ≥ δ, the iterated function system Γ̃ satisfies the assumptions of Theorem 4.1.1

in Norman (1972). Hence

lim
t→∞

sup
ξ1,ξ2∈Ẽ

∣∣∣∣
∫

fµ̃ξ1
t −

∫
fµ̃ξ2

t

∣∣∣∣ = 0
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for every Lipschitz continuous function f : Ẽ → R. Thus, (39) is satisfied. This shows that

the sequence {ξ̂L}t∈N and hence the modified Markov chain {ξL
t }t∈N converges in law to a

unique limiting distribution.

We are now ready to prove our uniqueness result for the price-performance process. The

proof will be based on a general comparison argument for Feller kernels which is given in

the appendix.

Proof of Theorem 3.6: In order to show uniqueness of the stationary distribution we

have to prove that the transition kernel Π̂ of the Markov chain {ξ̂t}t∈N with closed state

space Ê = [−1, 1]2×Rm+1 satisfies the assumptions of Theorem A.1. In view of Proposition

4.3 and Proposition 4.4 we need to show that

Π2(ξ; Ê) > 0 for all ξ ∈ E and that Π̂2(ξ; ·) ¿ Π2(ξ; ·) for all ξ ∈ E.

The first condition holds because the law of the random variable ηt has a strictly positive

density on R. The second condition follows from Assumption 3.5 (iii) along with strict

monotonicity of the transformation function G. Indeed, let us fix a state ξt ∈ Ê. By

Assumption 3.5 (ii) and because G is strictly increasing, the transformation formula for

Lebesgue integrals shows that the conditional distributions of the vectors ζt := (St+1, St+2)

and ζ̂t := (Ŝt+1, Ŝt+2) are defined through strictly positive densities fξt and f̂ξt on R2 and

[−1, 1]2, respectively. By Assumption 3.5 (iii),

Π2(ξt; A) =

∫

A

gξt,ζ(u)fξt(ζ)dζ and Π̂2(ξt; A) =

∫

A

gξt,ζ(u)f̂ξt(ζ)dζ

where gξt,ζt denotes the density of the conditional distribution of the performance level

Ut+2, given ξt and ζt. For all ξ̂ ∈ Ê, this yields

Π̂2(ξ; ·) ≈ Π2(ξ; ·) on Ê.

This proves uniqueness of the stationary distribution. In view of the tightness result in

Proposition 4.3, uniqueness implies convergence in (24) for any initial state ξ and every

bounded continuous function f because any weak limit of the sequences {νξ
t }t∈N in (33) is

a stationary distribution for the transition kernel Π. 2

5 Numerical Simulations

What we have shown up to this point is that with both fundamentalists and chartists

present we can guarantee the existence of a unique stationary distribution if the probability
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that agents become chartists is not too high. However, in addition to knowing that their

presence does not jeopardize the existence of a limit distribution, it is also interesting to

see how the characteristics of that distribution are affected by the presence of chartists.

We will see, using simulations of a simple example, that chartists add to the noise in

the system and that bubbles and crashes appear. The translation of this in terms of the

stationary distribution is increased kurtosis and variance. Thus, loosely speaking chartists

increase the volatility of the price process. The switching of agents’ expectations between

fundamentalist and chartist provides an answer to the “excess volatility” puzzle mentioned

in the introduction. The simulations enable us to see this clearly.

We consider a model with two fundamentalists and one trend chaser. Specifically, we

put

R1
t := St−1+

3

4
(F 1−St−1), R2

t := St−1+
3

4
(F 2−St−1) and R3

t := St−1(ω)+
1

2
(St−St−1)

where F 1 = −F 2 = 1
2
. The discount factor is α = 0.9, and the random variables ηt follow

a normal distribution with mean 0 and variance 0.5:

ηt ∼ N

(
0,

1

2

)
.

There are 10 market participants adopting their investment strategies independently of
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Figure 1: Empirical stationary distribution of logarithmic asset prices: benchmark model without a chartist
(dotted line); model with chartist (solid line).

each other, given the gurus’ current performances. The choice functions take the logit form

qa,i(u) =
eγiui

eγ1u1 + eγ2u2 + eγ3u3
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Figure 2: Empirical stationary distribution of logarithmic asset prices (solid line) and a normal distribution
with the same mean and variance (dotted line).

where (γ1, γ2, γ3) = (1, 1, 5) denotes the relative weights of the experts’ performance. In

order to suitably limit the impact of trend chasing, we bound the probability with which

the agents follow a trend chaser by 3
7
. In view of Example 3.3 this guarantees that the

price performance process has a stationary distribution. Our simulations suggest that the

stationary distribution is also unique though the experts’ profiles are not random as in

Example 3.7.

