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1. Introduction

The problem of pricing and hedging of contingent claims is well understood in the
context of arbitrage-free models which are complete. In such models every contingent
claim is attainable, i.e., it can be replicated by a self-financing trading strategy. The cost
of replication defines the price of the claim, and it can be computed as the expectation of
the claim under the unique equivalent martingale measure.

In an incomplete market the equivalent martingale measure is no longer unique, and
not every contingent claim is attainable. Such claims carry an intrinsic risk. There is an
interval of arbitrage-free prices, given by the expected values under the different equivalent
martingale measures. It is still possible to stay on the safe side by using a “superhedging”
strategy, cf. El Karoui and Quenez (1995) and Karatzas (1997). The cost of carrying
out such a strategy is given by the supremum of the expected values over all equivalent
martingale measures. The corresponding value process is a supermartingale under any
equivalent martingale measure, and the superhedging strategy is determined by the “op-
tional decomposition” of such a universal supermartingale, cf. Kramkov (1996). But in
many situations the cost of superhedging is too high from a practical point of view.

What if the investor is unwilling to put up the initial amount of capital required by a
perfect hedging or superhedging strategy? What is the maximal probability of a successful
hedge the investor can achieve with a given smaller amount? Equivalently one can ask
how much initial capital an investor can save by accepting a certain shortfall probability,
i.e., by being willing to take the risk of having to supply additional capital at maturity in,
e.g., 1% of the cases. This question seems to be relevant from an applied point of view.
Even in complete markets many investors do not want a perfect hedge because it takes
away completely the opportunity to make a profit together with the risk of a loss. Also the
total amount of capital available to an investor is often limited, and the investor will look
for the most efficient allocation of capital to participate in as many business opportunities
as possible while keeping the total business risk under control.

In this paper our aim is to construct a hedging strategy which maximizes the probabil-
ity of a successful hedge under the objective measure P, given a constraint on the required
cost. Alternatively, we can fix a bound ¢ for the shortfall probability and minimize the
cost in the class of hedging strategies such that the probability of covering the claim is at
least 1 — . This concept of quantile hedging can be considered as a dynamic version of the
familiar value at risk concept (VaR). Just as in VaR a certain level of security (e.g. 99%)
is chosen. However the amount of capital required to reach this level is less than in the
static VaR approach because we are going to allow for dynamic strategies which react to
the price movements of the underlying. In the context of the classical Black-Scholes model,
the idea of quantile hedging was proposed by the first author in March 1995 at the Isaac
Newton Institute, triggered by a talk of David Heath on the results in Kulldorff (1993); see
also Karatzas (1997, p.58), Schwarz (1996), Cvitanic and Spivak (1998). A closely related
idea appears in Browne (1997).

In section 2 we consider the general complete case where there is a unique equivalent
martingale measure P*. Here the problem of quantile hedging is solved in a straightforward
manner. We simply translate to a general setting the method of Kulldorff (1993) for

2



maximizing the probability of reaching a given level up to a given time by trading on a
Brownian motion with drift. In a first step, we determine a set of maximal probability
under the constraint that the cost of hedging the given claim on that set satisfies a given
bound. Using the Neyman-Pearson lemma, this set is constructed as an optimal test where
the alternative is given by the objective measure P, and where the hypothesis is defined in
terms of the contingent claim and the equivalent martingale measure P*. In a second step,
we use the completeness of the model in order to replicate the knockout option obtained
by restricting the claim to this maximal set. This strategy maximizes the probability of a
successful hedge.

In section 4 we consider the general incomplete case. Here the representation theorem
for contingent claims does no longer hold. Instead we use the technique of superhedging.
This is combined with the Neyman-Pearson lemma for compound hypotheses defined in
terms of the contingent claim and the class of equivalent martingale measures: For a given
claim H, the optimal strategy consists in superhedging the modified claim Hy, where ¢
is the optimal randomized test provided by the Neyman-Pearson lemma.

In order to illustrate our approach we compute the strategy of quantile hedging for a
call option in different models for the price fluctuation of the underlying asset. In section
3 we consider the standard case of geometric Brownian motion with known volatility. In
section 5 we pass to an incomplete extension of the Black-Scholes model where volatility
is subject to a random jump.

Just as the static VaR approach, the dynamical concept of quantile hedging invites
critique since it does not take into account the size of the shortfall, only the probability of
its occurence. In other words, we evaluate the shortfall in terms of a very simple binary
loss function. In section 2.5 we point out how our method can be extended to the case
where we minimize the expected size of the shortfall, given a constraint on the cost. A
systematic discussion of the general case, where the shortfall is measured by a convex loss
function, and some explicit case studies are given in Foéllmer and Leukert (1998). In the
present paper, our purpose is to explain the basic idea in its simplest form.

It is a pleasure to express our thanks to F. Delbaen and P. Embrechts for stimulating
discussions, and to the referees for several useful comments.

