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1. IntroductionThe problem of pricing and hedging of contingent claims is well understood in thecontext of arbitrage-free models which are complete. In such models every contingentclaim is attainable, i.e., it can be replicated by a self-�nancing trading strategy. The costof replication de�nes the price of the claim, and it can be computed as the expectation ofthe claim under the unique equivalent martingale measure.In an incomplete market the equivalent martingale measure is no longer unique, andnot every contingent claim is attainable. Such claims carry an intrinsic risk. There is aninterval of arbitrage-free prices, given by the expected values under the di�erent equivalentmartingale measures. It is still possible to stay on the safe side by using a \superhedging"strategy, cf. El Karoui and Quenez (1995) and Karatzas (1997). The cost of carryingout such a strategy is given by the supremum of the expected values over all equivalentmartingale measures. The corresponding value process is a supermartingale under anyequivalent martingale measure, and the superhedging strategy is determined by the \op-tional decomposition" of such a universal supermartingale, cf. Kramkov (1996). But inmany situations the cost of superhedging is too high from a practical point of view.What if the investor is unwilling to put up the initial amount of capital required by aperfect hedging or superhedging strategy? What is the maximal probability of a successfulhedge the investor can achieve with a given smaller amount? Equivalently one can askhow much initial capital an investor can save by accepting a certain shortfall probability,i.e., by being willing to take the risk of having to supply additional capital at maturity in,e.g., 1% of the cases. This question seems to be relevant from an applied point of view.Even in complete markets many investors do not want a perfect hedge because it takesaway completely the opportunity to make a pro�t together with the risk of a loss. Also thetotal amount of capital available to an investor is often limited, and the investor will lookfor the most e�cient allocation of capital to participate in as many business opportunitiesas possible while keeping the total business risk under control.In this paper our aim is to construct a hedging strategy which maximizes the probabil-ity of a successful hedge under the objective measure P , given a constraint on the requiredcost. Alternatively, we can �x a bound " for the shortfall probability and minimize thecost in the class of hedging strategies such that the probability of covering the claim is atleast 1� ". This concept of quantile hedging can be considered as a dynamic version of thefamiliar value at risk concept (VaR). Just as in VaR a certain level of security (e.g. 99%)is chosen. However the amount of capital required to reach this level is less than in thestatic VaR approach because we are going to allow for dynamic strategies which react tothe price movements of the underlying. In the context of the classical Black-Scholes model,the idea of quantile hedging was proposed by the �rst author in March 1995 at the IsaacNewton Institute, triggered by a talk of David Heath on the results in Kulldor� (1993); seealso Karatzas (1997, p.58), Schwarz (1996), Cvitanic and Spivak (1998). A closely relatedidea appears in Browne (1997).In section 2 we consider the general complete case where there is a unique equivalentmartingale measure P �. Here the problem of quantile hedging is solved in a straightforwardmanner. We simply translate to a general setting the method of Kulldor� (1993) for2



maximizing the probability of reaching a given level up to a given time by trading on aBrownian motion with drift. In a �rst step, we determine a set of maximal probabilityunder the constraint that the cost of hedging the given claim on that set satis�es a givenbound. Using the Neyman-Pearson lemma, this set is constructed as an optimal test wherethe alternative is given by the objective measure P , and where the hypothesis is de�ned interms of the contingent claim and the equivalent martingale measure P �. In a second step,we use the completeness of the model in order to replicate the knockout option obtainedby restricting the claim to this maximal set. This strategy maximizes the probability of asuccessful hedge.In section 4 we consider the general incomplete case. Here the representation theoremfor contingent claims does no longer hold. Instead we use the technique of superhedging.This is combined with the Neyman-Pearson lemma for compound hypotheses de�ned interms of the contingent claim and the class of equivalent martingale measures: For a givenclaim H, the optimal strategy consists in superhedging the modi�ed claim H', where 'is the optimal randomized test provided by the Neyman-Pearson lemma.In order to illustrate our approach we compute the strategy of quantile hedging for acall option in di�erent models for the price uctuation of the underlying asset. In section3 we consider the standard case of geometric Brownian motion with known volatility. Insection 5 we pass to an incomplete extension of the Black-Scholes model where volatilityis subject to a random jump.Just as the static VaR approach, the dynamical concept of quantile hedging invitescritique since it does not take into account the size of the shortfall, only the probability ofits occurence. In other words, we evaluate the shortfall in terms of a very simple binaryloss function. In section 2.5 we point out how our method can be extended to the casewhere we minimize the expected size of the shortfall, given a constraint on the cost. Asystematic discussion of the general case, where the shortfall is measured by a convex lossfunction, and some explicit case studies are given in F�ollmer and Leukert (1998). In thepresent paper, our purpose is to explain the basic idea in its simplest form.It is a pleasure to express our thanks to F. Delbaen and P. Embrechts for stimulatingdiscussions, and to the referees for several useful comments.2. Quantile hedging: The complete caseIn section 2.1 the problem of quantile hedging is formulated in a general semimartin-gale context. In sections 2.2 - 2.4 we show how the problem is solved in the complete casewhere the equivalent martingale measure is unique. Section 2.5 explains how the methodcan be extended to other versions of the hedging problem which take into acount the sizeof the shortfall.2.1 Formulation of the problemWe assume that the discounted price process of the underlying is given as a semi-martingale X = (Xt)t2[0;T ] on a probability space (
;F ; P ) with �ltration (Ft)t2[0;T ]. For3



