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1. IntroductionThe behavior of a smooth function F onRd along the paths of d-dimensional Brownianmotion is described as follows by Itô's formula. Let Px be the distribution of Brownianmotion with initial point x, and let X = (X1; : : : ;Xd) denote the coordinate process onthe canonical path space 
 = C([0;1); Rd). Consider the process A de�ned by(1:1) At = F (Xt)� F (X0) � dXk=1Z t0 fk(Xs)dXks ;where we denote by fk = @F@xk the partial derivatives of F . Itô's formula provides analternative description of the process A:(1:2) At = 12 Z t0 �F (Xs)ds Px � a:s:for any t � 0, and for any starting point x 2 Rd.Note, however, that the description (1.2) in terms of the Laplace operator � involvessecond order di�erentiability of F , while de�nition (1.1) requires only di�erentiability of�rst order. In fact, the process in (1.1) is well de�ned whenever F belongs to the Sobolevspace W 1;2, at least locally. In this case, we choose an appropriate version of F and usethe weak �rst derivatives fk in order to de�ne (1.1) Px- almost surely for all x =2 E, whereE is some polar set. Thus the question arises how to formulate an analogue to (1.2) for ageneral function F 2W 1;2loc . Of course we can always approximate F by smooth functionsF (n) in such a way that the terms in (1.1) converge to the corresponding terms for F , andthen we get the description(1:3) At = limn!1 12 Z t0 �F (n)(Xs)ds:But rather we are interested in an intrinsic description which directly involves the functionF itself.It turns out that such an intrinsic description can be given in terms of quadraticcovariation. We show that for any initial point x 2 Rd, except for some polar set, thequadratic covariations [fk(X);Xk ] exist as limits in probability of the usual sums underthe measure Px. Our extension of Itô's formula consists in identifying the processA de�nedby (1.1) as(1:4) At = 12 dXk=1 [fk(X);Xk]t Px � a:s:for all x except for some polar set. 2



If F is the di�erence of two positive superharmonic functions so that the distribution12�F is given by a signed measure �, then (1.5) provides an explicit description of theadditive functional associated to � which appears in the extended Itô formula of Brosamler(1970) and Meyer (1978). In the general case F 2 W 1;2, we can view F as a function inthe Dirichlet space associated to d-dimensional Brownian motion. From this point ofview, A is the process of zero energy appearing in Fukushima's decomposition of theprocess F (Xt) (t � 0); cf. Fukushima (1980). Thus, our formula (1.5) provides an explicitconstruction of the process of zero energy in terms of quadratic covariation.In the one-dimensional case, the extension (1.5) of Itô's formula was shown in F�ollmer,Protter and Shiryaev (1995). In this paper we consider the case d � 2. The basic idea isthe same: The existence of the quadratic covariations in (1.4) is shown by proving thatthe forward and the backward stochastic integrals of fk(X) can be approximated by thecorresponding sums. But in contrast to the one-dimensional case, these approximationresults hold only for all initial points x outside some exceptional set of capacity zero, andthe proofs are more subtle. In section 2 we �x a starting point x0 2 Rd and a measurablefunction f on Rd. We formulate two integrability conditions on f in terms of x0 whichguarantee that both the forward and the backward stochastic integral can be constructedin a straightforward manner as limits in probability(1:5) Z t0 f(Xs)dXks = limn!1 Xti2Dn0<ti<t f(Xti )(Xkti+1 �Xkti )and(1:6) Z t0 f(Xs)d�Xks = limn!1 Xti2Dn0<ti<t f(Xti+1 )(Xkti+1 �Xkti )under the measure Px0 . This implies the existence of the quadratic covariations(1:7) [f(X);Xk ]t = limn!1 Xti2Dn0<ti<tff(Xti+1 )� f(Xti )g(Xkti+1 �Xkti)as limits in probability under the measure Px0, and their identi�cation as di�erences(1:8) [f(X);Xk ]t = Z t0 f(Xs)d�Xks � Z t0 f(Xs)dXksof backward and forward stochastic integrals. In section 3 we consider a measurable func-tion f such that(1:9) Px0 [Z t0 f2(Xs)ds <1] = 1:3