2. Quantile hedging: The complete case

In section 2.1 the problem of quantile hedging is formulated in a general semimartin-
gale context. In sections 2.2 - 2.4 we show how the problem is solved in the complete case
where the equivalent martingale measure is unique. Section 2.5 explains how the method
can be extended to other versions of the hedging problem which take into acount the size

of the shortfall.

2.1 Formulation of the problem

We assume that the discounted price process of the underlying is given as a semi-
martingale X = (X¢)¢e[o,77 on a probability space (Q, F, P) with filtration (F)efo,77. For
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simplicity we assume that Fy is trivial. Let P denote the set of all equivalent martingale
measures. We assume absence of arbitrage in the sense that P # 0.

A self-financing strategy is defined by an initial capital V5 > 0 and by a predictable
process £ which serves as an integrand for the semimartingale X. Such a strategy (V4,¢)
will be called admussible if the resulting value process V' defined by

t
(2.1) Vi=W, —I—/ £dX, Vte|0,T], P —as.
0
satisfies
(2.2) Vi>0 Vvte|0,T], P —as.

In the complete case there is a unique equivalent martingale measure P* ~ P. Con-
sider a contingent claim given by a Fr-measurable, nonnegative random variable H such
that H € L'(P*). Completeness implies that there exists a perfect hedge, i.e., a predictable
process £ such that

t
(2.3) E*[H | Fi] = Ho +/ ¢Hax, Ve[0,T] P—as.,
0

where E* denotes expectation with respect to P*; cf., e.g., Jacka (1992). Thus the claim
can be duplicated by the self-financing trading strategy (Ho, ). This assumes, of course,
that we are ready to allocate the required initial capital

(2.4) Hy = E*[H] .

But what if the investor is unwilling or unable to put up the initial capital Hy? What
is the best hedge the investor can achieve with a given smaller amount Vo < Hy ? As
our optimality criterion we take the probability that the hedge is successful. Thus we are
looking for an admissible strategy (Vp, ) such that

(2.5) P = max

T
Vo-l—/ (sdXs > H
0

under the constraint

(2.6) Vo < Vi .

2.2 Maximizing the probability of success
Let us call the set

(2.7) {Vr > H}
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the “success set” corresponding to the admissible strategy (Vp,¢), where Vp is given by
(2.1). In a first step we reduce our problem to the construction of a success set of maximal
probability:

(2.8) Proposition. Let A € Fr be a solution of the problem
(2.9) P[A] = max

under the constraint

(2.10) E*[HIA <V,

where P* is the unique equivalent martingale measure. Let € denote the perfect hedge for

the knockout option H = HI; € LY(P*), i.e.,
t ~

(2.11) E*[HI; | F| = E*Y[HI;] +/ £,dX, Vte[0,T] P—as.
0

Then (f/o,.f;:) solves the optimization problem defined by (2.5) and (2.6), and the corre-

sponding success set coincides almost surely with A.

Proof. 1) Let (15, &) be any admissible strategy such that 1 < Vo. The correspond-
ing value process defined by (2.1) is a nonnegative local martingale under P*, hence a
supermartingale under P*. If A denotes the success set corresponding to (V4, ), then we
have

(2.12) V> HIy P —a.s.
since Vp >0 P —a.s. due to (2.2). Thus

(2.13) Vo 2 Vo > E*[Vy] > E*[HI4] ,
i.e., A satisfies the constraint (2.10). This implies

(2.14) HMSPH}

due to (2.9).
2) Let us now show that any strategy (14, é) such that E*[HI ;] <V < Vp is optimal.

Note first that the strategy is admissible:
t t
(2.15) Vo —I—/ {sdX, > E* [HI;] —I—/ (dXy =E*[HI; | F] >0 P —as.
0 0
due to (2.11), since HI; > 0. The success set

T ~
(2.16) A= {vo +/ £.dX, > H}
0
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corresponding to (Vj, ) satisfies
(2.17) AC{HI;>H}CA P-as.

by (2.11) since Vo > E*[HIz]. On the other hand, part 1) shows that the success set A

must satisfy (2.14), and this implies 4 = A P —as.. Thus we have identified A as the
success set corresponding to (Vy,€). In particular, the strategy (V5,¢) is optimal in the
sense of (2.5) and (2.6).

The problem of constructing a maximal success set is now solved by applying the
Neyman-Pearson lemma. To this end we introduce the measure Q* given by

Q* H _H

(2.18) - E

The constraint (2.10) can be written as

Vo
2.1 A < ai= —.
219 Q4] < o=
Define the level

dP
: a =1 :QF <
(2.20) a mf{a Q [dP* >a-H| <a}
and the corresponding set
~ dP

(2.21) A= {dP* >a-HY .

(2.22) Theorem. Assume that the set A satisfies
(2.23) Q4] = «.

Then the optimal strategy solving (2.5) and (2.6) is given by (f/o,.f;:) where € is the perfect
hedge for the knockout option HI ;.

Proof. P and Q* are both dominated by P*, and the set A is of the form

(2.24) A= {d—P* > const dQ:} .
The Neyman-Pearson lemma states that

(2.25) Pl4] < PLA]

for all sets A € Fr such that

(2.26) Q*[A] < Q*[A] ;



cf., e.g., Witting (1985). Under our condition (2.23), the theorem now follows from propo-
sition (2.8).

