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1. Introduction

The behavior of a smooth function F on R? along the paths of d-dimensional Brownian
motion is described as follows by Ito’s formula. Let P, be the distribution of Brownian
motion with initial point 2, and let X = (X',..., X?) denote the coordinate process on
the canonical path space Q = C([0,00), R?). Consider the process A defined by

d t
(1.1) Ay =F(X))— F(Xo) =Y / Fr(Xs)dX ],
= o
where we denote by fi. = % the partial derivatives of F. Tto’s formula provides an

alternative description of the process A:

1 t
(1.2) A = 5 / AF(X,)ds P, —a.s.
Jo

for any t > 0, and for any starting point = € R

Note, however, that the description (1.2) in terms of the Laplace operator A involves
second order differentiability of F', while definition (1.1) requires only differentiability of
first order. In fact, the process in (1.1) is well defined whenever F belongs to the Sobolev
space W2 at least locally. In this case, we choose an appropriate version of F and use
the weak first derivatives fi in order to define (1.1) P,- almost surely for all 2 ¢ E. where
E is some polar set. Thus the question arises how to formulate an analogue to (1.2) for a
general function F € VVIL’CQ Of course we can always approximate F' by smooth functions

F) in such a way that the terms in (1.1) converge to the corresponding terms for F', and
then we get the description

1 1
(1.3) A, = lim _/ AF™(X,)ds.
J0
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But rather we are interested in an intrinsic description which directly involves the function

F itself.

It turns out that such an intrinsic description can be given in terms of quadratic
covariation. We show that for any initial point = € R?, except for some polar set, the
quadratic covariations [f1,(X), X*] exist as limits in probability of the usual sums under
the measure P,.. Our extension of It6’s formula consists in identifying the process A defined

by (1.1) as
(1.4) Ay =

for all x except for some polar set.



If Fis the difference of two positive superharmonic functions so that the distribution
%AF is given by a signed measure p, then (1.5) provides an explicit description of the
additive functional associated to u which appears in the extended Tt6 formula of Brosamler
(1970) and Meyer (1978). In the general case F € W'? we can view F as a function in
the Dirichlet space associated to d-dimensional Brownian motion. From this point of
view, A is the process of zero energy appearing in Fukushima’s decomposition of the
process FI(Xy) (t+ > 0); ef. Fukushima (1980). Thus, our formula (1.5) provides an explicit

construction of the process of zero energy in terms of quadratic covariation.

In the one-dimensional case, the extension (1.5) of It6’s formula was shown in Follmer,
Protter and Shiryaev (1995). In this paper we consider the case d > 2. The basic idea is
the same: The existence of the quadratic covariations in (1.4) is shown by proving that
the forward and the backward stochastic integrals of fi.(X) can be approximated by the
corresponding sums. But in contrast to the one-dimensional case, these approximation
results hold only for all initial points 2 outside some exceptional set of capacity zero, and
the proofs are more subtle. In section 2 we fix a starting point 2o € R? and a measurable
function f on R?. We formulate two integrability conditions on f in terms of zq which
guarantee that both the forward and the backward stochastic integral can be constructed
in a straightforward manner as limits in probability

(1.5) /Otf(Xs)de = lim Y RXXE,, X

t,€Dp
0<t; <t
and
1
T k k
(1.6) Aﬂ&W&kﬁégﬂ%M@W%J
0%t <

under the measure P, . This implies the existence of the quadratic covariations

(1.7) [FX)XFe = lim Y {F(Xay) — FX) MG, — X5

as limits in probability under the measure P, . and their identification as differences

(18) WMK%—Aﬂ&Wﬂ’AfMMﬁ

of backward and forward stochastic integrals. In section 3 we consider a measurable func-
tion f such that

(1.9) Pl | fA(X,)ds < oo] =1.



at least for some xg and for some 7. Note that condition (1.9) is clearly a minimal require-
ment if we want to talk about stochastic integrals of f(X). Using results of Hohnle and
Sturm (1993) on multidimensional analogues of the Engelbert-Schmidt 0 - 1 law, we show
that condition (1.9) implies that our integrability conditions in section 2 for the existence
of the quadratic covariations [f(X), X*] are satisfied for all starting points except for some

polar set. In section 4 we apply these results to the weak derivatives fi of a function
F € W2, This leads us to our characterization (1.5) of the process A defined by (1.1).