simplicity we assume that F0 is trivial. Let P denote the set of all equivalent martingalemeasures. We assume absence of arbitrage in the sense that P 6= ;.A self-�nancing strategy is de�ned by an initial capital V0 � 0 and by a predictableprocess � which serves as an integrand for the semimartingale X. Such a strategy (V0; �)will be called admissible if the resulting value process V de�ned by(2:1) Vt = V0 + Z t0 �sdXs 8t 2 [0; T ] ; P � a:s:satis�es(2:2) Vt � 0 8t 2 [0; T ] ; P � a:s:In the complete case there is a unique equivalent martingale measure P � � P . Con-sider a contingent claim given by a FT -measurable, nonnegative random variable H suchthatH 2 L1(P �). Completeness implies that there exists a perfect hedge, i.e., a predictableprocess �H such that(2:3) E� [H j Ft] = H0 + Z t0 �Hs dXs 8t 2 [0; T ] P � a:s:;where E� denotes expectation with respect to P �; cf., e.g., Jacka (1992). Thus the claimcan be duplicated by the self-�nancing trading strategy (H0; �H). This assumes, of course,that we are ready to allocate the required initial capital(2:4) H0 = E� [H] :But what if the investor is unwilling or unable to put up the initial capital H0? Whatis the best hedge the investor can achieve with a given smaller amount ~V0 < H0 ? Asour optimality criterion we take the probability that the hedge is successful. Thus we arelooking for an admissible strategy (V0; �) such that(2:5) P "V0 + Z T0 �sdXs � H# = maxunder the constraint(2:6) V0 � ~V0 :2.2 Maximizing the probability of successLet us call the set(2:7) fVT � Hg4



the \success set" corresponding to the admissible strategy (V0; �), where VT is given by(2.1). In a �rst step we reduce our problem to the construction of a success set of maximalprobability:(2.8) Proposition.Let ~A 2 FT be a solution of the problem(2:9) P [A] = maxunder the constraint(2:10) E�[HIA] � ~V0 ;where P � is the unique equivalent martingale measure. Let ~� denote the perfect hedge forthe knockout option ~H = HI ~A 2 L1(P �), i.e.,(2:11) E� [HI ~A j Ft] = E�[HI ~A] + Z t0 ~�sdXs 8t 2 [0; T ] P � a:s:Then ( ~V0; ~�) solves the optimization problem de�ned by (2.5) and (2.6), and the corre-sponding success set coincides almost surely with ~A.Proof. 1) Let (V0; �) be any admissible strategy such that V0 � ~V0. The correspond-ing value process de�ned by (2.1) is a nonnegative local martingale under P �, hence asupermartingale under P �. If A denotes the success set corresponding to (V0; �), then wehave(2:12) VT � HIA P � a:s:since VT � 0 P � a:s: due to (2.2). Thus(2:13) ~V0 � V0 � E� [VT ] � E� [HIA] ;i.e., A satis�es the constraint (2.10). This implies(2:14) P [A] � P h ~Aidue to (2.9).2) Let us now show that any strategy (V0; ~�) such that E�[HI ~A] � V0 � ~V0 is optimal.Note �rst that the strategy is admissible:(2:15) V0 + Z t0 ~�sdXs � E� [HI ~A] + Z t0 ~�sdXs = E� [HI ~A j Ft] � 0 P � a:s:due to (2.11), since HI ~A � 0. The success set(2:16) A = (V0 + Z T0 ~�sdXs � H)5



corresponding to (V0; ~�) satis�es(2:17) ~A � fHI ~A � Hg � A P � a:s:by (2.11) since V0 � E�[HI ~A]. On the other hand, part 1) shows that the success set Amust satisfy (2.14), and this implies A = ~A P � a:s:. Thus we have identi�ed ~A as thesuccess set corresponding to (V0; ~�). In particular, the strategy ( ~V0; ~�) is optimal in thesense of (2.5) and (2.6).The problem of constructing a maximal success set is now solved by applying theNeyman-Pearson lemma. To this end we introduce the measure Q� given by(2:18) dQ�dP � = HE� [H] = HH0 :The constraint (2.10) can be written as(2:19) Q� [A] � � := ~V0H0 :De�ne the level(2:20) ~a = infna : Q�� dPdP � > a �H� � �g :and the corresponding set(2:21) ~A := n dPdP � > ~a �Ho :(2.22) Theorem. Assume that the set ~A satis�es(2:23) Q�[ ~A] = � :Then the optimal strategy solving (2.5) and (2.6) is given by ( ~V0; ~�) where ~� is the perfecthedge for the knockout option HI ~A.Proof. P and Q� are both dominated by P �, and the set ~A is of the form(2:24) ~A = n dPdP � > const dQ�dP �o :The Neyman{Pearson lemma states that(2:25) P [A] � P [ ~A]for all sets A 2 FT such that(2:26) Q�[A] � Q�[ ~A] ;6