Theorem (2.22) shows that the problem of quantile hedging is solved by hedging
a suitable knockout option. From a practical point of view the hedging strategy for a
knockout option has some inconvenient features, and we refer to Shreve and Wystup (1998)
for a careful analysis of this issue.

2.3 Maximizing the expected success ratio

Condition (2.23) is clearly satisfied if

dP

—a-H|l=o0.
apx

(2.27) P

But in general it may not be possible to find any set A € Fr which assumes the bound
in (2.19). In this case, the Neyman-Pearson theory suggests to replace the “critical
region” A € Fr by a “randomized test”, i.e., by a Fp-measurable function ¢ such that
0 < ¢ < 1. Let R denote the class of all these functions, and consider the following
optimization problem:

(2.28) EBlg] = max Ely]

under the constraint

* _ VO
(2.29) /c,on Sa=o

0

In its extended form, the Neyman—Pearson lemma states that the solution is given by

(230) 95 = I{ aP >&~H} + ’YI{ dP* :&~H}

dP* dP

where a is given by (2.20), and where v is defined by

(2.31) v =

in case that condition (2.23) does not hold. This provides the solution to the following
extension of our hedging problem.

(2.32) Definition. For any admissible strategy (15, {) we define the corresponding “success
ratio” as

v
(2.33) o =Icvyy + gTI{vT<H} .
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Note that ¢ € R, and that the set {¢ = 1} coincides with the success set {Vr > H}
associated to the strategy (Vp,&). In the extended version of our original problem defined
by (2.5) and (2.6), we are now looking for a strategy which maximizes the expected success
ratio E[p] under the measure P:

(2.34) Theorem. Let ¢ denote the perfect hedge for the contingent claim H = Hy where
@ 1s defined by (2.50). Then

i) (‘707&:) mazimizes the expected success ratio Elp] under all admissible strategies (Vo, §)
with Vo S Vo,

i) the success ratio of (f/o,.f;:) 18 given by &.

Note that condition (2.23) implies ¢ = I 5, and in this case the strategy (f/o, é) reduces
to the strategy described in Theorem (2.22).

Proof. The argument is analogous to the proof of (2.8) and (2.22), and it is a special
case of the proof of theorem (4.9) below.

2.4 Minimizing the cost for a given probability of success

Consider a given shortfall probability ¢ € (0,1). We are looking for the least amount
of initial capital which allows us to stay on the safe side with probability 1 — ¢, 1.e., we
want to determine the minimal value of V) such that there exists an admissible strategy

(Vo, f) Wlth

T
(2.35) P v0+/ (dX,>H| >1—¢.
0

In analogy to the previous argument, this can be reduced to the problem of finding a set

A € Fr such that
(2.36) E* [HI4] = min
under the constraint

(2.37) PlA]>1—c¢.

Equivalently, we want to maximize Q* [A°] under the constraint P [A°] < &, where Q* is
defined by (2.18). The solution is again provided by the Neyman-Pearson lemma: Choose

(2.38) b= inf{b . P [Ci;]?g > b] < 5}
and define B through its complement

ne dQ* 70 dP 7 % -1
(2.39) B® = { 1P >b} = {dP* < (bE*[H)) H} :
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If P[B] = 1—¢ then B® maximizes Q*[A°] under the constraint P[A°] < . In other words,
B minimizes E*[HI4] under the constraint (2.37). But this implies that the optimal
strategy for the original problem is given by the duplicating strategy for the knockout
option HIg.

In the same way we can solve the extended problem where we require that the expected
success ratio satisfies E[p] > 1 — . Define

(240) 927 — I{ aQ* <5} —|_ ")/I 4Q* :5}

(2.41) v =

in case that P[ddQP* <b<1-—c

(2.42) Theorem. Let é denote the perfect hedge for the contingent claim H = Hg and

define Vo = E*[H]. Then

i) (‘7075) has minimal cost under all admissible strategies (Vy, &) with expected success
ratio Elp] > 1 —¢,

i) the success ratio of (f/o,.f) s given by @, and E[p] =1 —¢.

2.5 Controlling the size of the shortfall
For a given strategy (V4,£) the resulting shortfall is defined as the excess
(2.43) S=(H-Vp)*

of the contingent claim over the final portfolio value. So far we have looked for a strategy
which maximizes the probability that the shortfall S is 0. In other words, our aim was to
minimize the expected loss

(2.44) E[L(S)]

for the special binary loss function L(x) = I (g 0)(2). But it is natural to take into account
also the size of the shortfall S, not just the probability that it is strictly positive. This
suggests to minimize (2.44) for a loss function of the form L(x) = I(2)I(o,c0)(x) where [ is
some increasing convex function on [0, c0), for example [(x) = P for some p > 1.