Using the identification (1.8) of the quadratic covariations [f;(X), X*], our version
(1.5) of Ito’s formula can also be written in the form

(1.10) FIX) -~ PIXo) = Y [ fulX) e dxt,

2
loc

where for a function f € £2 _(R?) we define the Stratonovich integral as

(1.11) ./O/f(XS) odXk = %(‘/O/f(Xs)dX.f +/0,f(Xs)d*X.f>-

The idea of deriving an extended It6 formula in terms of quadratic covariations defined
by (1.8) or in terms of Stratonovich integrals defined as in (1.10) has appeared indepen-
dently in Russo and Vallois (1996) in a general semimartingale context, and in Lyons and
Zhang (1994) in the context of Dirichlet spaces. Note that it makes sense to use both
(1.8) and (1.10) as a definition of the quantities appearing on the left hand side whenever
the processes X* are semimartingales after time reversal. However, the explicit approx-
imation of the stochastic integrals in (1.5) and (1.6) and the resulting identification of
the quadratic covariations as limits in probability of the sums in (1.7) is another matter.
Such an approximation is of course straightforward if f is continuous. Russo and Vallois
(1996) consider a different approximation where they first smoothe the right hand side of
(1.7) by taking integrals over time instead of the usual sums. In Lyons and Zhang (1994),
the identification (1.7) of the quadratic covariations [f(X), X*] is shown under the regu-
larity assumption that the function f belongs to the Dirichlet space, and convergence in
probability is formulated with respect to a reversible reference measure.

In this paper, we concentrate on the classical case of Brownian motion. But here we
insist on two improvements. First, the approximations (1.5), (1.6) and (1.7) are established
with respect to a given starting point o € R? under explicit integrability conditions
involving f and xg. The second point is that we remove any smoothing and any regularity
assumptions on the measurable function f. We require only the minimal integrability
conditions which are needed in order to guarantee existence of the forward stochastic
integral in (1.11). Thus, the existence of the quadratic covariations in (1.4) is established
on exactly the same level of generality which is appropriate for defining the stochastic
integrals in (1.1).



2. Existence of Quadratic Covariation

Let f be a measurable function on R? where d > 2. Our purpose in this section
is to establish the existence of the quadratic covariations [f(X), X*] under appropriate
integrability hypotheses on f, but without assuming any regularity conditions. Consider

the sums

(2.1) Z {F(Xtiyy) — FXe )X 40— X7
t,€Dp
0<t; <t

along a sequence of partitions D, of RT. As in Follmer, Protter and Shiryaev (1995), the
idea is to decompose (2.1) and to show that the two sums

t; €D
0<t; <t

and

S X (XE L, - X5
t,€Dp

0<t; <t

converge separately, to respectively a forward and a backward stochastic integral. To this
end we assume that the sequence of partitions satisfies the following conditions:

tigi

(2.2) lim  sup (ti41 —t;) =0, M :=sup sup

n—=00 ., n t,€D, i

< 00;

note that the second condition is satisfied whenever the partitions are equidistant.

For a given point xq € R? we define two norms for f:

(2.3) ummm>—/lﬂmuwomwd@

and

(2.4) |umwm—</ﬂm%mmym@ﬁ,
where

_J(—logr)vi iftd=2
(25) o ={ G i

(2.6) Remark. Suppose that f has compact support. If f is also bounded then both
norms ||f||;(xq) (i = 1,2) are clearly finite for every point zq € R?. This is still true if f is

5)



in L? for some p > d; see remark (3.24). In section 3 we will see that, in view of a general
result on the existence of quadratic covariation, it is natural to assume finiteness of both
norms for all points g ¢ E, where F is an exceptional set which is not hit by Brownian
motion.

