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Abstract

The so-called wonderful models of subspace arrangements, developed in
[CP95] based on Fulton and MacPherson’s seminal paper [FM94], serve as a
systematic way to resolve the singularities of Feynman distributions and in
this way allow to define canonical renormalization operators. In this thesis
we continue the work of [BBK10] where wonderful models were introduced
to solve the renormalization problem in position space. In contrast to the
exposition there, instead of the subspaces in the arrangement of divergent
loci we use the poset of divergent subgraphs of a given Feynman graph as the
main tool to describe the wonderful construction and the renormalization op-
erators. This is based on [Fei05] where wonderful models were studied from
a purely combinatorial viewpoint. The main motivation for this approach is
the fact that both, the renormalization process and the model construction,
are governed by the combinatorics of this poset. Not only simplifies this
the exposition considerably, but it also allows to study the renormalization
operators in more detail. Moreover, we explore the renormalization group
in this setting, i.e. we study how the renormalized distributions change if
one varies the renormalization points. We show that a so-called finite renor-
malization is expressed as a sum of distributions determined by divergent
subgraphs. The bottom line is that - as is well known, at the latest since the
discovery of a Hopf algebra structure underlying renormalization - the whole
process of perturbative renormalization is governed by the combinatorics of
Feynman graphs while the calculus involved plays only a supporting role.
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Chapter 1

Introduction

Quantum field theory (QFT), the unification of quantum mechanics and
special relativity, is the last century’s most successful physical theory. Al-
though plagued with infinities and ill-defined quantities all over the place, it
is in astonishing agreement with data obtained from particle physics experi-
ments. At first this seems very awkward since up until now no one has been
able to prove the existence of interacting quantum fields satisfying a reason-
able set of physical axioms. Instead, these "real” fields are approximated as
perturbations of their free, non-interacting counterparts. Although in this
perturbative world a lot of mathematical monsters hide, the theory predicts
the outcome of particle physics experiments with great accuracy. The art
of taming these monster, i.e. treating the infinities arising in perturbative
calculations, is called renormalization. Over the years it has turned from
a ”black magic cooking recipe” into a well-established and rigorous formu-
lated theory, at the latest since the 90’s when Kreimer discovered a Hopf
algebra structure underlying renormalization. The main implication is that
(perturbative) QFT is governed by the combinatorics of Feynman diagrams.
This has proven to be a very powerful tool, both in computational problems
as well as in improving our understanding of QFT in general. In addition, it
has revealed surprising connections to deep questions in pure mathematics,
for example in number theory and algebraic geometry. For more on the Hopf
algebraic formulation of renormalization and its connection to other fields
we refer to the exposition in [Krel3].

The mathematical reason for divergences arising in perturbative calcu-
lations is that quantum fields are modeled by operator-valued distributions
for which products are in general not well-defined. In the position space
formulation of QFT renormalization translates directly into the problem of
extending distributions as shown by Epstein and Glaser in [EG73]. Although
they formulated and solved the renormalization problem already in the early
70’s, since then no real progress has been made in this direction. This is
mainly due to two reasons: Firstly, their approach was mathematical precise



but conceptually difficult. It involved a lot of functional analysis, in some
sense disguising the beauty and simplicity of the idea. Secondly, it is not
applicable to calculations at all. Only recently, in a first approximation to
quantum gravity, physicists have started to study quantum fields on general
spacetimes and in this setting one is naturally forced to work in position
space [BF00].

In [BBK10] another, more geometric approach to this problem was pre-
sented. In position space the Feynman rules associate to a graph G a
pair (X G,vg) where X is a product of the underlying spacetime and
ve : X¢ — R a rational function. One would like to evaluate this to

(X ve) = / v,
XG

but this fails in general as the integrand need not be an element of L'(X®).
If vg does not vanish fast enough at infinity this is called an infrared diver-
gence. The problem is circumvented by viewing vg as a distribution on the
space of compactly supported test functions. On the other hand, ultraviolet
divergences arise from vg having poles along certain subspaces of X“. These
subspaces are determined by D, the set of (ultraviolet-)divergent subgraphs
of G, and form the divergent arrangement Xg . In this setting renormal-
ization translates into the problem of finding an extension of vg onto Xg .
In [BBK10] this is solved with a geometric ansatz. The idea is to resolve
the divergent arrangement into a normal crossing divisor. Such a model,
also called a compactification of the complement of XG, is provided by the
wonderful model construction of DeConcini and Procesi [CP95]. It allows to
define canonical renormalization operators mathscrR that extend vg to a
distribution defined on the whole space X“. The method of the DeConcini-
Procesi construction is based on the compactification of configuration spaces
introduced by Fulton and MacPherson in their seminal paper [FM94]. What
makes it so well suited for renormalization is that the whole construction is
governed by the combinatorics of the arrangement which translates directly
into the subgraph structure of G.

The idea of employing a resolution of singularities to extend distribu-
tions is not new. It is based on a paper by Atiyah [Ati70] that highlighted
the usefulness of Hironaka’s famous theorem for other areas of mathematics.
In addition, the same technique was applied in Chern-Simons perturbation
theory independently by Kontsevich [Kon94] as well as Axelrod and Singer
[AS94]. For an application of this idea to renormalization in parametric
space see [BEKO06].

This thesis aims to continue the work of [BBK10] emphasizing a slightly
different point of view. We use another language to formulate the wonderful
construction and the renormalization process. Instead of the subspaces in
the divergent arrangement we express the central notions in terms of the



poset D, formed by all divergent subgraphs of GG, partially ordered by inclu-
sion. This is inspired by [Fei05] where the wonderful model construction is
studied from a combinatorial point of view. Not only does this simplify the
definitions and proofs immensely, it also highlights the combinatorial flavour
in the construction of both, the wonderful models and the renormalization
operators. In addition, instead of the vertex set of G we use adapted span-
ning trees t to define coordinates on X, naturally suited to the problem.
This is also mentioned in [BBK10], but not used to its full extent. The main
point is that such spanning trees are stable under graph theoretic operations
like contraction of subgraphs and therefore provide a convenient tool to for-
mulate the wonderful construction. It allows to treat the definition of the
renormalization operators in more detail ([BBK10] focuses mainly on the
model construction for arrangements coming from graphs) and to study the
renormalization group, a powerful tool (not only) in QFT, that allows even
for statements beyond perturbation theory. The main result is a formula for
the change of renormalization points, the parameters involved in defining
the renormalization operators. It relates a so-called finite renormalization
of the renormalized distribution Z[vg| to a sum of distributions determined
by the divergent subgraphs of G.

The presentation is organized as follows. In the next chapter we start
with a short introduction to QFT and renormalization, mainly aimed at
mathematicians, just to introduce the playing field and motivate the prob-
lem we are considering. It finishes with an account of renormalization a la
Epstein-Glaser.

The next three chapters are devoted to the central objects in this thesis,
distributions, smooth models and posets. Chapter 3 gives a short overview
of the theory of distributions on manifolds and shows how extension of dis-
tributions works in a toy model case. It finishes with a definition of Feynman
rules, i.e. how QFT associates distributions to Feynman diagrams, and an
analysis of the divergent loci of these distributions. Chapter 4 starts with a
general introduction to smooth models. We continue then with the special
case of models for linear arrangements and review the wonderful construc-
tion of DeConcini and Procesi. Chapter 5 is of purely combinatorial flavour.
We introduce the necessary language and discuss wonderful models from a
combinatorial viewpoint, emphasizing the special case of arrangements com-
ing from graphs. The whole wonderful construction is reformulated in terms
of the poset D.

After these mostly preliminary steps we come to the main part, the def-
inition of the wonderful renormalization process. We first study the pole
structure of the pull-back of a Feynman distribution onto an associated
wonderful model and then define two renormalization operators. This defi-
nition requires some choices to be made and a natural question, considered
in Chapter 7, is to ask what happens if one varies these parameters. We



derive and proof a formula for these so-called finite renormalizations.

The last chapter finishes the wonderful renormalization process by show-
ing that it is physical reasonable, i.e. it satisfies the Epstein-Glaser recursion
principle, in other contexts known as locality of counterterms. After that
we discuss the connection between the renormalization operation for single
graphs presented in this thesis and the Epstein-Glaser method. We finish
with an outlook to further studies: The treatment of amplitudes and the role
of the Fulton-MacPherson compactifications in this setting, and the Hopf
algebraic formulation of wonderful renormalization.



Chapter 2

Quantum Field Theory

This chapter tries to give an introduction to QFT in a somewhat mathemat-
ical precise manner. This is actually impossible, especially in such a short
volume, but we try to sketch the main notions and mention the conceptual
difficulties along the way. It is not needed for understanding the theory of
wonderful renormalization, but should serve as a motivation why we are con-
sidering an extension problem for distributions of this special kind and what
graphs have to do with it. The reader familiar with QFT can easily skip to
the last section that summarizes the ideas of the Epstein-Glaser approach.

2.1 A wery short introduction to QFT

What is a theory of quantum fields? It is a relativistic field theory compatible
with the principles of quantum mechanics. We start with the definition given
in most physics textbooks, then introduce the axiomatic approach due to
Wightman. For an extensive exposition we refer the interested reader to
[BS80] or [Rebl12].

To combine the features of both quantum mechanics and special relativ-
ity means that we are looking for a theory built on a Hilbert space H with
states represented by unit rays and observables by operators, respecting the
symmetry group of special relativity, the Poincaré group

P =RY x SL(2,C).

Here SL(2,C) enters as the universal cover of OT(1,3), the component of
the Minkowski spacetime’s orthogonal group O(1,3), that is connected to
the identity - also known as the group of proper orthochronous Lorentz trans-
formations. By Wigner’s theorem [Wigh9] we think of a particle as an irre-
ducible representation of P on H. This leads to the classification of particles
in terms of their mass m and spin s, or helicity A in the massless case. In
this thesis we will consider only scalar particles (s = h = 0), so we continue
focusing on this special case. It suffices to understand the general concept.



From the fundamental equation E = mc? it follows that in a relativistic
system the number of particles is not conserved. To model this, H is replaced
with the Fock space

o0
=D S(H®),
k=0
the direct sum of k-particle Hilbert spaces (symmetrized because we are con-
sidering bosonic particles here - s = 0 - for fermions all Hilbert spaces have

to be antisymmetrized according to the Spin-Statistics theorem [SWO00]),
completed with respect to the norm

0o
H\I’H2 = Z H\I’kHZ'(H@c)
k=0

There are two important operators on H, AT and A~ , responsible for cre-
ating and annihilating particles. They enter the theory when one quantizes
the classical fields. For scalar particles the classical equation of motion is
given by the Klein-Gordon equation

(O +m?)¢ =0.

It is the Euler-Lagrange equation for the Lagrangian density

£(6,00) = 5(0,0)(0"9) — 56,

As is known from the theory of partial differential equations, at this point we
have to leave the world of smooth functions to search for solutions. There-
fore this equation is to be understood in the sense of distributions. By
Fourier analysis methods we obtain the general solution (ignoring constant
prefactors)

$(z) = ¢"(z) + ¢~ (),
(@) = [ dulh) At ),
Here the measure du(p) := dp8(p°)§(p?> — m?) fixes the p’-component to
p? = w(p) = v/p? + m? according to Einstein’s famous equation.

Quantization then introduces the bosonic commutation relations on the
Fourier coefficients A~ (p) and A*(p), now viewed as operators on H:

[A*(p), A*(p)] =0
[A~(p), AT ()] = 6(0 — 7).
The Hamiltonian of the system is given by

1

= [ dulp) : 4 0)A () + A" 0)A" () = [ dulp) A" )4 o),
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an infinite sum (integral) of Harmonic oscillators with infinitely many de-
grees of freedom. This leads to the interpretation of A* and A~ as creation
and annihilation operators and the existence of a ground state, the vacuum
|0). Tt is defined by A~ (p)|0) = 0 for all momenta p.

In the definition of H a normal ordering operation : - : has been intro-
duced to get rid of the physical problem of a ground state having infinite
energy. Normal ordering is defined by moving all creation operators to the
left and annihilation operators to the right. There is another important
ordering operation, given by the time ordering operator T,

A@)Bly) ity <2,
B(y)A(z) if 2° < oY.

With T" we can define the Feynman propagator A(z—y) = (0T (¢(x)¢(y))|0).
It is a Green’s function for the Klein-Gordon operator,

O+ m*)A(x —y) =6z —y),

and interpreted as the probability amplitude for a particle to travel between
two points of spacetime. In principle, this finishes the discussion of the
free field, but we need to mention one more important property of A, the
equation

T(d(2)o(y)) =: d(x)d(y) : +A(z —y). (2.1)
A generalization of this for any collection of fields is known as Wick’s the-
orem. It relates time and normal ordering of a product of fields to a sum
over all possible contractions of the form (2.1). This theorem is essential for
the introduction of Feynman diagrams in perturbation theory.

Before we turn to this, let us take a look at the axiomatic formulation
of (scalar) QFT. It is based on the Wightman axioms [SWO00]:

1. A quantum field theory is a tuple (H, U, 2, ¢). H is a separable Hilbert
space whose unit rays represent the states of the theory. Relativity is
encoded by U, a continuous unitary representation of the Poincare
group on H,

(a,A) — Ula, A).

From unitarity it follows that U(a,id) = exp(iP"a,) where P is an
unbounded hermitian operator, the energy momentum operator of the
theory. The eigenvalues of P lie in or on the forward light cone and
the mass of the theory is given by m? = PEP,. In H there is an
U-invariant, cyclic state €2, the vacuum. It is unique up to a phase
factor.

2. Let £(M) denote the space of Schwartz functions on Minkowski space.
A quantum field is characterized by



(a) domain and continuity of the field: For each test function f €
E(M) there is an operator ¢(f) (in the scalar case self-adjoint).
It is an endomorphism on a dense subset D of H. The set D
contains the vacuum and is invariant under U. Moreover, given
v, ® € D, then

[ (@] o(f)¥) (2.2)
defines a tempered distribution on E(M).

(b) transformation law: The field respects the transformation law

U(a, A)¢(f)U(a7 A)il = ¢((CL, A)f)

where (a, A).f(z) := f(A™ (z — a)).
(c) causality: Let f and g be two Schwartz functions with space-like

separated support, i.e. f(z)g(y) # 0 for (x —y)? < 0. Then the
following commutation relations hold,

[0(f), ¢(9)] = 0.

There are more technical requirements, some equivalent to the stated ax-
ioms, some are additional and needed to formulate scattering theory, but
the previous definitions basically characterize a (free) quantum field the-
ory. Note that we have two examples at hand, trivial fields and the free
field constructed above. Up to now there is no example of an interacting
field that satisfies these axioms (in dimension four). One of the Millenium
Price Problems is to show that there exists a gauge theory satisfying the
Wightman axioms, or an appropriate version of similar axioms.

There are ”equivalent” axioms for quantum field theory on Euclidean
space, formulated by Osterwalder and Schrader. ”Equivalent” here means
that a theory satisfying one set of axioms can be transformed into a theory
satisfying the other set. The difficult part in this change of background
metric lies in translating axiom one in the definition of the fields, i.e. trans-
forming the Wightman functions defined by (2.2) into their Euclidean coun-
terparts, the Schwinger functions. The point here is that distributions are
related to boundary values of holomorphic functions via the Laplace trans-
form. For more on this we refer to [SW00] and [Reb12].

2.2 Perturbation Theory and Renormalization

So far we have considered a quantum theory of free fields. The trouble starts
when one tries to model interactions between particles, i.e. adds nonlinear
terms to the equation of motion. For example, the interaction of n > 3
scalar particles is modeled by the equation

(O +m?)¢ =nA¢" ",



where ) is a constant, the coupling strength. Since there is no general the-
ory of solving equations of this type, the ansatz is to construct solutions as
perturbative expansion in the coupling A. Although no one has been able
to prove the existence of interacting quantum fields, perturbation theory
around the free fields has been immensely successful - it is the most precise
physical theory up to date - despite many conceptual and technical difficul-
ties.

Let us sketch the formulation of perturbation theory by defining a scat-
tering operator, the S-matriz. Let «a, be two states of the free field, «
representing a configuration before interaction takes place (the ”in-field”),
whereas [ represents the final state ("out-field”). A scattering process is
then modeled by assuming that in the far away past and future the state
of the system is free, i.e. there is no interaction present. Both states live
in ‘H, the Fock space of the free field. Therefore, scattering theory predicts
the existence of an unitary operator S mapping the in-state to the out-state
(at this point lurks a conceptual problem of scattering theory, known as
Haag’s theorem; for more on this we refer to [Haa55]). The probability of
this process is given by the square of the absolute value of the amplitude

(B|Sa).

In perturbation theory we assume that the Hamiltonian H is a sum Hg +
H; where Hj is the Hamiltonian of the free theory and Hj; given by the
interaction terms. In the interaction picture Hy governs the time dependence
of operators, while Hy controls the evolution of states. Then S is obtained
from the limit s = —o0, t — oo of the time evolution operator U(s,t) that
is the solution of

iaatU(tg,t) = Hi(H)U (to, t),
Ulto, to) = id.

The solution is given by an iterated integral, known as Dyson’s series,
U(s,t) = T(e*ifst dTH’(T)).

Here time ordering is needed because the Hamiltonians evaluated at different
times need not commute. Since time ordering is defined with the generalized
function 6, this is the point where (ultraviolet) divergences are inserted into
the theory; in general one cannot multiply distributions by discontinuous
functions, or equivalently, in the language of distributions, the product of
two distributions is not well-defined. There are two ways of dealing with this
problem: Try to construct a well-defined version of T', or proceed with the
calculation and try to get rid of the problems at the end. The first is the basic

10



idea of the Epstein-Glaser approach, the second leads to renormalization,
the art of removing these divergences in a physical meaningful manner.

Expanding Dyson’s series and using Wick’s theorem for the products of
fields in the interaction Hamiltonian we obtain a formal power series (con-
vergence is not clear at all) in the coupling A. Every summand is an integral
over a product of Feynman propagators. Feynman’s ingenious observation
was that every integral can be encoded by an associated diagram. The map
that translates the diagram back into an integral is called Feynman rules
and usually denoted by .

We make the following definitions and conventions. By a Feynman di-
agram we mean the ”picture” that one draws to represent a term in the
expansion of the S-matrix. It is a graphical object with time- and momen-
tum arrows and external momenta or particles. In contrast, a Feynman
graph is the resulting graph if we remove all labels and external edges (we
consider only scalar theories - no tensor structure).

By a graph we mean the following combinatorial object.

Definition 2.1. A graph G is an ordered pair G = (V, E) of a set V of
vertices and a multiset E of unordered distinct (we do not allow loop edges,
i.e. edges connecting a vertex with itself) pairs of elements of V.

Example. The dunce’s cap graph (Figure 2.1) will serve as main example
later throughout the text. Here V' = {v1,v2,v3} and E = {e1 = (v1,v2),e2 =
(v1,v3), e3 = (v2,v3), €4 = (v2,v3)}

U3

€2
U1 ( ey
€1

V2

Figure 2.1: Dunce’s cap

Definition 2.2. A subgraph g of G, denoted by g C G, is determined by a
subset E(g) C E(G).