cf., e.g., Witting (1985). Under our condition (2.23), the theorem now follows from propo-sition (2.8).Theorem (2.22) shows that the problem of quantile hedging is solved by hedginga suitable knockout option. From a practical point of view the hedging strategy for aknockout option has some inconvenient features, and we refer to Shreve andWystup (1998)for a careful analysis of this issue.2.3 Maximizing the expected success ratioCondition (2.23) is clearly satis�ed if(2:27) Ph dPdP � = ~a �Hi = 0 :But in general it may not be possible to �nd any set A 2 FT which assumes the boundin (2.19). In this case, the Neyman-Pearson theory suggests to replace the \criticalregion"A 2 FT by a \randomized test", i.e., by a FT -measurable function ' such that0 � ' � 1. Let R denote the class of all these functions, and consider the followingoptimization problem:(2:28) E[ ~'] = max'2R E[']under the constraint(2:29) Z 'dQ� � � = ~V0H0 :In its extended form, the Neyman{Pearson lemma states that the solution is given by(2:30) ~' = If dPdP�>~a�Hg + If dPdP�=~a�Hgwhere ~a is given by (2.20), and where  is de�ned by(2:31)  = ��Q�[ dPdP� > ~a �H]Q�[ dPdP� = ~a �H]in case that condition (2.23) does not hold. This provides the solution to the followingextension of our hedging problem.(2.32)De�nition. For any admissible strategy (V0; �) we de�ne the corresponding \successratio" as(2:33) ' = IfH�VT g + VTH IfVT<Hg :7



Note that ' 2 R, and that the set f' = 1g coincides with the success set fVT � Hgassociated to the strategy (V0; �). In the extended version of our original problem de�nedby (2.5) and (2.6), we are now looking for a strategy which maximizes the expected successratio E['] under the measure P :(2.34) Theorem. Let ~� denote the perfect hedge for the contingent claim ~H = H ~' where~' is de�ned by (2.30). Theni) ( ~V0; ~�) maximizes the expected success ratio E['] under all admissible strategies (V0; �)with V0 � ~V0,ii) the success ratio of ( ~V0; ~�) is given by ~'.Note that condition (2.23) implies ~' = I ~A, and in this case the strategy ( ~V0; ~�) reducesto the strategy described in Theorem (2.22).Proof. The argument is analogous to the proof of (2.8) and (2.22), and it is a specialcase of the proof of theorem (4.9) below.2.4 Minimizing the cost for a given probability of successConsider a given shortfall probability " 2 (0; 1). We are looking for the least amountof initial capital which allows us to stay on the safe side with probability 1 � ", i.e., wewant to determine the minimal value of V0 such that there exists an admissible strategy(V0; �) with(2:35) P "V0 + Z T0 �sdXs � H# � 1� " :In analogy to the previous argument, this can be reduced to the problem of �nding a setA 2 FT such that(2:36) E� [HIA] = minunder the constraint(2:37) P [A] � 1� " :Equivalently, we want to maximize Q� [Ac] under the constraint P [Ac] � ", where Q� isde�ned by (2.18). The solution is again provided by the Neyman-Pearson lemma: Choose(2:38) ~b = inf �b : P �dQ�dP > b� � "�and de�ne ~B through its complement(2:39) ~Bc = �dQ�dP > ~b� = � dPdP � < (~bE�[H])�1H� :8



If P [ ~B] = 1�" then ~Bc maximizes Q�[Ac] under the constraint P [Ac] � ". In other words,~B minimizes E�[HIA] under the constraint (2.37). But this implies that the optimalstrategy for the original problem is given by the duplicating strategy for the knockoutoption HI ~B .In the same way we can solve the extended problemwhere we require that the expectedsuccess ratio satis�es E['] � 1� ". De�ne(2:40) ~' = If dQ�dP <~bg + If dQ�dP =~bgwhere ~b is given by (2.38) and  is de�ned by(2:41)  = (1� ") � P [dQ�dP < ~b]P [dQ�dP = ~b] :in case that P [dQ�dP < ~b] < 1� ".(2.42) Theorem. Let ~� denote the perfect hedge for the contingent claim ~H = H ~' andde�ne ~V0 = E�[ ~H ]. Theni) ( ~V0; ~�) has minimal cost under all admissible strategies (V0; �) with expected successratio E['] � 1� ",ii) the success ratio of ( ~V0; ~�) is given by ~', and E[ ~'] = 1� ".2.5 Controlling the size of the shortfallFor a given strategy (V0; �) the resulting shortfall is de�ned as the excess(2:43) S = (H � VT )+of the contingent claim over the �nal portfolio value. So far we have looked for a strategywhich maximizes the probability that the shortfall S is 0. In other words, our aim was tominimize the expected loss(2:44) E[L(S)]for the special binary loss function L(x) = I(0;1)(x). But it is natural to take into accountalso the size of the shortfall S, not just the probability that it is strictly positive. Thissuggests to minimize (2.44) for a loss function of the form L(x) = l(x)I(0;1)(x) where l issome increasing convex function on [0;1), for example l(x) = xp for some p � 1.In the special case l(x) = x, our aim would be to minimize the expected shortfall(2:45) E[S] = E[(H � VT )+]9