at least for some x0 and for some t. Note that condition (1.9) is clearly a minimal require-ment if we want to talk about stochastic integrals of f(X). Using results of H�ohnle andSturm (1993) on multidimensional analogues of the Engelbert-Schmidt 0 - 1 law, we showthat condition (1.9) implies that our integrability conditions in section 2 for the existenceof the quadratic covariations [f(X);Xk ] are satis�ed for all starting points except for somepolar set. In section 4 we apply these results to the weak derivatives fk of a functionF 2W 1;2. This leads us to our characterization (1.5) of the process A de�ned by (1.1).Using the identi�cation (1.8) of the quadratic covariations [fk(X);Xk], our version(1.5) of Itô's formula can also be written in the form(1:10) F (Xt)� F (X0) = dXk=1Z t0 fk(Xs) � dXks ;where for a function f 2 L2loc(Rd) we de�ne the Stratonovich integral as(1:11) Z t0 f(Xs) � dXks = 12(Z t0 f(Xs)dXks + Z t0 f(Xs)d�Xks ):The idea of deriving an extended Itô formula in terms of quadratic covariations de�nedby (1.8) or in terms of Stratonovich integrals de�ned as in (1.10) has appeared indepen-dently in Russo and Vallois (1996) in a general semimartingale context, and in Lyons andZhang (1994) in the context of Dirichlet spaces. Note that it makes sense to use both(1.8) and (1.10) as a de�nition of the quantities appearing on the left hand side wheneverthe processes Xk are semimartingales after time reversal. However, the explicit approx-imation of the stochastic integrals in (1.5) and (1.6) and the resulting identi�cation ofthe quadratic covariations as limits in probability of the sums in (1.7) is another matter.Such an approximation is of course straightforward if f is continuous. Russo and Vallois(1996) consider a di�erent approximation where they �rst smoothe the right hand side of(1.7) by taking integrals over time instead of the usual sums. In Lyons and Zhang (1994),the identi�cation (1.7) of the quadratic covariations [f(X);Xk ] is shown under the regu-larity assumption that the function f belongs to the Dirichlet space, and convergence inprobability is formulated with respect to a reversible reference measure.In this paper, we concentrate on the classical case of Brownian motion. But here weinsist on two improvements. First, the approximations (1.5), (1.6) and (1.7) are establishedwith respect to a given starting point x0 2 Rd under explicit integrability conditionsinvolving f and x0. The second point is that we remove any smoothing and any regularityassumptions on the measurable function f . We require only the minimal integrabilityconditions which are needed in order to guarantee existence of the forward stochasticintegral in (1.11). Thus, the existence of the quadratic covariations in (1.4) is establishedon exactly the same level of generality which is appropriate for de�ning the stochasticintegrals in (1.1). 4



2. Existence of Quadratic CovariationLet f be a measurable function on Rd where d � 2. Our purpose in this sectionis to establish the existence of the quadratic covariations [f(X);Xk ] under appropriateintegrability hypotheses on f , but without assuming any regularity conditions. Considerthe sums(2:1) Xti2Dn0<ti<tff(Xti+1 ) � f(Xti )g(Xkti+1 �Xkti)along a sequence of partitions Dn of R+. As in F�ollmer, Protter and Shiryaev (1995), theidea is to decompose (2.1) and to show that the two sumsXti2Dn0<ti<t f(Xti )(Xkti+1 �Xkti)and Xti2Dn0<ti<t f(Xti+1)(Xkti+1 �Xkti )converge separately, to respectively a forward and a backward stochastic integral. To thisend we assume that the sequence of partitions satis�es the following conditions:(2:2) limn!1 supti2Dn(ti+1 � ti) = 0; M := supn supti2Dn ti+1ti <1;note that the second condition is satis�ed whenever the partitions are equidistant.For a given point x0 2 Rd we de�ne two norms for f :(2:3) jjf jj1(x0) = Z jf(y)j jjx0 � yjj1�ddyand(2:4) jjf jj2(x0) = (Z f(y)2v(jjx0 � yjj)dy) 12 ;where(2:5) v(r) = � (� log r) _ 1 if d = 2r2�d if d � 3(2.6) Remark. Suppose that f has compact support. If f is also bounded then bothnorms jjf jji(x0) (i = 1; 2) are clearly �nite for every point x0 2 Rd. This is still true if f is5