In the special case [(x) = x, our aim would be to minimize the expected shortfall
(2.45) E[S] = E[(H — Vp)*]
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under a constraint on the initial capital V5. Without loss of generality we can assume that
0 < Vr < H, ie., the final portfolio value is of the form Vy = Hy for some randomized
test ¢ € R. Thus, the problem of minimizing the expected shortfall (2.45) is equivalent to
the problem of maximizing the expected value E[Hp] in the class R under a constraint of
the form E*[Hy] < Vo. A slight modification of the preceding discussion shows that the
optimal strategy consists in replicating the modified claim H @, where ¢ is the optimal test
of the simple hypothesis P* against the alternative P.

A systematic discussion of the hedging problem in the case where [ is a general convex
loss function and some explicit case studies are given in Féllmer and Leukert (1998).

3. Quantile hedging in the Black-Scholes model

In the standard Black-Scholes model with constant volatility ¢ > 0, the underlying
price process is given by a geometric Brownian Motion

with initial value Xg = zg, where W is a Wiener process under P and m is a constant.

For simplicity we set the interest rate equal to zero. The unique equivalent martingale
measure is then given by

dP* m 1 /m\?
(3.2) Jp = 6XP (—;WT ~3 <—> T) :

The process W* defined by

(3.3) W =W, + —t
o
1s a Brownian motion under P*. Since

1
Xp =z¢exp(ocWr + (m — Z0*)T)
2
(3.4) 1
= xg exp(cW7 — §UZT) ,

we can also write

dpP* —m/o?
= const - X / .

(3.5) - 7

A European call H = (X7 — K)+ can be hedged perfectly if we use the initial capital
(3.6) Hy=FE'[H =2¢®(dy)—K®(d-) ,
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where

(3.7) i = _g\l/T In <K> + %aﬁ

To
and @ denotes the distribution function of the standard normal distribution N(0,1).

Suppose we want to use only an initial capital V which is smaller than the Black-
Scholes price Hy. By (2.22) the optimal strategy consists in duplicating the knockout
option HI, where the set A is of the form

dP
(3.8) A:{m>const-ﬂ} )

Due to (3.5) we can write

(3.9) A= {XM7 S \(Xp - K)*),
and the constant A is chosen such that

(3.10) E*[HIA =V, .

We distinguish two cases.

i) m < o?:

In this case the success set takes the form

(3.11) A={Xr <c}={W; < b}
where

L,
(3.12) c=agexp | ob— 39 T .

Thus, the modified option HI4 can be written as a combination
(3.13) (XT — I&’)—i— — (XT — C)+ — (C — A’)I{XT>c}

of two call options and of a binary option. We get

(3.14) PlA] = q>< _ﬁT) ,

and the constant b can be determined from the condition
Vo = E*[HI,4]

(3.15) = 20® (dy) — K& (d_) — 2P (WFT”) e (%) '
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If instead of Vj we prescribe a shortfall probability ¢ and require
(3.16) 1—e=P[4],
then b is defined by

(3.17) b=VTd ' (1—c)+ %T ,

and the corresponding minimal cost V4 can be computed via (3.15).

To illustrate the amount of initial capital that can be “saved” by accepting a certain
shortfall probability consider the following numerical example: T = 0.25 (i.e., 3 months),
oc=0.3,m=0.08,, Xy =100, K = 110. For the values ¢ = 0.01,0.05, 0.1 the corresponding
proportions Vy/Hy are given, respectively, by 0.89,0.59,0.34. Thus, we can reduce the
initial capital by 41% if we are ready to accept a shortfall probability of 5%.

For later purposes we define a(y) as the maximal probability of a successful hedge for
a given capital y > 0 and state the following properties of the function «.

(3.18) Lemma. The function « belongs to C[0,00) N CY(0,00) , increases strictly from
a(0) = P[Xr < K] to 1 on [0,Hy], is concave on [0,00) and strictly concave on [0, Hy],
and satisfies a%oz(()—l—) = 0.

Proof. Let f resp. f* denote the density functions of X7 under P and P*. We have

c(y)
(3.19) aly) = / F(2)d

where ¢(y) is defined as the solution of the equation

S

(3.20) y = / (z — K)f*(2)dz
h
(for y > Hy we put ¢(y) = +o0). Differentiation yields

(3.21) 1= (c(y) = K)f*(cly))d'(y) ,

hence

(3.22) a'(y) = fle(y))e' (y) =

Since

(3.23) —*(Z) — const 2™/



and since m < o2, the right hand side in (3.22) is a decreasing function of ¢(y). But ¢(y)
increases from K to oo as y increases from 0 to Hy, and so we obtain the stated properties

of a.
i) m > o
In this case the function 2™/ is convex. Since P[A] < 1, the success set A must have the
form
A={Xr<ca}tU{Xr>c
o0 (X7 < e} U{Xr > o)

={Wr<b}U{W75 > b}

where ¢; < ¢ are the two distinct solutions of the equation

2

(3.25) 2™ = Na = KT

and where the constant A is determined by the condition E*[HI4] = Vi. We have

520 pu=e (Mo ET) o hET)

The modified option HI, can again be written as a combination of call options and digital
options, and the corresponding cost is given by

(3.27) VO:fOCI)(d+)_—bIIiCI)U(;—) o (b ~by+oT\ . (=b
‘”O‘I’< VT )”“D<ﬁ>”0@< VT ) “’(ﬁ)'

The function « again has the properties stated in (3.18); we omit the proof.