(2.7) Proposition. Let f be a measurable function on R with compact support, and let
z0 € R be such that ||f||2(zq) < co. Then the forward stochastic integral satisfies

1
k_ 1 k vk . 2
(2.8) / FIX5)dX] = Tim. Z FX)(XE,, = XE) in £2(Py,)
0<t; <t

for each k € {1,...,d}.

Proof. It suffices to consider only the case t = 1.
1) Define the processes ¢ and ¢, by

(2.9) B, 5) = F(X(w),

(210) qbn(wv‘g) - Z f(Xh(w))[(f“h_Fﬂ(g)

t; €D,

The convergence in (2.8) is equivalent to
(2.11) lim [|¢ — énll2 =0,
77— 00

where we use the norm

(2.12) 16]]2 = Evo / (o, 5)2ds)?

for any measurable function 1) on 2 x [0, 1]. Observe that if f € Cp(R?), then (2.11) holds by
Lebesgue’s dominated convergence theorem. The general case will follow by approximating
f by continuous functions in the norm || - ||2(x0).

2) Note that the Gaussian density

po(z) = (2m5) Zexp(—||2][?/29)

satisfies the inequality

(2.13) / pa(=)ds < c(R)o(ll])

6



for any z € R? with ||z|] < R, where ¢(R) is some constant depending on R; see, e.g.,
Dynkin (1965, VIII, 8.16). Denoting by K the compact support of f and choosing R >

sup, e ||y — wol[, we obtain the estimate

1615 = | | £ wpaly — wo)dyds
(2.14) / / v :
< o(R) / 2 ()w(lly — woll)dy,

hence

(2.15) @[l < az|[f]|2(70),

where as = \/¢(R).

3) In order to obtain a similar estimate for the approximating process ¢,, note that
(2.16) pii(2) < (2mt) Fexp(-[|2]?/25) < M p(2),

for t; < s < t;41, due to our assumption (2.2). Again using (2.13) we get

6ull2 = / P S ply — wo)((tigr A1) — )y

t, enn
0<f <f
(2.17) B
< M?=2 / ps(y — 29 )dsdy
M2 e(R)|Ifl5 (””0)
hence
(2.18) [dnllz < bal|fll2(70)

where by = \/C(R)M%.

4) Next we choose a continuous function g with compact support such that ||g — f||2(20)
e, and denote by ¢ and 1, the processes associated to ¢ as in (2.9) and (2.10). We have

IA

(2.19) |6 = dnllz <l = ¥lla + [ = ¥nll2 + |[tn — ¢nlla-

But
(2.20) tm [ — ]z = 0
since ¢ is bounded and continuous, and also

(2.21) [on = @nll2 = [[(¥ = @)nll2 < bal[f — gll2(w0),

7



due to our estimate (2.18) applied to the function f — ¢g. This together with (2.15) implies

limsup [|¢ — @nll2 < [|¢ — |2 +1imsup [[tbn — dnll2

77— 00 77— 00

(2.22) < as||f — gll2(w0) + 02| f — gll2(70)
S ((],2 + bg) e.

Since £ > 0 was arbitrary we have shown (2.11) and hence (2.8).

(2.23) Proposition. Let f be a measurable function on R with compact support, and let
zq € R be such that ||f|];(xq) < oo for i = 1,2. Then the backward stochastic integral
satisfies

1
(2:24) / FIX)d* X[ = Tim Z FXrp X5, = X5) i £1(P)
0'<t,¢<nt

for each k € {1,...,d}.

Proof. It suffices to consider the case t+ = 1.