in Lp for some p > d; see remark (3.24). In section 3 we will see that, in view of a generalresult on the existence of quadratic covariation, it is natural to assume �niteness of bothnorms for all points x0 =2 E, where E is an exceptional set which is not hit by Brownianmotion.(2.7) Proposition. Let f be a measurable function on Rd with compact support, and letx0 2 Rd be such that jjf jj2(x0) <1. Then the forward stochastic integral satis�es(2:8) Z t0 f(Xs)dXks = limn!1 Xti2Dn0<ti<t f(Xti )(Xkti+1 �Xkti ) in L2(Px0)for each k 2 f1; : : : ; dg.Proof. It su�ces to consider only the case t = 1.1) De�ne the processes � and �n by(2:9) �(!; s) = f(Xs(!));(2:10) �n(!; s) = Xti2Dn f(Xti (!))I(ti ;ti+1](s):The convergence in (2.8) is equivalent to(2:11) limn!1 jj�� �njj2 = 0;where we use the norm(2:12) jj jj2 = Ex0 [Z 10  (!; s)2ds] 12for any measurable function  on 
�[0; 1]. Observe that if f 2 Cb(Rd), then (2.11) holds byLebesgue's dominated convergence theorem. The general case will follow by approximatingf by continuous functions in the norm jj � jj2(x0):2) Note that the Gaussian densityps(z) = (2�s)� d2 exp(�jjzjj2=2s)satis�es the inequality(2:13) Z 10 ps(z)ds � c(R)v(jjzjj)6



for any z 2 Rd with jjzjj � R, where c(R) is some constant depending on R; see, e.g.,Dynkin (1965, VIII, 8.16). Denoting by K the compact support of f and choosing R �supy2K jjy � x0jj, we obtain the estimate(2:14) jj�jj22 = Z 10 Z f2(y)ps(y � x0)dyds� c(R)Z f2(y)v(jjy � x0jj)dy;hence(2:15) jj�jj2 � a2jjf jj2(x0);where a2 =pc(R).3) In order to obtain a similar estimate for the approximating process �n, note that(2:16) pti(z) � (2�ti)� d2 exp(�jjzjj2=2s) �M d2 ps(z);for ti � s � ti+1, due to our assumption (2.2). Again using (2.13) we get(2:17) jj�njj22 = Z f2(y) Xti2Dn0<ti<t pti(y � x0)((ti+1 ^ 1) � ti)dy�M d2 Z f2(y)Z 10 ps(y � x0)dsdy�M d2 c(R)jjf jj22(x0); :hence(2:18) jj�njj2 � b2jjf jj2(x0)where b2 =pc(R)M d4 .4) Next we choose a continuous function g with compact support such that jjg�f jj2(x0) �", and denote by  and  n the processes associated to g as in (2.9) and (2.10). We have(2:19) jj�� �njj2 � jj��  jj2 + jj �  njj2 + jj n � �njj2:But(2:20) limn jj �  njj2 = 0since g is bounded and continuous, and also(2:21) jj n � �njj2 = jj( � �)njj2 � b2jjf � gjj2(x0);7



due to our estimate (2.18) applied to the function f � g. This together with (2.15) implies(2:22) lim supn!1 jj�� �njj2 � jj��  jj2 + lim supn!1 jj n � �njj2� a2jjf � gjj2(x0) + b2jjf � gjj2(x0)� (a2 + b2) ":Since " > 0 was arbitrary we have shown (2.11) and hence (2.8).(2.23) Proposition. Let f be a measurable function on Rd with compact support, and letx0 2 Rd be such that jjf jji(x0) < 1 for i = 1; 2. Then the backward stochastic integralsatis�es(2:24) Z t0 f(Xs)d�Xks = limn!1 Xti2Dn0<ti<t f(Xti+1 )(Xkti+1 �Xkti ) in L1(Px0)for each k 2 f1; : : : ; dg.Proof. It su�ces to consider the case t = 1.1) Let P �x0 be the distribution of the time reversed processX�R under Px0, where (RX)t =X1�t: The time reversed process X � R is a d-dimensional Brownian bridge tied down to0 2 Rd and starting with initial distributionN(0; I), where I is the identity matrix. UnderP �x0 , each component Xk is a semimartingale with decomposition(2:25) Xkt = Xk0 +W kt + Z t0 xk0 �Xks1� s ds;where W k (k = 1; : : : ; d) are independent Wiener processes. The convergence in (2.24) fort = 1 is equivalent to the convergence(2:26) Z 10 f(Xs)dXks = limn!1 Xsi2D�n0<si<1 f(Xsi )(Xksi+1 �Xksi) in L1(P �x0);where D�n = f1� tijti 2 Dng. Let us now use the decomposition (2.25) of Xk under P �x0,and let us �rst show that condition jjf jj2(x0) <1 implies(2:27) limn!1 Xsi2D�n0<si<1 f(Xsi )(W ksi+1 �W ksi) = Z 10 f(Xs)dW ks in L2(P �x0):This follows as in the proof of proposition (2.7). We have only to check that the estimates(2.15) and (2.18) have analogues in terms of the norm jj jj�2 de�ned by(2:28) jj jj�2 = E�x0 [Z 10  (!; s)ds]8



