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Adaptive Regularization for Parseval Frames in
Image Processing

Michael Hintermüller∗ and Andreas Langer†

Abstract—For image data related to Parseval frames and
Gaussian white noise, distributed (or locally adaptive) data
fidelity weights for preserving image details while still consider-
ably removing noise from homogeneous image regions in image
reconstruction are computed automatically. While the underlying
variational model is related to the Rudin-Osher-Fatemi (or total
variation) model, the determination of the fidelity weights utilizes
the Gumbel statistic for the maximum of a finite number of
random variables associated with localized image residuals. An
algorithm, which uses hierarchical image decompositions to speed
up the iterative parameter adjustment process, is presented and
tested numerically for reconstruction from partial Fourier data
and for wavelet inpainting, respectively.

Index Terms—locally adaptive regularization, Parseval frames,
partial Fourier data, semismooth Newton, wavelet inpainting.

I. INTRODUCTION

IMAGE restoration is one of the fundamental tasks in
image processing. Its goal is to reconstruct an image from

contaminated data f , which result from a deterioration due to
some (linear) transformation operator K (such as convolution,
wavelet or Fourier transform) applied to the original image û
and a subsequent infliction of noise η, i.e., ud = Kû + η. A
popular approach to this restoration task rests on variational
methods, i.e., the characterization of the reconstructed image
u as the solution of a minimization problem of the type

min
u

D(u; f) + αR(u), (1)

where D(·; f) represents a data fidelity term, R(·) an appropri-
ate filter and α > 0 a regularization parameter, which balances
data fidelity and filtering. The choice of D is tyically dictated
by the type of noise contamination, and R follows some prior
information.

Here, we focus on noise η with zero mean and quadratic
deviation from the mean equal to σ2 ≥ 0 Further, we aim at
preserving edges in images well. These two pieces of a priori
information lead to

D(u; f) :=
1

2
‖Ku− f‖2, and R(u) = |Du|(Ω),

where the latter represents the total variation of a function
u (see (7) below for its definition) and Ω denotes the image
domain. Typical choices for the norm in D are the L2(Ω)-
norm or the Euclidean norm on RN , where the latter is, e.g.,
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relevant when K is a (finite) wavelet or Fourier transform. The
resulting model (1) is the well-known Rudin-Osher-Fatemi
model [28] which has been studied intensively in the literature;
see, e.g., [7], [8], [9], [16], [22], [23], [26], [30], [31] as well
as the monograph [34] and the many references therein.

The proper choice of α is delicate. In fact, large α, which
would typically be favorable for large homogeneous image
regions, not only removes noise, but also details in images.
Small α, on the other hand, might be advantagous in re-
gions with image details, but it adversely retains noise in
homogeneous image regions. In order to address this issue,
in [30] the notion of a scale of an image feature and its
influence on α is studied. The subsequent work [29] proposes
an update scheme for α within a deterministic regime. We note
that instead of considering (1) one may equivalently study
λD(u; f) + R(u) with λ = 1/α. Based on this view and
considering a piecewise constant function λ over the image
domain, where the partitioning of the image into pieces is due
to a pre-segmentation, in [4] scalars λi, i = 1, . . . #pieces,
for each segment is computed by an augmented Lagrangian
type algorithm. While still remaining in a deterministic regime,
interestingly [4] uses a distributed (more precisely a piecewise
constant) parameter λ.

Later its was noticed that stable choices of λ resp. α have
to incorporate statistical properties of the noise. In this vein,
in [2], [17] automated update rules for λ based on statistics
of local constraints were proposed. For statistical multiscale
methods we refer to [19], [20], [24]. While the methods in
[2], [17] are highly competitive in practice, the adjustment of
λ relies on the output of K being a deteriorated image again.
This, however, limits the applicability of these approaches in
situations where K transfers an image into a different type
of range space. Particular examples of such operators are
(discrete) wavelet or Fourier transforms. It is therefore the
goal of this paper to study the approach of [17] in the context
of Parseval frames. The latter include wavelet and Fourier
transform, thus extending the approach of [17].

The rest of the paper is organized as follows. In the
next section we introduce the concept of frames. Algorithmic
appraches to adaptive regularization are the subject of section
III. Numerical experiments are reported on in section IV.

II. FRAMES

Let H be a (separable) Hilbert space with the inner product
〈·, ·〉 and norm ‖ · ‖. Then the development of this paper rests
on the following definitions; cf. [10].
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Definition II.1. A sequence (hk)k∈N in H is called a Bessel
sequence if there exists a constant C > 0 such that∑

k

|〈h, hk〉|2 ≤ C‖h‖2L2 for all h ∈ H.

Every number C satisfying the above inequality is called a
Bessel bound for (hk)k∈N.

Definition II.2. The sequence (hk)k∈N of elements in H is a
frame for H if there exist 0 < C ≤ C < ∞ such that for
every g ∈ H

C‖g‖2 ≤
∑
k

|〈g, hk〉|2 ≤ C‖g‖2. (2)

The numbers C, C are called frame bounds. If C = C then
we call the frame a tight frame.

Note that the frame bounds are not unique. Actually, the
optimal upper frame bound is the infimum over all upper frame
bounds, and the optimal lower frame bound is the supremum
over all lower frame bounds.

A tight frame with C = C = 1 is sometimes called Parseval
frame, as for example in [3], [25]. However, note that if the
sequence (hk)k∈N is a tight frame, then after re-normalization
of the elements hk, k ∈ N, one obtains∑

k

|〈g, hk〉|2 = ‖g‖2

for all g ∈ H. This condition is equivalent to the perfect
reconstruction property

g =
∑
k

〈g, hk〉hk (3)

for all g ∈ H. By Definition II.2 it is clear that an orthonormal
basis is a tight frame, see e.g. [10, Theorem 3.4.2] or [36, Satz
V.4.9], as well as [37].