under a constraint on the initial capital V0. Without loss of generality we can assume that0 � VT � H, i.e., the �nal portfolio value is of the form VT = H' for some randomizedtest ' 2 R. Thus, the problem of minimizing the expected shortfall (2.45) is equivalent tothe problem of maximizing the expected value E[H'] in the class R under a constraint ofthe form E�[H'] � ~V0. A slight modi�cation of the preceding discussion shows that theoptimal strategy consists in replicating the modi�ed claim H ~', where ~' is the optimal testof the simple hypothesis P � against the alternative P .A systematic discussion of the hedging problem in the case where l is a general convexloss function and some explicit case studies are given in F�ollmer and Leukert (1998).3. Quantile hedging in the Black-Scholes modelIn the standard Black-Scholes model with constant volatility � > 0, the underlyingprice process is given by a geometric Brownian Motion(3:1) dXt = Xt(�dWt +mdt)with initial value X0 = x0, where W is a Wiener process under P and m is a constant.For simplicity we set the interest rate equal to zero. The unique equivalent martingalemeasure is then given by(3:2) dP �dP = exp��m� WT � 12 �m� �2 T� :The process W � de�ned by(3:3) W �t =Wt + m� tis a Brownian motion under P �. Since(3:4) XT = x0 exp(�WT + (m � 12�2)T )= x0 exp(�W �T � 12�2T ) ;we can also write(3:5) dP �dP = const �X�m=�2T :A European call H = (XT �K)+ can be hedged perfectly if we use the initial capital(3:6) H0 = E� [H] = x0�(d+)�K�(d�) ;10



where(3:7) d� = � 1�pT ln�Kx0�� 12�pTand � denotes the distribution function of the standard normal distribution N(0; 1).Suppose we want to use only an initial capital V0 which is smaller than the Black-Scholes price H0. By (2.22) the optimal strategy consists in duplicating the knockoutoption HIA where the set A is of the form(3:8) A = � dPdP � > const �H� :Due to (3.5) we can write(3:9) A = fXm=�2T > �(XT �K)+g ;and the constant � is chosen such that(3:10) E� [HIA] = V0 :We distinguish two cases.i) m � �2:In this case the success set takes the form(3:11) A = fXT < cg = fW �T < bgwhere(3:12) c = x0 exp��b� 12�2T� :Thus, the modi�ed option HIA can be written as a combination(3:13) (XT �K)+ � (XT � c)+ � (c�K)IfXT>cgof two call options and of a binary option. We get(3:14) P [A] = ��b� m� TpT � ;and the constant b can be determined from the condition(3:15) V0 = E�[HIA]= x0�(d+) �K�(d�) � x0���b + �TpT �+K�� �bpT � :11



If instead of V0 we prescribe a shortfall probability " and require(3:16) 1� " = P [A] ;then b is de�ned by(3:17) b = pT��1 (1� ") + m� T ;and the corresponding minimal cost V0 can be computed via (3.15).To illustrate the amount of initial capital that can be \saved" by accepting a certainshortfall probability consider the following numerical example: T = 0:25 (i.e., 3 months),� = 0:3;m = 0:08; ;X0 = 100;K = 110: For the values " = 0:01; 0:05; 0:1 the correspondingproportions V0=H0 are given, respectively, by 0:89; 0:59; 0:34. Thus, we can reduce theinitial capital by 41% if we are ready to accept a shortfall probability of 5%.For later purposes we de�ne �(y) as the maximal probability of a successful hedge fora given capital y � 0 and state the following properties of the function �.(3.18) Lemma. The function � belongs to C[0;1) \ C1(0;1) , increases strictly from�(0) = P [XT � K] to 1 on [0;H0], is concave on [0;1) and strictly concave on [0;H0],and satis�es @@y�(0+) =1.Proof. Let f resp. f� denote the density functions of XT under P and P �. We have(3:19) �(y) = Z c(y)0 f(z)dzwhere c(y) is de�ned as the solution of the equation(3:20) y = Z cK (z �K)f�(z)dz(for y � H0 we put c(y) = +1). Di�erentiation yields(3:21) 1 = (c(y) �K)f�(c(y))c0(y) ;hence(3:22) �0(y) = f(c(y))c0(y) = f(c(y))f�(c(y)) 1c(y) �K :Since(3:23) ff� (z) = const zm=�212



and since m � �2, the right hand side in (3.22) is a decreasing function of c(y). But c(y)increases from K to1 as y increases from 0 to H0, and so we obtain the stated propertiesof �.ii) m > �2:In this case the function xm=�2 is convex. Since P [A] < 1, the success set A must have theform(3:24) A = fXT < c1g [ fXT > c2g= fW �T < b1g [ fW �T > b2gwhere c1 < c2 are the two distinct solutions of the equation(3:25) xm=�2 = �(x �K)+ ;and where the constant � is determined by the condition E�[HIA] = V0. We have(3:26) P [A] = ��b1 � m� TpT �+���b2 � m� TpT � :The modi�ed option HIA can again be written as a combination of call options and digitaloptions, and the corresponding cost is given by(3:27) V0 = x0�(d+) �K�(d�)� x0���b1 + �TpT �+K���b1pT �+ x0���b2 + �TpT ��K���b2pT � :The function � again has the properties stated in (3.18); we omit the proof.4. Quantile hedging: The incomplete caseIn this section we discuss the problem of quantile hedging in the general incompletecase where the equivalent martingale measure is no longer unique. The solution combinesthe Neyman-Pearson lemma for multiple hypotheses with the technique of superhedging.4.1 SuperhedgingIn incomplete models not every contingent claim is attainable. Nonetheless it is pos-sible to stay on the safe side by putting up a su�ciently high amount of initial capital andfollowing a superhedging strategy. This approach was initiated by El Karoui and Quenez13