4. Quantile hedging: The incomplete case

In this section we discuss the problem of quantile hedging in the general incomplete
case where the equivalent martingale measure is no longer unique. The solution combines
the Neyman-Pearson lemma for multiple hypotheses with the technique of superhedging.

4.1 Superhedging
In incomplete models not every contingent claim is attainable. Nonetheless it is pos-
sible to stay on the safe side by putting up a sufficiently high amount of initial capital and

following a superhedging strategy. This approach was initiated by El Karoui and Quenez
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(1995); see also Karatzas (1997) and the references given there. The least amount of initial
capital required to be on the safe side is given by

T
(4.1) inf{Vo | 3¢ : (Vo,€) admissible, Vj —I—/ £sdXg>H P —as.}.
0

There is a basic duality which characterizes this least amount as the largest arbitrage-free
price. More precisely, let us assume

(4.2) Uy := sup E*[H] < 0,
pxep

and let us define (Uy) as a right-continuous version of the process defined by
(4.3) Ui = ess.supp« cpE*[H | Fy] .

The process (Uy) is a P-supermartingale, i.e., a supermartingale simultaneously for all
P* ¢ P. In fact it is the smallest non-negative P-supermartingale with terminal value
> H. As shown in full generality in Kramkov (1996) and in Follmer and Kabanov (1998),

such a P-supermartingale admits an optional decomposition of the form

1
(4.4) U, = Up + / ¢dX, — C
0

where C is an increasing optional process, and where (Up,§) is an admissible strategy.
While the Doob-Meyer decomposition holds for a fixed probability measure and with a
predictable increasing process, the optional decomposition is valid simultaneously for all
measures P* € P, and the increasing process is only optional.

The optional decomposition (4.4) of the process (U;) can now be viewed as the fol-
lowing superhedging procedure: Put up the initial capital Uy, then follow the dynamic
trading strategy ¢ and withdraw the cumulative amount of capital C; from the super-
hedging portfolio as one learns more and more about the development of the underlying
price.

As a corollary of the optional decomposition, the value Uy can be characterized as the
least amount of capital needed at time ¢ to cover the claim H by following an admissible
strategy £ from time ¢ up to time T, i.e.,

(4.5) Ui =ess.inf V4

where V; runs through the class of F;-measurable random variables > 0 such that

T
(4.6) Vt—l—/ £sdXys > H P —a.s.
t

for some admissible strategy . In other words, U; is an upper bound for any arbitrage-
free price of the claim computed at time ¢. If additional constraints are imposed on the
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strategies £ in (4.6) then the dual description (4.3) of the process defined by (4.5) has a
corresponding analogue in terms of a suitable extension of the class P; see Karatzas (1997)

and Follmer and Kramkov (1997).

4.2 Quantile hedging and the extended Neyman-Pearson Lemma

Again we consider the question what an investor can do who is unwilling or unable
to put up the high amount of initial capital Uy required to stay on the safe side. In many
incomplete models the cost of superhedging for a call option is given by Uy = Xy, and
so the superhedging strategy reduces to the trivial strategy of holding one unit of the
underlying; see, e.g., Eberlein and Jacod (1997) and Frey (1997). Thus, our question is
particularly relevant in such cases.

So let us fix a smaller amount Vy < U,. We can now ask for a strategy which
maximizes the probability of a successful hedge under the constraint that the initial capital
is not larger than Vo . In the extended version of the problem, we want to maximize the
expected success ratio defined by (2.33). Thus, our aim is to find an admissible strategy
(VO, é) such that the corresponding success ratio ¢ satisfies

(4.8) E[p] = max{E[p] : (Vi,€) admissible, Vy < Vi} .

This problem is easily reduced to the Neyman-Pearson Lemma for a composite hy-
pothesis. As in section 2.3 we denote by R the class of all “randomaized tests”, i.e., all Frp
- measurable functions ¢ such that 0 < ¢ <1 P— a.s..

(4.9) Theorem. There exists a function ¢ € R such that

(4.10) E[¢] = max Ely]

under the constraints
(4.11) E*[Hp] <V, VP*€P.

The modified option H:= H¢ may or may not be attainable. If it is attainable, then let
¢ denote the corresponding replicating strateqy. If it s not attainable, let £ denote the
superhedging strategy resulting from the optional decomposition of the P-supermartingale

(4.12) U; = ess. sup E*[ﬁ | F], 0<t<T.
pPxcp

In either case, (f/o,.f;:) solves the optimization problem defined by (4.8).

Proof. 1) The existence of a solution ¢ € R of the optimization problem defined
by (4.10) and (4.11) follows from the Neyman-Pearson Lemma as explained below. Note
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that we have ¢ = 1 on {H = 0}, P- almost surely (otherwise we could replace ¢ by 1 on
{H = 0}, thereby increasing the expectation in (4.10) without affecting the constraints in
(4.11)).