Let the sequence (hk)k∈N be a frame for H with frame
bounds C and C. Then we define the analysis operator

T : H → `2(N), T g = (〈g, hk〉)k∈N

and its adjoint T ∗, called synthesis operator, by

T ∗ : `2(N)→ H, T ∗(ck)k =
∑
k

ckhk.

With these definitions, property (2) can be written equivalently
as C‖g‖2 ≤ ‖Tg‖2 ≤ C‖g‖2. Hence T is linear and bounded
and thus ‖T‖ = ‖T ∗‖. Consequently by Definition II.1 we
have that ‖T ∗Tg‖2 ≤ C‖Tg‖2 for any g ∈ H.

In this paper we consider operators K of the form S ◦ T ,
where T is an analysis operator of a Parseval frame and S
is a self-adjoint operator with the property S∗ ◦ S = S. Here
we have in mind that S is a subsampling projection operator
from the whole domain Ω onto a known subdomain D ⊂ Ω.
Then we obtain that ‖K∗(Ku−f)‖2 = ‖Ku−f‖2, where we
used that Sf = f , since f is the observed signal and therefore
unknown in Ω \ D.

A. Fourier Frame

Note that the complex exponential functions (ek(x))k :=
( 1√

2π
eikx)k, k ∈ N, constitute an orthonormal bases for H =

L2(0, 2π) and hence a Parseval frame for L2(0, 2π). Such a
frame is called Fourier frame or frame of exponentials [10]. By
the perfect reconstruction formula (3) there exists, for every
f ∈ L2(0, 2π), an expansion

f(x) =
∑
k

ckek(x), (4)

called Fourier series, with Fourier coefficients ck = 〈f, ek〉.
Actually, if a function f ∈ L2(R) is bandlimited, i.e., its
Fourier transform

Ff := f̂ :=
1√
2π

∫
e−ikxf(x)dx = 〈f, ek〉

has compact support, then f̂ can be represented by its Fourier
series. However, for any f ∈ L1(R) we have by the Parseval
Theorem that ‖f‖ = ‖Ff‖.

As an application, we are interested in the reconstruction
of medical images from partial Fourier data. In this case the
linear operator K equals S ◦ F , where S is a downsampling
operator which selects only a few frequencies as output.

B. Wavelet Frames

SetH = L2(Ω) with Ω ⊆ Rd, d ∈ N, and let Ψ ⊂ L2(Ω) be
a countable set. The corresponding wavelet system (or affine
system) X(Ψ) generated by the mother wavelets Ψ is defined
by

X(Ψ) := {ψn,k : n ∈ Z, k ∈ Zd},

where ψn,k : x 7→ 2nd/2ψ(2nx − k) with ψ ∈ Ψ. The asso-
ciated analysis operator is given by T : g 7→ (〈g, h〉)h∈X(Ψ).
Conversely, the function g ∈ L2(Ω) can be well approximated
by

g ≈ T ∗c =
∑

h∈X(Ψ)

chh =
∑

n∈Z,k∈Zd

cn,kψn,k, (5)

where c = (ch)h∈X(Ψ) denote the wavelet coefficients of g.
If the functions in Ψ satisfy some mild smoothing conditions

and if each of the mother wavelets has at least one vanishing
moment, i.e., ψ̂(0) = 0, for all ψ ∈ Ψ, then X(Ψ) is a Bessel
system, see for example [11], [14]. We call the wavelet system
X(Ψ) a wavelet frame, if X(Ψ) is a frame. If the system
X(Ψ) forms an orthogonal bases, then the coefficients cn,k in
(5) are given by cn,k = 〈g, ψn,k〉, while in general we have
that cn,k = 〈g, ψ̃n,k〉, where ψ̃n,k is a dual bases of ψn,k, see
[12]. The, perhaps, most traditional example of a function ψ
for which X(Ψ) constitutes an orthonormal basis for L2(R)
and therefore forms a tight frame (and after renormalization
even a Parseval frame) is the Haar function, see [12] for
more details. Indeed, in our experiments we concentrate on
orthogonal wavelets based on a multiresolution analysis. For
more information on how to obtain such wavelets see [12].

Our motivating application is filling in missing wavelet-
coefficients, which may have got lost during communication.
Hence we have K = PI ◦ T , where T is the above defined
analysis operator and PI a sampling operator from the whole
domain onto the known index set I .
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III. ADAPTIVE REGULARIZATION APPROACH

In this paper we focus on image restoration problems.
Using the edge-preserving total variation regularization in a
variational approach to image restoration leads to solving the
constrained minimization problem

min
u
|Du|(Ω) subject to (s.t.)

∫
Ω

Kudx =

∫
Ω

fdx,∫
Ω

(Ku− f)2dx = σ2|Ω|,

(6)

where Ω ⊂ R2 is a simply connected domain with Lipschitz
boundary ∂Ω and |Ω| its volume, K is a linear bounded
operator, f = Kû+ η the observed data with û the unknown
true signal, and η represents white Gaussian noise with zero
mean and standard deviation σ. These statistical properties
of η motivate the constraints in (6); see, e.g., [8]. Moreover,
|Du|(Ω) denotes the total variation of u ∈ L1(Ω) in Ω, defined
by

|Du|(Ω) = sup{
∫

Ω

u div ~p dx : ~p ∈ C1
0 (Ω), ‖~p‖L∞(Ω) ≤ 1}.