for any measurable function  on 
� [0; 1]. This is clear for (2.15) since(2:29) jj�jj�22 = E�x0 [Z 10 f2(Xs)ds]= Ex0 [Z 10 f2(X1 � s)ds]= jj�jj22 � a2jjf jj22(x0):In order to obtain an analogue to (2.18), consider the term(2:30) jj�njj�22 = E�x0[ Xsi2D�n0<si<1 f2(Xsi )(si+1 � si)]= Ex0[ Xti2Dn0<ti<1 f2(Xti+1)(ti+1 � ti)]= Z f2(y) Xti2Dn0<ti<1 pti+1(y � x0)(ti+1 � ti)dy:For ti � s � ti+1 and for any z 2 Rd we have(2:31) pti+1(z) � (2�s)� d2 exp(� jjzjj22ti+1 )� (2�s)� d2 exp(�jjM� 12 zjj22s ) = ps(M� 12 z)due to (2.2). Using again the estimate (2.13), and observing that v(M� 12 r) � �v(r) forsome constant � which only depends on M and d, we get(2:32) Xti2Dn0<ti<1 pti+1(z)(ti+1 � ti) � Z 10 ps(M� 12 z)ds � c(R)v(jjM� 12 zjj)� �c(R)v(jjzjj):Returning to (2.30) we see that(2:33) jj�njj�2 � b�2jjf jj2(x0)for some constant b�2. Using the estimates (2.29) and (2.33), we can now conclude as inpart 3) of the proof of proposition (2.7) that (2.27) holds.2) It remains to show(2:34) limn!1 Xsi2D�n0<si<1 f(Xsi )Z si+1si Xks � xk01� s ds = Z 10 f(Xs)Xks � xk01� s ds in L1(P �x0)9



or, equivalently,(2:35) limn!1 Xti2Dn0<ti<1 f(Xti+1 )Z ti+1ti Xks � xk01� s ds = Z 10 f(Xs)Xks � xk01� s ds in L1(Px0):Let us de�ne the norm(2:36) jj jj1 = Ex0[Z 10 j (!; s)j jXks � xk0 js ds]for any measurable function  on 
� [0; 1]. For the process � de�ned in (2.9) we have(2:37) jj�jj1 = Ex0[Z 10 jf(Xs)j jXks � xk0 js ds]= Z jf(y)jjyk � xk0 jZ 10 ps(y � x0)s dsdy:However for the Gaussian density ps there is a constant a1 such that(2:38) jjzjjZ 10 ps(z)s ds � a1jjzjj1�dfor any z 2 Rd; see, e.g., Dynkin (1980, VIII, 8.45). Combining (2.37) and (2.38) yields(2:39) jj�jj1 � a1jjf jj1(x0):3) We also need an estimate of the form (2.39) for the approximating processes(2:40) ��n(!; s) = Xti2Dn f(Xti+1 (!))I(ti;ti+1](s):We will write Pi for Pti2Dn;0<ti<1. Then(2:41) jj��njj1 =Xi Ex0[jf(Xti+1 )jZ ti+1ti jXks � x0js ds]=Xi Ex0[Z ti+1ti jXks � xk0 js dsjf(Xti+1 )j]=Xi Z ti+1ti 1sEx0[Ex0[jXks � xk0 jjXti+1]jf(Xti+1 )j]ds:Recall that a normal random variable Z with law N(m;�2) satis�es(2:42) E[jZj] = m(2�(m� )� 1) +r 2�� exp(�m22�2 ) � jmj+r 2��10