The presence of chartists is revealed in the structure of the limiting empirical distribution

µ∗ of logarithmic asset prices. It turns out that the trend chasers increase both the variance

and the kurtosis of µ∗. Loosely speaking, the chartist amplifies the noise generated by

random liquidity trading. Specifically, in a benchmark model without a chartist we found

an empirical mean and variance of 0 and 0.66, respectively, and a kurtosis of approximately

3. This suggest that in the absence of trend chasing, empirical averages of logarithmic stock

prices are asymptotically N(0, 0.61) distributed. The presence of trend chasers increases

both the variance (σ2 ≈ 0.89) and the kurtosis (κ ≈ 3.97) and thickens the tails of the

distribution. In view of the considerable excess kurtosis we do not expect µ∗ to be normal.

This is confirmed by Figure 5 which shows the right tails of the stationary distributions in

a reference model without a chartist (dashed line), in a model with a trend chaser (solid

line) and the tails of an N(0, 0.89)-distribution (dotted line).

The presence of chartists also leads to the temporary occurrence of bubbles and crashes.

A typical bubble is displayed in Figure 3. Bubbles do not evolve gradually, but occur

rather spontaneously. This suggest that they are triggered by an unusually high liquidity
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Figure 3: A typical bubble path.
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Figure 4: F raction of chartists associated to the bubble in Figure 3.

demand leading to an unusually high increase in prices. An increase in the price above the

“optimistic fundamental value” decreases the performance of the fundamentalists, but may

increase a chartist’s performance. This can trigger spontaneous herd behavior. During a

bubble the profit generated by the fundamentalists is negative, and so the agents have an

increasing probability of following the chartist, and typically they do so. Thus, the fraction

of trend chasers is high during a bubble, while it is normally quite low; see Figure 4. Since

we limit the probability with which the agents adopt a trend chasing strategy, persistent

bubbles lasting for many periods are unlikely, and this is what we observe in our simulation.

On average, a bubble lasts for 15-20 periods.

The presence of bubbles which burst fairly rapidly is due to the restriction that we
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Figure 5: Right tails of the empirical stationary distributions in a model with (solid line) without (dotted
line) a chartist and the tails of a centered normal distribution (dashed line) with variance 0.89 (dotted line).

put on the probability of following the chartist rule. There is, as we have observed, a self

reinforcing trend towards chartism as soon as the price moves out of the limits defined

by the fundamental values. However there is always a sufficiently high probability that

agents will again adopt fundamentalist rules, and this prevents the process from exploding

without limit.

6 Conclusion

Many explanations have been offered for the existence of bubbles, crashes, and excess

volatility of the prices of financial assets. These vary from endowing individuals with

substantial memories and complicated forecasting rules with sophisticated lag structures,

to the presence of a complicated process generating external shocks to the system. Both

such approaches have been used in representative agent models with rational expectations.

The failure of these models to capture some of the salient features of financial time series is

well documented. An alternative approach has been to allow for heterogeneous agents. A

classic example of this is given by the contributions of De Long et al. (1989). The objection

to this sort of analysis is that it involves assuming that some agents are systematically

wrong. A further avenue is that opened by Brock and Hommes (1997), who show that the

process generating prices can become unstable if agents switch to simple forecasting rules

once prices are close to fundamental values. The reason for their switch to the simple rule

is that it is less costly than the more complicated rule that led the process to converge in

the first place.
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Our approach is rather different. The driving feature of the price process is the switching

of agents from one forecasting rule to the other. This switching can be attributed to the

relative success of the rules. The switching process has the characteristic that agents

can, at any point in time, herd on one rule. When this happens agents forecasts are self

reinforcing. Thus, agents are not systematically wrong, and their behaviour cannot be

described as irrational. Furthermore, there is freedom in specifying the function which

maps past profits from the different forecasting rules into the probability of choosing those

rules. This makes our specification rather general.

Using this simple but general framework, we are able to capture certain stylized facts

of empirical financial price time series and to show the existence of an equilibrium which

is different from those commonly used in the literature.