(7)
Here and below, Lq(Ω), with q ∈ [1,∞], denotes the usual
Lebesgue space [1], and Cl0(Ω), l ∈ N, is the space of l-times
continuously differentiable functions with compact support in
Ω. Usually (6) is addressed via the following unconstrained
optimization problem:

min
u
|Du|(Ω) +

λ

2

∫
Ω

|Ku− f |2dx (8)

for a given constant λ > 0. For our purposes we modify the
objective in (8) in order to handle the presence of the operator
K. Hence, instead of tackling (8) directly we introduce a
so-called surrogate functional [13] for a ∈ L2(Ω), which is
defined as

S(u, a) : = |Du|(Ω) +
λ

2

(
‖Ku− f‖2L2(Ω) + δ‖u− a‖2L2(Ω)

− ‖K(u− a)‖2L2(Ω)

)
= |Du|(Ω) +

λδ

2
‖u− fK(a)‖2L2(Ω) + r(a,K, f, λ),

(9)

with fK(a) := a − 1
δK
∗(Ka − f) ∈ L2(Ω), and where we

assume δ > ‖K‖2. Moreover, r is a function independent of
u. We observe in (9) that the variable u is not longer directly
affected by the action of K. Rather, minimizing S(u, a) for
fixed a resembles a typical image denoising problem. In
order to approach a solution of (8), we consider the following
iteration.

Surrogate Iteration: Choose u(0) ∈ L2(Ω) and compute
for k = 0, 1, 2, . . .

u(k+1) = arg min
u
|Du|(Ω) +

λδ

2

∫
Ω

|u− f (k)
K |

2dx. (10)

with f (k)
K := fK(u(k)).

It can be shown that the iterative procedure (10) generates a
sequence (uk)k∈N which converges to a minimizer of (8); see
[13], [15]. It is well known that the minimization problem in
(10) is strictly convex and can be efficiently solved by standard
algorithms such as the primal-dual first-order algorithm [7], the
split Bregman method [21], or the primal-dual semismooth
Newton algorithm [23]. We note that the latter algorithm is
able to solve the optimization problem in (8) directly.

Now we consider the sequence of problems in (10) and
make the parameter λ locally dependent, i.e., λ : Ω→ R+ is
now a function. This leads to the following iterative procedure

u(k+1) = arg min
u
J

(k)
λ (u) :=

δ

2

∫
Ω

λ(x)(|u− f (k)
K |

2)(x)dx

+ |Du|(Ω), for k = 0, 1, 2 . . . .
(11)

Problem (11) is related to the constrained minimization prob-
lem

min
u
|Du|(Ω)

s.t. S(u)−A ≤ 0 almost everywhere (a.e.) in Ω,
(12)

where S(u)(x) =
∫

Ω
w(x, y)(u − f (k)

K )2(y)dy with ω being
some localization filter and a constant A ∈ R+ depending on
σ and K. For u = u(k+1), the constraint function in (12) reads

S(u(k+1)) =

∫
Ω

w(x, y)(u(k+1) − u(k)

+
1

δ
K∗(Ku(k) − f))2(y)dy.

(13)

Given the convergence result for scalar λ alluded to in
connection with (10), for k → ∞ one may expect that the
term u(k+1)−u(k) vanishes. Then it is enough to require that∫

Ω
w(x, y)( 1

δK
∗(Ku(k)− f))2(y)dy ≤ A. This motivates the

locally, i.e., point-wise constrained minimization problem

min
u
|Du|(Ω)

s.t.
∫

Ω

w(·, y)(
1

δ
K∗(Ku− f))2(y)dy ≤ A a.e. in Ω.

(14)

Next we discuss the choice of A. We have that η = Kû−f
and thus K∗(Kû−f) = K∗η. Now we recall that η is assumed
to be normally distributed with mean zero and standard devia-
tion σ. But in general it is not obvious how K∗η is distributed.
For bounded linear operators K : L2(Ω) → L2(Ω) we have
that there exists a constant C > 0 such that ‖Ku‖ ≤ C‖u‖
for any u ∈ L2(Ω). With ‖K‖ = ‖K∗‖ it follows that
‖K∗(Ku − f)‖ ≤ C‖Ku − f‖ and consequently the value
A in (14) can be estimated from above by A ≤ Cσ2

δ2 . If K is
an analysis operator of a Parseval frame, for example K = F ,
then we have that A = σ2

δ2 . Since we are interested in operators
K = S ◦ T , where S is a subsampling operator and T either
the Fourier-Transform or an analysis operator of an orthogonal
wavelet frame, the value A is given by A = σ2

δ2 . Thus, we can
construct an updating scheme for λ as it was done in [17].

For this purpose, we recall the idea behind the λ-update rule
in [17]: We assume that Ωm is a discrete domain containing
m×m pixels, m ∈ N. For ease of notation we set Ω := Ωm,
and we note that the extension to rectangular pixel domains
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is obvious. By r(u) := fK(u) − u we denote the discrete
residual image with r(u), fK(u), u ∈ Rm2

and reshape these
quantities as m × m matrices. Note that in our setting r(u)
corresponds to K∗ applied to Ku− f . For ω ∈ N we define

Ωωi,j = {(s+ i, t+ j) : −ω − 1

2
≤ s, t ≤ ω − 1

2
},

a set of pixel-coordinates in a ω-by-ω window centered at (i, j)
(with a symmetric extension at the boundary). In the discrete
setting we regard η as an array of independent normally
distributed random variables with zero mean and variance σ2.
Then K∗η is also an array of independent normally distributed
random variables with zero mean and variance A [18], [27].
The random variable

Tωi,j =
1

Aδ2

∑
(s,t)∈Ωω

i,j

(K∗η)2
s,t

has then the χ2-distribution with ω2 degrees of freedom, i.e.,
Ti,j ∼ χ2

ω2 . If u = û satisfies η = fK(û) − û, then, by
specifically choosing the mean filter for w and applying it to
the residual, we obtain

Sωi,j :=
1

ω2

∑
(s,t)∈Ωω

i,j

(fK(û)s,t − ûs,t)2

=
1

ω2δ2

∑
(s,t)∈Ωω

i,j

((K∗η)s,t)
2 =

A

ω2
Tωi,j .