1) Let P} be the distribution of the time reversed process X o R under P, , where (RX); =
X1_¢. The time reversed process X o R is a d-dimensional Brownian bridge tied down to
0 € R? and starting with initial distribution N(0, I), where I is the identity matrix. Under

P, each component X* is a semimartingale with decomposition
t k
x5 — X
(2.25) XF=Xxt4wkF+ / %ds,
Jo -

where W* (k= 1,...,d) are independent Wiener processes. The convergence in (2.24) for
t =1 is equivalent to the convergence

1
[ k k : 1 *
(2.26) /0 FIX5)dX ] = lim. ; FIX)(XE, X5y inLY(Py),
0< ;<

where D = {1 — #;|t; € D,,}. Let us now use the decomposition (2.25) of X* under Py,
and let us first show that condition ||f||2(20) < oo implies

1
e Y AW, - WE) = [ XD )
s; €D ’
0<a; <1

This follows as in the proof of proposition (2.7). We have only to check that the estimates
(2.15) and (2.18) have analogues in terms of the norm |[¢||5 defined by

(2.25) 111 = B | / $lw, 5)ds]
8



for any measurable function ¢ on € x [0, 1]. This is clear for (2.15) since

oIl = B2 | / F2(X)ds)

=Bl P s
— 11611 < aallFI2(a0).

In order to obtain an analogue to (2.18), consider the term

oalli? = B2 3 £ (X0) (5001 — 5]

(2.29)

161_)*
08 '<‘I
— T() f2 Xf,+1 7+1 - ’1)]
(2.30) ;
o<t ;<1
= [P0 bl r0)tiss — 1y
" t;€EDnp
0<t; <1

For t; < s <t;yy and for any z € R? we have

2 |21
Ptip (2) < (2m5)7 2 exp(—5—)
(2.31) DT
! M~z 1
S(%S)*%exp(*;“ 9 di ) =ps(M"7z)
S

due to (2.2). Using again the estimate (2.13), and observing that 7)(M71§r) < av(r) for

some constant « which only depends on M and d, we get

|
S b ()i 1) < / pe(M™52)ds < e(R)o(||M*=]))
(2.32) eny Jo

0<t; <1
< ac(R)v(][|=]]).

Returning to (2.30) we see that

(2.33) 6113 < 5311 £l12 (o)

for some constant b. Using the estimates (2.29) and (2.33), we can now conclude as in

part 3) of the proof of proposition (2.7) that (2.27) holds.

2) It remains to show

o Xk — g — 75 . 1/ p*
(2.34) nh—{%o Z F(X / (]9—/ f(Xy)—=——ds in L (P, )

1617*
0L s, <1



or, equivalently,

. fit Xf—”rk ! Xf—”rk .
(2.35)  lim Y f(Xey,) / s = / FX)=—"ds in L'(Py,).

t;€EDnp
0<t; <1

Let us define the norm

! Xk gk
(2.36) L R

for any measurable function ¢ on © x [0, 1]. For the process ¢ defined in (2.9) we have

Xk—"ro
6]l = B / e ol

= [1rit m/ paly —0) 50,

However for the Gaussian density ps there is a constant aq such that

(2.38) 2] /

for any z € R?; see, e.g., Dynkin (1980, VIII, 8.45). Combining (2.37) and (2.38) yields

(2.39) ol < ar[lf1l1 (o).

(2.37)

(]9<(1 1B ||

3) We also need an estimate of the form (2.39) for the approximating processes

(2.40) Z F( X (W) 4, 1‘+1]( 5).

t, €D,

We will write ). for Et,:el)n 0<t <1 Then
* figs |)(if — .”170|
16311 = 3 B 1£(X0y ) / e 2ol gy
figs Xk — T
(2.41) = ZETO / %(] 1F(Xy, +1>|]

t; P41
- / By (o [1XE — 21X L F (X )]s,

Recall that a normal random variable Z with law N(m,o?) satisfies

(2.42) BIZ[) = m(28(2) — 1) + @f expl( ) < Il + @f

10




where ® denotes the distribution function of N(0,1). In the conditional expectation ap-
pearing in (2.41), the normal random variable Z = X¥ — 2k has conditional mean

(2.43) m=——(XF k)

tign

and conditional variance

(2.44) o2 = 2 (tig —s) < (M —1)s,
tiga

where we use our assumption (2.2). Thus, (2.42) implies
(2.45) B IXE o101 < Ais) + Bils)

where we put

2Ms
||Xfi+1 - ‘770||7 B7(‘;) =

(2.46) Ails) = -

for t; < s < t;41. Returning to (2.41) we obtain the estimate

(2.47) 16511 < Ex, Z /

t;+1
|f Xf,+1 |(A,(‘3) _|_Bi(3))d8].