2) Let (Vp, ) be any admissible strategy with Vo < Vj. The resulting value process (V;) is
a P-supermartingale. Since the success ratio ¢ satisfies Heo = min(H, V), we obtain

(4.13) E*[Ho] < E*[Vp| < Wy VP*eP.
Thus ¢ satisfies the constraints in (4.11), and so we have
(4.14) Bly] < Blg].

3) Consider the admissible strategy (ﬁo,é) given by the optional decomposition (4.4) of
the P-supermartingale (ﬁt) associated to the modified option H= Hp. Note that (70 = f/o
since the optimal test ( attains the bound V; in (4.11). The resulting value process (V;)
defined by (2.1) satisfies

(4.15) Vir>H=Hp.

Let~;/; denote the success ratio corresponding to the admissible strategy (f/o, é) We have
E[y] < E[¢] due to part 2). On the other hand, (4.15) implies ¢» > ¢ P-almost surely,
and so we see that ¢ is the success ratio associated to (Vp,€). Due to (4.14), we have

shown that the strategy (f/o, é) solves the optimization problem (4.8).

We can express condition (4.11) in a more familiar form by introducing the family of
probability measures {Q* | P* € P} where Q* is associated to P* via the density

dQ* H
4.1 = )
(4.16) dP* E*[H]
Then the constraints take the form
(4.17) / dQ* < o(P*) := Y VP*c P
) © < = i )

Thus we are faced with the problem of testing the compound hypothesis {Q* | P* € P}
against the simple alternative P. The critical levels are given by «, viewed as a bounded
measurable function on the parameter set P endowed with the o—field generated by the
integrals [ fdP* for bounded measurable functions f on (2, Fr). The ezistence of an
optimal test ¢ now follows from the standard theory; cf., e.g., Witting (1985).

In addition to the basic existence result, the Neyman-Pearson theory also shows that
optimal tests typically have a 0-1 structure. Consider a test ¢ € R which satisfies the
constraint (4.17). In our special context, the class {Q* | P* € P} is measure convez, i.e.,
any mixture of measures in this class by some probability distribution on P belongs again
to the class. Applying corollary 2.83 in Witting (1985), we see that the following form of
@ is sufficient (and often necessary) for optimality:
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(4.18) There exists a measure P € P such that the following two conditions are satisfied:

1 i L > \H
(4.19) ¢ = b

for some constant X\, and

(4.20) / GHIP =V, .

In the context of section 5 below such a “worst case” martingale measure P will be
constructed explicitly.

4.3 Quantile Hedging for a given shortfall probability

Consider a given shortfall probability ¢ € (0,1). We are looking for the least amount
T
(4.21) inf {Vo | 3¢ admissible : P[V} —I—/ £sdXs > Hl > 1— 5} )
0

of initial capital which allows us to be on the safe side with probability 1 — e. As in the
complete case, we pass from tests to randomized tests, and rephrase the problem in terms
of success ratios rather than success sets. Thus we want to determine the least amount

(4.22) inf{Vp | 3¢ : (V,€) admissible, E[p] >1—¢} ,

where ¢ denotes the success ratio associated to the admissible strategy (Vp,&).

Again the problem can be reduced to finding a random variable ¢ € R such that

(4.23) sup E* [He] = min
pP*epP

under the constraint

(4.24) Elp]>1—c.

As in the theory of optimal tests, weak compactness of R guarantees the existence of a
random variable ¢ € R which solves the optimization problem defined by (4.23) and (4.24)

(4.25) Remark. The set P of equivalent martingale measures is convex. For a given
contingent claim the expectation E*[H] is linear in P*. Thus the set {E*[H]: P* € P}
of arbitrage-free prices for H is an interval. For a given shortfall probability ¢ the above
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construction yields a strategy £° such that the investor has an expected sucess ratio of
(1 —¢)100%. Typically - if ©° is not too small - we will have

(4.26) inf{E*[H]: P* € P} <sup{E*[H¢|: P* € P} <sup{E*[H]: P* € P},

1.e., the capital required to reach an expected sucess ratio > 1 — ¢ lies within the arbitrage-
free interval. Thus there exists a particular P° € P such that

(4.27) sup{E* [Hy®]: P* € P} = Ep: [H] .

Furthermore we know from the theory of tests that sup {E*[H®]: P* € P} is convex
and continuous in ¢ € (0,1); cf. e.g. Ingster (1992, p.93). This suggests the following
interpretation: For a given contingent claim H the seller is a priori faced with the task
of choosing one equivalent martingale measure in order to price H in an arbitrage-free
manner. Instead of choosing an element of P (which may have a rather complicated
structure), the above approach suggests that the seller may simply choose a shortfall
probability € corresponding to the risk he or she is willing to bear.

5. Quantile hedging of a volatility jump

Consider a geometric Brownian motion with drift 0 where the volatility has a constant
value 0 > 0 up to time ty and then jumps to a new constant value n according to some
distribution g on (0, o).