If u is an over-smoothed restored image, then the residual
fK(u)− u contains details and we expect

Sωi,j >
A

ω2
Tωi,j .

Therefore we are interested in a bound B such that Sωi,j > B
implies that some details in the neighborhood of the pixel (i, j)
are left in the residual image r(u). Utilizing distributions of
extremal values (Gumbel distribution) and relaxing statistical
dependencies, in [17] it was found that a good bound is

B :=
A

ω2
(E(Tmax) + d(Tmax))

where Tmax is the maximum value of m2 observations dis-
tributed along the χ2-distribution with ω2-degrees of freedom,
E(·) is the expected value and d(·) the standard deviation of
a random variable. We note, however, that in our numerical
experiments we found out that this bound is slightly too
pessimistic for our applications and rather a lower bound
should be used. In particular, since we are looking for a
solution u∗ such that

∑
(i,j)∈Ω(r(u∗)i,j)

2 = A|Ω|, we expect
that if Sωi,j > A, then u is an over-smoothed restoration and
the residual r(u) contains details. Hence, in our algorithm we
choose B := A.

If now Sωi,j ∈ [0, B), then the residual should ideally only
contain noise, while otherwise we suppose there are image
details contained in the residual image in Ωωi,j . Hence one
defines the following modified local variance estimator

S̃ωi,j :=

{
Sωi,j if Sωi,j ≥ B,
σ2 otherwise.

This leads to the following update rule of λ, where we initially
choose λ to be a small positive constant, which yields an over-
smoothed restoration, i.e. most of the details remain in the
residual. The parameter (function or vector, in the discrete
setting) λ is subsequentially updated as follows: Let λn ∈ Rm2

be given. Then set

λn+1 =
1

ω2

∑
(s,t)∈Ωω

i,j

(
(λn)s,t + ρn

(√
(S̃ωn )s,t − σ

))
,

(15)
where ρn = ‖λn‖

σ denotes a positive scaling parameter.
The overall restoration algorithm with spatially adapted

regularization is specified next. In its statement we consider
Jkλ,m to be a suitable discrete version of Jkλ . Moreover,
for the ease of notation we omit the subscript m, which
represents discrete quantities such as Km, fm, um or λm etc.,
respectively.

Adaptive Algorithm: Choose λ0 ∈ Rm2

, with λ0 > 0,
and u0 ∈ Rm2

, set n := 0, and iterate until a convergence
criterion is satisfied:

1) Set u(0) := un. For k = 0, 1, 2, . . . set fK(u(k)) :=
u(k) − 1

δK
∗(Ku(k) − f) and compute

u(k+1) = arg min
u
J

(k)
λn

Let u(n+1) denote the outcome of this iteration.
2) Update λn to obtain λn+1 according to (15); set n :=

n+ 1.

While this iteration is functional in its own right and yields
a convergent scheme, its convergence speed may still be
improved. Indeed, following [17] we accelerate the above
adaptive algorithm by employing a hierarchical decomposition
of the image into scales. This idea, introduced by Tadmor,
Nezzar and Vese in [32], [33], utilizes concepts from interpo-
lation theory to represent a noisy image as the sum of “atoms”
u(`), where every u(`) extracts features at a scale finer than the
one of the previous u(`−1). Considering dyadic scales with a
scalar λ, for example, the hierarchical decomposition operates
as follows:

1) Choose 0 < λ0 ∈ Rm2

, u(0) ∈ Rm2

and iterate for
k = 0, 1, . . . ,K0 ∈ N

u
(k+1)
0 = arg min

u
J

(k)
λ0

(u). (16)

2) For ` = 0, 1, . . . set λ`+1 := 2`+1λ0 and v` := f−Ku`.
Then compute for k = 0, 1, . . . ,K`+1 ∈ N

û
(k+1)
` = arg min

u
J

(k)
λ`+1

(u)

where fK(u
(k)
` ) = u

(k)
` −

1
δK
∗(Ku

(k)
` − v`) in J

(k)
λ`+1

.

Set u`+1 := u` + û
(K`+1+1)
` .

In order to extract image features at a finer scale in the spirit of
the above adaptive version of the technique by Tadmor, Vese
and Nezzar, we correspondingly modify the iterative adaption
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of λ in (15) as suggested in [17] by setting

(λ̃n)s,t := (λn)s,t + ρn

(√
(S̃ωn )s,t − σ

)
λn+1 =

1

ω2

∑
(s,t)∈Ωω

i,j

ζ min
(

(λ̃n)s,t, L
)
,

(17)

where ζ ≥ 1 and L is a large positive constant to ensure
uniform boundedness of (λk)k∈N. Then the hierarchical spatial
adaptiv algorithm can be written as follows.

sSA-TV Algorithm: Choose u0 ∈ Rm2

, λ0 ∈ Rm2

+ and
set ζ = 2 and n := 0

1) If n = 0 solve (16) with u(0) := u0; else compute
vn = f −Kun. Set û(0)

n := 0 and compute for k =
0, 1, 2, . . . ,Kn ∈ N

û(k+1)
n = arg min

u
J

(k)
λn

with fK(û
(k)
n ) = û

(k)
n − 1

δK
∗(Kû

(k)
n − vn) in J

(k)
λn

.
Let û(Kn+1)

n denote the corresponding solution.
2) Update un+1 := un + û

(Kn+1)
n .