4) Let us first consider the term

i1 4.
(2.48) TZ/ e Ad‘; /If |||U*7'0||Z o (y— a0)dy.

Due to (2.31) and (2.38) we obtain the estimate

|
S,j_|_1 — 8 1 _ 1
Iell 3 S () < el [ Sl )
i 9 JO o

<eME|||'

(2.49)

Returning to (2.48) we see that

141
XOZ/ L F(Xiy ) ALds] < B /|f Wlly — ol "y
= k|| fl1 (z0)

(2.50)

d
where k1 = et M 2.

11



5) As to the second term on the right hand side of (2.47), we again use (2.31) to obtain
the estimate

(2.51)

£y [ g0 = P 1S [ St sl

7 2

< \/?/ I.f(y)l/o1 \/igps(M%(y — wo)dsdy.

But for any z € R? we have

!
1
2.52 / —ps(2)ds < e |2||" 1
( ) Jo \/E ( ) 2

for some constant ¢q, and so (2.51) implies

Erol) [+ MBKSWS] <1 /I.f(y)l ly — wol|' ~"dy

S

(2.53)

where [} = \/%CQM%.

6) Combining (2.47) with (2.50) and (2.53) we see that

(2.54) o llt < billflli(2a),

where by = ki + 1. Using the estimates (2.54) and (2.39), we can now conclude as in part
3) of the proof of proposition (2.7) that ||¢ — &7 ||1 tends to 0. This implies the convergence
in (2.35) and (2.34), and so the proposition is proved.

7

= L[| flli (o)

We combine propositions (2.7) and (2.23) to obtain:

(2.55) Corollary. Let f be a measurable function on R?, let zq € RY, and let K, (m > 1)
be a sequence of compact sets such that
(2.56) lim P, [X;:eK,, Vte[0,T]]=1 VT >0.

Assume that for any m > 1 the restriction f,, of f to IK,, satisfies
(2.57) flliCro) < 00 (i =1,2).

Then the quadratic covariation

OO, X = Tim Y 0 (X)) — FX)NXE,, — X5)

(2.58) o ,
= [ reoext - [ paxt
12



exists in probability under P, and satisfies

(2.59) [F(X), X*], = /0/f<X.q>d*X.f /O/f(X.q)dX.fj

for each k € {1,...,d}.

Proof. Let t be fixed and ¢ > 0, and let T,,, = inf{t > 0 |X; ¢ K,,} be the exit time
from K,,. We denote by S, the n-th sum in (2.58), by S the difference of the forward and

backward stochastic integrals, and by S]" and S™ the corresponding terms if the function
f is replaced by f,. Since S, = S and S = S™ P, -a.s. on {T,, > t}, we have

P [T < ]+ Poo[| 55" — 5™ > €]

(2.60) Ppo[|Sn — S| > €]

for any m > 1. Applying propositions (2.7) and (2.23) to the function f,, we see that the
last term converges to 0 as n tends to co. Thus,

(2.61) limsup P, [|S, — S| > ¢] < Py [T <],

77— 00

and due to (2.56) the result follows by letting m tend to oo.

3. Exceptional sets

Let f be a measurable function on R?. Tn our approximation (2.55) of the quadratic
covariation

(3.1) [F(X). X", = / (XX / F(X,)dxXE,

as a limit in probability under P, , we have assumed integrability conditions on f which
are formulated in terms of the initial point xq. In this section we show that it is no loss of
generality to make these assumptions for all xg outside some exceptional set which is not
hit by Brownian motion.