where � denotes the distribution function of N(0; 1). In the conditional expectation ap-pearing in (2.41), the normal random variable Z = Xks � xk0 has conditional mean(2:43) m = sti+1 (Xkti+1 � xk0)and conditional variance(2:44) �2 = sti+1 (ti+1 � s) � (M � 1)s;where we use our assumption (2.2). Thus, (2.42) implies(2:45) Ex0[jXks � xk0 jjXti+1 ] � Ai(s) +Bi(s)where we put(2:46) Ai(s) = sti+1 jjXti+1 � x0jj; Bi(s) =r2Ms�for ti � s < ti+1. Returning to (2.41) we obtain the estimate(2:47) jj��njj1 � Ex0 [Xi Z ti+1ti jf(Xti+1 )js (Ai(s) +Bi(s))ds]:4) Let us �rst consider the term(2:48) Ex0 [Xi Z ti+1ti jf(Xti+1 )js Aisds] = Z jf(y)j jjy � x0jjXi ti+1 � titi+1 pti+1(y � x0)dy:Due to (2.31) and (2.38) we obtain the estimate(2:49) jjzjjXi si+1 � sisi+1 psi+1(z) � jjzjjZ 10 1sps(M� 12 z)ds� cM d2 jjzjj1�d:Returning to (2.48) we see that(2:50) Ex0 [Xi Z ti+1ti 1s jf(Xti+1 )jAisds] � k1 Z jf(y)jjjy � x0jj1�ddy= k1jjf jj1(x0)where k1 = c1M d2 : 11



5) As to the second term on the right hand side of (2.47), we again use (2.31) to obtainthe estimate(2:51)Ex0 [Xi Z ti+1ti jf(Xti+1 )js Bi(s)ds] =r2M� Z jf(y)jXi Z ti+1ti 1pspti+1(y � x0)dsdy�r2M� Z jf(y)jZ 10 1psps(M� 12 (y � x0)dsdy:But for any z 2 Rd we have(2:52) Z 10 1psps(z)ds � c2jjzjj1�dfor some constant c2, and so (2.51) implies(2:53) Ex0[Xi Z ti+1ti jf(Xti+1 )js Bi(s)ds] � l1 Z jf(y)j jjy � x0jj1�ddy= l1jjf jj1(x0)where l1 =q 2� c2M d2 .6) Combining (2.47) with (2.50) and (2.53) we see that(2:54) jj��njj1 � b1jjf jj1(x0);where b1 = k1 + l1. Using the estimates (2.54) and (2.39), we can now conclude as in part3) of the proof of proposition (2.7) that jj����njj1 tends to 0. This implies the convergencein (2.35) and (2.34), and so the proposition is proved.We combine propositions (2.7) and (2.23) to obtain:(2.55) Corollary. Let f be a measurable function on Rd, let x0 2 Rd, and let Km (m � 1)be a sequence of compact sets such that(2:56) limm!1Px0[Xt 2 Km 8 t 2 [0; T ]] = 1 8T > 0:Assume that for any m � 1 the restriction fm of f to Km satis�es(2:57) jjfmjji(x0) <1 (i = 1; 2):Then the quadratic covariation(2:58) [f(X);Xk ]t � limn!1 Xti2Dn0<ti<tff(Xti+1 )� f(Xti )g(Xkti+1 �Xkti)= Z t0 f(Xs)d�Xks � Z t0 f(Xs)dXks12



exists in probability under Px0 and satis�es(2:59) [f(X);Xk ]t = Z t0 f(Xs)d�Xks � Z t0 f(Xs)dXks ;for each k 2 f1; : : : ; dg.Proof. Let t be �xed and " > 0, and let Tm = infft > 0 jXt =2 Kmg be the exit timefrom Km. We denote by Sn the n-th sum in (2.58), by S the di�erence of the forward andbackward stochastic integrals, and by Smn and Sm the corresponding terms if the functionf is replaced by fm. Since Sn = Smn and S = Sm Px0-a.s. on fTm > tg, we have(2:60) Px0 [jSn � Sj � "] � Px0 [Tm � t] + Px0[jSmn � Smj � "]for any m � 1. Applying propositions (2.7) and (2.23) to the function fm we see that thelast term converges to 0 as n tends to 1. Thus,(2:61) lim supn!1 Px0[jSn � Sj � "] � Px0[Tm � t];and due to (2.56) the result follows by letting m tend to 1.3. Exceptional setsLet f be a measurable function on Rd. In our approximation (2.55) of the quadraticcovariation(3:1) [f(X);Xk ]t = Z t0 f(Xs)d�Xks � Z t0 f(Xs)dXks :as a limit in probability under Px0, we have assumed integrability conditions on f whichare formulated in terms of the initial point x0. In this section we show that it is no loss ofgenerality to make these assumptions for all x0 outside some exceptional set which is nothit by Brownian motion.(3.2) De�nition. A measurable set E � Rd is called polar if(3:3) Px[Xt 2 E for some t > 0] = 0 8x 2 Rd:(3.4) Remark. This probabilistic notion of an exceptional set is equivalent to the potentialtheoretic notion of a set of capacity zero; see, e.g., Fukushima (1980, Th. 4.3.1 and Example4.3.1). Equivalently, we can de�ne these exceptional sets in terms of the Bessel capacityof order (1,2) as in Ziemer (1989, 2.6); see, e.g., Fukushima (1993, p.25).13