3) Compute residual r(un+1) and stop if ζ < 2 and
A > ‖r(un+1)‖; otherwise do: If ‖r(un+1)‖ > A
goto step 4); if A > ‖r(un+1)‖ > 0.9A stop; if
0.9A > ‖r(un+1)‖ set un+1 := un, λn := λn−1

(unless n = 0), and ζ = 1.7 and continue with step
4)

4) Update λn+1 based on un+1 and (17).
5) Set n := n+ 1 and return to step 1).

Note that we expect noise in the reconstruction un if the
residual ‖un−fK(un)‖2 is much smaller than A. Therefore we
introduce the lower bound 0.9A, i.e., 90 percent of the value A,
which should ideally bound the residual form below. Hence,
the sSA-TV algorithm is terminated as soon as the residual
falls into the interval [0.9A,A]. If the norm of the residual
r(un) drops below the lower bound, then we reset ζ = 1.7
to obtain a residual with ‖r(un)‖ ≤ ‖r(un+1)‖ in the next
iteration, and we stop the algorithm if ‖r(un+1)‖ ≤ A. For
solving the minimization problems in the proposed algorithm
we use the primal-dual Newton method suggested in [23]. The
parameters in the primal-dual Newton algorithm are chosen
as µ = 10−6, γ = 10−4 and iteration is terminated as soon
as its residual is smaller than 10−4; see [23] for a detailed
explanation of the algorithm. In order to obtain a sufficiently
good approximation of the minimizer in each iteration n in
step 2), we set Kn adaptively such that ‖û(Kn+1)

n − û(Kn)
n ‖ ≤

10−6.

IV. NUMERICAL EXPERIMENTS

In the following we present numerical experiments for
studying the behavior of the sSA-TV algorithm with respect
to its image restoration capabilities and its stability concerning
the choice of λ0 and the window-size ω. We also compare the
results obtained by the sSA-TV algorithm with the ones due
to the primal-dual Newton algorithm for the experimentally
best scalar choice of λ. The primal-dual Newton algorithm
is terminated as soon as the norm of the residual is smaller

than 10−4 and its parameters are chosen as before, i.e.,
µ = 10−6, γ = 10−4. The performance of these methods is
compared quantitatively by means of the peak signal-to-noise-
ratio (PSNR) [5], which is widely used as an image quality
assessment measure, and the structural similarity measure
(MSSIM) [35], which relates to preceived visual quality better
than PSNR. In general, when comparing PSNR- and MSSIM-
values, large values indicate better reconstruction than smaller
values. We also emphasize that for scalar λ other solvers (than
primal-dual Newton) may be utilized without changing the
conclusions of our findings. This is due to the fact that all of
these methods aim at solving the problem (8).

In our experiments we concentrate on two application: (i)
The reconstruction of partial Fourier-data which is a medical
image processing task, typically related to magnetic resonance
imaging (MRI); (ii) Filling-in of missing or damaged wavelet
coefficients, which is sometimes also called wavelet inpainting
[6], [38].

In all examples in this paper the image intensity range is
scaled to [0, 1]. For both applications we have that ‖K‖ = 1,
and since δ has influence on the convergence speed to the
minimizer, i.e., the larger δ the slower is the convergence of the
surrogate iteration, we set δ = 1.1 in the sSA-TV Algorithm.

A. Reconstruction of Partial Fourier-Data

In magnetic resonance imaging one wishes to reconstruct
an image which is only given by partial Fourier data and
additionally deteriorated by some additive Gaussian noise with
zero mean and standard deviation σ. Hence, the linear bounded
operator is K = S ◦F , where F is the 2D Fourier matrix and
S is a downsampling operator which selects only a few output
frequencies.

(a) (b)

Fig. 1. Images obtained by full Fourier-data (a) “phantom” (b)
“knee”

Fig. 2. Sampling domain in the frequency plane, i.e., sampling
operator S.
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The frequencies are usually sampled along radial lines in
the frequency domain, in particular in our experiments along
44, 88, 132, and 176 radial lines, as visualized in Figure 2,
and some additive Gaussian white noise with zero mean and
standard deviation σ is added.

In our first example we consider a phantom-image of size
256 × 256 pixels, see Figure 1(a), transformed to its Fourier
frequencies. As mentioned before, we sample the frequencies
along radial lines and add some additive Gaussian noise with
zero mean and standard deviation σ. In particular, we recon-
struct the image via the sSA-TV algorithm by setting λ0 = 0.2
and ω = 11 and test its performance for different noise-levels,
i.e., σ ∈ {0.3, 0.1, 0.05}. The obtained results are compared
with the ones of the primal-dual Newton method with a
scalar λ, see Table I. For the latter method we perform many
experiments with different scalar λ-values and we present here
the results with the largest PSNR- and MSSIM-values, which
are in general not achieved by the same scalar λ, i.e., the
λ, which yields the largest PSNR, need not necessarily also
yield the largest MSSIM. The best values of these two quality
measures are summarized in Table I. The sSA-TV method
typically outperforms the primal-dual Newton method with
respect to PSNR and MSSIM. Only when little information
is available (strong subsampling) for the reconstruction, then
the sSA-TV method may not outperform the best experimental
scalar λ. Note that a sampling along 44, 88, 132, and 176 radial
lines means that 21%, 39%, 55%, and 69% of the frequency
data are available, respectively. Of course, if only very little
data is available most details are lost, which explains why
our algorithm may not help to improve the reconstruction.
However, when we look at the reconstruction for σ = 0.3
and a sampling along 132, 88, and 44 radial lines, we see in
Figure 3 that the sSA-TV improves the restoration in all cases.
In particular, in Figure 3 we plot the results of the sSA-TV
and the “best” results, in the sense of PSNR and MSSIM,
of the primal-dual Newton method. The “best” PSNR-result
of the primal dual Newton method seems to regularize only
a little, which preserves features and therefore gives a high
PSNR value, but the restoration contains more noise than
the one generated by the sSA-TV. On the other hand the
“best” MSSIM-result over-smoothes the reconstruction and
hence details, like the dots in the squares, are lost in the
solution. From this example we observe that the sSA-TV
generates a reconstruction which removes noise in particular in
the uniform parts and leaves details in the reconstruction at the
same time. This observation somehow shows that one may not
rely on only one of these quality measures but may consider
both or a combination of both as a trustful reference, i.e., a
reconstruction should have large values in both measures.