Usually one defines the vertex set of g to be the set of vertices of V(G)
that are connected to edges of g, so that g is a graph itself, g = (V(g), E(g))-
For our purposes it is more convenient to allow also for isolated vertices.
Therefore we define a subgraph g C G to be an equivalence class under the
relation

g~ g < g =gU(Uyey) for V' CV(G)\ V(g).

For subgraphs g,h C G we introduce the following operations:

11



1. Union and intersection: gUh and gNhA are the subgraphs of G defined
by the corresponding operations on the edge sets of g and h.

2. Deletion: For g C h the deletion h \ g is the graph h with all edges of
g removed.

3. Contraction: For g C h the contraction h/g is the graph h with all
edges e in F(g) removed and for every e € E(g) the two vertices
connected to e identified.

Remark. In QFT one usually works with graphs defined by half edges to
incorporate external edges, see for example [BEK06]. By the argumentation
of Section 3.3 we do not need this here. Also, in applications a particular
theory is defined by fixing a labelling of the edges (representing different
propagators) and the valence of vertices (representing different interactions).
Since we work in a scalar theory we need no labelling. Furthermore, the
method presented here works for general graphs, so we do not restrict to a
specific interaction.

Let us sketch the idea behind renormalization with a baby example. For
a thorough treatment of renormalization from two different viewpoints we
refer to [Krel3] and [Col84].

Example. For p € RT consider the logarithmically divergent integral

=7

To renormalize it we introduce a regularization parameter s by cutting off
the domain of integration so that

L(p) == /:df

is well-defined. If we subtract the counterterm Is(p)|p=, for some fixed
v € RT we obtain a finite expression for which we can take the physical
limit, i.e. send s back to its original value. The renormalized value R, (I)(p)
is then given by

S§—00

lim I;(p) — Is(v) = logz.
p

Obviously, there are many ways to renormalize such an expression. They
depend on the choice of regularization and a renormalization scheme, which
is determined by the form of the counterterms and the renormalization point.
The common factor is the overall structure of the process.

In QFT we want to renormalize an expression ®(G) associated to a Feyn-
man diagram G. The first step is to identify the set of divergences. This is
done by the Weinberg-Dyson convergence theorem [Wei96] that essentially

12



relates divergent sectors in ®(G) to divergent subgraphs of G (cf. Definition
3.9). In general, more than one subtractions are needed and one cannot
proceed in arbitrary order, but must arrange the subtractions according
to Zimmermann’s forest formula [Zim69]. This formula gives a recursive
procedure for renormalizing ®(G) by subtracting counterterms for all pos-
sible nested sets of divergent subgraphs in G. It is the starting point of the
Hopf algebraic formulation of renormalization, which allows to put the ideas
sketched here on firm ground in a compact form.

Finally, a theory is called renormalizable if in every order of perturbation
theory the counterterms added can be put into the Lagrangian without
changing its structure. In other words, if renormalizing the Lagrangian
amounts to a rescaling of its parameters.

2.3 Causal perturbation theory

The other approach to renormalization goes back to Stiickelberg, Bogolyubov
and Shirkov [BS80]. The basic idea is to find a well-defined version of the
time ordering operator to take care of divergences before they can emerge.
In causal perturbation theory one tries to construct the S-matrix not as a
perturbation series but from a set of physical axioms such as causality and
Lorentz covariance. The first solution of this problem was given by Epstein
and Glaser [EG73]. We will present a modern formulation which goes back
to Stora and can be found in [BF00).

As a technical tool, but also to avoid the complications posed by Haag’s
theorem as well as infrared divergences, we use a test function A € D(M)
that switches the interaction on in a bounded region of spacetime. Since then
both the initial and final states are free (no interaction present), we propose
the existence of a scattering operator S = S(\), now a functional of A, that
maps the in-state to the out-state. The starting point in causal perturbation
theory is to assume that S is given by a formal series of operator-valued
distributions,

D(M)>A— S(A) =1+ Tr(A®"). (2.3)
neN

Here the operator-valued distributions 7" are to be derived from a set of
physical axioms the S-matrix should satisfy. These axioms allow then to
construct 7™ from knowledge of the T* with k < n. An early formulation of
this can be found in [BS80]. It differs from the Epstein-Glaser method in the
crucial last step where the causal S-matrix is connected to its counterpart in
conventional perturbation theory with the help of the time ordering operator
T, thus leading to the well-known problem of ultraviolet divergences. Based
on this observation, Epstein and Glaser showed that the axiomatic proper-
ties of S determine the 7" up to the small diagonal D = {z; = ... = z,}

13



in M"™. Therefore the renormalization problem translates into finding an
extension of 7™ onto the full space M™.

Let M := R'3 denote Minkowski space (any manifold with a causal
structure - to be defined below - works as well) and assume that the S-
matrix is given by (2.3). The axiomatic properties S should fulfill are stated
here in their respective version for the 7T7:

1. All T™ are well defined operator valued distributions on M™ (using
Schwartz’ nuclear theorem [Sch66]).

2. T" is symmetric under permutation of indices, in the sense of distri-
butions.

3. Let TUI¢ = {1,...,n} be a causal partition into two non-empty
subsets. Then
™ =T'T"

A partition is causal if no x; (¢ € I) lies in the past lightcone V™ (z;)
of the z; with j € I°. The notation T is justified by Axiom 2.

4. T™ is translation invariant and Lorentz covariant.

Axiom 3 allows to construct 7™ recursively from the T* with k < n up to
the small diagonal in M™. Translation invariance, together with a causal
version of Wick’s theorem, reduces the problem then to the extension of
distributions onto a single point. This is done using a causal covering of
M™: For ) #1 C{1,...,n} define

Up={zeM"|z; ¢V (z) foriecl, jelI}.
These sets cover M™ up to the small diagonal,
M"\D= |J U.

Remark. This works also for more general spacetimes. The crucial point is
here a causal structure on M that allows to define the U; as above. Such
structures are always present on globally hyperbolic spacetimes, as considered
in [BF00].

By Axiom 3 we have on any Uj
T (z) := T ()T (21e)

where z; denotes {x;},cs. To define T™ on M™\ D pick a partition of unity
X1, subordinate to the U;, and set

Ty = Z xrT7.
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This defines an operator-valued distribution on M™ \ D that satisfies all
axioms of causal perturbation theory. The last remaining step is then to
extend 73" onto the diagonal D in M™. On Minkowski spacetime this reduces
to an extension problem for numerical distributions and can be solved with
the methods presented in the next chapter. On general spacetimes more
sophisticated methods are required, for example the theory of microlocal
analysis [H690].
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Chapter 3

Distributions

In the last chapter we have seen how distributions arise in the formulation of
quantum fields. Nevertheless, in most textbooks on QFT the distributional
character of the theory is largely neglected because in the momentum space
formulation it is less important. The situation is different in position space
where distributions play a central role in every aspect.

We start this chapter with a short review of distribution theory. Then we
study the extension problem for distributions in a toy model case and finish
with a discussion of Feynman distributions, distributions given by Feynman
rules.

3.1 General theory of distributions

Distributions were introduced by Laurent Schwartz [Sch66] who developed
a theory of distributions based on earlier works by Hadamard, Dirac and
Sobolev. The idea is to generalize the notion of ordinary functions by viewing
them as continuous linear functionals on the space of (compactly supported)
test functions. To every f € C°(R) we can associate the functional

ufp Q> /d:c f(@)p(z).

On the other hand, by a classical result of Hadamard, every continuous
linear functional u can be expressed by a sequence of integrals of this type

u:@r— lim [ dzu,(x)p(z).
n—oo
But taking limits and integration do not commute in general, i.e. lim,,_, o Uy,
need not exist as a function. This is where distributions enter the game as
generalized functions.
We write (u|p) for the value of u at ¢ and by abuse of notation we use
the same symbol f for a function and the functional uy it represents. In the
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latter case we refer to f as the kernel of uy. The locus where u cannot be
given by a function is called the singular support of w.

The consideration above also shows that the definition of distributions
depends on the space of test functions they act on. Usually this space is
chosen to be either D(R™), the space of smooth functions with compact
support, or S(R™), the space of Schwartz functions. S(R™) is defined as the
space of rapidly decreasing smooth functions:

Definition 3.1. On the space C*°(R") define for every pair of multi-indices
a, f a seminorm

1 fllas == sup [z*D" f()].
zeR?
The Schwartz space is defined as
SR") :={f € C°R") [ |[flla,p < 00, Vo, B}.

Although compactly supported functions might seem more natural to
work with, the space of Schwartz functions has some advantageous features:
Schwartz functions can be analytic and, most importantly, the Fourier trans-
form restricts to a linear isomorphism on S(R™). Because of these nice fea-
tures this space is usually used in the formulation of QFT. Distributions on
S(R™) are called tempered distributions. On the other hand, for practical
calculations it is often more convenient to work with compactly supported
functions. In addition, on manifolds Schwartz functions are hard to define
(see for example [AGO8]). Therefore, we work in this thesis with distribu-
tions on the space of compactly supported test functions.

Let X be a (smooth) d-dimensional manifold and denote by D(X) :
C§°(X) the space of compactly supported smooth functions on X. For X
R? open it would be natural to define the space of distributions D’ (X) :
(D(X))* as the space of continuous linear forms on D(X). To generalize
this to the manifold case there are two possibilities, depending on whether
distributions should generalize functions or measures (cf. [H690]). In the
following let {¢; : U; — U; C R%};c; be an atlas for X.

Iim

Definition 3.2. A distribution u on X is given by a collection of distribu-
tions {u; € D'(U;) }ier such that for all 4,5 € T

uj; = (Ibz o w;l)*uz n IbJ(Uz N Uj).
The space of distributions on X is denoted by D'(X).

This is the way to define distributions as generalized functions on X
(every u € C°(X) defines a distribution by setting w; := wo ;). If we
start from the point of view that they are continuous linear forms on D(X),
we arrive at generalized measures on X:
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Definition 3.3. A distribution density @ on X is a collection of distributions
{u; € D'(U;) }ier such that for all 4,5 € T

i = |det D (i oy )|(vi oy ) iy in (Ui N U).
The space of distribution densities on X is denoted by D'(X).

Because of their transformation properties, distribution densities are also
called pseudoforms. They generalize differential forms in the sense that they
can be integrated even on non-orientable manifolds. For more on pseudo-
forms and integration on non-orientable manifolds we refer to [NicO7]. If
X is orientable, there is an isomorphism D'(X) = D'(X) via u — uv for v
a strictly positive density (i.e. a volume form) on X. In particular, on RY
such a density is given by the Lebesgue measure v = |dz| and we write u
for u|dz| with u € D' (R%).

For later purposes we introduce two operations on distributions and den-
sities, the pullback and pushforward along a smooth map f: X — X'.

Definition 3.4 (Pushforward). Let X C R™ and X’ C R" be open and
f + X — X' be surjective and proper (if u is compactly supported this
requirement can be dropped). For a distribution v on X the pushforward
fsu € D'(X') is defined by

(feulp) = (ulf*p) for all ¢ € D(X).
For X and X’ manifolds with atlantes (1;, U;)ier and (¢}, U})jes we define
the pushforward f,i € D'(X') of @ € D'(X) by

(few); == (o fo7 ) us in UjN (¢ o f o) (Us).

The question under what conditions the pullback of distributions is de-
fined is more delicate, see [H690] for a detailed exposition. We state only
one special case where it is possible to define a pullback: Let X and X be
open subsets of R” and f : X — X’ a smooth submersion. Then there
exists a unique linear operator f*: D'(X’) — D'(X) such that f*u =wuo f
if u € CY%X’). If X and X’ are manifolds and @ is a density on X’ then
f*i € D'(X) is defined by

(ffu)i == (@) o fop7Yu; in UjN (W f; " )(Us).

3.2 Extension of distributions

In this section we present the theory of extending distributions. We study a
toy model, distributions on R\ {0} given by kernels that have an algebraic
singularity at 0. We follow the exposition in [GS64]. Applying this toy
model to the extension problem for Feynman distributions is precisely the
idea behind the geometric approach to renormalization.
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3.2.1 The extension problem
The extension problem for distribution densities is formulated as follows:

Definition 3.5 (Extension problem). Let X be a smooth manifold and
Y C X an immersed submanifold. Given a density @ € D'(X \'Y) find an
extension of & onto X, i.e. find a density eyt € D'(X) with

(Tiext|p) = (@i]p) for all p € D(X\Y).

In this very general formulation the problem is not always solvable.
Moreover, if there is a solution, it need not be unique since by definition
two extension may differ by a distribution supported on Y. Therefore addi-
tional conditions are sometimes formulated to confine the space of solutions.
Usually one demands that the extension should have the same properties as
u, for example scaling behaviour, Poincare covariance or solving certain dif-
ferential equations.

In QFT (on flat spacetimes) the problem reduces to a solvable case, the
extension of distributions « € D’(R?\ {0}) onto the origin. To construct
a solution we need a device to measure the degree of divergence of u at a
point. This is done by Steinmann’s scaling degree [BF00] which generalizes
the notion of homogeneity from functions to distributions. To define a scal-
ing operation on distributions we introduce the scaling operator T on test
functions,

T[p](z) := )\dsO(/\x) for ¢ € D(]Rd) and A > 0.
The adjoint operation on distributions is then defined by
(Txulp) = (u|Tx-1[g]).

Definition 3.6. Let u € D'(R%). The scaling degree o = o(u) of u with
respect to 0 € R? is defined as follows,

o :=sup{o’ | lim X7 Tju =0}
o A—00

Example. 1. The Dirac distribution § € D’(R%) has scaling degree equal
to d, the derivatives 9%6 of § given by (9%6|p) = (—1)I*9%p(0) have
oc=d+|al.

2. Let u € D'(R?) be homogeneous of order a, i.e. (Tiulp) = A~%(u|¢p).
Then v has scaling degree o = —a.

3. Let u € D'(Ry \ {0}) be given by the kernel z — exp(2). Then
o(u) = oo.

With the scaling degree we are able to state the following extension
theorem:
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Theorem 3.7. Let u be a distribution on R*\ {0} with finite scaling degree
o. If 0 < d there exists a unique ertension Uey € D/(Rd) with the same
scaling degree o(tey) = 0. If ¢ > d there exist extensions wey € D'(RY)
with scaling degrees equal o. Fach extension depends on a choice of test
functions vy, where n € N is a multi-index, 0 < |n| < o — d.

Proof. We sketch the proof:

In the first case uniqueness follows from the fact that the difference of two
extensions would be supported at {0}, hence a sum of § and its derivatives.
But they all have scaling degree ¢ > d and the scaling degree is additive.
Therefore the extension must be unique. Existence of ueyxt is shown by
constructing it as the limit of a sequence of distributions (u,),en. For this
define u,, := p,u with u, € D(Rd) such that p, = 0 in a ball of radius 27"
around 0. This defines a distribution on R? and in a last step it is shown
that the scaling degree did not increase in this process.

In the second case the idea is to make the test functions vanish ”fast
enough” at 0. Set w = o0 —d and introduce the (Taylor-)subtraction operator
W that maps test functions on R? into Dw(Rd), the space of test functions
vanishing faster than ||z||“ at the origin,

W:ipm—p— Z vo0%¢(0).

o <w
Here v, € D(R?) with 0°vg(0) = 0ag. The extension uex; is then defined by
(Uext| @) == (u|W]g]) for all ¢ € D(RY)
and one shows again that ueyt has the same scaling degree as u. O

In the next section we will introduce the (Euclidean scalar, massless)
propagator distribution A € D’(R%) given by the kernel

1
T

This function is homogeneous of order 2 — d (the same holds for the propa-
gator of a massive scalar field) and therefore o(A) = d — 2. Feynman rules
associate to every graph G a distribution given by a product of A’s and for
distributions of this kind w = o —d equals the superficial degree of divergence
of G. Thus the extension theorem shows that the problem does not have a
unique solution if G is divergent. The study of the ambiguity of solutions
and how physics depends on it leads to the theory of the renormalization
group which we will turn to in Chapter 7.

Recall that in the Epstein-Glaser approach the main ingredients are
causality and translation invariance which allow to reduce renormalization
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to the extension problem considered above. If translation invariance were
not given we would need to extend distributions onto submanifolds. In this
case more sophisticated methods are needed (see [BF00]). This leads to
the theory of microlocal analysis and the notion of wavefront sets ([H690]).
Motivated by various versions of the Paley-Wiener theorem the basic idea
is to probe the analyticity of functions or distributions by looking at their
Fourier or Laplace transforms. For example, the singular support of a tem-
pered distribution is characterized by the following property: For z € R¢
choose ¢ € D(R?) with () # 0. Then u € §'(R?) is smooth in a neighbor-
hood of «x if and only if the Fourier transform of the localized distribution
pu satisfies

| Fleu](p)] < en(1+ ||p|])™ for all p € R and N € N. (3.1)

The idea of the wavefront set is to refine this property: If u fails to fulfill
(3.1), it might still be true for a certain set of directions. In this case denote
by ¥, (u) the set of all ¢ € R? having no conic neighborhood V such that
the equation is satisfied for p € V.

Definition 3.8. Let X C R? be open. The wavefront set of u € D'(X) is
defined as the closed subset of X x (R9\ {0}) given by

WF(u) = {(z,p) € X x (RY\ {0}) | p € Zx(u)}.

The wavefront set is a very convenient tool to study distributions, for
example it has the property that WF(Pu) = WF(u) for every linear differ-
ential operator P. Moreover, the conditions for the existence of a pullback
operation on distributions can be neatly formulated in terms of WF(u).

We will take a different route though. In contrast to the recursive proce-
dure used in [EGT73] or [BF00] we will renormalize all divergences of a given
distribution at once. The geometric approach via wonderful models allows
to do this using an even easier extension method that we present in the next
section.

3.2.2 A toy model

Let u € D'(R \ {0}) be defined by the kernel z — ﬁ A priori u is only
defined as a distribution on the space of test functions vanishing at 0. Since
w(u) = 0 we know from Theorem 3.7 that an extension exists, unique up to
a d-distribution.

The first step in the process of extending u is to regularize it by intro-
ducing a complex parameter s € C. Raising u to a complex power u® is
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known as analytic reqularization. It justifies the following calculations:

<mw=4méyw

:/ PRCIC)) +/ PRCIC))
1 lZlF o Jreny Iz

1,1] ||® 11 |7l R\[-11]  |Z]
:/ 4 P(%) = ¢(0) +2<P(0) +/ PRGN
[-1,1] R\[-1,1]

|z[* 1—s Edls

The last term is defined for all s € C, the second term for s # 1 and the
first one for Re(s) < 3 because

) — 0 o
/ gy ) (=) = 20(0) _ 2/ iy 2 (O')xzk—s
[0,1] xs o1 = (2k)!

converges for Re(2k —s) > —1. Thus, we have found a way to split the regu-
larized distribution u® = ux (s, -) +uw(s, ) into a divergent and a convergent
part. The divergent part is the principal part of the Laurent expansion of
the meromorphic distribution-valued function s — «*® in a punctured disc
around 1 in C.

fusels, ) = 220,
ot ) = [ as £ MO

To continue the process of extending u we have to get rid of the divergent
part in some sensible way (in physics this is the choice of a renormalization
scheme) and take the limit s — 1. The most straightforward way to do so
is by subtracting the pole (minimal subtraction) and set

26

0= 7r1[uf]]s=1 = (u° — 17_8)|s=1 = uo(l,).