We use an explicit model (Q,]:i, P) of the following form. Put = C[0,7T] x (0, c0),
and for w = (w,n) define Xy(w) = Xy(w) = w(t). We fix a time ¢ty € (0,7) and an initial
value xg > 0. For each value n > 0 we define a time-dependent volatility by o4(n) = o

for t < tg and o(n) = n for t > ty. Let P" denote the unique probability measure on
1 = C[0,T] such that the process (X;) satisfies the stochastic differential equation

(51) dXt == XtO't(n)thn 5 Xo = X9

under P", where (W/") is a Wiener process under P7. The measure P on § is defined by
P(dw,dn) = pu(dn)P"(dw). We denote by F the completion of the natural product o-field
on  under P, and by (ﬁt)ogth the right-continuous complete filtration on Q generated
by the processes (X;) and (o). The projection of P on § is denoted by P, and (F;) is the
right-continuous complete filtration on Q generated by (X).

Consider the European call option with strike price K and exercise time T, viewed

both as a random variable H = h(X7) on  and as a random variable H = h(X7) on §,
with h(z) = (z — K)T. At time t¢, the value Xy, = z is observed and the new volatility n
is revealed. From this time on, the option can be replicated perfectly using the standard
Black—Scholes hedging strategy in the complete model P7. The required cost is given by

(5.2) v!(x) = E" [h(XT)|XtO = :1;] <z.
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For t < ty the value n is still unknown. The cost of superhedging is given by

(5.3) U; = ess sup E* [h(XT)Lft] ,
P*xepP

where P is the class of all equivalent martingale measures P* = P. All measures P* € P
have the same projection P on ({2, F,) and the same conditional expectation

(5:4) E* [MX )| Fe ) (w,n) = 0" (X (w))

with respect to F;,. This implies that Uy, viewed as a random variable on € for ¢ < t¢, is
given by

(5.5) U; = ess supE[v"(Xtoﬂft]

n

where the essential supremum is taken with respect to p. If 4 has unbounded support then
we get U, = X, for t < ty, and in particular

(5.6) Uy = o ;

cf., e.g., Frey and Sin (1997). In this case, the superhedging strategy is reduced to the
following simple procedure: Buy one unit of the underlying asset at time 0 and hold it up
to time tg. At that time the value 7 is revealed. Pay out the refund Cy, = Xy, — v"( Xy, ),
and use the remaining capital v"( X, ) to implement a perfect hedge of the option.

Let us now turn to the problem of quantile hedging. Thus, we want to maximize the
probability of a successful hedge under the constraint that the initial cost is not larger
than some fixed amount Vj such that

(57) 0<‘70<U0§$0.

At time #g, let a”(x,y) denote the maximal probability of achieving a successful hedge,
given the present state + = Xy, and some capital y > 0. We know from section 3 that

(5.8) al(z,y) = Fl(c"(2,y))

where F7 resp. f! denote the distribution function and the density function of X7, given
X1, = @ and the volatility n, and where ¢"(x,y) is the solution of the equation

0

(5.9) yzﬁln—KVﬂaw

S

(:= 400 for y > v"(x)). Let us define

(5.10) auwwz/@%awmm>
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and

(5.11) u(x) := essnsup vl(x) <w.

(5.12) Lemma. The function a(xz,-) belongs to C[0,00) N C1(0,00), is strictly increas-
ing to 1 on [0,u(x)], concave on [0,00) and strictly concave on [0,u(x)], and satisfies

a%oz(:z;,O—l—) = +o00.

Proof. The properties of a”(x,-) established in section 3 imply a(z,-) € C[0,00) N
C1(0,00) and

0 1
1 — = | ————u(dn) .
(513) ool = [ St
This decreases in y, and the decrease is strict on {y|a(z,y) < 1} = [0, u(x)).

(5.14) Proposition. Let v denote the distribution of Xy, under P. There exists a unique
function v € C1(0,00) such that

(5.15) /a(x,v(x))y(dx) = sup/oz(:z;,f(:z;)) v(dx)

f

where the supremum is taken over all measurable functions f >0 on (0,00) with [ fdv <

Vo. We have

(5.16) 0 <wv(z) <ulx), /vdu =V,
and v is the solution of the equation

(5.17) —a(r,v(z)) = c

for some constant ¢ € (0,00).

Proof. 1) It is easy to see that a function which maximizes the integral in (5.15)
must belong to the class C' of all measurable functions f > 0 such that [ fdv = Vo and
0 < f <wuwv-as. Since [udv < [xdv < oo, the class C' is convex and weakly compact in
L'(v). Existence and uniqueness of an optimal v € C' now follow by standard arguments.
As to existence, we can for instance argue as follows. Take a sequence (f,,) such that the
integrals on the right hand side of (5.15) converge to the supremum. Using Lemma A.1.1
in Delbaen/Schachermayer (1994), we can choose functions v, € conv(fy, fn+1,...) C C
such that v, converges a.s. to some v € C'. By Lebesgue’s theorem, the function v must

satisfy (5.15).
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2) In order to clarify the structure of v, consider any f € C such that f < ¢-v for
some ¢ > 1. For any A € [—ci—l, 1], the function

a=o(l =)+ Af

satisfies the constraints in our optimization problem (5.15), i.e., we have [ fadv = Vo and
fx > 0. Thus, the concave function F' defined by