Note �rst that in order to introduce the forward stochastic integral in (3.1) withrespect to the measure Px0 , at least for some x0 2 Rd and some t > 0, we clearly need thecondition(3:5) Px0 [Z t0 f2(Xs)ds <1] = 1:But the results in H�ohnle and Sturm (1993, Th.1.1) show that the validity of (3.2) forsome x0 2 Rd and some t0 > 0 implies that the function f satis�es condition (3.5) for allt > 0 and for all initial points x =2 E where E is some polar set. Moreover, it follows thatall the assumptions we used in theorem (2.55) hold for any starting point lying outsidesome polar set:(3.6) Proposition. Let f be a measurable function on Rd such that condition (3.5) holdsfor some x0 2 Rd and some t < 1. Then there exist a sequence of compact sets Km �Rd (m � 1) and a polar set E such that the conditions(3:7) limm!1Px0[Xt 2 Km 8 t 2 [0; T ]] = 1 8T > 0and(3:8) Z f2m(x)dx <1; jjfmjji(x0) <1 (i = 1; 2)are satis�ed for all x0 =2 E and for all m � 1, where fm denotes the restriction f � IKm off to the set Km.Proof. 1) It is shown in H�ohnle and Sturm (1993, Th. 3.5 and 3.7) that the validity of(3.2) for some x0 2 Rd and some t <1 is equivalent to the fact that there exists a polarset E2 and a sequence of compact sets Km (m � 1) with(3:9) ZKm f2(x)dx <1 (m � 1)such that the conditions (3.7) and(3:10) ZKm v(k x0 � y k)f2(y)dy <1 (m � 1)are satis�ed for any x0 =2 E2. Thus, the restrictions fm of f to Km satisfy(3:11) fm 2 L2(Rd); jjfmjj2(x0) <1for all x0 =2 E2. 14



2) It remains to verify the integrability condition(3:12) jjfmjj1(x0) <1for all x0 outside some polar set. In view of 1) we may assume that f has compact supportK and is square integrable. Consider the Bessel potential g1 � jf j of order 1 de�ned by(3:13) (g1 � jf j)(x) = Z g1(x � y)jf j(y)dy;where g� is de�ned as that function whose Fourier transform is(3:14) ĝ�(x) = (2�)� �2 (1 + jjxjj2)��2 :Note that(3:15) g�(z) = 1
(�) jjzjj��d + o(jjzjj��d)with some constant 
(�) as jjzjj ! 0; see, e.g., Ziemer (1989, p. 65). Thus, there is aconstant c such that(3:16) jjy � x0jj1�d � c � g1(x0 � y) on Kand so we have(3:17) jjf jj1(x0) = ZK jf j(y)jjy � x0jj1�ddy� c � (g1 � jf j)(x0):But the function u = g1 � f , being the Bessel potential with index � = 1 associated to thesquare integrable function f , belongs to the Sobolev space W1;2 ; see Ziemer (1989, Th.2.6.1). This implies that the version ~u de�ned by(3:18) ~u(x) := lim�#0 1vol(B�(x)) ZB�(x) u(z)dzsatis�es ~u(x) <1 outside some polar set E1; see, e.g., Ziemer (1989, Th.3.1.4 and 3.10.2)or Fukushima (1993, Th. 2.1). Since(3:19) lim�#0 1vol(B�(x)) ZB�(x) g1(y � z)dz = g1(y � x)for any y 6= x by Lebesgue's theorem, we obtain(3:20) u(x) = Z jf j(y) lim�#0 1vol(B�(x)) ZB�(x) g1(y � x)dzdy� lim inf�#0 1vol(B�(x)) ZB�(x) u(z)dz;15