The map ry is called a renormalization operator. Obviously this technique
can be generalized to extend distributions u with higher negative powers of
|z| - one simply subtracts a higher order Taylor polynomial from ¢.

Another renormalization scheme, subtraction at fixed conditions, is given
by

(ru[u’]le) == (u’lp) — (w’[(0)v)

with v € D(R) a smooth cutoff function with v(0) = 1. Another way to
formulate the subtracted distribution is

(u’]p(0)r) = {(po)«(vu”)[do[s])-
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Here pg : R — {0} is the projection onto the divergent locus and dy is
interpreted as an operator D(R) — D(0) mapping test functions on R onto
test functions supported on the divergent locus. From this it is also clear
that the difference between two such renormalization operators R, and R,
is given by a distribution supported on {0}, i.e. a linear combination of &
and its derivatives.

This formulation will be very useful later. The tricky part in applying
these renormalization techniques to densities coming from Feynman graphs
is the fact that they are products of divergent and smooth functions. There-
fore the renormalization operators act on the divergent part only, while the
smooth part is treated like a test function - this makes it hard to find a
globally consistent notation for the renormalized densities.

A nice feature of these renormalization operators r is that they commute
with multiplication by smooth functions, r[fu] = fru] for f € C*(R). In
addition, r belongs to the class of Rota-Bazter operators, a fact extensively
used in the Hopf algebraic formulation of renormalization (see for example
[EFGOT]).

Later we will work with distributions given by kernels

1
Us(x) = 7’x|1+d(8—1) .
In this case u® splits into
2 9
= - o uo(s) (3.2)

with uo(s) holomorphic for Re(s) < Q%I.

In the next chapter we will introduce the wonderful models of DeConcini
and Procesi. These models allow to apply the analysis of this toy model to
the general case of a distribution density associated to a graph G by Feynman
rules.

3.3 Feynman distributions

Feynman diagrams are convenient book-keeping devices for the terms in
the perturbative expansion of physical quantities. The map that assigns
to every Feynman diagram its corresponding analytical expression is called
Feynman rules and denoted by ®. In position space the map ® assigns to
every diagram G a pair (X G 0¢;) where 7 is a differential form on the space
X a cartesian product of the underlying spacetime M. We would like to
evaluate
(X%, 56) — | e,
XG
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but this is in general not possible due to the problem of ultraviolet and in-
frared divergences. While we avoid the infrared problem by viewing 9¢ as
a distribution density, the ultraviolet problem translates into an extension
problem for 7. The ultraviolet divergences of ¥ are assembled in a certain
subspace arrangement that we will describe at the end of this section, after
the definition of .

In this thesis we consider a massless scalar quantum field in d-dimensional
Euclidean spacetime M := R%. The case of fields with higher spin differs
only by notational complexity. On the other hand, the massive case is much
harder because already the simplest examples have special functions aris-
ing as propagators of the free theory. Working in the Euclidean metric is
justified by the technique of Wick rotation (see [Wei96]) that allows one to
do calculations in M and transform the results back to Minkoswki space-
time. The position space propagator of a massless scalar field is given by
the Fourier transform of the momentum space propagator,

1

AN(z) = F(k — ﬁ)(:c) = $d1—2 , x€M.

Let us look at an introductory example to motivate the abstract point of
view presented further below. Let G be a connected Feynman diagram with
n + 1 internal and m external vertices labelled by i € {1,...,n+ 1} and
Jj € {1,...,m} with associated coordinates x;,y; € M (cf. Figure 3.1). Ac-
cording to the Wightman axioms we are interested in computing (w¢g|¢), the
pairing of the Wightman distribution wg with a test function ¢ € D(M™).
The physical meaning of ¢ is a smeared configuration of external particles
(the configuration before and after the process). As in causal perturbation
theory we introduce another test function A € D(M), the switching func-
tion, that restricts the interaction to a bounded area of spacetime (at the
end of the day we would like to compute the adiabatic limit X — const, a
problem related to infrared divergences, which we do not treat here).

G

Un
Yn—1

Y2
Y3

Figure 3.1: A Feynman diagram

The kernel of w¢ is given by a rational function and we denote by wg
both objects, the Wightman distribution and its kernel. wg is one part of the
m-point function W, obtained by summing over all Wightman distributions
wq for Feynman diagrams with m external vertices.
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Feynman rules associate to G a distribution

m n+1
we(y) = /dx IT 20k = 2euy) [T Aas = 2) T Maw).
k=1 i< =1

Here c(k) is the label of the internal vertex connected to the external vertex
k and e;; is the number of edges between the vertices ¢ and j. Assume
y1 is connected to 1. Then by the transformation formula and Fubini’s
theorem we have (up to a constant factor)

<me>:1/dyu@@»¢@>

m n+1

— [ ay [ ao [T 20 ) [T 8 — 20 [[ Mai)otw)
k=1 i<j =1
m n+1

_ /dy/dx TT 20 T A — 2050 T M)
k=1 1<J =1

X (Y1 + Tnt1, -5 Ym + Tem))

— [ay [ [T 20 [T 60— 20| Maws)

k=1 i<j Int1=

X H )\(.Il - anrl)SD(yl + T+l -5 Ym + xc(m) - 'InJrl)
=1

i<j

d(x1,...xp)

Tn4+1=0
= (vg|9).

The last equation is justified because ¢ is itself a test function as A is in
Li (M) and X\ and ¢ are smooth and compactly supported. In physical

loc
terms it is the n-point tree-level amplitude, evaluated on the test function

n

yr— H)\(«Tl — Zp+1)P(Y1 + Tntts - Ym + Te(m) — Tnt1)-
I=1

The ultraviolet problem translates into the fact that vg is not a distribu-
tion on M™"; it is only defined outside of an arrangement of subspaces of
M™. Based on this calculation we focus from now on on connected graphs
obtained from Feynman diagrams by forgetting external vertices and edges.

Now we employ a more abstract point of view. Let G be a connected

graph. As shown in [BBK10], Feynman rules are determined by the topology
of G. Pick alabelling V' = {vy, ..., v,} of the vertices of G and an orientation
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on the edges of G. For a finite set I let RF' denote the vector space with
(fixed) basis the elements of F. The cohomology of the simplicial complex
G = (V, E) gives rise to an exact sequence

0—R-ZRY -5 RE — HYG,R) — 0.

Here the map o sends 1 to vg+- - -+, and § is given by §(v) = > (v : e)e
with (v : e) = %1 if e starts/ends at v and 0 otherwise. Fix a basis of
coker(o) by an isomorphism ¢ : V' := V' \ {vg} — coker(c). This defines an
inclusion ¢ : RV 2 cokero — RE. Doing this component-wise on the space
XG .= MV = (Rd)vl we obtain an inclusion I := (% : X% < MF and
define vg : X¢ — R by

UGzZ:L“UUr—> H A(Z(v:e)xv).

veV! c€B(G)  veV!

Moreover, every edge e € F defines a linear form w, := e*o¢ on RY" and
a linear subspace of (X%)* by

d
Ae =< We >®d: {(xl’ . 73:'”) — Z@iwe($7i7 e ,I',Zr'l/), (673 (S R}
=1

For a subgraph g C G we define Ay := 3" . E(g) A,. Families P of subgraphs

of G give then rise to subspace arrangements in (XG)*,
Ap :={4,| g € P}.

Note that two subgraphs g, h C G may define the same subspace, A, = Aj,.
Therefore we will consider only subfamilies of G, the set of saturated sub-
graphs of G. Saturated subgraphs are maximal with respect to the property
of defining their corresponding subspaces A,. A precise definition is given
in Section 5.4.

Two arrangements are especially important for our purposes. The sin-
gular arrangement

Ag = {4, | g C G is saturated},

and the arrangement coming from the family D of divergent subgraphs of
G,
Ap ={A, | g C G is divergent}.

Definition 3.9. Let hj(-) denote the first Betti number. Define the super-
ficial degree of divergence w of G by

W(G) == dhi(G) — 2|E(G)).

Then G is called divergent if w(G) > 0. G is at most logarithmic if w(G) <0
holds for all ¢ C G. If D = {0, G}, then G is called primitive.
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Lemma 3.10. Let G be at most logarithmic and d > 2. Then
g € D = g is saturated.

Proof. Suppose A; = Ague for some e € E(G \ g). From this follows that
V(g) = V(gUe) because A, C (M"")*. But then adding e to g must produce
a cycle, so hi(gUe) = hi(g) + 1. Thus, w(gUe) = w(g) +d—2 >0, a
contradiction to G at most logarithmic. O

As shown in the next proposition, the divergent arrangement Ap de-
scribes exactly the locus where extension is necessary.

Proposition 3.11. Let G be connected and at most logarithmic. Set

Xo:=J AL and Xp = | 4.
eckE geD

Then vg is a well defined distribution on X \ Xp and the singular support
of vg is given by the complement X\ Xp.

Proof. Let V- ={vy,...,v,}. Wherever defined, vg can be written as

va(r1, ... xn) =IF <A®|E‘) (X1, ) = H A(Z(vi L e)zi).

ecE i=1

Since sing supp(A) = {0}, the singular support of A®F is the set where at
least one x, € M vanishes. But this is precisely the image of AX under I.
Thus, sing supp(vg) C X;.

For K C X compact and xx the (smooth approximation of the) char-
acteristic function of K we need to show that (vg|xx) = [ dz v(z) < oo
as long as K is disjoint from Xp. Assume the contrary, K N Xp # 0; more
precisely, K intersects Agl for some g € D, but no other divergent loci.
Moreover, assume that g is connected - otherwise A;- = A;-l U A;-Q and a
smaller K will intersect only one of these subspaces. Then vg splits into
two factors

n n

vg(x) = H A(Z(Ui L €)z;) H A(Z(Ui Le)zi),

e€b(g) i=1 e€E\E(g) i=1

with the second factor being smooth on A; \Uycy Agl,.

Now we need some power counting: The integral |  dxvg(z) is over
a dn-dimensional space. Since A, is the sum over all A, with e € E(g),
it is already spanned by the edges in a spanning tree t of g (a spanning
tree is a subgraph without loops meeting every vertex exactly once - see
Definition 5.20). A spanning tree of a connected graph with n vertices has
necessarily n — 1 edges, therefore dim A, = d(|V(g)| — 1). Adding an edge
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to t produces a cycle, so that hi(g) = |E(g)| — |V (g)| + 1. We conclude that
dim Ay = d(|E(g)| — hi(g)). Each A(x) is of order o(z2-4) as x — 0 and
there are |F(g)| products in the first factor expressing vg. Thus, the whole
product scales as (2 — d)|E(g)| as = approaches A} in X6

/d$ v (@) o /dr (dim Ag—14+(2-d)| E(g)|
and the integral converges if and only if

dim Ag + (2 = d)|E(g)| > 0 <= d(|E(9)| — hn(9)) + (2 = d)[E(g)| > 0
<~ w(g) <0
<~ g¢D.

O]

In Chapter 5 we will employ a more practical point of view. We use
coordinates on X© not given by the vertex set V/, but on the edges of an
adapted spanning spanning tree t. Since every spanning tree of G must have
|V| — 1 vertices, reformulating everything in coordinates given by edges of ¢
is just a change of basis for M"". The point here is that although it might
seem to be more intuitive and ”positional” to work with the vertex set of
G, the formulation with ¢ is more convenient because the combinatorics of
renormalization show up in the subgraph structure of G and subgraphs are
determined by subsets of E, not of V.

Putting everything together, we conclude that Feynman rules in position
space are given by a map

D:G— (X% 00)

where 9g € ﬁ’(XG\Xg). The ultimate goal would be to evaluate this at the
test function given by the value of the corresponding tree-level distribution
on another test function representing the external configuration (the in-
and out-particles). Avoiding infrared divergences, we restrict ourselves to
the problem of ultraviolet renormalization, i.e. we want to find an extension
of g to a distribution defined for all test functions in D(X).
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Chapter 4

Resolution of singularities:
Geometry

The problem of resolving singularities has been a major topic in algebraic
geometry since the time of Newton who solved the problem of resolving
curves in the complex plane. In its most basic form the problem can be
formulated as follows.

Definition 4.1. Let X be an algebraic variety over a field k. Then a non-
singular variety Y is a resolution for X if there exists a proper and surjective
rational map 5 :Y — X.

There are various types of resolutions, depending on additional condi-
tions on Y and . In this thesis we demand that § is the composition of
blow-ups along smooth subvarieties of X. This allows for an explicit de-
scription of the manifold Y.

Hironaka showed in his celebrated work [Hir64] that for fields of charac-
teristic zero a resolution always exists; for fields of non-trivial characteristic
this is still an open problem. He gave a constructive proof using a sequence
of blow-ups. The difficulty lies in the fact that one cannot proceed by just
blowing up all singularities in X, but must choose a specific order in do-
ing so. For an extensive treatment of this topic, including a comparison of
different resolutions, we refer to [Kol07].

Since we will use the same method to resolve the singularities of a Feyn-
man distribution, we start this chapter with a general introduction to blow-
ups.

4.1 Blow-ups

What is meant by blowing up a subvariety of a variety X7 First, we blow
up the origin in X = R", following [GH94]. The idea is to replace the origin
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by the space of all possible directions entering it, in such a way that all di-
rections are disjoint. To do so set £ := P(X) with homogeneous coordinates
[y1 :...:yy) and define Y C X x & by

Y = {(a;l,...,xn,[yl : yn]) | z;y; = x;y; for alli#j}.

The map B : Y — X is then simply the projection onto the first factor. Since
the defining equations are smooth, Y is a smooth submanifold of X x &£. To
define an atlas for Y let for ¢ = 1,...,n the maps p; : R — X x & be given
by

(x17~~-a$n) — (y1,-..,yn,[y1 et yn])

. T; ifk:i,
Yk = TiTf if k& 7& 7.

where

Set U; = pi(R™) and k; := p; '. Then the collection of charts (U;, Ki)ie{l,...n}
forms an atlas for Y.

The submanifold &, called the exceptional divisor, is locally given by
{2; = 0} and covered by induced charts (Vi, $i)ie(1,...n} Where Vi := p;(R*1)
and ¢; := p; " with

,[A)i = pi|w¢=0 : Rn_l — {0} x & cY.

Blowing up along a submanifold S of R™ is done similarly by replacing S
by the projectivization of its normal bundle. More precisely, if S is locally
given by {z1 = ... =z} = 0}, then one proceeds as above but restricts the
defining equation to these coordinates,

YVoi={(z1,...,2n, [y1: ...t ys)) | ziy; = zjy; for all i # 5 € {1,..., k}}.

Since all constructions are local, this can easily be generalized to the
case where S is a subvariety of a smooth variety X: Blow up locally, then
globalize by patching together the local blow-ups.

If S’ C X is another submanifold that is distinct from S, then S’ is es-
sentially unaffected by the blow-up process. However, if it has a nonempty
intersection with S, then S” has two ”preimages” in Y: The strict transform
of S’ is defined as the closure of 71(S”\ S) in Y, while the preimage 3~1(5")
is called the total transform of S’. Loosely speaking, the blow-up makes de-
generate intersections transversal and transversal ones disjoint. Therefore,
if building a resolution consists of multiple blow-ups, the order of blowing
up is important - we will get back to this point later.

We introduced here the algebro-geometric version of blowing up. There
is also a differential-geometric equivalent, where one replaces the locus to
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be blown up by its normal spherebundle (as used in [AS94]). Both cases
have drawbacks: Using the projective normal bundles leads to Y being non-
orientable in general, while the differential-geometric blow-up produces a
manifold with boundary.

4.2 Smooth models

To renormalize distributions v = v (from now on we drop the index G)
coming from Feynman diagrams systematically we want to arrange the loci
of divergences in a "nice” way. This means, we are looking for a compact-
ification of X \ Xp, or, in other words, a smooth model for the divergent
arrangement in X©.

The general setup is the following: Let X be a finite dimensional smooth
variety over a field k of characteristic zero. An arrangement A in X is a
finite family of smooth subvarieties of X. Let M (.A) denote the complement
of the arrangement, M(A) = X \ UacaA.

Definition 4.2. A smooth model for the arrangement A is a pair (Y4, ),
where Y is a smooth variety and 3 : Y4 — X is a proper surjective map
with the following properties:

1. B is an isomorphism outside of £ := 71X \ M(A)).

2. £ is a normal crossing divisor, i.e. there exist local coordinates such
that it is given by € = {(x1,...,2,) | 1 - ... -z = 0}.

3. B is a composition of blowups along smooth centers.

Recall, that 3 is proper if and only if 371 (K) is compact for all compact
sets K C X; this is why smooth models are sometimes also called compact-
ifications. From [Hir64] we know that such a model always exists, actually
in way more general situations. In their seminal paper [FM94] Fulton and
MacPherson constructed a compactification of the configuration space

Fo(X) :={(z1,...,2n) € X" | x; # x; for all i # j}

for a non-singular variety X. This is just an example of a smooth model for
the arrangement given by all diagonals Dy in X",

A={Dr|IC{1,...,n}} where Dy = {z; = x; | Vi,j € I}.

Inspired by the techniques used in [FM94], DeConcini and Procesi de-
veloped a systematic way to construct smooth models for general linear
arrangements. Since their technique is local, it can be generalized to ar-
rangements in smooth varieties (see [Li09]), but we do not need this here
and stick to the notation of [CP95].
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4.3 Wonderful models

Let V be a finite dimensional k-vector space (here & = R) and A be a
linear arrangement in the dual V* i.e. a finite family {A;,..., Ax} of linear
subspaces of V* (for the construction of DeConcini and Procesi it is more
convenient to work in the dual). We first give an abstract definition of a
smooth model Y4 for A, then we construct it explicitly.

Definition 4.3 (Wonderful definition I). Let A be a linear arrangement
in V*. For every A € A the projection 74 : V — V/AL — P(V/AL)
is a well defined map outside of A+. Doing this for every element in the
arrangement, we obtain a rational map

ma: M(A) — [] B(v/AD).
AcA

The graph I'(m4) of this map defines an open embedding of M (A) into
V x [Taca P(V/AL). The wonderful model Y, is defined as the closure of
the image of this embedding.

The second way of defining Y4 is to explicitly construct it by a sequence
of blow-ups. This sequence is actually completely determined by the com-
binatorics of the intersection poset P(A), a point we will use extensively in
the following chapters.

For the wonderful construction we need to introduce some terminology.
The first notion is based on the fact that Y4 is also a wonderful model for
arrangements A, as long as A C A’ is a building set for A’. The idea is that
an arrangement may carry too much information and in this case one needs
only a subfamily B C A to encode this information. While the choice of a
building set controls the geometry of the wonderful model, more precisely
of the exceptional divisor &, certain subsets of B, the B-nested sets, and
the choice of a B-adapted basis of V' are the crucial elements in the explicit
construction of an atlas for Y 4.

We cite the main definitions and results from DeConcini and Procesi; for
the proofs we refer the reader to [CP95].