Next we consider an MRI-image of size 200×200 pixels of
a human knee, see Figure 1(b). Similarly as above, the sSA-
TV method outperforms the primal-dual Newton method with
respect to PSNR and MSSIM when the number of samples is
large enough, i.e., when a reasonable amount of frequencies
are considered to reconstruct the image, see Table II. Now
a sampling along 44, 88, 132, and 176 radial lines means
that 26%, 48%, 66%, and 81% of the frequency data are
available, respectively. In Figure 4 we show the reconstructions

(a) PSNR= 21.07;
MSSIM=0.704

(b) PSNR= 18.77;
MSSIM=0.533

(c) PSNR= 16.98;
MSSIM=0.563

(d) PSNR= 19.81;
MSSIM=0.432

(e) PSNR= 18.37;
MSSIM=0.403

(f) PSNR= 16.62;
MSSIM=0.391

(g) PSNR= 18.19;
MSSIM=0.679

(h) PSNR= 16.86;
MSSIM=0.650

(i) PSNR= 15.86;
MSSIM=0.607

Fig. 3. Results obtained by the sSA-TV (first row) and primal-dual
Newton (second row - best PSNR-results; third row - best MSSIM-
results) for σ = 0.3 and 132 (left column), 88 (mid column), and 44
(right column) radial lines.

of the two methods for a sampling along 88 radial lines and
with additive Gaussian noise with zero mean and σ = 0.1.
We observe that the sSA-TV method best removes noise in
uniform parts while preserving the edges in the image.

Independently of the noise level and the number of radial
sampling lines, the final adaptive parameter λ obtained by
our parameter choice rule is indeed selected according to the
distribution of features in the image. In Figure 5 we show the
final λ, where light gray indicates large values and dark gray
refers to small values. We see that in detail regions λ is large
in order to preserve details, while in uniform parts it is small
to remove noise considerably.

1) Dependence on the initial choice λ0: Next we inves-
tigate our algorithm concerning its stability with respect to
the initial λ0. Therefore we test the sSA-TV method for
λ0 ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3} and plot the
PSNR- and MSSIM-values of the obtained reconstructions
in Figure 6. Since the parameter λ controls the trade-off
between a good data fit and the regularization coming from
the TV-term, it has an effect on the variance of the residual
‖u(k)−z(u(k))‖2. This can be seen from the plots in Figure 6
where we also specify the number of updates on λ for each λ0.
From our tests we conclude that the sSA-TV method generates
reconstructions with large PSNR and MSSIM when the initial
λ0 is sufficiently small, while for large λ0 there is no guarantee
for a good restoration. This can be attributed to the fact that
our λ-update operates by increasing λ from an initial guess.
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primal dual Newton sSA-TV method
σ # rays PSNR MSSIM PSNR MSSIM
0.3 176 21.19 (λ = 7) 0.710 (λ = 5) 22.55 0.865
0.3 132 19.81 (λ = 10) 0.679 (λ = 5) 21.24 0.727
0.3 88 18.37 (λ = 12) 0.650 (λ = 5) 18.19 0.706
0.3 44 16.62 (λ = 15) 0.607 (λ = 5) 16.85 0.571
0.1 176 29.84 (λ = 25) 0.943 (λ = 12) 30.64 0.960
0.1 132 28.32 (λ = 30) 0.932 (λ = 12) 28.19 0.960
0.1 88 26.22 (λ = 40) 0.905 (λ = 15) 26.75 0.941
0.1 44 20.81 (λ = 40) 0.775 (λ = 15) 20.40 0.721
0.05 176 35.61 (λ = 50) 0.981 (λ = 25) 35.80 0.983
0.05 132 33.97 (λ = 50) 0.979 (λ = 25) 34.92 0.980
0.05 88 31.80 (λ = 75) 0.970 (λ = 25) 31.12 0.972
0.05 44 22.56 (λ = 50) 0.863 (λ = 30) 23.39 0.764

TABLE I
For the “phantom”-image we test for different standard deviations σ and different ratios of known Fourier coefficients the solution of the

total variation minimization with a constant regularization parameter and compare it with the solution of the adaptive total variation
approach with λ0 = 0.2 and ω = 7 in the sense of the quality measures PSNR and MSSIM.