(1995); see also Karatzas (1997) and the references given there. The least amount of initialcapital required to be on the safe side is given by(4:1) inffV0 j 9� : (V0; �) admissible; V0 + Z T0 �sdXs � H P � a:s:g :There is a basic duality which characterizes this least amount as the largest arbitrage-freeprice. More precisely, let us assume(4:2) U0 := supP�2PE�[H] <1 ;and let us de�ne (Ut) as a right-continuous version of the process de�ned by(4:3) Ut = ess:supP�2PE�[H j Ft] :The process (Ut) is a P-supermartingale, i.e., a supermartingale simultaneously for allP � 2 P. In fact it is the smallest non-negative P-supermartingale with terminal value� H. As shown in full generality in Kramkov (1996) and in F�ollmer and Kabanov (1998),such a P-supermartingale admits an optional decomposition of the form(4:4) Ut = U0 + Z t0 �sdXs � Ctwhere C is an increasing optional process, and where (U0; �) is an admissible strategy.While the Doob-Meyer decomposition holds for a �xed probability measure and with apredictable increasing process, the optional decomposition is valid simultaneously for allmeasures P � 2 P, and the increasing process is only optional.The optional decomposition (4.4) of the process (Ut) can now be viewed as the fol-lowing superhedging procedure: Put up the initial capital U0, then follow the dynamictrading strategy � and withdraw the cumulative amount of capital Ct from the super-hedging portfolio as one learns more and more about the development of the underlyingprice.As a corollary of the optional decomposition, the value Ut can be characterized as theleast amount of capital needed at time t to cover the claim H by following an admissiblestrategy � from time t up to time T , i.e.,(4:5) Ut = ess: inf Vtwhere Vt runs through the class of Ft-measurable random variables � 0 such that(4:6) Vt + Z Tt �sdXs � H P � a:s:for some admissible strategy �. In other words, Ut is an upper bound for any arbitrage-free price of the claim computed at time t. If additional constraints are imposed on the14



strategies � in (4.6) then the dual description (4.3) of the process de�ned by (4.5) has acorresponding analogue in terms of a suitable extension of the class P; see Karatzas (1997)and F�ollmer and Kramkov (1997).4.2 Quantile hedging and the extended Neyman-Pearson LemmaAgain we consider the question what an investor can do who is unwilling or unableto put up the high amount of initial capital U0 required to stay on the safe side. In manyincomplete models the cost of superhedging for a call option is given by U0 = X0, andso the superhedging strategy reduces to the trivial strategy of holding one unit of theunderlying; see, e.g., Eberlein and Jacod (1997) and Frey (1997). Thus, our question isparticularly relevant in such cases.So let us �x a smaller amount ~V0 < U0. We can now ask for a strategy whichmaximizes the probability of a successful hedge under the constraint that the initial capitalis not larger than ~V0 . In the extended version of the problem, we want to maximize theexpected success ratio de�ned by (2.33). Thus, our aim is to �nd an admissible strategy( ~V0; ~�) such that the corresponding success ratio ~' satis�es(4:8) E[ ~'] = maxfE['] : (V0; �) admissible; V0 � ~V0g :This problem is easily reduced to the Neyman-Pearson Lemma for a composite hy-pothesis. As in section 2.3 we denote by R the class of all \randomized tests", i.e., all FT- measurable functions ' such that 0 � ' � 1 P� a.s..(4.9) Theorem. There exists a function ~' 2 R such that(4:10) E[ ~'] = max'2R E[']under the constraints(4:11) E�[H'] � ~V0 8P � 2 P:The modi�ed option ~H := H ~' may or may not be attainable. If it is attainable, then let~� denote the corresponding replicating strategy. If it is not attainable, let ~� denote thesuperhedging strategy resulting from the optional decomposition of the P-supermartingale(4:12) ~Ut = ess: supP�2PE�[ ~H j Ft]; 0 � t � T:In either case, ( ~V0; ~�) solves the optimization problem de�ned by (4.8).Proof. 1) The existence of a solution ~' 2 R of the optimization problem de�nedby (4.10) and (4.11) follows from the Neyman-Pearson Lemma as explained below. Note15