Definition 4.4 (Building sets). Let A be an arrangement in V*. A sub-
family B C A is a building set for A if

1. Every A € A is the direct sum A = By & --- & By of the maximal
elements of B contained in A.

2. This decomposition property holds also for all A’ € A with A’ C A,
e, A=(BiNAY® & (ByNA).
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There are two important building sets for any arrangement A, the max-
imal building set, given by all elements of A, and the minimal building set
I(A). The latter consists of all A € A that do not allow for a non-trivial de-
composition. Note that every other building set B satisfies I(.A) C B C A.
In [CP95] it is shown that for every building set B C A the variety Yz
as defined above is a smooth model for A. Moreover, the exceptional divi-
sor £ is the union of smooth irreducible components £g, one for each B € B.

Now we turn to the explicit description of Yj.

Definition 4.5 (Nested sets). Let B be a building set. N' C B is B-nested
if the following holds: For all subsets {41, ..., Ax} € N of pairwise incom-
parable elements their direct sum does not belong to B.

Nested sets are one main ingredient in the description of Yz, the second
one being markings of an adapted basis of V*. While nested sets reflect
the combinatorics of the stratification of £, the markings are related to the
dimension of each submanifold in this stratification. Together they describe
all components of the exceptional divisor.

Definition 4.6 (Adapted bases). A basis B of V* is N-adapted if for all
A € N the set BN A generates A. A marking of an N-adapted basis is for
every A € N the choice of an element by € B with p(bs) = A. Here p = py
is the map assigning to z € V*\ {0} the minimal element of N'U {V*}
containing z (it exists because A is nested).

The map p and a marking define a partial order on B,
b=t <= p(b) Cp) and V is marked.

This partial order defines a map p = px,B : RB — V as follows. For every
=3 ,cp b € RP the image p(z) is an element of V' = hom(V*,R) given
by
Bobo [ppycazoa if b is marked,
xp Hp(v)gA xp, else.
Viewing the elements of B as nonlinear coordinates on V and with x4 :=
Tp,, We can write p as

Hp(b)gA TA if bis marked,

Ty Hp(b)gA T4 else.

p(x)y = p(x)(b) = {

The next proposition shows that the map p has all the properties of a local
description of a composition of blow-ups.
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Proposition 4.7. For every nested set N' and an adapted and marked basis
B the map p = py,B 15 a birational morphism with the following properties:

It maps the subspace defined by x4 = 0 onto AL+ and it restricts to an
isomorphism

VA Jf{za=0y = v\ [ 4t

AeN AeN

Furthermore, every v in V*\ {0} with p(v) = A € N is mapped by p(z) to

where P, is a polynomial, depending only on {zp}p<p, and linear in each
variable.

Definition 4.8 (Wonderful definition II). Let N be a B-nested set for a
building set B C A and B an adapted, marked basis. Define Z4 C R? by
Za={P, =0,v € A}, the vanishing locus of all P, for v € A. Then for every
A € B the composition of p with the projection 74 : V' \ A+ — P(V/AL) is
well-defined outside of Z4.

Composing the map p with I'(mg) : M(B) = V x [[ e P(V/AL) defines
an open embedding

(T(75) o p)i.g : RE\ U Zy — Yp.
AeB

Set Un,p = im((I'(7g) o p)a,B) and kyp = (I(7g) o p)X,{B. Varying
over all B-nested sets N and adapted, marked bases B, we obtain an atlas
(Un,B, kn,B) for the wonderful model Y. The map S is just the projection
onto the first factor, in local coordinates given by p.

That this really defines a smooth model for the arrangement A follows
from the next proposition.

Theorem 4.9 (Geometry of the wonderful model). Let B be a building set
for A. The wonderful model Yg has the following properties:

1. The exceptional divisor € is normal crossing, i.e.

g:=p""JAaHE (] za=0}.

AeB AeN

2. & is the union of smooth irreducible components €4 where A € B and
B(Ea) = AL. A family of these components Eary---, €4, has non-
empty intersection if and only if {A1,..., Ar} is a B-nested set. In
this case the intersection is transversal and irreducible.
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3. For A minimal in B\ I(A) let A = A1 & ... ® Ay be its irreducible
decomposition. Set B' = B\ {A}. Then Yp is obtained from Yp: by
blowing up E4 = Ea, N ... NEQ,.

4. For A minimal in B = I(A) set B = B\ {A}. Then Yg is obtained
from Y by blowing up the proper transform of A+.

As stated before, the most famous example of a wonderful model is the
Fulton-MacPherson compactification of the configuration space F,(X) in
the case where X is a linear space. It is the minimal wonderful model for
the arrangement of all (poly-)diagonals in X",

A ={D, | 7 is a partition of {1,...,n}},

Dy = {z; = x; | i, lie in the same partition block of 7 }.

Here the minimal building set consists of all simple diagonals in the n-
fold product of X. The wonderful model for the maximal building set was
studied by Ulyanov in [Uly02] and called a polydiagonal compactification of
configuration space. The main difference, apart from the geometry of the
exceptional divisor, is the blowup sequence in the construction. In [Uly02]
the model is obtained by successively blowing up (the strict transforms of)
all elements of the building set by increasing dimension, but in the minimal
case one has to proceed with care; some strict transforms of diagonals to be
blown up in the next step might still have nonempty intersection and in this
case the result depends on the order of blowups. To separate them before
proceeding requires additional blow-ups, exactly those given by the addi-
tional elements in the maximal building set. These are the polydiagonals,
obtained by intersecting simple diagonals.

The interested reader is encouraged to study the example F,(X) for
X =R and n > 3 (for smaller n minimal and maximal models coincide).
It is a well studied object, the real rank n — 1 braid arrangement, see for
example [Fei05].

The next step is to adapt this construction to the case of the diver-
gent arrangement associated to a Feynman graph G. In [BBK10] this is
done by examining the special structure of the elements of this arrange-
ment, A = {4, | g € G divergent}. These properties of A can be directly
formulated in graph theoretical terms. Here we will focus even more on this
combinatorial flavour of QFT and formulate everything with the help of the
poset of divergent subgraphs of G. In the next chapter we will express all
central notions of the wonderful construction, building sets, nested sets and
adapted, marked bases in terms of this poset.
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Chapter 5

Resolution of singularities:
Combinatorics

So far we have constructed wonderful models for (linear) arrangements A
from a purely geometric point of view. The notions used were formulated
directly in terms of the elements of A. This is sufficient as far as one is
interested only in the geometry of Y4. In the application to graphs and the
renormalization program to be presented here, combinatorics play a major
role and therefore we reformulate the central objects of the last chapter in
terms of a poset associated to A. We focus on arrangements coming from
graphs via Feynman rules, but note that from every given arrangement we
can form the intersection poset to study its combinatorics.

5.1 Graphs, arrangements and posets

We start this chapter by showing how subspace arrangements and graphs
give rise to partially ordered sets.

Definition 5.1. A poset (P, <) is a finite set P (we consider here only finite
graphs and posets) endowed with a partial order <.

We say that p covers ¢ if p > ¢ and there is no r € P with p > r > ¢.
The closed interval [p,q] = Pp,q is defined as the set of elements r € P
satisfying p < r < ¢ . The open interval (p,q) = P(,q) and the subsets
P<p, P<p, P>p, P>, are defined similarly. We denote by 0 and 1 the unique
minimal and maximal elements of P if they exist.

A poset is best visualized by drawing its Hasse diagram, a directed graph
with its vertices given by the elements of P and edges between every pair of
elements p, ¢ € P such that p covers q. Another way to encode the data of P
is the order complex A(P). It is the abstract simplicial complex defined by
its k-faces being the linearly ordered k + 1-element subsets of P. The order
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complex stores all the combinatorial information of P as is demonstrated by
the following theorem taken from [GMS8T7].

Definition 5.2 (Intersection lattice). Let V' be an n-dimensional real vec-
tor space and let A := {4;,...,A,,} be an arrangement in V. Every ar-
rangement gives rise to a poset (actually a lattice, defined below) with its
underlying set consisting of all possible intersections of elements in A,

P=PA) ={)4IC{L....,m}},
el
partially ordered by reverse inclusion. It is called the intersection poset/lattice

of A.

In addition, P(A) is equipped with a ranking, i.e. a map r : P(A) - N
mapping each element of P(A) to the codimension of the corresponding
intersection in V. Let M(A) :=V \ U;~; Ai denote the complement of the
arrangement. Then the homology of M (.A) is encoded in A(P(A)).

Theorem 5.3. (Goresky, MacPherson) Let H denote the (singular) ho-
mology functor. Let A be an arrangement in V and let M(A) denote the
complement. Then

Hy(M(A)Z)= @ Gr(4),
AeP(A)

where X
H=*(point, 7.) if A=0,
Gr(A) = { HrW=k=1(point, 7.) if A covers 0, (5.1)
fIT(A)_k_Q(A(P(OVA)), Z) otherwise.

Recall from Chapter 3 the definition of the singular and divergent ar-
rangements of a graph G. They give rise to corresponding intersection
posets, but we can also define them directly in terms of G.

Definition 5.4. To a graph G we associate the (saturated) graph poset
(G, Q) consisting of the set of all saturated subgraphs of G, partially ordered
by inclusion. A connected subgraph g C G is saturated if the following holds

Vt span. tree of g : Ve € E(G \ g) : t is not a spanning for g U e.

If ¢ has more than one connected components, it is saturated if every com-
ponent is.

In terms of the singular arrangement a saturated subgraph g is the max-
imal subgraph of G defining A, € Ag. This means, that adding an edge to
a saturated graph necessarily changes the space A4, while removing an edge
might still define the same subspace of (X%)*,
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a o

Figure 5.1: K3 and the Hasse diagram of G(K3)

Example. Let K3 be the complete graph on 3 vertices. The saturated
subgraphs are the three single-edged subgraphs and Kj itself.

Definition 5.5. The divergent graph poset D is given by the subset of G
formed by all divergent subgraphs, partially ordered by inclusion.

Of course we can do the same for other subsets of G, but for our pur-
poses only G and D (and special subsets thereof) will be important. As
already seen in Proposition 3.11 they carry all the information necessary for
renormalization. Note that all subsets of G have an unique minimal element,
the empty graph, which we denote by 0. In our convention o is defined by

E(o) = 0.

For the divergent arrangement of a connected and at most logarithmic
graph G, Theorem 5.3 allows us to compute the homology of M(Xg), the
complement of the divergent loci in X¢. It is determined by the set of
atoms of D, the minimal elements in D~,. These elements are precisely the
primitive subgraphs of G.

Proposition 5.6. Let G be connected and at most logarithmic. Define n;
to be the number of atoms g € D with r(g) = dim Ay = di (i.e. the primitive
subgraphs on i + 1 vertices). Let a € N be a multi index with o; > a; for
1<i<j<land|a|i =1. The homology of M(XS) is then given by

Z if k=0,
Zri ifk=di—1,
7(%) if k= 2di — 2,
Hy(M(XB),Z) = { Z" ™ if k= d(iy + i2) — 2, (5.2)

L n; .
7= () ifk=dY iy ojij—1,

Proof. The atoms of D determine the topology of the complement because
the corresponding subspaces AgL contain all other divergent subspaces.
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Abbreviate Hy,(M(XS),Z) by Hy. Using Theorem 5.3 we have Hy = Z.
Moreover, there is a generator in Hy with k = r(g) — 1 = di — 1 for every
atom g such that r(g) = di. For an element ~ that is given by the union
of atoms we have to use the third row in Equation (5.1): If 7 is the union
of two atoms g and h, the subcomplex A(D,_)) consists of 2 disconnected
points (representing the two atoms). Therefore we have ("21) generators in
dimension k = 2di—2 if r(g) = r(h) = di and n;,; n;, generators in dimension
k = d(i; +i2) — 2 if r(g) = diy and r(h) = diy. If v is the union of [ > 2
atoms, the interval (o,7) consists of these atoms and all unions thereof. It
is the face poset of the standard (I —1)-simplex A'~! with interior removed.
Thus, A(Dy,,)) = A(F(OAT)) =2 oAt = §172 Since H*(5"-2) equals
Z if k =1 — 2 and is trivial else, we conclude that there are generators in
Hj, coming from such elements « if k = r(y) — I. Let a € N with a; > o
for1<i<j<land |of; =1 Ifr(y) = dZ§:1 a;i; then such v can be
formed out of [ atoms in Hé‘:l (ZZJJ) possible ways and (5.2) follows. O

5.2 The divergent graph lattice

From now on let G always be connected. We continue studying the graph
poset G in more detail. As it turns out it has extra structure, it is a lattice.

Definition 5.7 (Lattices). Let (P, <) be a poset and p,q € P. A least
upper bound or join of p and ¢ is an upper bound r for both elements such
that every other upper bound s satifies 7 < s. If the join of p and ¢ exists,
it is unique and denoted by p V gq.

Dually one defines a greatest lower bound or meet of two elements p and
q in P, denoted by p A q.

P is called a join-semilattice (meet-semilattice) if for all p, g € P the join
pV q (the meet p A q) exists. P is called a lattice if it is both a join- and a
meet-semilattice.

For any arrangement A the intersection poset P(A) is a lattice: If one
orders the elements of P(A) by reverse inclusion then the join operation is
just given by set theoretic intersection. The statement then follows from
the fact that every finite join-semilattice with 0 (represented by the empty
intersection, the ambient space V) is a lattice (Proposition 3.3.1 in [Sta97]).

Regarding the definition of the partial order by inclusion or reverse in-
clusion there are different conventions used in the literature. Both have
their advantages and can be converted into the other since the dual of any
lattice, i.e. the lattice with reversed order, is a lattice as well. We use reverse
inclusion because it matches the convention in [CP95] using arrangements
in the dual and it fits with the natural partial order on subgraphs.
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Since G is the intersection poset of the (dual) singular arrangement Ag in
X it is a lattice. Clearly, if P C G is closed under union and intersection,
it is the intersection lattice of some corresponding arrangement. This is the
case for the set of divergent subgraphs:

Proposition 5.8. Let G be at most logarithmic. Then (D, C) is a lattice.

Proof. For g,h C G divergent subgraphs we define the join and meet oper-
ations in D by

gVh:=gUh
gNANh:=gnh

Suppose g and h have k shared edges and [ shared loops. Moreover, assume
that m new loops are created by uniting ¢ and h. In formulae:

hi(gUh) = h1(g) + h1(h) + m —1
E(gUh) = E(g) + E(h) — k.

From this we conclude that the superficial degree of divergence of g U h is
given by

w(gUh) =d(hi(g) + hi(h) +m —1) = 2(e(g) + e(h) — k)
—d(m— 1)+ 2k < 0.

Split & = k;+ ko into edges in the shared loops and those that are not. Then
dl < 2k; and we conclude

w(gUh) >dm+2ky >0
Thus m = kg = 0 and
0>w(gUh)=dl—2k =w(gnh) <0.

Therefore g U h and g N h are both divergent subgraphs of G. Clearly, they
are the minimal (maximal) elements of D bounding g and h from above
(below). O

With the methods used in the above proof we are able to show another
property of G and D. They are graded lattices.

Definition 5.9. A poset (P, <) is graded if it is equipped with a map
7 : P — N that has the following two properties: 7 is order preserving with
respect to the natural order on N and if there are p,q € P with p covering
q, then 7(p) = 7(q) + 1.

Proposition 5.10. For any connected graph G the graph lattice G is graded.
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Proof. The map 7 associates to every saturated subgraph g C G the value
d~tdim A, = V(g) — ¢4 (c; denoting the number of connected components
of g, cf. the proof of Proposition 3.11). Clearly, 7 is order preserving and
7(p) = 7(q)+1 for p covering ¢ holds because of the saturated condition. [J

Proposition 5.11. Let G be at most logarithmic. Then D is a graded
lattice.

To prove this we use Proposition 3.3.2 from [Sta97].

Proposition 5.12. Let L be a finite lattice. The following two conditions
are equivalent:

1. L is graded and the map T satisfies T(x) +71(y) > 7(z Ay) +1(z Vy) for
all z,y € L.

2. If x and y both cover x Ny, then x Vy covers both x and y.

Proof of Proposition 5.11 . We argue by contradiction: Let g,h C G be
divergent and suppose there is a v € D with g < v < gV h, i.e. ¢V h does
not cover both g and h. First, note that v N h # () because otherwise v
would not be a subgraph of g vV h. From Proposition 5.8 we know that yNh
is divergent. But then g Ah < v Ah < h, which means h is not covering
g h. O

We will not use this here but for the sake of completeness we mention
one additional property of D. From a combinatorial viewpoint distributive
lattices are important because this extra structure allows one to prove many
powerful theorems, for example Birkhoff’s famous representation theorem
[Bir67].

Proposition 5.13. Let G be at most logarithmic. Then D is a distributive
lattice, i.e.

for all f,g,h in D.

Proof. Since one of the properties implies the other ,we will only proof the
first one. Moreover, the proof works exactly the same in the second case.

Let f,g,h C G be divergent. Compare the edge set of the graphs on the
left and the right:

E(fV(gAh) = (fu gmh) E(f)UE(gnh)
=(E(f)UE(9) N (E(f) U E(h))
—E(ng)ﬂE(fUh) E((fug)n(fuh))

=E((fVg) A(fVh).
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5.3 Wonderful models revisited

In this section we reformulate wonderful models in terms of the graph lattice
G. This is based on [Fei05] where a combinatorial version of the wonderful
model construction is developed for any (finite) lattice L.

In general we can associate to every arrangement the corresponding in-
tersection lattice defined in the previous section. It is the combinatorics of
this lattice that reflect the topological properties of the wonderful models as
seen for example in Theorem 5.3. Another example is the following theorem
by Feichtner that relates combinatorial and geometric wonderful models via
a combinatorial blow-up (Definition 3.5 and Theorem 3.6 in [Fei05]).

Theorem 5.14. Let L be an intersection lattice, B a combinatorial building
set in L, and By,...,B; a linear order on B that is non-increasing with
respect to the partial order on L. Then consecutive combinatorial blowups
in Bi,..., By result in the face poset of the nested set complex Ay (L, B),

Big (... (Blg,(Blc,))) = F (Ax(L, B)).

Although the following definitions apply to any lattice £, to connect
with Section 3.3 think of £ as being given by the singular or divergent
arrangement of a connected and at most logarithmic graph G. We define
the central notions of the wonderful construction in combinatorial language
following [Fei05] where the interested reader finds a thorough exposition of
the wonderful models from a combinatorial geometer’s viewpoint. In this
case building sets and nested sets are certain subposets of £ (a subposet of a
poset (P, <) is a subset of P with the induced partial order). In some cases
these subsets are even lattices, although not necessarily sublattices since
the meet and join operations need not be induced by the corresponding
operations on L.

Definition 5.15 (Combinatorial building sets). Let £ be a lattice. A non-
empty subset B of L is a combinatorial building set for L if the following
holds: For all p € £L_ and {q1,...,qx} = max B<, there is an isomorphism
of posets

p : H[O,qi] — [0, p] (5.3)

with ¢,(0,...,¢j,...,0)=g¢q; for j =1,... k.

This defines combinatorial building sets which are more general than
the building sets introduced in Chapter 4. To get the notion of a geometric
building set according to the construction of DeConcini and Procesi we have
to demand an additional geometric compatibility condition.
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Definition 5.16 (Geometric building sets). We call B a geometric building
set for L if it is a combinatorial building set and

k
dim A, = Z dim A, .
i=1

Note that if £ C G, since dim A, = d(|V (g)| — 1) (or d(|E(g)| — h1(g)) if
g is divergent), we can express this geometric condition also purely in graph
theoretic terms.