F(X) = /a(:z;,fﬂx))y(dx)

1
c—1?

on the interval I = [— 1] assumes 1ts maximum in A = 0. In particular we have

(5.18) F(/\);F(O) = / a<$7f}\(x)>/\_a<x7v(x)> v(de) <0

for A € (0,1]. For any A € I — {0}, the integrand vanishes on {f = v}, and on {f # v} C
{v > 0} it is bounded in absolute value by

oz(:z;,v(:z;))
v(z)
here we use the relation fy(x) —v(x) = A(f(x) — v(x)), the fact that «(x,-) is concave

on [0,00) with values in [0, 1], and the estimate |f(2) — v(2)| < cv(x). Using Lebesgue’s
theorem we obtain differentiability of F' in A = 0 and the equation

(5.19) [f(z) —v(@)] < c;

(5.20) 0=F'(0)= / %a(m,v(w)) (f(:z;) — v(:z;)) v(dz).

Since (5.20) holds for all f > 0 such that [ fdv = Vo and f < ¢ - v for some ¢ > 1, we
can conclude that a%oz(:z;,v(:z;)) must be constant v-a.s. on {v > 0}, hence v-a.s. due to
part 3) below. This constant must be strictly positive, because otherwise we would get
v(x) = u(x) v-a.s., hence [vdv =U; > Vo. Thus, v(x) < u(x) v-a.s.

3) Let us now take any f € C. In this case we have f\ € C for any A € [0, 1], and so
the estimate (5.18) holds for any A € (0,1]. For A \, 0 we can apply monotone convergence
separately on the sets {v < f} and {v > f}. Using the bound in (5.18) we can conclude
that the derivative F'(0+) from the right exists and satisfies

(5.21) 0> F'(0+) = / %a(m,v(w)) (f(:z;) — v(:z;)) v(de)

and that the integrand belongs to L'(v). Taking f > 0 we see that the solution v of our
optimization problem must satisfy v(x) > 0 v-a.s. since a%oz(:z;,O—l—) = +o0.
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(5.22) Theorem. The probability of a successful hedge s mazimized by the following
strateqy:

i) Up to tuime tg, use the strategy which replicates the contingent claim v(Xy,), where v
solves the optimization problem in (5.15).

i) From time to on, use the strateqy which mazimizes the probability of a successful
hedge under the new volatility n, given the initial capital v(Xy,) (see section 3).

Proof. Consider any admissible strategy (Vp,¢) with initial cost Vg < Vi. The
resulting value

1
(5.23) V, = Vi +/ £.dX,
0

will be viewed as a random variable on (§, F,) for any ¢ < t;. We have
(5.24) E[V,,] <V < Uy,

and the strategy will achieve a successful hedge with conditional probability
(5.25) PV = H|Fy](w,n) < " (X (w), Vip (w)) -

This implies

(5.26) PlVy > H] < Ela(Xy,,Vi,)] -

But a(z,-) is concave, and so we get

(5.27) PIVr > H] < E[a(X,,, f(X0,))]

by Jensen’s inequality for conditional expectations, if f denotes a measurable function such
that

(5.28) f(Xy,) = E[Vi, | Xy,] P —a.s.
Since
(5.29) E[f(Xy)] = E[Vi,] < Vo,

we see that
(5.30) E[a(Xi. f(X1)] < E[a(X1,.0(X,)]

due to proposition (5.14). Thus, the right hand side is an upper bound for the probability
of a successful hedge under the constraint that the initial cost is bounded by V,. But this
upper bound is actually achieved if we use the strategy described in the theorem.
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Let us now look at the structure of a “worst case” martingale measure P as it appears
in (4.18). The results in section 3 show that, in our case, the optimal  is of the form
¢ = I; where the success set A € Fr is given by

(5.31) A={Xp <e"( Xy 0(Xey)) } -

(5.32) Theorem. There exists a measure P € P such that

(5.33) EHI;] =V
and

. dP _
(5.34) A= {ﬁ > const H} \

i.e., A is the critical region for the optimal test of the hypothesis Q defined by d@/al]5 =
const - H against the alternative P.

Proof. Note first that, in our case, the constraint (5.33) is satisfied for any P* € P
since

(5.35) E*[HI;] = E* [E;'(to [HIA(n,~)]] = E[U(Xto)] =W
due to (5.4). Let us now define a strictly positive density ¢ by

(5.36) S(w,n) = lagyo/’ (Xto(w),v<Xt0(w)>> )

c

We have
(5.37) /@Wmmwwzl

due to (5.17). This implies that the measure P defined by ¢ has projection P on (£, Fy,)
and conditional expectation (5.4) with respect to Fy,. Thus, we have P € P*. Now recall
that

0 1
E— n pumng
(538) 8ya <Xt07v(Xt0)> ch <Xt0,U(Xto )) — K ‘

This implies (5.34) since

(5.39)
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