primal dual Newton sSA-TV method
σ # rays PSNR MSSIM PSNR MSSIM
0.3 176 24.46 (λ = 5) 0.780 (λ = 5) 25.21 0.802
0.3 132 24.44 (λ = 5) 0.785 (λ = 5) 25.07 0.804
0.3 88 24.40 (λ = 7) 0.782 (λ = 5) 24.69 0.793
0.3 44 23.83 (λ = 7) 0.759 (λ = 5) 23.51 0.762
0.1 176 29.81 (λ = 20) 0.896 (λ = 15) 30.47 0.909
0.1 132 29.64 (λ = 20) 0.894 (λ = 20) 30.32 0.908
0.1 88 29.05 (λ = 25) 0.886 (λ = 20) 29.42 0.892
0.1 44 27.06 (λ = 30) 0.845 (λ = 25) 27.25 0.853
0.05 176 33.54 (λ = 20) 0.942 (λ = 40) 33.89 0.944
0.05 132 33.08 (λ = 50) 0.940 (λ = 40) 33.21 0.938
0.05 88 31.80 (λ = 50) 0.927 (λ = 50) 32.49 0.935
0.05 44 28.71 (λ = 75) 0.879 (λ = 50) 28.70 0.883

TABLE II
For the “knee”-image we test for different standard deviations σ and different ratios of known fourier coefficients the solution of the total
variation minimization with a constant regularization parameter and compare it with the solution of the adaptive total variation approach

with λ0 = 0.3 and ω = 7 in the sense of the quality measures PSNR and MSSIM.

Thus, in case the latter is already too large for producing good
reconstructions, the method could only recover if reductions
in λ would be allowed as well.

2) Dependence on window size ω: Next we test our al-
gorithm for different values of the window size ω varying
from 3 to 23. Figure 7 shows the PSNR- and MSSIM-
values of the restoration of the phantom image (degraded
by Gaussian noise with σ = 0.1) via the sSA-TV method
with λ0 = 0.2. We observe that the PSNR and MSSIM
are varying only slightly with respect to changing window-
size. In particular, we observe that whenever the algorithm
needs one or more additional steps to terminate, the PSNR
exhibits an upwards jump, while the MSSIM seems to behave
exactly in the opposite way. This behavior may be attributed
to the observation that when the final residual is close to the
lower bound 0.9A, larger PSNR and lower MSSIM values are
expected than when the residual is close to the upper bound
A. Moreover, large window-sizes, i.e., ω > 11, reduce the
MSSIM considerably. These tests recommend to use a rather
small window-size as done in our previous experiments, where
we set ω = 7.

B. Wavelet Inpainting

Wavelet inpainting is the problem of filling in missing data
in the wavelet domain. This data may be lost by conventional
communication techniques, which cannot provide an error
free transmission. Hence, firstly a certain amount of wavelet
coefficients is missing and secondly there might be some noise
added to the data. In our experiments we consider random loss
of data, which we specify with the amount of data available by
its ratio. For example, if ratio = 0.8, then 80% of the data is
available or in other words, 20% of the original data got lost.
Additionally, the observed data is contaminated by Gaussian
noise with zero mean and standard deviation σ.

As above we study the performance of the sSA-TV method
and compare its results with the restorations of the primal-
dual Newton method. For the latter method we again perform
many experiments with different scalar λ-values and present
here the results with the largest PSNR- and MSSIM-values.

For our investigation we consider the two images shown
in Figure 8 both of size 256 × 256 pixels. We test our sSA-
TV method for different noise-levels, i.e., σ ∈ {0.3, 0.1}, and
different ratios, i.e., 0.9, 0.8, 0.7, 0.6, and 0.5. The obtained
PSNR- and MSSIM-values of the solution generated by the
sSA-TV method with ω = 11 and λ0 = 0.3 and λ0 = 1,
respectively, are summarized in Table III and Table IV.
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primal dual Newton sSA-TV method
σ ratio PSNR MSSIM PSNR MSSIM
0.3 0.9 19.11 (λ = 5) 0.671 (λ = 1) 19.97 0.855
0.3 0.8 17.91 (λ = 5) 0.645 (λ = 1) 18.54 0.823
0.3 0.7 17.36 (λ = 5) 0.643 (λ = 5) 18.18 0.749
0.3 0.6 16.16 (λ = 5) 0.642 (λ = 5) 16.89 0.733
0.3 0.5 14.72 (λ = 5) 0.626 (λ = 5) 15.79 0.669
0.1 0.9 26.17 (λ = 20) 0.963 (λ = 10) 27.38 0.965
0.1 0.8 24.82 (λ = 20) 0.951 (λ = 10) 24,97 0.952
0.1 0.7 23.18 (λ = 20) 0.929 (λ = 10) 22.87 0.930
0.1 0.6 21.31 (λ = 20) 0.873 (λ = 10) 20.59 0.894
0.1 0.5 18.54 (λ = 20) 0.787 (λ = 20) 18.75 0.843

TABLE III
For the “phantom”-image we test for different standard deviations σ and different ratios of known wavelet coefficients the solution of the

total variation minimization with a constant regularization parameter and compare it with the solution of the adaptive total variation
approach with λ0 = 0.3 and ω = 11 in the sense of the quality measures PSNR and MSSIM.

primal dual Newton sSA-TV method
σ ratio PSNR MSSIM PSNR MSSIM
0.3 0.9 19.72 (λ = 5) 0.464 (λ = 5) 20.34 0.522
0.3 0.8 19.57 (λ = 5) 0.462 (λ = 5) 19.95 0.501
0.3 0.7 19.17 (λ = 5) 0.453 (λ = 5) 19.32 0.477
0.3 0.6 18.80 (λ = 5) 0.442 (λ = 5) 18.80 0.453
0.3 0.5 15.75 (λ = 10) 0.381 (λ = 5) 17.52 0.387

0.1 0.9 23.51 (λ = 20) 0.719 (λ = 100
7

) 24.03 0.756

0.1 0.8 22.63 (λ = 20) 0.686 (λ = 100
7

) 22.93 0.718
0.1 0.7 21.62 (λ = 20) 0.645 (λ = 20) 21.64 0.667
0.1 0.6 20.78 (λ = 20) 0.610 (λ = 20) 20.61 0.614
0.1 0.5 19.86 (λ = 100

7
) 0.559 (λ = 100

7
) 19.61 0.571

TABLE IV
For the “barbara”-image we test for different standard deviations σ and different ratios of known wavelet coefficients the solution of the

total variation minimization with a constant regularization parameter and compare it with the solution of the adaptive total variation
approach with λ0 = 1 and ω = 11 in the sense of the quality measures PSNR and MSSIM.