Example. For every lattice L itself is a building set, the maximal building
set. The minimal building set is given by the irreducible elements of L. It is
formed by all p € £ for which there is no product decomposition as in (5.3)
of the interval [0,p]. We denote this building set by I(L£).

The geometric condition gives a handy criterion to check whether a given
element is irreducible or not.

Lemma 5.17. Let L C G be a lattice. Let g € L be the union of irreducible
subgraphs g = g1 U- - -Ugg with non-empty overlap h = g1N---Ngx. W.lo.g.
assume that the g; are mazximal with this property. Then g is irreducible.

Vice versa, for every reducible element g € L\ I(L) we have that g is
the union of some g1,...,gx € I(L) with

for some vertex set V! C V(G).

Proof. Write d(g) for dim A,. If g would be reducible, then d(g) = Zle d(g;)
because the g; form the set max Z(L)<4. On the other hand, d(g) =
Zle d(g;) — d(h) - the sum can not be direct because of the overlap h.
Thus, d(h) =0, i.e. Ay, = {0} which means h = o.

The second statement follows from the same argument. The geomet-
ric condition for reducibility d(g) = Zle d(g;) cannot hold if the g; have

common edges. O

Recall that the choice of a building set B determines the structure of
the exceptional divisor £ in the wonderful model; the elements of B control
the number of components of £ and how they intersect. To construct Yz
explicitly we need another family of sub(po)sets of B, the B-nested sets.

Definition 5.18 (Nested sets). Let B be a building set in a lattice £. A
subset N' C B is B-nested if for all subsets {p1,...,pr} C N of pairwise
incomparable elements the join (in £!) p; V...V pi exists and does not
belong to B.
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With nested sets we can build another abstract simplicial complex, the
nested set complex Ap(L,B). Its k-faces consist of the B-nested sets with
k + 1 elements. It is the generalization of the order complex for non-
maximal building sets. For the maximal building set B = L a subset is
nested if and only if it is linearly ordered in B, so that in this case we have
A(L) = An(L,B). By Theorem 4.9 it contains all the information about
the stratification of the exceptional divisor £ in Y3.

Since D is a graded lattice, we have proven here a little conjecture (in the
case G at most logarithmic) that appears in many texts on Hopf algebraic
renormalization (for example [BK08]):

Corollary 5.19. Every mazimal forest of a graph G has the same cardinal-
ty.

Proof. In the language of posets this translates into the fact that every
maximal nested set has equal cardinality. But this is equivalent to D being
graded because the grading map 7 forbids maximal linearly ordered subsets
of different length. O

Example. Here are some examples, all in d = 4:

0 3 4 2n —32n —2

(-0

1 2 ) 2n —42n —1

Figure 5.2: The n-bubble graph

1. Let G™ be the graph in Figure 5.2. Here the index n stands for the
number of atoms, the one-loop fish subgraphs on two edges, and the
numbering of vertices is chosen to match the most ”natural” choice of
an adapted spanning tree ¢ (see Definition 5.21).

Let glk denote the full subgraph of G™ given by the vertex set V(glk) =
{21—-2,...,2l — 2+ 2k —1}. From the fact that D(G"*!) contains two
copies of D(G™), given by the intervalls [0, g7]| and [o, g5], and Lemma
5.17, it follows by induction that

IDG)={gf CG"|k=1,...,nandl=1,...,n — k+1}.
2. Next we look at the graph G,,, depicted in Figure 5.3, constructed
by a sequence of n insertions of the fish into itself. Here minimal

and maximal building set coincide because all divergent subgraphs are
nested into each other:

D(Gyp) = I(D(Gr)) = {91,92, - 9gn = Gn}
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Figure 5.3: The n-insertions graph

where g; is the full subgraph of G™ corresponding to the vertex set
{0,...,i}. The partial order is a total order. Thus, the D(G,,)-nested
sets are all non-empty subsets of the power set P (D(G")).

. Let G™™ be the graph obtained by inserting n bubbles on the left and
m bubbles on the right into the fish graph (Figure 5.4). Here

I(D(G™™)) ={g1s---sgns h1 . s hm, G}

where g; is the fish subgraph on the vertex set {i — 1,i} for i €
{1,...,n} and h; is the fish subgraph on the vertex set {n+j,n+j+1}
for j € {1,...,m}. All subgraphs in I(D(G™™))\{G™™} have disjoint
edge sets. Therefore, as in the previous example, the I(D(G™™))-
nested sets are all non-empty subsets of P (I(D(G™™))).

0
n+m+1
1
n-—+m
2 :
. n+ 2
n—1
n+1
n

Figure 5.4: The n, m-bubble graph

. For n > 0 let G = K,41 be the complete graph on n + 1 vertices.
By induction it follows that saturated subgraphs are either disjoint
unions or complete subgraphs on their respective vertex set. Thus, if
n = 2 then G = I(G). For n = 3 (Figure 5.5) the three subgraphs
given by the disjoint union of edges aUc,bUd and eU f are reducible
while the four embeddings of K3 given by aUbU f etc. are irreducible
(Ilo,a UbU f]| =5 is not divisible by two).

In general, I(G(K,,+1)) consists of all subgraphs that are embeddings
of K; into K11 for i = 1,...,n while the reducible subgraphs are the
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disjoint unions of embeddings of K; and K for ¢ + j < n + 1. These
disjoint unions represent the polydiagonals that make the difference
in the blow-up sequence of the Fulton-MacPherson compactification
M]n] and Ulyanov’s polydiagonal compactification M (n).

Figure 5.5: K4

It remains to define the combinatorial version of adapted bases. For this
we need adapted spanning trees.

Definition 5.20. Let G be a connected graph. A spanning tree for G
is a simply-connected subgraph ¢ C G with V(t) = V(G). If G is not
connected, G = G1U...UG,, a spanning n-forest for G is the disjoint union
t=1t1U...Ut, of n spanning trees t; for G;.

Definition 5.21 (Adapted spanning trees). Let G be a graph and P C G
a family of subgraphs of G. A spanning tree ¢ of G is P-adapted if for each
g € P the graph t,, defined by E(t,) := E(t) N E(g) is a spanning tree for g.
More precisely, if g is not connected, then we demand ¢, to be a spanning
forest for g.

Example. For dunce’s cap an D-adapted spanning tree (d = 4) is given by
E(t) = {e1,e3} or E(t) = {e2,e4}, while t with E(t) = {e1, ea} is spanning
but not adapted.

Proposition 5.22. A D-adapted spanning tree always exists for G at most
logarithmic.

Proof. We construct ¢ using the fact that divergent graphs can be built
from primitive ones using the insertion operation. Moreover, this process is
reversible, i.e. in the dual process of contracting subgraphs no information
is lost.

Start with the primitive subgraphs of G and let G; be the graph ob-
tained from G by contracting all these primitive subgraphs. G; might have
primitive subgraphs itself (the g € D with coradical degree equal to two,
cf. [Krel3]). Repeat the process. After a finite number of steps Gy will be
free of subdivergences. Now choose a spanning tree t; for Gy and spanning
trees for all subgraphs contracted in the step from Gi_1 to Gi. Then to,
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the union of all these spanning trees, is a tree in G_ visiting every vertex
exactly once. Thus, it is a spanning tree for G;_1. Repeat this process until
after k steps we have an D-adapted spanning tree t =t of G. O

Remark. An interesting question arising here is the following: For which
families P C G does such a P-adapted spanning tree exist? For a counterex-
ample just take P = G or I(G): In the first case every edge of G lies in G, so
there cannot exist a G-adapted spanning tree. For the second case consider
the example Ky; there is no spanning tree that generates all four irreducible
”triangle” subgraphs. Another question is for which class of graphs this
holds, i.e. if the assumption of G being at most logarithmic can be dropped.

With adapted spanning trees we are able to define N-adapted bases of
(X%)* in combinatorial terms. If the divergent lattice is considered, a D-
adapted spanning tree will automatically be N -adapted for any nested set
of any building set in D. This allows us to fix a convenient basis from the
beginning on. Every spanning tree ¢ of G has |V| — 1 edges (otherwise it
would contain a loop, contradicting simply-connectedness). Therefore, for
every spanning tree ¢ of G (with the same orientation) we have a linear map
Wy : ME® 5 MV defined by

(5.4)

v; —v; if e starts at v; and ends v;
e 7 I
T if e connects vy to v.

Pulling back v along 1, amounts to a linear change of coordinates on X¢
(as well as altering the numbering of the vertices of G, its orientation or
the choice of a different (adapted) spanning tree). Any automorphism of
X& will not change the topology of the arrangement and, as is shown in
[CP95], induces an isomorphism on the corresponding wonderful models.
Therefore the wonderful construction and renormalization do not depend
on these choices and we can work in a convenient basis given by an adapted
spanning tree.
In this basis vg is given by

ve{zeleenm) = [ 2@ T 240 Y o))
)

e€B(t) e€E(G\t)  e/€E(te)

where t. is the path in ¢ connecting the source and target vertices of e and
o+ E(t) — {—1,+1} is determined by the chosen orientation of G. The
point is that for the divergent poset D in these coordinates z =3 . B(t) Te€
we have Aj = {z. = 0| e € E(ty)} for all g € D. Dually this means that
the elements in B¢ E(t,)» defined below, form a basis of 4. In other words,
we have an adapted basis in the sense of DeConcini-Procesi!

By duality B also defines a basis of X“. By abuse of notation we will
denote both bases by B - the meaning should always be clear from the con-
text. This choice of basis will be important when we study the pullback of
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vg onto the wonderful model in the next chapter.

For G and other lattices there need not be an adapted spanning tree, but
we can always find an N -adapted spanning tree for any nested set.

Proposition 5.23. Let N be nested for some building set B in some lattice
L C G. Then there exists an N -adapted spanning tree.

Proof. The idea is the same as in Proposition 5.22. Start with the set M
of maximal elements in A and contract all other elements. Pick a spanning
tree for the resulting graphs. Proceed in the same manner with N\ M
and repeat the process until all of A has been exhausted. This produces
a spanning forest ¢ for U,eay, except if there are g,h in N that are non-
comparable and have non-empty intersection. In this case we argue like in
the proof of Lemma 5.17 to see that the join g V h must also be in 5. But
this is impossible since N is B-nested. In a last step contract all elements
of N in G and pick a spanning tree ¢’ for the resulting graph. The union
t Ut is then an AM-adapted spanning tree for G. O

Definition 5.24. Let G be at most logarithmic and N a B-nested set for
some building set B in a lattice £ C G. Given an N-adapted spanning tree
t define the map vy as in Equation 5.4. Together with the linear forms w,
introduced in Section 3.3 we define an N-adapted basis of (X%)* by

B:={b. = (weotyy)' |e€ E(t), i=1,...,d}.

In such a basis the map p : (X%)* — N U {G} from Definition 4.6 is then
given by

prx= Z ztb! — min{g € N U{G} | 2L =0 for all e € E(t\ t,)}.
e€E(t)
i=1,...,d
A marking of an adapted basis is for every g € N the choice of a bzg eB
with p(by) = g. Equivalently, we can view it as a labelling on the elements

of NV

gr— bl fore e E(tN(g\ N<g)) and some j € {1,...,d}

where g \ Neg := g\ (R U---Uhyg) for {hi,...,h} = {h e N | h < g}
denotes the graph g with all its lower bounds in A/ removed.

Finally, the partial order < on B that determines the local blow-up py B
is given by

b < bi, < e € E(ty), e € E(ty) with g C ¢’ and bi, is marked.

48



This finishes all necessary definitions and from here on we could repeat
the construction of a wonderful model in purely combinatorial terms. In the
divergent case, A = D, we thus conclude that all ingredients are already
determined by the topology and subgraph structure of G. Therefore there is
really no need for purely geometric data to build an atlas for Yz. However
obtained, now after the planting has been done, it is time to reap the fruits
and see what a wonderful model can do for us.

49



Chapter 6

Wonderful renormalization

Having constructed the wonderful models (Y4, ) for general arrangements
A, we now focus on the divergent and singular arrangements A = Ap, Ag of
a connected and at most logarithmic graph G. We study the pullback of vg
onto the model and the pole structure of its Laurent expansion, then define
(local) renormalization operators. Since Y4 is non-orientable, we work from
now on with distribution densities.

Throughout this chapter let G be connected and at most logarithmic.
To keep the notation from exploding we drop the indices where possible. We
write x = (21,...,2,) for a point in X = M™ where z; = (x},... ,xf) The
marking of an adapted basis assigns individual coordinates to the elements
of a nested set of graphs. We denote the marked elements by N' > g — xz,g.
If a vector x, € M is marked in this way, let &, denote the vector

| i—1 i+1 d
Tg=(zg,...,xg Lz, ..., xg) € M.

The first two sections follow the exposition in [BBK10], especially the
proofs of Proposition 6.1 and Theorem 6.4. The difference lies in the empha-
sis on the combinatorics of D and the role of adapted spanning trees in our
formulation. In addition, we correct some minor flaws and fill out missing
details in the proofs.

6.1 The pullback of v; onto the wonderful model

Let (Y, 8) be a wonderful model and v = vg the Feynman distribution asso-
ciated to a graph G. We start the renormalization program by disassembling
the pullback of v onto Y into a regular and a singular part.

Proposition 6.1. Let N be B-nested for a building set B of D (or G) and
B an adapted, marked basis. In local coordinates on Un g the pullback of
0% :=v®|dx| along B is given by

(@5 = (B )np = firp [ us T F Mz (6.1)
geN
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where ug(xgg) = |$zg|_1 and dy := dim Ay = d(|E(g)| — hi(g))-

The map fxp : knve(Unp) — R is in L] (kns(Un,B)) (or in
C®(kn,B(Un B)) if the singular arrangement is considered) but smooth in
the variables x;g, geN.

As mentioned above, we drop indices to keep the notation minimal.
Therefore, and because we always work in local coordinates, from now on we

do not indicate local expressions by the subscript N/, B. In addition, local
coordinates are always given by an adapted spanning tree t.

Proof. The crucial point here is that locally g is given by the map

p:X—)X
S Y ey Y I i
i=1 ec E(t) =1 ecE( t)xl<x,

Recall the choice of coordinates given by ¢ (Equation 5.4). In these coordi-
nates

B (@) = v*(p(a) = (" (12EON) ) (@)
= H A¥(xe) H AN Z o(e)zer))

ecE(t e€E(G\t) e’'€E(te)
[ &I w0 T Y TT o)
e€E(t) p(ze)gg eGE (G\t) e’€E(te) p(z.)Cg

g

~ =
where &, := (z},...," 1 ,...,2%) if 2, has a marked component. Since A
is homogeneous of degree (2 — d), we can pull out all the factors z/ in the

first product of A’s, so that the kernel of w*(z) is given by

H H 2d)AS H A5 ( Z H ngat(e/)i”e/).

e€E(t) p(ze)Cyg eGE(G\t) e'€E(te) p(x.)Cg

In the second factor we can pull out a factor xé‘] if it appears in every term
in the sum, i.e. if ¢, is a subgraph of some g € /. But this is equivalent to
e € E(g) because t is an adapted spanning tree. Thus, 2/ appears exactly
|E(g)|-times and we conclude

wi(e) = (@) [ ) C O,
geN

Under the coordinate transformation p every dr. = \,_; 4 dz! trans-
forms into

. {(mé")d_ld:pe if z, contains a marked component,
p aTe = i
(

ngg )ddxe if £, has no marked component.
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How many x. are scaled by the same CL‘ZQ? As many as there are edges in
E(g). Therefore, there are in total (dim A, — 1) factors and the measure

del=| N\ dzi

e€E(t),i=1,....d

tranforms into o
pldal = T It [ A0~ | del.
geN

Putting everything together we conclude

,J)S(x) _ fs(l,) H ’x;g‘71+dg+s(27d)|E(g)||dx|'
geN

For the divergent lattice the exponents of |x¢’| are given by —1 + dy(s — 1)
because d|hi(g)| = 2|E(g)| and d; = dim A, = d(|E(g)| — h1(g)) (cf. the
proof of Proposition 3.11).

It remains to show that f € LL (k(U)) or C*°(k(U)), respectively. Recall
the definition of U = Ux g = X \ UyepZ, where Z, is the vanishing locus
of the polynomials P, for v € X* such that p(v) = . For the singular
arrangement every building set B must contain all subgraphs consisting of
a single edge. But for these elements of B the Z, = Z, are precisely the sets
where an entire sum 3 /¢ g, ot(€')xe expressing an edge e of G vanishes.
Since all functions A are smooth off the origin it follows that f is a smooth
function. The same reasoning works for the divergent arrangement. Every
building set of D must contain all irreducible subgraphs. In addition, every
element of D is built out of elements of I(D) by the join operation (i.e. using
U). Therefore, as in the singular case, it follows that linear combinations
expressing edges in any divergent subgraph can not vanish on U. The map
f fails to be smooth only at propagators of edges that do not lie in some
element of B. But by the proof of Proposition 3.11 we know that there f is
still locally integrable, hence f € Li (k(U)).

Smoothness in the marked elements x¢’, g € N, follows from the simple
fact that in the definition of f already all marked elements have been pulled
out of the linear combinations expressing edges in G. If one such expression
would vanish at x;g = 0, then all x.» were scaled by ngg and this factor would
have been absorbed into the exponent of uy. Therefore no argument in the

product of A’s can vanish at :1::{’ =0. ]
6.2 Laurent expansion

From now on we will consider the divergent lattice D only. In this case we

define u‘;(xég) = ]a:;g\_Hdg(l_S) and for a finite product of maps F;, i € I,
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we write F7 := [[;c; Fi. Then we have under the assumptions of Proposition
6.1
— T wglde| = fouildal.
geN

To define local renormalization operators we need a better understanding
of the pole structure of w®. As it turns out, this structure is already encoded
in the geometry of the exceptional divisor £ and reflects the structure of
divergent lattice D.

It will be useful to consider first the case of primitive graphs. In this case
Y is the blow-up of the origin in X, covered by charts U; where ¢ runs from
1 to dn (corresponding to all possible markings of an adapted basis). We
already know from the extension theory for distributions that the Laurent
expansion around s = 1 of @® has a simple pole with its residue given by

D

2
-1 = —%f(Sg

Here d¢ is a density on Y, the delta distribution centered on & (cf. [GS64]),
locally in U; given by the delta distribution in the marked coordinate 27, i.e.

(Gelp) ' / d ()0 ().

Pairing a_; with the characteristic function y of Y produces a projective

integral
(a-1]x) = / f.

Recall from Section 4.1 the definition of induced charts (V;, ¢;) for €. Since
any such chart covers £ up to a set of measure zero, it suffices to do this
integral in one of them. Thus,

1= [aar@)

Wheredi:dazl/\---/\c?a?i/\---/\dx”dforsomeie{1,...,dn}.

Definition 6.2 (Period of a primitive graph). Let G be primitive. The
period P (G) of G is defined as the projective integral

P(G) = (a1]x) = / ;.

