Humboldt-Universität zu Berlin Institut für Mathematik

Prof. Dr. Jochen Brüning

Vorlesung Algebra und Funktionentheorie, WS 2012/13

Übungsblatt 3

Abgabe am 1.2.2013

Wenn nicht anders gesagt, seien im Folgenden $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ komplex differenzierbar, $g: U \to \mathbb{C}$ stetig. Für ein beschränktes Intervall $I = (a,b) \subset \mathbb{R}$ sei $c: I \to U$ stetig differenzierbar.

1. a) Zeigen Sie für $s \in I$ die Kettenregel

$$\frac{d}{dt}(f \circ c)(s) = f'(c(s)) \cdot \frac{d}{dt}c(s). \tag{1}$$

b) Beschreiben Sie das Integral

$$\int_{c}g$$

reell, d.h. unter der Identifikation $\tau:\mathbb{C}\to\mathbb{R}^2$ aus Aufgabe 1 von Blatt 2.

(4+4 Punkte)

2. Sei R>0. Berechnen Sie für $\gamma:[0,1]\to\mathbb{C},\ \gamma(t)=R\,e^{2\pi i\,t}$ das Kurvenintegral

$$\int_{\gamma} \frac{dz}{(z-p)^m}, \quad p \in \mathbb{C} \setminus \partial B_R(0), \quad m \in \mathbb{Z}.$$

(8 Punkte)

3. a) Sei $V \subset \mathbb{C}$ offen und $h: V \to U$ komplex differenzierbar. Beweisen Sie

$$\int_{h(c)} g = \int_{c} (g \circ h) \cdot h'$$

b) Sei $L(c) = \int_I |c'(t)| dt$ und $g: U \to \mathbb{C}$ stetig und beschränkt auf c(I). Zeigen Sie

$$\left| \int_{c} g \right| \leq \|g\|_{c(I)} L(c)$$

mit der Supremumsnorm $\|.\|$.

4. Seien $c_1, c_2 : [0, 1] \to U$ zwei (stetige) Kurven, so dass $c_2(0) = c_1(1)$. Diese können zu einer Kurve $c_1 \star c_2$ verbunden werden:

$$(c_1 \star c_2)(t) := \begin{cases} c_1(2t), & 0 \le t \le \frac{1}{2} \\ c_2(2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$

Eine Kurve $c:[0,1]\to U$ kann umgekehrt werden: Die Kurve -c oder c^- ist gegeben durch $c^-(t)=c(1-t)$.

Zeigen Sie

a)
$$\int_{-c} g = -\int_{c} g$$
 b)
$$\int_{c_1 \star c_2} g = \int_{c_1} g + \int_{c_2} g$$
 (4+4 Punkte)

Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze (d.h. eine in ganz \mathbb{C} komplex differenzierbare) Funktion. Es gebe ein $m \in \mathbb{N}_0$ und positive Konstanten M und R, so dass $|f(z)| \leq M|z|^m$ für alle $z \in \mathbb{C}$ mit $|z| \geq R$ gilt.

Zeigen Sie, dass f dann ein Polynom vom Grad $\leq m$ ist. Welche Aussage erhält man im Fall m=0? (8 Punkte)

Hinweis: Verwenden Sie die Cauchy-Integralformel für $f^{(n)}$.

Sie finden die Aufgaben auch auf der Seite

http://www2.mathematik.hu-berlin.de/~geomanal/

teaching/bruening/FunktionentheorieWS1213/