that we have ~' = 1 on fH = 0g, P - almost surely (otherwise we could replace ~' by 1 onfH = 0g, thereby increasing the expectation in (4.10) without a�ecting the constraints in(4.11)).2) Let (V0; �) be any admissible strategy with V0 � ~V0. The resulting value process (Vt) isa P-supermartingale. Since the success ratio ' satis�es H' = min(H;VT ), we obtain(4:13) E�[H'] � E�[VT ] � V0 8P � 2 P :Thus ' satis�es the constraints in (4.11), and so we have(4:14) E['] � E[ ~'] :3) Consider the admissible strategy ( ~U0; ~�) given by the optional decomposition (4.4) ofthe P-supermartingale ( ~Ut) associated to the modi�ed option ~H = H ~'. Note that ~U0 = ~V0since the optimal test ~' attains the bound ~V0 in (4.11). The resulting value process ( ~Vt)de�ned by (2.1) satis�es(4:15) ~VT � ~H = H ~' :Let ~ denote the success ratio corresponding to the admissible strategy ( ~V0; ~�). We haveE[ ~ ] � E[ ~'] due to part 2). On the other hand, (4.15) implies ~ � ~' P -almost surely,and so we see that ~' is the success ratio associated to ( ~V0; ~�). Due to (4.14), we haveshown that the strategy ( ~V0; ~�) solves the optimization problem (4.8).We can express condition (4.11) in a more familiar form by introducing the family ofprobability measures fQ� j P � 2 Pg where Q� is associated to P � via the density(4:16) dQ�dP � = HE� [H] :Then the constraints take the form(4:17) Z 'dQ� � �(P �) := ~V0E� [H] 8P � 2 P :Thus we are faced with the problem of testing the compound hypothesis fQ� j P � 2 Pgagainst the simple alternative P . The critical levels are given by �, viewed as a boundedmeasurable function on the parameter set P endowed with the ���eld generated by theintegrals R fdP � for bounded measurable functions f on (
;FT ). The existence of anoptimal test ~' now follows from the standard theory; cf., e.g., Witting (1985).In addition to the basic existence result, the Neyman-Pearson theory also shows thatoptimal tests typically have a 0-1 structure. Consider a test ' 2 R which satis�es theconstraint (4.17). In our special context, the class fQ� j P � 2 Pg is measure convex, i.e.,any mixture of measures in this class by some probability distribution on P belongs againto the class. Applying corollary 2.83 in Witting (1985), we see that the following form of~' is su�cient (and often necessary) for optimality:16



(4.18) There exists a measure ~P 2 P such that the following two conditions are satis�ed:(4:19) ~' =8<: 1 if dPd ~P > �H0 if dPd ~P < �Hfor some constant �, and(4:20) Z ~'Hd ~P = ~V0 :In the context of section 5 below such a \worst case" martingale measure ~P will beconstructed explicitly.4.3 Quantile Hedging for a given shortfall probabilityConsider a given shortfall probability " 2 (0; 1). We are looking for the least amount(4:21) inf (V0 j 9 � admissible : P [V0 + Z T0 �sdXs � H] � 1� ") :of initial capital which allows us to be on the safe side with probability 1 � ". As in thecomplete case, we pass from tests to randomized tests, and rephrase the problem in termsof success ratios rather than success sets. Thus we want to determine the least amount(4:22) inf fV0 j 9 � : (V0; �) admissible; E['] � 1� "g ;where ' denotes the success ratio associated to the admissible strategy (V0; �).Again the problem can be reduced to �nding a random variable ' 2 R such that(4:23) supP�2PE� [H'] = minunder the constraint(4:24) E ['] � 1� ":As in the theory of optimal tests, weak compactness of R guarantees the existence of arandom variable ~' 2 R which solves the optimization problem de�ned by (4.23) and (4.24)(4.25) Remark. The set P of equivalent martingale measures is convex. For a givencontingent claim the expectation E� [H] is linear in P �. Thus the set fE� [H] : P � 2 Pgof arbitrage-free prices for H is an interval. For a given shortfall probability " the above17



construction yields a strategy �" such that the investor has an expected sucess ratio of(1� ")100%. Typically - if '" is not too small - we will have(4:26) inf fE� [H] : P � 2 Pg < supfE�[H'"] : P � 2 Pg < supfE� [H] : P � 2 Pg ;i.e., the capital required to reach an expected sucess ratio � 1�" lies within the arbitrage-free interval. Thus there exists a particular P " 2 P such that(4:27) sup fE� [H'"] : P � 2 Pg = EP" [H] :Furthermore we know from the theory of tests that supfE� [H'"] : P � 2 Pg is convexand continuous in " 2 (0; 1); cf. e.g. Ingster (1992, p.93). This suggests the followinginterpretation: For a given contingent claim H the seller is a priori faced with the taskof choosing one equivalent martingale measure in order to price H in an arbitrage-freemanner. Instead of choosing an element of P (which may have a rather complicatedstructure), the above approach suggests that the seller may simply choose a shortfallprobability " corresponding to the risk he or she is willing to bear.5. Quantile hedging of a volatility jumpConsider a geometric Brownian motion with drift 0 where the volatility has a constantvalue � > 0 up to time t0 and then jumps to a new constant value � according to somedistribution � on (0;1).We use an explicit model (�
; �F; �P ) of the following form. Put �
 = C[0; T ]� (0;1),and for �! = (!; �) de�ne Xt(!) = �Xt(�!) = !(t). We �x a time t0 2 (0; T ) and an initialvalue x0 > 0. For each value � > 0 we de�ne a time-dependent volatility by �t(�) = �for t < t0 and �t(�) = � for t � t0. Let P � denote the unique probability measure on
 = C[0; T ] such that the process (Xt) satis�es the stochastic di�erential equation(5:1) dXt = Xt�t(�)dW �t ; X0 = x0under P �, where (W �t ) is a Wiener process under P �. The measure �P on �
 is de�ned by�P (d!; d�) = �(d�)P �(d!). We denote by �F the completion of the natural product �-�eldon �
 under �P , and by ( �Ft)0�t�T the right-continuous complete �ltration on �
 generatedby the processes ( �Xt) and (�t). The projection of �P on 
 is denoted by P , and (Ft) is theright-continuous complete �ltration on 
 generated by (Xt).Consider the European call option with strike price K and exercise time T , viewedboth as a random variable �H = h( �XT ) on �
 and as a random variable H = h(XT ) on 
,with h(x) = (x �K)+. At time t0, the value Xt0 = x is observed and the new volatility �is revealed. From this time on, the option can be replicated perfectly using the standardBlack{Scholes hedging strategy in the complete model P �. The required cost is given by(5:2) v�(x) = E��h(XT )jXt0 = x� � x :18