For more on periods see the overview in [Sch10]. Until recently it was
believed that all periods in massless ¢*-theory (i.e. d = 4 and all vertices
of the Feynman diagram corresponding to G are 4-valent) are rational com-
binations of multiple zeta values. But counterexamples [BD13] have proven
this false, relating a better understanding of these periods to deep questions
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in algebraic geometry [Brol0].

In the Laurent expansion of w* for non-primitive G terms corresponding
to contracted graphs will appear. Since we work in local coordinates indexed
by B-nested sets, we need a more sophisticated (local) contraction operation
on graphs:

Definition 6.3. Let ¢ C G and P C D. The contraction relative to P is

defined as
oyp e 19 Unep, ) il eP,
9/(9NU,ep.,7)  else.

Especially important will be the contraction relative to nested sets. The
reader should think of it as a local version of the contraction in the definition
of the coproduct in the Hopf algebra of Feynman graphs. It will show up
in all formulas that include the coproduct in their usual formulation, say
in momentum space. Note that for ¢ C G the "normal” contraction G/g
is included in this definition as contraction of G with respect to the nested
set N' = {g,G}. Moreover, if N is nested and g € N or all elements of N/
are contained in g, then g//N is at most logarithmic as well. For a general
discussion of which classes of graphs are closed under contraction we refer
the reader to [BK0S§].

We continue by studying the Laurent expansion of w® on Y.

Theorem 6.4. Let Y be a wonderful model for some building set B of D.
Let w® = 3*0® be the pullback of the density v° € D'(X) onto Y. Then:

1. The Laurent expansion of w® at s =1 has a pole of order N where N
is the cardinality of the largest B-nested set.

2. The coefficients aj in the principal part of the Laurent expansion
W'=Y (s —1)°
—N<k
are densities with (k < —1)

supp ar = U En-
N |=—k

3. Consider the irreducible elements I(D) as building set. Assume G €
I(D). Let N be a mazimal nested set and denote by x the constant
Junction on the wonderful model Yy(py. Then for N = V]

i-nlx)= Y [ Pa/M).

[M|=N ~eM
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Proof. 1. This follows from the local expression for @w*®. Using Formula (3.2)
we have

~gloc. .5 s s 2 _ s
w® = fiullde| = f H (—ddg(s— 1) 1—|—ug@> |dx|.

geN 9

Since ujc, is regular in s, the highest pole order is given by N

2. Expand ug, € D'(R) into a Taylor series at s = 1,

uH = Zuk(s — 1)k
k=0
where the distributions uy are given by
Up /div |~ og® (|2]) (¢ (2) — B(1 — |2])(0)). (6.2)

In the following we write 6, for the map ng —0(1— \azfj’ |) in all coefficients
of the expansion of the regular part of uy. Expanding f* gives

f% =exp(log(f*)) = fexp ((s — 1) log(f fZ log — 1)k,

Fix a B-nested set N. To determine the lower pole parts in the local ex-
pression for w* we multiply all series Ugey for g € N and reorder the sum.
Denote by (ug); the I-th order coefficient of the expansion of uj. Then for i
in {1,..., N} the kernel of a_; is given by

N—i—1 N—i—1

flog 2
> RS S Medm T )
j=k LCN ~eL v neN\L
|L|=i+j {lneN‘ZneN\Llnzj_k}

(6.3)

flog" ' (f) 2
Ty };IV( o

Recall that locally &, is given by x;" =0and & C &7 for J C T C N.
Therefore the support of a_; is given by the (k = j = 0)-summand in (6.3),
carrying the product of ¢ d-distributions in the marked coordinates of an
i-element subset of N'. Varying over all B-nested sets N (and the marking
of B) the same holds for all i-element subsets of any nested set. Thus, from
the expansion formula (6.3) we conclude that the densities a_; are supported

N U (Ne&)=U e
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3. This follows essentially from two assertions: '
If we view the pairing of a product of delta distributions (&, := §(z))
with a function ¢ as an operator dr, locally given by

On 2 ¢ € Ligo(r(U)) — ] 6,[¢] € Line(w(U N Ex)),
yeN

then for f the regular part of the pullback of v* we have

owlfl = I fryn- (6.4)

yeEN

Here f,//z is obtained from f by setting all marked elements corresponding
to graphs in N4 to zero. It equals the regular part of the local pullback
of vy Jn onto the wonderful model for the graph g//A in the nested set
N'"={g//N?} (g//N is primitive!). For a precise definition and the proof of
this assertion we refer to Chapter 7, Theorem 7.3, where this is elaborated
in a much more general case. The important point here is that da[f] is a
product of maps f, /7, each one depending only on the set of variables {z.}
with e in E(ty) \ E(N<g), minus all marked elements.

The second assertion is that in every maximal I(D)-nested set all con-
tracted graphs g//N are primitive. Note that if G is divergent and irre-
ducible, it must be contained in every maximal nested set. To prove the
assertion let ¢ € N and assume ¢//N is not primitive. This means there
is an h € D with either h C g//N or h//N C g//N. In both cases we can
assume that h is irreducible (if not, then h is the union of irreducible ele-
ments and we do the following for every irreducible component of h). Then
the set N7 = N'U{h} is also nested if h satisfies the following property: For
all ¢ in N that are incomparable to g the join hV ¢’ = h U ¢’ must not
lie in I(D). But if there is ¢’ € N, incomparable to g, with h < ¢’ then g
and ¢’ have both h as common subgraph. By Lemma 5.17 this implies that
gV ¢ is irreducible, showing that g and ¢’ cannot both lie in A/ because N/
is I(D)-nested. If g//N” is still not primitive, repeat the process until all
contracted graphs are primitive. The resulting nested set N/’ is then really
maximal: If adding another graph would not violate the property of being
nested, then it must necessarily be disjoint from all g € N (otherwise some
g//N is not primitive) and this is impossible due to G € .

For G € I(D) all edges of G lie in some divergent subgraph (if not, say
for one edge e, then contract all divergent subgraphs. The resulting graph
is primitively divergent and contains e). Thus, in every maximal nested set
N all edges of an adapted spanning tree ¢ correspond to some element of N
and by Definition 4.8 we have Uy, g = X for all maximal nested sets N'. Let
N be such a maximal nested set. Using 2. and the first assertion we have
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locally in U

b0 [ Tl =TTz [ dwos]

yeEN v ~yeEN v

2
= /K di [] (- R

~yeN

Here & denotes {zc}.cp(+) minus all marked elements and V' = Vj p is the
chart domain for local coordinates on &y, obtained by restriction of the
chart x (cf. Section 4.1). Since it covers Enr up to a set of measure zero (cf.
Definition 6.2), integration in a single chart suffices. Moreover, two compo-
nents of the exceptional divisor £ar and €44 have non-empty intersection if
and only if AU M is nested. But this is impossible due to maximality of
N. Therefore we can sum the contributions from charts given by different
maximal nested sets to obtain the global result

(a-nlx) = Z/ di [ (- fw///\f
N V)

~yeEN

where the sum is over all maximal nested sets.

Finally, since all f,/nr depend on mutually disjoint sets of variables, the
integral factorizes and since restricting |y further to {Zc}cep(t. ) is a local
chart for &£, //zr, we conclude that

> / di I] (- f*r//N / f'v//N
N JEV) Ey N dy

YEN N ~yeN

= II 26N,

N ~eN

O]

This theorem is a first hint at the Hopf algebraic formulation of the
renormalization group (see [Krel3], [CKO01]). It shows that the poles of w*
are not arbitrary densities but reflect the combinatorics of D. The highest
order pole is completely determined by the structure of D. For the poles
of lower order the same holds in a weaker version; they are supported on

components of £ whose stratification is given by the combinatorial structure
of D as well.

6.3 Renormalization

With the main result of the previous section we are now able to tackle
the renormalization problem. Since all poles of w?® live on the components
of the exceptional divisor, we can get rid of them using local subtractions
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depending on the direction such a pole is approached. These directions
are encoded by nested sets, so that we will employ local versions of the
previously defined renormalization maps r1 and 7, depending on the chosen
coordinate system given by B-nested sets and markings of an adapted basis
B. From now on we consider only the minimal or maximal building sets in
the divergent lattice D.

Definition 6.5 ((Local) minimal subtraction). Let R; denote the collection
of renormalization maps {R{v B1 for N a B-nested set and B an adapted
basis (more precisely, the marking since the basis is fixed). RlM B removes
the poles in the coordinates associated to the marked elements, i.e.

Ri[@’]'E RYPIoa3] = 1o I riluglldel.
geEN

Recall from Chapter 3 that r1[ug] = (ug)o, so there are no poles anymore
and we can take the limit s — 1 to obtain a well defined density on Y.

The next definition introduces a renormalization operator that produces
a density for s in a complex neighborhood of 1. It should be thought of as
a smooth version of minimal subtraction.

Definition 6.6 ((Local) subtraction at fixed conditions). Let R, denote the
collection of renormalization maps {R/,,\/ B1 where NV is a B-nested sets and
B marked. The symbol v = {Vé\[’B}gg A~ stands for a collection of smooth

functions on k(U). Each VZ,\/’B depends only on the coordinates x. with
e € E(t)N E(g\ N<y) and satisfies

B —
v lpis—o = 1.

Furthermore, it is compactly supported in all other directions.
Similarly to R; the operator R, is defined by

R[] RY Pz = £ [ v e luglldal.
geN
Remark. In contrast to the definition of r, given in Chapter 3 the maps
vy (we drop the index (N, B) from here on, as well as the dependence of
the operators R on B) are not only test functions in the marked coordinate
:):Zgg, but in all {xe}eeE(t)ﬂE(g\N<g)' This is to ensure that the counterterms
are really well-defined densities in a neighborhood of s = 1. There is some
ambivalence in defining them, so it pays of to be careful at this point.

We introduce another useful expression for R,: For K C N write v for
the product [] vy. In a chart U the operators R{,\[ act on w® by

RY (%] = D (=1)Flue - (@°)e
KN

yeK
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where £ = ﬂwe i &4 C & is the component of the exceptional divisor associ-
ated to the nested set X C A. This is to be understood in the following way.
First restrict the regular part f® of w® and the test function ¢ to k(U NE&x),
then pull this product back onto U, then multiply by u}, and vk and finally
integrate, in formulae

(vic - (0)exc o) = ((pic)» (vicuirlde]) |k [ 2])-

Here py is the local expression of the canonical projection 7 : Y — & and
dxc is the corresponding map D(Y) — D(€k). For K = {gi,...,gx} both
are given by

. 1 i91 igk d ) .
Pgrrnge - T (@1, mglt s mgk x| g e
Ty 5ol =

591,~~-,gk P @’rigl
il

x;ik =0
Note that dx[f*¢| remains compactly supported in the coordinates associ-
ated to G \ UyexN<y. On the other hand, vk is compactly supported in
the coordinates associated to G N (Uyex (7 \ N<y)). But these sets cover G
and therefore the counterterms vy - (0*)g, are well defined densities in all
coordinates except the marked elements (cf. the proof of Theorem 7.2).
The notation is chosen to suggest that (w*)g, can be thought of as the
"restriction” of w* onto & and the symbol ”-” in vk - (0%)g, is used to
highlight the fact that this expression differs from the usual product of dis-
tributions and smooth functions. We call it ”product” because it is linear
and multiplicative in v. Although this notation might seem awkward, it will
turn out be very useful in the next chapter!

The following lemma will be needed to compare the renormalized densi-
ties obtained by choosing different maps v.

Lemma 6.7. Let g,h € D. The maps pgp and dgp, both fulfill the following
”commutation rules”:

Pgh = Py © Pg = Dy © Py
Og,h = 55,/1 ©0g = 53,/1 © Op,
where locally pgh ck(UNEg) — w(UNEyp) is defined by
(xi,...,:i"ég,...,xg) — (:L‘%,...,izg,...,ﬁczh,...,md)
and 87, : D(K(U N &) = D(K(U N Eyp)) by
P i o = @ Lo _yin g -

Proof. Clear from the definition of both maps. O
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Obviously this property generalizes to the case where instead of {g, h} a
finite subset of a nested set is considered, e.g.

_ 9159k —1 g1
Pg1,...gk = Pg1,igi © 7O Pgy,g0 © P

and similarly for dg, .. g, -

Both renormalization operations produce well-defined densities at s =1
as is shown in the next proposition.

Proposition 6.8. Let (Y, ) be the minimal or maximal wonderful model
for the divergent lattice D. Then Ri[w®]|s=1 defines a density on'Y, while
R, [w?] is a density-valued holomorphic function for all s in a neighborhood

of 1 in C.

Proof. Note that from the proof of Theorem 6.4 it follows in particular that
w?® is really a density on Y. By the same argumentation we are able to
conclude from expression (6.3) for the counterterms in R, that they are
all densities for s in a neighborhood of 1: Every subtraction term has the
same combination of uj, and f*, transforming under a change of coordinates
according to the definition of densities.

In the case of minimal subtraction, by Theorem 6.4 and the definition
of 71, all poles of w*® have been discarded. Therefore, R;[w?®]|s=1 is a finite
density. From the Taylor expansion of ug, (Equation (6.2)) it follows that
R1[@*] fails to be a density for s # 1 because the uj do not transform
correctly under a change of coordinates.

It remains to show the finiteness of RV [@*] for all B-nested sets N'. We
argue by induction on the cardinality of |NV|. First consider the case where
the nested set consists of a single graph, N' = {g} for some g C G. Let
:Ezgg denote the marked element, otherwise we drop all indices. Then by
Definition 6.6

(R [0°]l0) = (@°]0) — (v - (@), |,

v = v, depending on all z. with e € E(t;). We expand both summands into
their Laurent series (focusing on the principle part only) to get

(@) = / de |zis |71+ (-9) £ () ()
= / daf | |70 / dic f*(x,2)p(xy, &)

B / dag g | I (s, 2.
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Using Formula (3.2) from Chapter 3,

(°|) = —jgms,m(s —1)

b [y fag 0 (Fs,aip) - 0,0 F(s.0)).
For the counterterm we have
W @) li) = [ do I 0o, (@)@,
= [aplap e [ o e, 2(0.)6(0.8)
_ /dng‘x;”1+dg(1s)GV(87$;g)_
In the same way as above we get
W (7)) =~ Gols,0)s = 1))
+ [ ey Ja Gl ) — 0,56 (5,0))
Since v(zy,)|

ig_o =1, F(s,0) = G(5,0) and the pole cancels in the differ-
Qfg =

ence. Therefore, (RN [w*]|¢) is finite for all ¢ € D(x(U)).

Now let N be nested and h C G such that N/ := N U {h} is also
nested. For K C N set K’ := KU {h}. Assume h to be minimal in N (if
not choose another minimal element). We want to show finiteness of w® in
k'(U') for U’ = Upr g with B marked for A plus an additional marking for
the element h (since h is minimal, all markings of N’ are of this form). By
induction hypothesis RV [w*] is a well-defined density on x(U) for all s in
a neighborhood of 1 in C. In [CP95] it is shown that U’ is the blow-up of
the proper transform of A# in Uy, p. By minimality of A this blow-up 3}, is
locally given by pp, scaling all {z,}ccp(,) With xilh. Moreover, the chart '
is just the inverse of the composition of py with I'(73) o par. The pullback
of the density R{,\f [w?] along this blow-up has now an additional divergence
in the coordinate ZE;Zh Therefore one more subtraction is needed to obtain a
finite density on U’ (the index N stands for the local expression in U),

Ry, [BrRY 03] = Ru, |85 D (=)Mo - (3p)e, | =
KCN

We compute the pullbacks locally in U, the power counting that produces
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uj works exactly like in the proof of Proposition 6.1.

(v - (@350 |0) = / (Phd) (vic o pn) (e © )PS0 on)e]

:/dm vicunuppicox [(fAr) ]
=(vk - (WRr)ex @)

Thus,

% — Z IICI (B3 — Vn - Z |IC| sz\/')im{h}

KCN KCN

=Y (D)Mo (@) — Y ()M - (@30)gy

KCN KCN

_ Z IICI (W3 ex

KN
=R (@}

where we have used minimality of h again,
(vn - (v - (0%) g e, ) = /dxuj\/thK|xZ}L (70 e _yin g

— [ dwiione () Le oy
= ((vxr) - (0°)gys )
We see that both densities coincide and the proposition is proven. O

Both renormalization operators have another property that every sen-
sible renormalization should have; they commute with multiplication by
smooth functions.

Lemma 6.9. Let f € C*(x(U)), then

RN[*Nf] = fRY (@3]
R) w3 f] = fRY [a3].

Proof. Clear from the definition of both operators. Under the renormaliza-
tion operation the regular part of the density is treated as a test function
which is also the definition of the product of smooth functions and densi-
ties. =

Finally, we are able to state a solution of the renormalization problem.
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Definition 6.10 (Renormalized Feynman rules). Let R denote one of the
renormalization operators Ry or R, on the wonderful model (Y3, 3) for B =
I(D) or D. Define the renormalized Feynman distribution by

Zvg] = B R[WG]|s=1-
Then the renormalized Feynman rules are given by the map
Dp:Gr— (XY Z(vg)).
The pair (X%, %Z(vg)) can now be evaluated at ¢ € D(X),
(eval, 0 Or) (G) = (#lvalle)

= (B«Rlwglls=1 | ¢)
= (Rlwgl|s=1| B7¢)-

To carry out the evaluation at ¢ we choose a partition of unity {x;}icfv,B)}
on Y, subordinate to the covering {U; }ic((n.p)}- Write 7; for xiok; *. Then

(Rlwgls=1 | B7¢) = Z(Wi(R[lD?;])i!sﬂ | p o pi).

To see that this definition does not depend on the chosen partition of unity
let {x’;} denote another partition, also subordinate to the {U;};c(w,5))-
Then

> (mi(Rlac])ils—1 | ¢ 0 pi)

i

:Z/ dr Y (=) Mluyvcdclfi(e o pi)mi]
supp(m;)

i KCN

:Z/ dz ) (—I)VC‘UNV/C@C[fi(SOOPi)mZ”ﬂ
p supp(m;) KCN J

= Z/ dz Y (1) Mlupvcdc]fily o pi)mim)]
i supp(m;)Nsupp(}) KCN

:ZZ/ dz Y (1) Mlupvcdi]f(e 0 pj)min))
i supp(m;)Nsupp(}) KCN

:Z/ dz Y (—~)Mupvcdi[fi( 0 py)m Zm
G Usupp(Th)  Cn

= () Dils=1 1% o pj)-

J

This finishes the process of wonderful renormalization. From a mathe-
matical point of view we are done, but for a physicist it is not clear yet that
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we have constructed a reasonable renormalization. In addition to producing
finite distributions both schemes have to fulfill another condition that is dic-
tated by physics. It is called the locality principle (see [EGT3]) and, roughly
speaking, assures that the renormalized distributions still obey the laws of
physics. There are various equivalent formulations of this; we will use a
version for single graphs from [BBK10]. It is fulfilled only in the minimal
case B = I(D). We will get back to this point in Chapter 8.

Before that we turn our attention to the dependence of the operators R
on the renormalization points, i.e. we study what happens if we change the
collection of maps {v} or the cutoff in the definition of ug,, respectively.
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Chapter 7

Renormalization group

In this chapter we take a closer look at the renormalized distribution den-
sities. First we consider (local) subtraction at fixed conditions. The case
of minimal subtraction then follows by similar arguments since it can be
thought of as a ”"non-smooth” version of the former.