(3.2) Definition. A measurable set E C R? is called polar if

(3.3) P.[X; € E forsomet>0]=0 Vaze R

(3.4) Remark. This probabilistic notion of an exceptional set is equivalent to the potential
theoretic notion of a set of capacity zero; see, e.g., Fukushima (1980, Th. 4.3.1 and Example
4.3.1). Equivalently, we can define these exceptional sets in terms of the Bessel capacity

of order (1,2) as in Ziemer (1989, 2.6); see, e.g., Fukushima (1993, p.25).

13



Note first that in order to introduce the forward stochastic integral in (3.1) with

respect to the measure P,_, at least for some zq € R? and some ¢ > (), we clearly need the

0
condition

(3.5) Prol [ (s < o] =1,

But the results in Hohnle and Sturm (1993, Th.1.1) show that the validity of (3.2) for
some rq € R and some t;, > 0 implies that the function f satisfies condition (3.5) for all
t > 0 and for all initial points * ¢ E where E is some polar set. Moreover, it follows that
all the assumptions we used in theorem (2.55) hold for any starting point lying outside
some polar set:

(3.6) Proposition. Let f be a measurable function on R such that condition (3.5) holds

for some xq € R* and some t < co. Then there exist a sequence of compact sets K., C
R (m > 1) and a polar set E such that the conditions

(3.7) lim P, [X; € K, Vte[0,T]=1 YT >0

M —> 00

and

(3.8) [ Fatoddr <o falllm) <00 (=12

are satisfied for all v ¢ E and for all m > 1, where f,, denotes the restriction [ - Ik of
f to the set K,,.

Proof. 1) It is shown in Hoéhnle and Sturm (1993, Th. 3.5 and 3.7) that the validity of

(3.2) for some 2o € R? and some t < oo is equivalent to the fact that there exists a polar
set Fy and a sequence of compact sets K,,, (m > 1) with

(3.9) fAx)dr < oo (m>1)

J Ko,

such that the conditions (3.7) and

(3.10) /} ol 70—y D2 ()dy < 00 (m > 1)

are satisfied for any zq ¢ Fy. Thus, the restrictions f,, of f to K, satisfy
(3.11) fin € L2(BRT), | fmll2(20) < o0
for all zq ¢ F>.

14



2) It remains to verify the integrability condition

(3.12) [ fm 1 (70) < o0

for all g outside some polar set. In view of 1) we may assume that f has compact support
K and is square integrable. Consider the Bessel potential gy * | f| of order 1 defined by

(3.13) (g1 * 1)) = / o — 9)lF1(y)dy.

where ¢, is defined as that function whose Fourier transform is

(3.14) dalz) = (27) F(1+|l|[*) 2
Note that

1 a—d
(3.15) 9(2) = = of |21

with some constant v(a) as ||z|| = 0; see, e.g., Ziemer (1989, p. 65). Thus, there is a
constant ¢ such that

(3.16) ly —aoll' " <c-gi(wo —y) on K

and so we have

1AlsGa) = [ 1l — ol
<o (g * F)wo).

But the function u = ¢ * f, being the Bessel potential with index o = 1 associated to the
square integrable function f, belongs to the Sobolev space W'? ; see Ziemer (1989, Th.
2.6.1). This implies that the version @ defined by

(3.17)

7 =i ; u(z)dz
(3.18) w(x) = 151%1 ol Bal)] ./Rﬁ(m) (2)d

satisfies @(7) < oo outside some polar set Fy; see, e.g., Ziemer (1989, Th.3.1.4 and 3.10.2)
or Fukushima (1993, Th. 2.1). Since

1

(3.19) lﬁiﬁ)lm/m(r) Gy —2)dz = gi(y — )

for any y # = by Lebesgue’s theorem, we obtain

lim —— 1(y — x)dzd
/|f| (sw VOI(B,;( ) /B(s(m)g (y ) y
1

<liminf ———— u(z)dz,
— a0 vol(Bs(x)) ./B(s(fl?) (=)