From these results we observe that the sSA-TV method
outperforms the primal-dual Newton method with respect to
MSSIM. With respect to PSNR, the sSA-TV method also
performs better than the primal-dual Newton method in most
of the cases and especially when the ratio is large, i.e., when
a lot of data is available. For example, when we consider a
random loss of 20% of the wavelet coefficients (i.e., ratio
= 0.8) and σ = 0.05, we see in Figure 9 that the sSA-TV
method preserves image features (see the pattern on the scarf
in Figure 9), while removing noise in the uniform parts. This
is due to the fact, that the adaptively computed function λ
is much higher in regions where details (e.g., see the pattern
on the scarf) have to be reconstructed, see Figure 9 (c). The
primal-dual Newton method leaves noise in the image while
destroying image features, see Figure 9 (d)-(e) and (g)-(h).
A similar behaviour is observed for the example in Figure
10 where σ = 0.1 and ratio= 0.5. Here we clearly see, that
the primal-dual Newton method with a scalar regularization
parameter is not able to preserve the intensities in the image,
e.g., the light gray of the squares.

As above for the reconstruction of partial Fourier-data the
final adaptive parameter λ obtained by our parameter choice
rule is indeed chosen according to the features in the image,
see Figure 9(c) and Figure 10(c). We see that in detail regions
λ is large in order to preserve details, while in uniform parts
it is small to remove noise considerably.

1) Dependence on the initial choice λ0:
Now we investigate our algorithm concerning its
stability with respect to λ0 for the application of
wavelet inpainting. We test the sSA-TV method for
λ0 ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}
and plot the PSNR- and MSSIM-values obtained for the
reconstruction in Figure 11. In these plots we also specify
the number of updates on λ for each λ0. We observe a
similar behaviour as in the case of MRI. Although now the
reconstructions seem to be much more stable with respect to
λ0.

2) Dependence on the window size ω: As for the recon-
struction from partial Fourier-data we test our algorithm again
for different values of the window size ω varying from 3
to 23. In Figure 12 and Figure 13 we plot the PSNR- and
MSSIM-values of the restoration of the image from Figure 10
and Figure 9 obtained by the sSA-TV method with λ0 = 0.3
and λ0 = 1, respectively. We observe that the reconstruction
is remarkably stable with respect to the window size for all
considered random losses of data.

V. CONCLUSION

In this work it has been shown that spatially adaptive
data fidelity weights help to improve the quality of restored
images with respect to PSNR and MSSIM. For undersampled
data, this, of course, depends on the sampling rate, i.e. in
case the sampling operation induces a loss of details in
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(a) PSNR= 29.05;
MSSIM=0.878

(b) PSNR= 29.00;
MSSIM=0.886

(c) PSNR= 29.42;
MSSIM=0.892

Fig. 4. Reconstruction of the “knee”-image sampled in the Fourier
domain along 88 radial lines (corresponds to 48% of the data)
which is deteriorated by Gaussian noise with zero mean and standard
deviation σ = 0.1. We show the results of the primal dual TV method
with the best PSNR (left column), and the best MSSIM (mid column)
and the result of the sSA-TV method (right column). In the second
row we zoomed in on the area highlighted in the first row. In order to
visualize the differences in the reconstruction we color the zoomed
area in the third row.

(a) σ = 0.3;
# rays = 132

(b) σ = 0.1;
# rays = 132

(c) σ = 0.05;
# rays = 132

Fig. 5. Final values of λ by our adaptive parameter choice rule.

the data, then these details cannot be recovered properly by
adjusting fidelity weights only. On the other hand, as long
as the sampling allows to detect details in images, adaptive
fidelity weights outperform best experimental scalar choices
with respect to the aforementioned quality measures. In our
context, the automated adjustment of the local weights is
based on the Gumbel statistic and provides a rather robust
update tool related to localized image residuals and confidence
regions. It has the advantage of avoiding over/under-fitting due
to properly chosen bounds in confidence tests. Algorithmically,
the parameter adjustment scheme can be sped up by employing
hierarchical decompositions, which aim at decomposing an
image into so-called ”atoms” at different scales, where a
scale is induced by the magnitude of the fidelity weight. The
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Fig. 6. PSNR and MSSIM for the “phantom”- and “knee”-image
restored from partial Fourier data (sampled along 88 radial lines),
which is distorted by additive Gaussian noise with zero mean and
standard deviation σ = 0.1 by our method for different λ0.

framework of the paper is suitable for data transfer operators
K, which relate to Parseval frames, or when K encodes a
blurring type operation. This is due to the structure of the
output space and the properties of the adjoint operator K∗. In
the context of Parseval frames, wavelet inpainting or recovery
from partial Fourier data represent two specific applications,
which can be treated by the framework developed in this paper.

Allowing for more general operators K and, hence, perhaps
transferring from spatially adaptive data fidelity weights to
distributed regularization weights remains a future challenge.
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