What happens if we change the cutoff functions v, in the definition of
the operator R,? Clearly, for primitive graphs the difference is a density
supported on the exceptional divisor £ and after blowing down the renor-
malized density it becomes a density supported on {0} € X. To get an idea
what happens in the general case it is useful to start with an example.

Example. Let G be the dunce cap graph (Figure 2.1). Locally (in d = 4
dimensions and N = {g, G}, g denoting the divergent one loop subgraph)
we have for ¢ € D(k(U))

(R [0°]|¢) = Y (=) - (0%)e, | 0)

KCN
= (@°[p) = (vg - (0%)g,|) = (v - [0°]ec )
+ (vgva - [0%g, o)
= (@°]¢) — ((pa)«(vauj|dz|)[daf*¢])
= {(Pg)x (vgujld])|dg[f*])
+ ((pg.c)«(vgraui|de|)|dg.c[f¢l)-

Changing the renormalization point, i.e. the collection of test functions
{v}, by linearity the difference of the two renormalized expressions is again
a sum of this form. However, it will contain a mixture of v and v/ as
renormalization points. But we can express the terms with v/ again by v-
terms only and obtain a finite sum of v-renormalized expressions. Another
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way to see this is by Taylor expansion using the calculus of variations,

d
7 lt=0 (Buen[@7]]0) = —((pg)+ (ngtijrldz)|0g[f*2])
— ((pa)«(nauirldz])|6a]f*e])
+ ((pg. )+ (Vg + vang)uildz|) |6g.a[f€)),
d2
@ |t=0 <RV+tu[w8”90> = 2<(pg,G)*(VgVGu7\f‘de’5970[f8¢]>7
k
% im0 (Ruseli]lig) = 0 for all & > 2.
Thus, for pu, := v, — vy, v € {g,G},

(Bopli0°) = By [57]10) = = (o) (gl 15, £ )
— {(Poc)+ (vamguiclda) 856 [£0) )
~ ((we)-(nauivlde))ldalr*¢l)-

(P &)+ (vgncuivlda)) 13, 6l F°¢)))

+ ((pg,c)«(Vgvauisldz|)|6g,c1f7¢])
= — (Ruglug - (0%)g,llp) — (Ru,[pc - (0°)eg]le)
+ (vgva - (0°)e, ole)-

The last equality holds because of the properties of 6., and p, (Lemma 6.7).

((pg,c)«(vaguie|dz|)|0g.clf¢l)
=((p).c © Pg)«(Varguirldz])|(8] & © 0g)[f*])
=((1],¢)+ ()« (vangujr|dz))) |07 o [05[f*¢l])-

We see, as expected, that the difference is a sum of densities supported
on the components of the exceptional divisor, given by subsets of the nested
set N. Since p, = 0 for a:? = 0, they are finite, except if a point approaches
the intersection of two components £7 N & for J,K C N. But in this
case the necessary subtractions are already provided by the counterterms
associated to the set J U K.

We first state this property in the general case, then dive deeper into the
structure of these densities by studying their form more closely.

Proposition 7.1. Let N be a nested set for the building set I(D) or D and
let B be marked accordingly. For two collections of renormalization points

{v} and {V'} set py = v, — v,y for v € N. Locally in U the difference

between the operators R, and R, acting on w® is given by

(RY — R[] = Y (=D)MRI e - (°)e]
0N
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with RY .= idﬁ'(n(U))'

Proof. Induction on n = |N|. The statement holds in the cases n = 1 and 2
(see example above). Let A/ be a nested set of cardinality n and h ¢ A an
additional divergent subgraph such that N7 = A U {h} is also nested. For
K CN set K':=KU{h}.

(RY - Rl = Y ()M — ) - (%),
0AKCN

= > DMk —ve) - (@)er

AN

+ > Ok —v) - (0%,

KCN
= A+ B.

By induction hypothesis

A= 3 ORI e (@%)ec]:

PDAKCN
Using
H(ai +b;) — H a; = Z brag,..nyp\J
i=1 i=1 0#£JC{1,....,n}

we expand B into two parts, depending on whether v or p carries an index
h,

B = B]. + B2 = Z (_1)|K/| Z NJIV’C\J . (’J}S)E)C/

KCN JCK
+ Y COEE Y e - (@),
OECCN 0£TCK

Note that in A all densities pz - (0®)g, have an additional, not yet renor-
malized, divergence corresponding to the subgraph h € AN’. In order to
renormalize them we have to add the counterterms associated to h, i.e. all
terms in B containing vy,. For non-empty £ C N fixed

(DR g - (0%)e,] + Z (—1)‘J/‘MLVJ'\L'(@DS)5J,

LCTCN
= (“D)FRN (g - (0%)e )+ > (D) EFE vy (),
ICN\L
= (_1)|£| Z (_1)|I‘ (/“LEVI : (ws)gﬁuz — Hcvzr - (ws)gﬁuf)
ICN\L
= (-1l Z (1) pevr - (0)ep, = (DR g - (0%)e,.]
ICNN\L
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is then a finite expression. Doing this for every non-empty £ C N covers
the whole sum By because every term povz - (09) appears exactly once
and the signs match since

Z (_I)ILIHIHlMﬁVI’ . (ws)gﬂuf
ICN\L

= > )Wy - (@), -
0ALKCCN,LCK

gCUI’

The same argumentation works for B;. Fix £ C N and consider all
terms in B; containing p,r:

S )WMlppve g - (@),
KCN.LCK
)

—~

pevz - (W),
ICN\L
=(-D)EIRYE g - (0%)e,,] = (~D)FIRY N g - (0°)e, ).

Putting everything together we have shown that locally the difference
between two renormalization operators R{/\,[ and R} is expressible as a sum
of densities, supported on the components £ for K C N and renormalized
in the remaining directions according to subsets of N\ K:

(BY - B[] = Y (~HMR W ux - (@°)e]

0AKCN
+ 3 (COFIRY W [ - (@), ]
KCN
= Y MRV g - (@0%)e, ]
DAKCN!

O]

This is a nice formula showing that a finite renormalization (i.e. chang-
ing the renormalization point {v}) amounts to adding a density supported
on the exceptional divisor, like expected from the toy model case on R (or
R¢ for homogeneous distributions). But we can do even better and physics
tells us what to expect: The Hopf algebraic formulation of the renormaliza-
tion group predicts that the densities appearing in (RJV\,[ - RJV\[ )[w*] should
correspond to graphs showing up in the coproduct of G (for more on this
we refer to [CK01] and [Krel3]). In the local formulation presented here the
coproduct translates into local contractions, i.e. contractions with respect
to nested sets \V.
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Turning back to the example at the beginning of this chapter where we
calculated (RN [@°] — RY [@*]|) to be

—(Ruglpg - (0%)g,]l@) — (Ruylua - (0°)egll@) + (vgra - (0°)e, c1#),

we now examine the individual terms in more detail. Eventually we are
interested in the pairing with test functions ¢ that are pullbacks of test
functions on X. Recall that such ¢ are then locally given by ¢ = %9 = 1op
for v € D(B(U)). In k(U) = X% = M?, corresponding to N' = {g,G}, an
adapted spanning tree chosen as in the example in Section 5.3 and marked
elements z¢, y, (z,y € RY),

(Ryg g - (0%)e,]|0) = /M2d4xd4y tglza| P lyg P (84 f5¢] — vadealfoel)

— / d4wd4yﬂg‘xG’778s‘y9‘374s
M2
X ((fS@)|yg=0 - VG(fSSD)’ygvaZO)
= / d*xd*y pglra| "y >
M?2

y (1#(96(;3%0) B VG(£)¢(070>)

@45@45 .@453945
= Cg/ d4$ |xG|7—83 (¢(mii?0) _ VG(x)ff(OvO)>
M T T

= cq(Ryg [wSG’/gH(Sg [2])-

Here UNJE /g is the density associated to the contracted graph G/g (more
precise, its local expression in Ups p with B’ spanned by z = {xi}eeE(t)\E(g)
and N/ = {G/g} - the exponent 7—8s in |z¢| does not match but we neglect
this little technical problem here; see below for the general argument). The
coefficient ¢, is given by

_ d4 ‘y9‘374s !/
cg = y (v (y) — v4(y))
M Yy

_/ d4 ‘yg‘3_45( /( )7 ( )5[ ( )/])
= y Y g4s Vely Vg \Yy)0g(Vg Y

=(Ry, [wg]vg)

because V;|yg:0 = 1. In the same manner we calculate

(R, (e - (0%)eglle) = cap(0,0) = caldclp)
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with

Q
Q
Il

2

_ _ 1 vy(y)
d4 d4 7—8s 3—4s g
X y,UG|$G‘ |y9| j23g43(£ + ygg)Zs i.4sg4s

] d4xd4y |$G‘7783|y9|374s

s

X

< v B va ZLZe Vel )
.@25:&45 (i, + ygg)Qs 55233)43 (i + ygy)Qs x4sy4s :%45@45

y d4xd4y ‘mG‘7785|y9|374s

£V = vadalFvis] = vydy[fvis) + vvady ol ve))
= (RY @] 1v%).

The last term ([vyrg - °]e, o |@) evaluates to ¢y g1p(0,0) with

X

pic () g (y) |z "8 |yg |24
Cq.G :/ d4:cd4y g s g
M2 =y

= (Ru, [} (Rug [ ] IvG)-

To formulate this in the general case it will be useful to define the con-
traction operation // not only on single graphs but also on nested sets.

Definition 7.2. Let N be a nested set for some building set B C D and let
J C N. The contraction N'//J is defined as the poset with underlying set

N/NIT ={9//T | g € N},

partially ordered by inclusion. Since the inclusion operation differs from the
one in N (contracted graphs may not be subgraphs of G anymore, although
we can identify them with subgraphs via their edge sets), we denote this
partial order by C.

The partial order C is most easily understood by looking at the Hasse
diagram of N. Replace every g € N by g//J, remove all lines that connect
elements of 7 to "above” and draw a new line from o to every element that
became disconnected in the process. Note that in particular all elements of
J have become maximal in N'//J.

In addition, we denote by abuse of notation the corresponding contrac-
tions on adapted spanning trees by the same symbol, i.e. we define

t)) T =t/ty where ty := | | t,,

yeJ

to/| T ==tg//T<g-
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Example. Let G be the graph shown in Figure 7.1. Denote by 71, v2 and
~v3 the three fish subgraphs from left to right, and let ¢ and h be the full
subgraphs on the vertex set V(g) = {0,1,2,3} and V(h) = {2,3,4,5}. In
Figure 7.2 we depict an I(D(G))-nested set N and the poset (N //J,C) for
J =A{n.73.9}

0 3 4
1 2 5

Figure 7.1: The graph G

g 9//T

G/|T
st st Y2& V3

o 0

Figure 7.2: The posets N and (N//J,C)

In the general case we have the following structure for finite renormal-
izations:

Theorem 7.3. Consider the collection of renormalization operators R, for
two sets of subtraction points {v'} and {v}. Let N be a nested set for
the building set D or I(D) and B be an adapted, marked basis. Then the
local expression for the difference (R{,\,/ — R\ [w®] applied on a test function

¢ = " for p € D(B(U)) is given by

(RY = ROy = > exc(Ru[ig ) lloxcle]) (7.1)
AN
where
cx = [[ (R[] | V) (7.2)
vyeK

and (R, [Wy]|6clp]) is to be understood as (3|) = 1(0).

We have dropped the indices in R, for simplicity. Define H := U exH,
with H, := {h € N'| h//K € (N//K)cy/x}- Then it is shown below that in
(7.1) the index is given by N\ (K U#H). Likewise, in (7.2) H, U {7} is the
index in the factor associated to v € K.
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Proof. Using Proposition 7.1 we examine all terms in ((RY — RN )[@%]|¢)
separately. The proof consists of two steps. First we study how dx acts on
the maps f and ¢ = $*¢. This allows then in the second step to show that
the integral arising in the evaluation of ((RY — RN)[@°]|¢) factorizes into a
product of integrals according to (7.1) and (7.2).

Recall that B is given by an D-adapted spanning tree ¢t and w® =
uefo|dz|. Claim: For J C N the map 07 operates on f and ¢ = *¢ foc.
Y op by

= 0700l = ¢lz =0,
feo71= I fyr

yeJU{G}

Here f,/ 7 is defined as follows: Contracting ¢, with respect to J defines an
adapted spanning tree for g//J (contracting graphs in A" and ¢ accordingly
does not change the properties of ¢ being spanning and adapted - cf. the
construction in Proposition 5.22). Define

XTI = {(2ey, ... 2e,) | {e1,- - en} = E(ty))T)} (7.3)

with adapted basis B = Blcep(t, /7). The set N' = N//T /7 is nested
for the minimal building set I(D(g//J)) in the divergent arrangement of
g//J. Mimicing the construction of the wonderful models for this case, we
obtain an open set Uy pr that is a local piece of the (minimal) wonderful
model for the graph ¢//J. The function fgS 17 is then the regular part of
the local pullback of 17; 7 onto this model. The factor fg// s collects all the
remaining parts and is defined in the same way, except for one special case:
If G does not lie in NV, or even not in D (locally in Uy p this is the same!),
and G//J is primitive, then N/ = () and we do not have a local model to
pullback o7, , , onto. But in this case vg/ 7 = fg/ 7 is already regular and
no model is required. Also note that if G € N, the operation dg does not
alter f since it does not depend on the variable xZGG

Recall that in coordinates given by an adapted spanning tree the distri-
bution kernel v is a product of factors (y.)?~¢ with e € E(G) and

) e if e is an edge of t,
ve Y eren,) ot(€)ze if eis an edge in G\ t.

Moreover, the pullback under 3 onto the wonderful model Y is locally given
by the map p = py 5 that scales all z. with e € E(t,) and g € N by x4'.

To prove the claimed properties of 67 we argue like in the proof of
Theorem 6.4:
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1. Since ¢ = 1 o p, we have that d7[p] is equivalent to (’0|{xih—0} for h
th—

in max 7, the set of maximal elements of 7. This means that the resulting

map only depends on the variables z. with e € E(t N Nsmaxs). All other

vectors are scaled by the 23" and therefore vanish after 67 is applied. An-

other way to put this is that d 7[¢] depends only on the z, with e € E(t//J).

In particular, if G € J then §7[p] is just a constant, 0 7[¢] = (6|¢) = ¥(0).

2. For the second claim start with J = {g} consisting only of a single
subgraph g C G. The part of f that depends only on the vectors associated
to edges of g is unaffected by setting x;g = 0 because all z. with e € E(t,)

get scaled and so the factor z/ pulls out (it is already absorbed into the
definition of u;) On the other hand, the remaining part of f depends on
xe with e € E(ty) only through special linear combinations. These linear
combinations express vectors representing edges €’ that do not lie in g but
are connected to a vertex of g such that E(t.) N E(ty) # 0. They become

independent of z. after setting :L‘Z,g to zero. Therefore, 07[f] splits into
a product of two factors depending on the mutual disjoint sets of vectors

{Te}eert,) OF {Te}ecr(t/t,), i-e-
oglf1 = fofarg = Foyataya-

Adding another graph h # G from N to J and using Lemma 6.7 we can
express 07 as

07 1f1= 67 [0 f1] = Onlfgfcyq)-

There are three possible cases (due to Lemma 5.17 there cannot be two in-
comparable g, h with non-empty overlap in an I(D)-nested set; if the maxi-
mal building set D is considered only case 2 and 3 are possible):

1. g and h are incomparable. Then f; does not depend on any x. with
e € E(t,) and

Snlfafargl = fo0nlfaygl = foya0nlfayql-

2. his contained in g, h C g. Then all {zc}ccp,) are scaled by x;g and
Jag is independent of these. Thus, only f, is affected by contracting
h,

onlfofasgl = onlfolfag = onlfolfay s

3. h contains g, g C h. Then all {Z¢}ecp(,) are scaled by xﬁlh and fg is
not affected by setting ;" = 0. Therefore

Snlfafargl = fonlfaygl = foyaonlfayql-
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In all three cases we argue like in the first step to carry out the operation
of 85, and conclude

6g(f1 = toyatuystays

For general J C N we repeat this procedure for a finite number of steps to

show
s7lf1="11 fws

yeJU{G}

With the help of these two assertions we are now able to examine the
integrals

(R W g - ()5 ]l) = / Lo 32 (0 sl (74
" TJCN\K

in detail. Note that f,/, s depends only on the variables z. associated to
edges of E(tg \ th,u..un,) with {hi1,..., ht} = max J.4 (not on the marked

element a:lgg though!). This is exactly the set of coordinates on which the
maps v, depend. Therefore divergences corresponding to elements g//J are
also renormalized by the subtraction points v, associated to g.

To make the following calculations more readable we simplify the no-
tation: For K C N write g for the K-contracted graph g//K. Let K =
{g1,.-.,9n} (if G € K assume g, = G) and define the subsets H; C N by

Hi:={h|hCg)fori=1,...,n.

We want to show that the integral

n

/(U) dx ujyy H(V;i —Vy,) Z (-1, H 1317 dkugle]
k i=1

JCN\K yeKUTU{G}

factorizes into a product of integrals according to (7.1) and (7.2). To see this
split the sum into two parts, the first one summing over subsets Z C N\ K
that contain an element of H1, i.e. Z N H1 # (), the second one over subsets
J CN\ K with J NHy = 0. The first sum can then be written as

S EDYE YT (—0)¥luguescugucFIocugucle):
TENK 0£LCH,
JNH1=0

Now
dxuguc [90] = dxug [90] )

because all g € L satisfy g C g1 and from this follows g < g; for the partial
order on N. Therefore all g € L are scaled by a;zggll which is set to zero by

74



Ox. Again, since all elements of £ are smaller than g1,

dkuguclf’] = fé//juﬁ H Fapraoc
YE(KUTUL)\{G}

:f(;//J H fapaoc H fé//Juc H fapaoc

yeR\{G} £eT\{G} neL\{G}

=foys fape 11 fys 11 fepr 11 Fapes

1ER\{91,G} £eT\{G} neL\{G}

In the last line we have used that g; is immune to contraction by elements
lying outside of Hi. Thus, the factor

>0 e T e

DAL H, n€L\{G}

can be pulled out of the first sum.

In the second sum over the subsets 7 C N\ K with 7NH; = 0 the factor
f§81 appears in every summand because g; is not affected by d7. Recall that
dx[w] depends only on the coordinates {7 }ecp(//k) to conclude that

n

/(U) dz uly H(z/gi —vg,) Z (~D)¥vg o7 (5] o]
K =1

JCN\K
— [ aru 0 ) | X 0 TT fie e+ 5
Vi 0#LCH neL\{G}

X/ Az uin ge0t0) L1V = vo) D (DY vg S gyus 7] Skusle)
Va i=2 JCM\K
JINH1=0

— (Ry [y, yx]IV)) / -

Here we have changed the domain of integration from x(U) to Vi x V2 with
V; constructed as follows: Pick a linear extension of the partial order on
K =1{91,...,9n} and let g1 = g1 be the minimal element (the proof works
also without this assumption, but this simplifies it considerably). Define
X9 as in Equation (7.3) and X¢ similarly for G’ := G/gi. Recall the
wonderful construction from Definition 4.8 and set for every g in the minimal
or maximal building set B

Z} = 2,0 (X% x {0}) and Z2 := Z, N ({0} x XF).