15
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using Fatou’s lemma and Fubini’s theorem. For 2 ¢ E4, we have thus shown u(zg) < oo,

hence ||f||1(70) < oo due to (3.17).
Combining proposition (3.6) with corollary (2.55) we obtain:

(3.21) Theorem. Let f be a measurable function on R such that condition (3.5) holds
for some xq € R* and some t < oo. Then there exists a polar set E such that for any
xg & E the quadratic covariation

FOOXH, = T 3T (A, ) FOG XL, — XE)
t;EDn
22 n<Hi <t
(3.22) ) )
= [ fexaaxt - [ A axt
Jo Jo
exists in probability under P, and satisfies

(3.23) [F(X), X*], = /O’f(X.q)d*X.f - /O/f(X.q)dX.fj

for each k € {1,...,d}.

(3.24) Remark. If f € £I (R?) for some p > d then the conlusion of the theorem holds
for every starting point xo € R?, without exception. To see this we may assume that f has

compact support. In this case, the assumption that f € LP(R?) for some p > d implies
(3.25) Ifllitro) <00 (i =1,2)

for every 2o € RY. Thus, our assumptions in corollary (2.55) for the existence of quadratic
covariation are satisfied everywhere. Conditions (3.25) can be verified directly, using
Holder’s inequality. They also follow from the Sobolev embedding theorem. Note that
the function ug defined by

(3.26) wal) = [ £l e~y iy

belongs to W?2P/2; see Gilbarg and Trudinger (1983, Th. 9.9). This implies uy € C(R%)
for p > d, hence || f||]2(#) < co for any 2 € R?; see Ziemer (1989, Th.2.4.2). Note also that
for f € LP the Bessel potential u = gy * | f| belongs to W'?; see Ziemer (1989, Th. 2.6.1).
This implies u € C(R?) for p > d, again by Ziemer (1989, Th. 2.4.2), hence || |1 (z) < oo
for any = € R?, due to (3.17).
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4. Tto’s formula

Let W2 denote the Soholev space of functions in £2(R?) such that the weak first
partial derivatives belong to £2(R?). Recall that a function in W'? can be defined every-
where, except for a polar set, in terms of its integral averages, i.e., we can choose a version
F and a polar set Fy such that

1

(4.1) Plo) ~tim —s | s

for all @ € Ey; see, e.g., Fukushima (1993, Th. 2.1 and p.25) or Ziemer (1989, Th. 3.1.4).

. . . 192 . . .
Let us now consider a function in W, ., i.e., a measurable function on R? which
coincides on each compact set with a function in W' 2. We fix a version F such that (4.1)

holds outside some polar set Ey, and we denote by

OF
(4.2) fr= g € Lho(RY)

the k-th weak partial derivative of F. With probability 1, Brownian motion does not
enter a given polar set after time 0, and so the values F(X;(w)) of the function F along a
Brownian path are well defined P,-almost surely for any starting point x ¢ FEj.

1,2 :
(4.3) Theorem. Let F' € W,'_ be given as above. For all 2o € R? except for some polar
set, the quadratic covariation

(4.4) [fe(X), X =Tim Y (fe(Xey) — A(Xe (X7, — X7)
exists as a limit in probability under P, for each k € {1,...,d}, and Ito’s formula holds

in the form

@5 F(Y) = F(No)+ Y [ AN+ S YA Py as

for allt > 0.

Proof. 1) By a localization argument as in the proof of corollary (2.55), we can assume
that F has compact support and belongs to W'2. Since f; € L2(R?), we have

(4.6) Pl [ X5 < o] =1

for all xq except for some polar set; see Fukushima (1980, (5.4.23)). Due to (3.21) we
can conclude that the quadratic covariations [fi(X), X*]; are well defined as limits in
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probability under P, for all zq, except for some polar set. Alternatively we can apply
propositions (2.7) and (2.23), using the estimates ||fi||i(20) < oo (1 = 1,2) for g ¢
E\ U Ey which are implied by (4.20) and (4.25) below.