For t < t0 the value � is still unknown. The cost of superhedging is given by(5:3) Ut = ess sup�P�2 �P �E��h( �XT )j �Ft� ;where �P is the class of all equivalent martingale measures �P � � �P . All measures �P � 2 �Phave the same projection P on (
;Ft0) and the same conditional expectation(5:4) �E��h( �XT )j �Ft0�(!; �) = v��Xt0(!)�with respect to �Ft0 . This implies that Ut, viewed as a random variable on 
 for t < t0, isgiven by(5:5) Ut = ess sup� E�v�(Xt0 )jFt�where the essential supremum is taken with respect to �. If � has unbounded support thenwe get Ut = Xt for t < t0, and in particular(5:6) U0 = x0 ;cf., e.g., Frey and Sin (1997). In this case, the superhedging strategy is reduced to thefollowing simple procedure: Buy one unit of the underlying asset at time 0 and hold it upto time t0. At that time the value � is revealed. Pay out the refund Ct0 = Xt0 � v�(Xt0 ),and use the remaining capital v�(Xt0) to implement a perfect hedge of the option.Let us now turn to the problem of quantile hedging. Thus, we want to maximize theprobability of a successful hedge under the constraint that the initial cost is not largerthan some �xed amount ~V0 such that(5:7) 0 < ~V0 < U0 � x0 :At time t0, let ��(x; y) denote the maximal probability of achieving a successful hedge,given the present state x = Xt0 and some capital y � 0. We know from section 3 that(5:8) ��(x; y) = F �x �c�(x; y)�where F �x resp. f�x denote the distribution function and the density function of XT , givenXt0 = x and the volatility �, and where c�(x; y) is the solution of the equation(5:9) y = Z cK (z �K)f�x (z)dz(:= +1 for y � v�(x)). Let us de�ne(5:10) �(x; y) := Z ��(x; y)�(d�)19



and(5:11) u(x) := ess sup� v�(x) � x :(5.12) Lemma. The function �(x; �) belongs to C[0;1) \ C1(0;1), is strictly increas-ing to 1 on [0; u(x)], concave on [0;1) and strictly concave on [0; u(x)], and satis�es@@y�(x; 0+) � +1.Proof. The properties of ��(x; �) established in section 3 imply �(x; �) 2 C[0;1) \C1(0;1) and(5:13) @@y�(x; y) = Z 1c�(x; y) �K�(d�) :This decreases in y, and the decrease is strict on fyj�(x; y) < 1g = [0; u(x)).(5.14) Proposition. Let � denote the distribution of Xt0 under P . There exists a uniquefunction v 2 C1(0;1) such that(5:15) Z ��x; v(x)��(dx) = supf Z ��x; f(x)��(dx)where the supremum is taken over all measurable functions f � 0 on (0;1) with R fd� �~V0. We have(5:16) 0 < v(x) < u(x) ; Z vd� = ~V0 ;and v is the solution of the equation(5:17) @@y��x; v(x)� = cfor some constant c 2 (0;1).Proof. 1) It is easy to see that a function which maximizes the integral in (5.15)must belong to the class C of all measurable functions f � 0 such that R fd� = ~V0 and0 � f � u �-a.s. Since R ud� � R xd� <1, the class C is convex and weakly compact inL1(�). Existence and uniqueness of an optimal v 2 C now follow by standard arguments.As to existence, we can for instance argue as follows. Take a sequence (fn) such that theintegrals on the right hand side of (5.15) converge to the supremum. Using Lemma A.1.1in Delbaen/Schachermayer (1994), we can choose functions vn 2 conv(fn; fn+1; : : :) � Csuch that vn converges a.s. to some v 2 C. By Lebesgue's theorem, the function v mustsatisfy (5.15). 20