Define V; := X9 \U'yeBZ%/ and V5 = x¢ \ UveBZ% Then V; is a local
chart domain for the wonderful model for §; with respect to the nested set
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H1 U {g1} and adapted basis B g t3,)- The same holds for G’ with respect
to N\ (H1U{g1}) and B]E(tc/ . For the original chart on Y we have

H(U> = X¢ \ (UweBZ'y) C Vi x Vs,

and the difference is an union of linear subspaces, i.e a set of measure zero.
Moreover, the integrand is finite because all divergences associated to the
elements of K get "damped” by ux, the remaining divergences coming from
elements of V'\ K are renormalized and ¢ € D(3(Upr,p)) vanishes in a neigh-
borhood of all Z,, which covers the divergences of B\ N. Thus, changing
the domain is justified and by Fubini’s theorem the integral factorizes into
the desired product. The last equality holds because of

(Vg — Vgr) Z (—1)|£‘V£Hf$//c forye + fa

PALCH neL
_ / / L
981 a Vg, ( 51]/91 291 =0 + Z l |VE H fn//ﬁygl
OALCH neLU{g1}
L
= D 0 vev O I Fipevin)l i
0ALCH neLU{g1} '
= ;11/91 + Z ( )| |V£5£[ a1 91]
OALCH1U{g1}

A technical detail: If g; had another divergent subgraph h € B\ N, the
renormalization by R, would not take care of this and the integral would
still diverge. But in this case all variables {z¢ }.c E(ty) are set to zero by dx.
Then the whole summand associated to K in Formula (7.1) vanishes because
dxlp] = okt o p] = 0 since supp(yp) C x(U) is disjoint from {z. =0 | e €
E(tn)}.

The remaining integral is of the same structure as the one we started
with, so we can repeat the process for g, € K (notice how this relies heavily
on K C N being nested and the stability of ¢ under contractions). After a
finite number of steps we obtain a product of renormalized densities, each
factor representing an element of IC, possibly times a last remaining factor,

/V dz uj\/\(u?:{)-liu{gi}) Z (_1)|jlyj fé//j H ffj//j 5ICU\7[90]'
2 TJCN\K yeI\{G}

jﬂ(UiHi):@
If G lies in K, then dx[p] = ¢(0) is constant and the procedure ends before
this last step since the H; cover M. If G is not in K, then G//K could have
remaining divergences, given by the elements of N'\ (KU H1 U...UH,),
and therefore this last integral is just the renormalized expression for wg, K
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applied to the test function dx[¢],

Z (71)|j|y\7 fé//j H f;//j 6ICUJ{90]

JCNM\K veI\{G}
TN(UiH;)=0

_ Z (—l)ljluj (5J[fé;//}g51d90]]

JCN\(KUH1U...UHr)
= (Ry[wg ) xcllok[e])-

Last but not least, there remains one technical detail to take care of: The
exponents in uy do not match the ones provided by the definition of w¢, /K
and 11); K This would not happen if we had defined subgraphs g C G as
given by there edge set E(g) C E(G) but with V(g) = V(G) (we chose not to
do so because in the formulation presented here, X is spanned by variables
associated to edges of an adapted spanning tree, not by the elements of V'
like in [BBK10]). However, we can also just rescale the complex regulariza-
tion parameter s = 1 — d—‘;’(l — §) without affecting the whole construction
to obtain the correct exponent in u~ On the other hand, this discrepancy
does not show up in the limit s — 1 which we are allowed to take because
this proof shows that every term in (7.1) and (7.2) is well-defined at s = 1.
Putting everything together we arrive at the desired formula. O

Now we consider minimal subtraction. It will turn out to work in ex-
actly the same manner as the case above. This is already clear if we think
of R; as a non-smooth version of R, by making the (forbidden) substitution

vy(zg) = 0(1 — |z ).

Let N be a nested set for the building set I(D) or D. Locally in U the
minimal subtraction operator R; is given by

=]« 2)ldz 5 TT (u )of*(@)ldz],

yeEN yeN

where (...)o denotes the regular part

(W5)ole) i= [ dalal ™40 (p(a) - 6(1 = fal)e(0)

and the factor f* is treated as test function. If instead 6¢(x) := 0(c — |z|)
with ¢ > 0 is used as cutoff, the principal part of the Laurent expansion
does not change while the regular part (u;)oc gets an additional d-term

k+1( )

klog
k
2 E RS (s —1)%0,
k>0
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as predicted by Theorem 3.7. Therefore the whole Laurent series for uy is
given by

(3l = 001 = )7+ 32 (ol g (), o)1~ o)
k>0

d3<5|ea><1—s Sl ogh fal)) o ) (1 5)F
k>0

T b0 (@)(01) (1 - ).
>0

Write N = {g1,...,9n} and for k € {1,...,n} let 1:2’“ denote the associated
marked element. Write & for the collection of all other coordinates. For a
test function ¢ € D(k(U)) set

qbs(xlf, i) = /da% Fi(z)p(x).

By expanding the successive application of the regular parts (u;)qp and re-
ordering the sum we see that R; is expressed by a formula similar to the
one for subtraction at fixed conditions:

(RYTi])o) = ((ud)ol{(us,)ol - - (uf Jolds) - )
= (w5 )o(u3)ol ... [ dalplafy 710D
X (ps(alh, ... aln) — OH (@i )b (2t ... and 0))) L)

=> (- |K|/da} 1w, @) IT @) xlroel(@).

KCN j=1 yeEK
We do the same for the regular parts obtained by cutting off at c,
B (@)e) = 3 (~) [ s H ug, (@) [T 6 (a) el o) (a).
ICCN ~yeEK

and write 0 (z) = 6¢(x) + 9o (x) with

9 () 1 fore<|z|<d,
) T) =
0 else.

Then we can express the difference between two minimal subtraction oper-
ators R/C\,[ and Rév , applied to w?®, by the density

pr— Y (I)K/dxuf\/GcKl’cé;c[fsgo].
DAKCN
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Here G)CKI’C = [1ex o< (x?) —Ilex HC(ajfﬂ) is a "multidimensional cutoff”,
supported on

{x e R ¢ < |z < ¢ foralli e {1,...,|K[}}.

Expanding @,CC’C/ and reordering the sum, we have

o =[] +vs) - T e¢
yeK yeK
> (JI#HCIT o)
0A£TCK ~eT nel\TI
= > ﬁcj’c,elcc\f

0T CK

Putting everything together, we find that a change of the renormalization
point ¢ is expressed by a sum of densities supported on components of the
exceptional divisor given by subsets K C N/,

(BY - BN @le) = 3 (0N S0 [ deui o5, goxlsl.

0#£KCN 0£TCK

We can repeat the argumentation from the case of subtraction at fixed
conditions to arrive at the formulae of Proposition 7.1 and Theorem 7.3:

(RY = R alle) = 3 (—)IURMEWE - (0%)e]lo),
O£CCN

(RY = RNa"llp) = Y (=)Mo (Rl i]loxc[e])-
DAKCCN

Viewing the maps 95 as test functions, the constants cx are exactly the same
as in (7.2). They are given by densities of C-contracted graphs, evaluated
at their respective renormalization points, ¢y = J[, ¢ (Re[w] //,C]|«9§/>.

Eventually we would like to apply the formulae presented here not on
distributions given by single graphs but on the formal sum of all graphs
expressing a given interaction (an amplitude). The study of the behaviour of
amplitudes under a change of renormalization points allows in the best cases
even to make non-perturbative statements; the main idea is that physical
observables do not depend on the choices made in fixing a renormalization
scheme. This leads to a differential equation, the renormalization group
equation (cf. [Col84]). In the language of the renormalization Hopf algebra
this translates to (combinatorial) Dyson-Schwinger equations (cf. [Krel3]).

So far we have not used any differential methods, but to explore these
objects within the wonderful framework it seems that subtraction at fixed
conditions is then the way to go. This is reserved for future work.
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Chapter 8

Back to Physics

This chapter connects the geometric method of extending distributions pre-
sented in this thesis to physics. We show that renormalization on wonderful
models satisfies the locality principle of Epstein and Glaser [EG73]. After
that we finish with an outlook of how to relate our approach to the method
of Epstein-Glaser, i.e. to the renormalization of amplitudes, and how Hopf
algebras can be utilized to describe the wonderful renormalization process.

8.1 Connection to the Epstein-Glaser method

The Epstein-Glaser locality principle is the position space analog of locality

of counterterms. It decides whether a given theory is renormalizable, i.e. if

adding counterterms to renormalize the Lagrangian keep its form invariant.
In [BBK10] this principle is formulated in a version for single graphs.

Definition 8.1 (Locality principle). Let G be a connected graph. Let Z de-
note a renormalization operator. % satisfies the locality principle of Epstein
and Glaser if

Rvc] = Bvg) R [vnlvey (quny on X\ XS\ @UR) (8.1)
holds for all disjoint pairs g, h of connected and divergent subgraphs of G.

This is to be understood in the sense of distributions. For all test func-
tions ¢ € D(X) with support disjoint from XSG\(gUh) the renormalization of
v is already determined by the renormalized distributions v, and vj,. Note

that v, and vy, depend on disjoint sets of variables and v\ (4up) is regular on

X6 \ X SG \9YUR) - Therefore the product on the right hand side of Equation
(8.1) is well-defined.

Another way to formulate the locality principle is that for causal discon-
nected regions (¢ and h are disjoint) the renormalized distribution is given
by ”lower order” (i.e. subgraph-) distributions. Recall that in the recursive
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procedure of Epstein and Glaser (Section 2.3) this is one of the main ingre-
dients in the construction; it allows to recursively construct the n-th order
term 1™ in the formal series for the S-matrix up to the small diagonal in
M™.

Theorem 8.2. Let % be given by minimal subtraction or subtraction at fized
conditions on the minimal wonderful model for the divergent arrangement
of a connected and at most logarithmic graph.

In both cases % satisfies the locality principle (8.1).

Proof. We follow the lines of [BBK10] but correct the proof by adding some
essential details missing there.

Let Yy, Y3, and Y denote minimal wonderful models for g, h and G. For
G* := G\ (gUh) define X~ := X% asin (7.3). In the language of wonderful
models the theorem states that Y’ =Y, x Y} x X~ is a (minimal) wonderful
model for the divergent arrangement of the graph gUh in S := supp(y) C X.

Let B denote the minimal building set in the divergent arrangement.
The proof is based on two claims: Every B(g U h)-nested set is given by a
disjoint union Ny UNj, of B(g)- and B(h)-nested sets (one of them possibly
empty). Secondly, Y \ B~1(X ™) is covered by the open sets Uy g where N/
is a disjoint union of N, and N}, as above, both non-empty.

Proof of first claim: Since g and h are disjoint, Lemma 5.17 implies
B(g Uh) = B(g) U B(h). This shows that if N; and N}, are nested with re-
spect to B(g) and B(h), then Ny UN}, is B(gUh)-nested. On the other hand,
every subset of a nested set is nested itself. With B(g U h) = B(g) U B(h)
the claim follows.

Proof of second claim: If 7 is an element of B(G)\ B(gUh), then it must
contain an edge e in E(ty \ ty) for ¢t an adapted spanning tree. From

1 1 1
Ay = |J AFcA
e'€E(ty)

and e € F(G¥) it follows that
& =p1A7) CBHX).

Now consider the open sets Uy g C Y where N = Ny UN), is I(gUh)-nested
and B marked accordingly. We need to show that local charts of this type
cover every &, for v € B(gUh) and that every z € X \ X~ is the preimage of
some y € Upr,p under the map 5: W.l.o.g. assume v C g and pick n € B(h).
Then N := {v,n} is B(G)-nested. Let B be marked accordingly and let

2., and Z, denote the collection of coordinates {zc}eep(r,) and {Te}ecp(,)
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where the marked elements mff and xff are set to 1. The map py p scales

z., by x?, z, by xf{’ and leaves all other coordinates unaltered - it does not
"mix” coordinates because g and h are disjoint. Recall that par g is the
essential part in the definition of the chart

kgt X\ |J Ze—UvpsCY,
£eB(G)

T (anywi'ya ) Il);;]in; [@’y]a ) [@n])

If £ isin B(G) \ B(g U h), the Z¢ are given by {z. = 0 | e € E(t¢)} which
is a subset of X . Similarly, for £ € B(g U h) with either £ < v or £ <
we have Zg = {z. = 0 | e € E(t¢)}. If £ € B(g U h) and either £ > v or
€ >, then Z¢ = {25 = 0,2. =0 | e € E(t¢ \ t,)} or with v replaced by 7.
Finally, Z, = Z, = (). From this description it is clear that as the marking
of B varies, the sets Up,p cover & (and &, as well). Additionally, as we
vary over B(g U h)-nested sets of the form Ny, UN}, and markings of B, we
find preimages y € Y in Upr p for every x € X \ X~ by solving a system
of linear equations (after fixing the marked elements the system is trivial; if
the marked elements are required to be zero, we switch to another chart).

The previous discussion shows also that for such nested sets N' = NyjUN},
and marked bases B = By U By, we have

UN,B - UNngg X UMLvBh X (XG* \ U Z/Y)7
YEB(G)\B(gUh)

where Uy, B, and Uy, B, are chart domains for Yy and Yj. A similar de-
composition holds for the charts

KN,B = BNy, By X KNy,,By, X id

and for the blowdown f3, locally given by pn' B = pn,.B, X PN;,,B, X id.
Thus, outside of 71(X ™) both models Y and Y’ look locally the same
and we can find a partition of unity

XN ,B = XN,,By X XNp,B, X id,

subordinate to the sets Uy, gNB~1(S) where N' = N;UN}, and B = B;UBy,.
With the notation introduced in the proof of Theorem 7.3 we have f =

82



fofnfc+. Then in every such Un,p

(Rulac)lv) = D> (=1)M (g - (e)ec )

KCN

= > (—1)’C9|/dxu/\ﬂ/icg5icg[f¢]

P#£KgCNg
+ Z (_1)|’Ch|/dwu/\/7/l€h5’€h[fw}

DAKCHh TN,

i Z (_1)|IC9|+|/Ch| /d;[; U/\/VICgV/ChéngU/Ch [f'(ﬂ
KyUK,CN

= ) (—1)K9|/dﬂfuNVicg5icg[fg](fh5/cg[fc*]5/cg[¢]

0AK ,CN,

Y (D, 0k, Ll o, e 1o, o, )
DAKh TN,

b Y 0 [ oy, die, e, e] £y 00,16

KnCN,

= > (_1)K9|+Kh|/dx“NVICgVKhCSICg[fg]@ch[fh]
KCgCNG
’Chg-/\/h
X Ok, i, [fa<10k, uic, (V]

= (R[] ® R[] | (i |9)).

Applying this to ¢ = (xn B © /{X/I’B)ﬁ*cp and summing over all nested sets
and corresponding markings shows (8.1). The case of minimal subtraction
works in the same way (cf. the discussion in Chapter 7). This finishes the
proof. O

To connect the graph by graph method presented in this thesis with the
Epstein-Glaser construction we need to renormalize the sum of all graphs
with a fixed vertex order. Thus, we need a space that serves as a universal
wonderful model for all at most logarithmic graphs on n vertices. There
are two obvious candidates, the minimal and the maximal wonderful models
of the graph lattice G for the complete graph K,. Since every divergent
subgraph of a graph is saturated, the set G(K,) contains all possible diver-
gences of such a graph. In other words, these two models are universal in
the sense that for every graph G on n vertices there exist canonical proper
projections

pgax : Yg(Kn) — YD(G)7 (82)
Poin : Y1(6(k0) — YiD(@))- (8.3)
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This follows from Definition 4.3. The theorem above suggests to focus on
minimal building sets. Let ¥ denote Y7(g(k,)) and G be a connected and at
most logarithmic graph on n vertices. The idea is to compose the projection
pG. with the blowdown 3 of the wonderful model Yi(p()) and consider the
pullback w¢g of vg under this map. In the additional charts that cover the
components of £ C 'Y not corresponding to elements of I(D(G)) we set the
local densities w¢g to zero. Then we proceed as before to obtain a renormal-
ized density on Y. A detailed description is left for future work, but we make
one further observation that highlights the connection between wonderful
renormalization and the Epstein-Glaser method. Recall that the wonderful
model Y7(g(k,)) is equivalent to the Fulton-MacPherson compactification of
the configuration space F,, (M), for which the structure of I(G(K,,))-nested
sets is encoded by rooted trees [FM94]. As shown in [BK04], Epstein-Glaser
renormalization can also be formulated in terms of rooted trees. On the
other hand, the Hopf algebra of rooted trees H,; satisfies an universal prop-
erty in the category of renormalization Hopf algebras [Krel3], as does the
Fulton-MacPherson compactification in the category of (minimal) wonderful
models (Equation (8.2))!

8.2 Connection to renormalization Hopf algebras

As shown in [BBK10], the renormalization Hopf algebra of Feynman graphs
is encoded in the stratification of the exceptional divisor £ of a wonderful
model associated to a graph G. We sketch the arguments and finish with a
discussion of a Hopf algebraic formulation of wonderful renormalization.

Let H be the free algebra on the vector space spanned by (isomorphism
classes) of connected, divergent (at most logarithmic) graphs. The multi-
plication on H is given by disjoint union, the empty graph being the unit
element. In [BKO8] it is shown that H endowed with a coproduct A given
by

AG) =) 7@G//y
YeD

is indeed a Hopf algebra. To cope with the case of minimal building sets, i.e.
irreducible graphs, we can mod out by the ideal I generated by all irreducible
decompositions as defined in Chapter 5.

On H := H/I it is the antipode S : H — H that disassembles G into
parts determined by its irreducible divergent subgraphs and prepares so the
renormalization process. In terms of contraction relative to nested sets .S is

given by
S@G) =Y ()T v

N yeEN

where the sum is over I(D(G))-nested sets.
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This is the starting point of Hopf algebraic renormalization. The goal is
then to formulate the whole wonderful renormalization process in terms of
the convolution product of a twisted antipode with Feynman rules, similar
to renormalization in momentum or parametric space. This is not straight-
forward due to the local formulation of the renormalization operators, but
motivated by another, more direct approach.

The combinatorial character of Zimmermann’s forest formula is a first
hint at a Hopf algebra structure underlying renormalization. The locally
defined wonderful renormalization operators resemble the classical formula
for subtracting divergences only in certain charts. To connect with the forest
formula and translate it into Hopf algebraic terms we could use the follow-
ing idea. It is based on the fact that if a graph has only subdivergences
that are nested into each other, then local subtractions resemble the forest
formula correctly. Working modulo primitive elements of H, or H, every
graph can be written as a sum of graphs that behaves like an element with
purely nested subdivergences [BK08]. This shows that in principle won-
derful renormalization fits into the Hopf algebraic framework. Of course,
it is worthwhile to establish the connection on a more abstract level using
geometrical methods.

Once this is achieved, the whole world of renormalization Hopf algebras
can be explored and used in the position space setting.
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CUTKOSKY RULEZ!
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