using Fatou's lemma and Fubini's theorem. For x0 =2 E1, we have thus shown u(x0) <1;hence jjf jj1(x0) <1 due to (3.17).Combining proposition (3.6) with corollary (2.55) we obtain:(3.21) Theorem. Let f be a measurable function on Rd such that condition (3.5) holdsfor some x0 2 Rd and some t < 1. Then there exists a polar set E such that for anyx0 =2 E the quadratic covariation(3:22) [f(X);Xk ]t � limn!1 Xti2Dn0<ti<tff(Xti+1 )� f(Xti )g(Xkti+1 �Xkti)= Z t0 f(Xs)d�Xks � Z t0 f(Xs)dXksexists in probability under Px0 and satis�es(3:23) [f(X);Xk ]t = Z t0 f(Xs)d�Xks � Z t0 f(Xs)dXks ;for each k 2 f1; : : : ; dg.(3.24) Remark. If f 2 Lploc(Rd) for some p > d then the conlusion of the theorem holdsfor every starting point x0 2 Rd, without exception. To see this we may assume that f hascompact support. In this case, the assumption that f 2 Lp(Rd) for some p > d implies(3:25) jjf jji(x0) <1 (i = 1; 2)for every x0 2 Rd. Thus, our assumptions in corollary (2.55) for the existence of quadraticcovariation are satis�ed everywhere. Conditions (3.25) can be veri�ed directly, usingH�older's inequality. They also follow from the Sobolev embedding theorem. Note thatthe function u2 de�ned by(3:26) u2(x) = Z f2(y)v(k x� y k)dybelongs to W 2;p=2; see Gilbarg and Trudinger (1983, Th. 9.9). This implies u2 2 C(Rd)for p > d, hence jjf jj2(x) <1 for any x 2 Rd; see Ziemer (1989, Th.2.4.2). Note also thatfor f 2 Lp the Bessel potential u = g1 � jf j belongs to W 1;p; see Ziemer (1989, Th. 2.6.1).This implies u 2 C(Rd) for p > d, again by Ziemer (1989, Th. 2.4.2), hence jjf jj1(x) <1for any x 2 Rd, due to (3.17). 16



4. Itô's formulaLet W1;2 denote the Sobolev space of functions in L2(Rd) such that the weak �rstpartial derivatives belong to L2(Rd). Recall that a function in W1;2 can be de�ned every-where, except for a polar set, in terms of its integral averages, i.e., we can choose a versionF and a polar set E0 such that(4:1) F (x) = lim�#0 1vol(B�(x)) ZB�(x) F (y)dyfor all x 2 E0; see, e.g., Fukushima (1993, Th. 2.1 and p.25) or Ziemer (1989, Th. 3.1.4).Let us now consider a function in W1;2loc , i.e., a measurable function on Rd whichcoincides on each compact set with a function in W1;2. We �x a version F such that (4.1)holds outside some polar set E0, and we denote by(4:2) fk = @F@xk 2 L2loc(Rd)the k-th weak partial derivative of F . With probability 1, Brownian motion does notenter a given polar set after time 0, and so the values F (Xt(!)) of the function F along aBrownian path are well de�ned Px-almost surely for any starting point x =2 E0.(4.3) Theorem. Let F 2 W1;2loc be given as above. For all x0 2 Rd except for some polarset, the quadratic covariation(4:4) [fk(X);Xk ]t = limn Xti2Dnti�t (fk(Xti+1) � fk(Xti))(Xkti+1 �Xkti)exists as a limit in probability under Px0 for each k 2 f1; : : : ; dg, and Itô's formula holdsin the form(4:5) F (Xt) = F (X0) + dXk=1Z t0 fk(Xs)dXks + 12 dXk=1[fk(X);Xk ]t Px0 � a:s:for all t � 0.Proof. 1) By a localization argument as in the proof of corollary (2.55), we can assumethat F has compact support and belongs to W 1;2. Since fk 2 L2(Rd), we have(4:6) Px0[Z t0 f2k (Xs)ds <1] = 1for all x0 except for some polar set; see Fukushima (1980, (5.4.23)). Due to (3.21) wecan conclude that the quadratic covariations [fk(X);Xk]t are well de�ned as limits in17