2) In order to clarify the structure of v, consider any f 2 C such that f � c � v forsome c > 1. For any � 2 �� 1c�1 ; 1�, the functionf� := v(1� �) + �fsatis�es the constraints in our optimization problem (5.15), i.e., we have R f�d� = ~V0 andf� � 0. Thus, the concave function F de�ned byF (�) := Z ��x; f�(x)��(dx)on the interval I = �� 1c�1 ; 1� assumes its maximum in � = 0. In particular we have(5:18) F (�) � F (0)� = Z ��x; f�(x)� � ��x; v(x)�� �(dx) � 0for � 2 (0; 1]. For any � 2 I � f0g, the integrand vanishes on ff = vg, and on ff 6= vg �fv > 0g it is bounded in absolute value by(5:19) ��x; v(x)�v(x) jf(x) � v(x)j � c ;here we use the relation f�(x) � v(x) = �(f(x) � v(x)), the fact that �(x; �) is concaveon [0;1) with values in [0; 1], and the estimate jf(x) � v(x)j � cv(x). Using Lebesgue'stheorem we obtain di�erentiability of F in � = 0 and the equation(5:20) 0 = F 0(0) = Z @@y��x; v(x)��f(x) � v(x)��(dx):Since (5.20) holds for all f � 0 such that R fd� = ~V0 and f � c � v for some c > 1, wecan conclude that @@y��x; v(x)� must be constant �-a.s. on fv > 0g, hence �-a.s. due topart 3) below. This constant must be strictly positive, because otherwise we would getv(x) = u(x) �-a.s., hence R v d� = U0 > ~V0. Thus, v(x) < u(x) �-a.s.3) Let us now take any f 2 C. In this case we have f� 2 C for any � 2 [0; 1], and sothe estimate (5.18) holds for any � 2 (0; 1]. For �& 0 we can apply monotone convergenceseparately on the sets fv < fg and fv > fg. Using the bound in (5.18) we can concludethat the derivative F 0(0+) from the right exists and satis�es(5:21) 0 � F 0(0+) = Z @@y ��x; v(x)��f(x) � v(x)��(dx) ;and that the integrand belongs to L1(�). Taking f > 0 we see that the solution v of ouroptimization problem must satisfy v(x) > 0 �-a.s. since @@y��x; 0+� = +1.21



(5.22) Theorem. The probability of a successful hedge is maximized by the followingstrategy:i) Up to time t0, use the strategy which replicates the contingent claim v(Xt0), where vsolves the optimization problem in (5:15).ii) From time t0 on, use the strategy which maximizes the probability of a successfulhedge under the new volatility �, given the initial capital v(Xt0 ) (see section 3).Proof. Consider any admissible strategy (V0; �) with initial cost V0 � ~V0. Theresulting value(5:23) Vt = V0 + Z t0 �sdXswill be viewed as a random variable on (
;Ft0) for any t � t0. We have(5:24) E[Vt0 ] � ~V0 � U0 ;and the strategy will achieve a successful hedge with conditional probability(5:25) �P [VT � �Hj �Ft0 ](!; �) � ���Xt0(!); Vt0 (!)� :This implies(5:26) �P [VT � �H] � E��(Xt0 ; Vt0)� :But �(x; �) is concave, and so we get(5:27) �P [VT � �H ] � Eh��Xt0 ; f(Xt0 )�iby Jensen's inequality for conditional expectations, if f denotes a measurable function suchthat(5:28) f(Xt0 ) = E[Vt0jXt0 ] P � a:s:Since(5:29) E�f(Xt0 )� = E[Vt0] � ~V0 ;we see that(5:30) Eh��Xt0 ; f(Xt0 )�i � Eh��Xt0 ; v(Xt0 )�idue to proposition (5.14). Thus, the right hand side is an upper bound for the probabilityof a successful hedge under the constraint that the initial cost is bounded by ~V0. But thisupper bound is actually achieved if we use the strategy described in the theorem.22



Let us now look at the structure of a \worst case" martingale measure ~P as it appearsin (4.18). The results in section 3 show that, in our case, the optimal ~' is of the form~' = I ~A where the success set ~A 2 �FT is given by(5:31) ~A = �XT � c��Xt0 ; v(Xt0 )�	 :(5.32) Theorem. There exists a measure ~P 2 �P such that(5:33) ~E[HI ~A] = ~V0and(5:34) ~A = nd �Pd ~P � const �Ho ;i.e., ~A is the critical region for the optimal test of the hypothesis ~Q de�ned by d ~Q=d ~P =const �H against the alternative P .Proof. Note �rst that, in our case, the constraint (5.33) is satis�ed for any �P � 2 �Psince(5:35) �E�[ �HI ~A] = �E��E�Xt0 [HI ~A(�;�)]� = E�v(Xt0)� = ~V0due to (5.4). Let us now de�ne a strictly positive density ~' by(5:36) ~'(!; �) = 1c @@y���Xt0 (!); v�Xt0(!)�� :We have(5:37) Z ~'(!; �)�(d�) � 1due to (5.17). This implies that the measure ~P de�ned by ~' has projection P on (
;Ft0 )and conditional expectation (5.4) with respect to �Ft0 . Thus, we have ~P 2 �P�. Now recallthat(5:38) @@y���Xt0 ; v(Xt0)� = 1c��Xt0 ; v(Xt0 )��K :This implies (5.34) since(5:39) nd �Pd ~P � c � �Ho = nc�c�(Xt0 ; v(Xt0 ))�K� � c � �Ho = ~A :23
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