2) Let o € R?. Suppose that we can approximate F by functions F(n) ¢ C?(R") with
compact support in such a way that

(4.7) F(z) = lim F"(x)

77— 00

for all x outside some polar set, and that the partial derivatives f,gn) = %F(") satisfy

(4.8) Tim |If" = filli(za) =0 (i =1,2)

for the two norms introduced in section 2. Due to our estimates (2.15), (2.29), (2.39) we
can conclude, as in the proof of (2.7) and (2.23), that

1 1
(4.9) lim [ F(X,)dXE = / Ffo(X)dXE in £2(P,,)
n—oo fo 77 ' Jo '
and
1 1
(4.10) lim [ F7(X,)dXE = / Fr(X)d* X in £Y(P,).
n—o0 0 ' ! Jo !

In particular,

[fr(X), X f/fk X,)d* Xk — /fk X,)dx*

= lim [f"(X),X*],  inL'(P,).

77— 00

(4.11)

Applying Tto’s formula to the functions F("), we obtain

1 < 1 ¢
5 2 LX) X4 = Jim 5 5 A" (0, X"
k=1 k=1
(4.12) = lim (F™(X,) — F™(Xo) Z/ s x3)

— F(X,) — F(Xp) Z/ fe(X)dXE P, —as.,

where we have applied once more (4.9) in the last step.
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3) In order to construct such an approximation, let us take functions F(n) ¢ C?(R") with
compact support such that

(4.13) S IF™ — Flli 2 < oo
n—1
where || - ||1,2 denotes the Sobolev norm in W'2. In particular, the functions

(4.14) =Y A" = fl

belong to L2(R?) since
(4.15) ' "

It follows as in part 2) of the proof of proposition (3.6) that the Bessel potential

(4.16) (s m)le) = [ = gty

is finite for all g outside some polar set Ey. But due to (3.17) we have

(4.18) [Pkl (z0) < - (g1 * hi)(w0),

for some constant ¢, and so we have shown that ||hg|l1(2g) < oo for all 29 ¢ E;. This
implies

(4.19) STUA™ — Filla(o) < oo,

by monotone integration, and so we get the desired approximation

(4.20) Tim [|£;" = falli(z0) = 0

for all zq ¢ Fy.
4) Let us define

(4.21) = (O — f)?)2.

n=1
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Since

(499) [iiar =3 [~ i < .

part 1) of the proof of (3.6) shows that

(4.23) [ ol sty < o0

for all m > 1 and for all 2 except for some polar set Fy, where (K,,) is a sequence of
compact sets satisfying (3.7). In view of the localization argument in the proof of (2.55),
we can assume without loss of generality that F' vanishes outside K,,, for some mg > 1.
Then we get

(4.24) 3 / olllro — gD — f)2(9)dy < oo

for all ¢ ¢ F, and this implies the desired approximation

(4.25) Tim [|£;" = falla(zo) = 0

for all zq ¢ F>.
5) Let us also check that (4.7) holds for all points 2y except for some polar set. We have

R 2[R :im; — FON(2)da
(4.26) (F — F")(20) lruovol(B,s(mo))./m(m(F F)(a)d

for all points xy except for the polar set Ey involved in the choice of the version F. Since
(4.27) Y |F—FMew'”
n—=1

due to (4.13), we get the existence of

oo

1
4928 limi/ F—F(") x)dr < oo
(4.28) B el Bao)) Sy 2= (=)

for all zq except for a polar set E3. For xg ¢ Eq U E3, we can conclude that

x> x> 1
F-F" %) < liminf —— / F— FO()dx
( ) ;| |( 0) = = 540 VOl(B,s(.T())) I B (ae) | |( )
4.29 = =
1 x>
<liminf ——— F— F"|(2)dr < oo,
— a0 vol(Bs(x)) ‘/B(s(fl?o) ; | (=)

and this implies (4.7). Thus, all properties of the approximation which were used in part
2) of the proof are satisfied for any xq ¢ EqU Ey U Ey U Fs.
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