probability under Px0 for all x0, except for some polar set. Alternatively we can applypropositions (2.7) and (2.23), using the estimates jjfkjji(x0) < 1 (i = 1; 2) for x0 =2E1 [E2 which are implied by (4.20) and (4.25) below.2) Let x0 2 Rd. Suppose that we can approximate F by functions F (n) 2 C2(Rd) withcompact support in such a way that(4:7) F (x) = limn!1F (n)(x)for all x outside some polar set, and that the partial derivatives f (n)k = @@xkF (n) satisfy(4:8) limn!1 jjf (n)k � fkjji(x0) = 0 (i = 1; 2)for the two norms introduced in section 2. Due to our estimates (2.15), (2.29), (2.39) wecan conclude, as in the proof of (2.7) and (2.23), that(4:9) limn!1Z t0 f (n)k (Xs)dXks = Z t0 fk(Xs)dXks in L2(Px0)and(4:10) limn!1Z t0 f (n)k (Xs)d�Xks = Z t0 fk(Xs)d�Xks in L1(Px0):In particular,(4:11) [fk(X);Xk ]t = Z t0 fk(Xs)d�Xks � Z t0 fk(Xs)dXks= limn!1 [f (n)k (X);Xk ]t in L1(Px0):Applying Itô's formula to the functions F (n), we obtain(4:12) 12 dXk=1[fk(X);Xk ]t = limn!1 12 dXk=1[f (n)k (X);Xk ]t= limn!1(F (n)(Xt) � F (n)(X0)� dXk=1Z t0 f (n)k (Xs)dXks )= F (Xt)� F (X0)� dXk=1Z t0 fk(Xs)dXks Px0 � a:s:;where we have applied once more (4.9) in the last step.18



3) In order to construct such an approximation, let us take functions F (n) 2 C2(Rd) withcompact support such that(4:13) 1Xn=1 jjF (n) � F jj1;2 <1where jj � jj1;2 denotes the Sobolev norm in W1;2. In particular, the functions(4:14) hk := 1Xn=1 jf (n)k � fkjbelong to L2(Rd) since(4:15) (Z h2k(x)dx) 12 � 1Xn=1(Z jf (n)k � fkj2dx) 12� 1Xn=1 jjF (n) � F jj1;2 <1:It follows as in part 2) of the proof of proposition (3.6) that the Bessel potential(4:16) (g1 � hk)(x) = Z g1(x � y)hk(y)dy;is �nite for all x0 outside some polar set E1. But due to (3.17) we have(4:18) jjhkjj1(x0) � c � (g1 � hk)(x0);for some constant c, and so we have shown that jjhkjj1(x0) < 1 for all x0 =2 E1. Thisimplies(4:19) 1Xn=1 jjf (n)k � fkjj2(x0) <1;by monotone integration, and so we get the desired approximation(4:20) limn!1 jjf (n)k � fkjj1(x0) = 0for all x0 =2 E1.4) Let us de�ne(4:21) ~hk := ( 1Xn=1(f (n)k � fk)2) 12 :19



Since(4:22) Z ~h2kdx = 1Xn=1Z (f (n)k � f2)2dx <1;part 1) of the proof of (3.6) shows that(4:23) ZKm v(jjx0 � yjj)~h2k(y)dy <1for all m � 1 and for all x0 except for some polar set E2, where (Km) is a sequence ofcompact sets satisfying (3.7). In view of the localization argument in the proof of (2.55),we can assume without loss of generality that F vanishes outside Km0 for some m0 � 1.Then we get(4:24) 1Xn=1Z v(jjx0 � yjj)(f (n)k � fk)2(y)dy <1for all x0 =2 E2, and this implies the desired approximation(4:25) limn!1 jjf (n)k � fkjj2(x0) = 0for all x0 =2 E2.5) Let us also check that (4.7) holds for all points x0 except for some polar set. We have(4:26) (F � F (n))(x0) = lim�#0 1vol(B�(x0)) ZB�(x0)(F � F (n))(x)dxfor all points x0 except for the polar set E0 involved in the choice of the version F . Since(4:27) 1Xn=1 jF � F (n)j 2 W1;2due to (4.13), we get the existence of(4:28) lim�#0 1vol(B�(x0)) ZB�(x0) 1Xn=1 jF � F (n)j(x)dx <1for all x0 except for a polar set E3. For x0 =2 E0 [E3, we can conclude that(4:29) 1Xn=1 jF � F (n)j(x0) � 1Xn=1 lim inf�#0 1vol(B�(x0)) ZB�(x0) jF � F (n)j(x)dx� lim inf�#0 1vol(B�(x0)) ZB�(x0) 1Xn=1 jF � F (n)j(x)dx <1;and this implies (4.7). Thus, all properties of the approximation which were used in part2) of the proof are satis�ed for any x0 =2 E0 [ E1 [E2 [ E3.20
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