An important feature of the model is the inclusion of chartists or trend chasers who

may induce temporary bubbles and crashes. Whilst this introduces such characteristics

as “excess volatility” and “long memory” in the price process, see Kirman and Teyssiere

(2002), it presents a major difficulty from an analytical point of view. When chartists

predominate they may generate bubbles but there is no a priori bound on the levels that

prices may attain during a bubble. Thus it is not obvious that the price process will not

explode. Nevertheless we show that the stochastic process that prices follow is ergodic

and has a unique invariant distribution Thus, although the process does not converge

pathwise to any steady state there is a certain overall stability in its behavior. The invariant

distribution reflects the presence of the chartists since it has, for example, fatter tails than

the distribution with only fundamentalists present. Viewing the problem in this way shows

how one can reconcile such commonly reiterated and empirically confirmed statements

as “in the short run fundamentals have no predictive power,” whereas “in the long run

fundamentals play an important role.”

A An ergodicity criterion for Markov chains

Our proof of Theorem A.1 is based on a comparison of the Markov chain {ξt}t∈N with

a modified chain {ξ̂t}t∈N whose convergence is established by standard methods. In this

section we formulate this comparison argument in a general framework.

Theorem A.1 Let Π be a Feller kernel on a complete separable metric state space (E, d)

such that dΠm(x; ·) = fxdλ for some m ∈ N and some reference measure λ. Let Π̂ be a

Feller kernel on a closed subspace Ê ⊂ E, and assume that the following conditions hold:

(i) The kernel Π̂ has a unique invariant distribution µ̂.
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(ii) The law Π̂m(x; ·) is absolutely continuous with respect to Πm(x; ·).
(iii) The Markov chain Π satisfies Πm(x; Ê) > 0 for all x ∈ E.

(iv) For any two sequences {xn}n∈N and {yn}n∈N in Ê converging to the same limit, the

measures Πm(xn; ·) and Πm(yn; ·) are not singular to each other for all sufficiently

large n.

Then Π has at most one stationary distribution µ.

Proof. Let I := {µ : µΠ = µ} be the convex set of all invariant probability measures

for Π. Each µ ∈ I has a unique representation as a mixture over the set Ie of all ergodic

invariant measures. That is, each µ allows a unique representation of the form

µ(·) =

∫

Ie

ν(·)π(µ; dν),

and distinct probability measures in Ie are mutually singular; see, e.g., Theorem A.1.1 in

Kifer (1986). Now suppose that Π has more than one stationary distribution. Then Π has

at least two ergodic stationary measures µ1 and µ2. In this case Π is decomposable. That

is, there exist measurable sets Ci (i = 1, 2) such that

Π(ξ; Ci) = δi,j for all ξ ∈ Cj and such that C1 ∩ C2 = ∅; (40)

see, e.g., Breiman (1968), Theorem 7.6. Let Ci be the topological closure of the set Ci.

Since Π has the Feller property, the Portmonteau theorem yields

Π(xi; Ci) ≥ lim sup
n→∞

Π(xi
n; Ci) = 1

for each sequence {xi
n}n∈N in Ci that converges to xi ∈ Ci. Thus, the sets Ci are stochas-

tically closed with respect to Π.

We put Di := Ci ∩ Ê. By (iii) µi(Ê) > 0, and so µi(Di) > 0. In particular, Di 6= ∅
(i = 1, 2). For x ∈ Di ⊂ C i we have Π(x; C

c

i) = 0. Hence it follows from (ii) that

Π̂(x; Di) = 1,

and so D1 and D2 are stochastically closed with respect to Π̂. For any choice of xi ∈ Di

(i=1,2), the weak limit νi of the sequence {Π̂n(xi; ·)}n∈N is a measure on the closed set Di.

But ν1 = ν2 = µ̂, due to (i). Thus, D1 ∩D2 6= ∅. In particular, C1 ∩ C2 6= ∅. Hence, there

exist sequences {xi
n}n∈N in Ci for i = 1, 2 which converge to the same limit x ∈ C1 ∩ C2.

For any n ∈ N, the measures µ1
n := Πm(x1

n; ·) and µ2
n := Πm(x2

n; ·) are singular because

xi
n ∈ C i. This, however, contradicts assumption (iv), and this shows that there is at most

one stationary distribution for Π. 2
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Kirman, A. (1998): “On the Transitory Nature of Gurus,” Working paper, EHESS and
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