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0 Preface

It’s unexpected and heart-warming to be asked by Bryan Chen to write something about
these notes, 25 years after taking them. I was the teaching assistant for Sidney’s quantum
field theory course for three years. In the first year, I sat in, because frankly, I hadn’t learned
quantum field theory well enough the first time that I took it.

When I have the good fortune to hear a really good lecturer, I often re-copy my notes,
preferably the evening on the day that I took them.

Once in a while, students would miss a class, and then ask me if they could look at my
notes. At some point, the requests started happening enough that it was suggested that a
copy be put on reserve in the Harvard physics library. From there, copies of the notes just
kept spreading.

Sidney once expressed disappointment about the spread of the notes. For one thing, I
even wrote down some of his anecdotes and jokes, and that made it less fun for him to re-tell
them. For another, he wrote Aspects of Symmetry which shared a lot of material with what
he taught in Physics 253b. He may have had in mind that he would write a field theory
book as a companion volume.

Of course, he never did write a field theory book, or you’d be reading that, and he never
tried to rein the copies in. Now that he is gone, we are lucky that his clarity lives on.

Thanks to Bryan Chen and Yuan-Sen Ting for creating this lovely LATEX version. Some-
times transcription can seem tedious, but I hope it was as valuable for them as the first
re-copying was for me, and that for you – fellow student of quantum field theory – the
existence of these notes is similarly valuable.

–Brian Hill, www.lingerhere.org, March 10, 2011

Typesetters’ notes

The great field theorist Sidney Coleman for many years taught the course Physics 253 at
Harvard on Quantum Field Theory. The notes you are reading were typeset from a scanned
version of handwritten lecture notes by Brian Hill from the Fall 1985-1986 semester of the
first half of the course: Physics 253a. The Harvard Physics Department has made films of
the lectures from the 1975-1976 version of the course available on their website as well.

The typesetting for lectures 1-11 was done by Bryan Gin-ge Chen and for lectures 12-28
by Yuan-Sen Ting, who also recreated most of the figures. We have attempted to stay as
faithful as possible to the scanned notes, correcting only obvious typos and changing some
of the in-text references. We have noted some of these changes in comments in the LATEX
source, though this was not done systematically.

http://www.lingerhere.org
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1 September 23

In NRQM, rotational invariance simplifies scattering problems. Why does the addition of
relativity, the addition of L.I., complicate quantum mechanics?

The addition of relativity is necessary at energies E % mc2. At these energies

p+ p→ p+ p+ π0

is possible. At slightly higher energies

p+ p→ p+ p+ p+ p̄

can occur. The exact solution of a high energy scattering problem necessarily involves many
particle processes.

You might think that for a given E, only a finite number, even a small number of processes
actually contribute, but you already know from NRQM that that isn’t true.

H → H + δV δE0 = 〈0|δV |0〉+
∑
n

|〈0|δV |n〉|2

E0 − En
+ · · ·

Intermediate states of all energies contribute, suppressed by energy denominators.

For calculations of high accuracy effects at low energy, relativistic effects of order
(
v
c

)2

can be included. Intermediate states with extra particles will contribute corrections of or-

der E
mc2

Typical
energies

← in problem

← Typical
energy

denominator

∼ mv2

mc2
=
(
v
c

)2
. As a general conclusion: the corrections of relativistic

kinematics and the corrections from multiparticle intermediate states are comparable; the
addition of relativity forces you to consider many-body problems. We can’t even solve the
zero-body problem. (It is a phenomenal fluke that relativistic kinematic corrections for the
Hydrogen atom work. If the Dirac equation is used, without considering multi-particle in-
termediate states, corrections of O

(
v
c

)
can be obtained. This is a fluke caused by some

unusually low electrodynamic matrix elements.)
We will see that you cannot have a consistent relativistic picture without pair production.

Units

~ = c = 1 [m] = [E] = [T−1] = [L−1]

Because we’re doing
relativistic (c)

quantum mechanics (~)

Sometimes 1 = −1 = 2π
and 1

2π
= 1=“one-bar”

(1 fermi)−1 ≈ 197 GeV
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Lorentz Invariance

Every Lorentz transformation is the product of an element of the connected Lorentz group,
SO(3, 1), and 1, P (reflects all three space components), T (time reversal), or PT . By
Lorentz invariance we mean SO(3, 1).

Metric convention: +−−−.

Theory of a single free spinless particle of mass µ

The components of momentum form a complete set of commuting variables.

Momentum operator→ ~P | ~k︸︷︷︸〉
State of a spinless

particle is completely
specified by its momentum.

= ~k|~k〉

Normalization 〈~k|~k′〉 = δ(3)(~k − ~k′)

The statement that this is a complete set of states, that there are no others, is

1 =

∫
d3k|~k〉〈~k|

|ψ〉 =

∫
d3kψ(~k)|~k〉 ψ(~k) ≡ 〈~k|ψ〉

(If we were doing NRQM, we’d finish describing the theory by giving the Hamiltonian,

and thus the time evolution: H|~k〉 = |~k|2
2µ
|~k〉.)

We take H|~k〉 =

√
|~k|2 + µ2|~k〉 ≡ ω~k|~k〉

That’s it, the theory of a single free spinless particle, made relativistic.
How do we know this theory is L.I.? Just because it contains one relativistic formula, it

is not necessarily relativistic. The theory is not manifestly L.I..
The theory is manifestly rotationally and translationally invariant. Let’s be more precise

about this.

Translational Invariance

Given a four-vector, a, specifying a translation (active), there should be a linear operator,
U(a), satisfying:

U(a)U(a)† = 1, to preserve probability amplitudes (1.1)

U(0) = 1 (1.2)

U(a)U(b) = U(a+ b) (1.3)
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The U satisfying these is U(a) = eiP ·a where P = (H, ~P ).
(This lecture is in pedagogical, not logical order. The logical order would be to state:

1. That we want to set up a translationally invariant theory of a spinless particle. The
theory would contain unitary translation operators U(~a).

2. Define P i = −i ∂U
∂qi
||~a=0, (by (1.3) [Pi, Pj] = 0, by (1.1) ~P = ~P †).

3. Declare P i to be a complete set and classify the states by momentum.

4. Define H =
√
~p2 + µ2, thus giving the time evolution.)

More translational invariance

U(a)|0〉 = |a〉 U(a) = eiP ·a

where |0〉 here means state centered at zero and |a〉 means state centered at a.

O(x+ a) = U(a)O(x)U(a)†

〈a|O(x+ a)|a〉 = 〈0|O(x)|0〉

Non-relativistic reduction

U(~a) = e−i
~P ·~a

e−i
~P ·~a|~q〉 = |~q + ~a〉

Something hard to digest, but correct:

~̂qe−i
~P ·~a|~q〉 = (~q + ~a)|~q + ~a〉

ei
~P ·~a~̂qe−i

~P ·~a|~q〉 = (~q + ~a)|~q〉

⇒ ei
~P ·~a~̂qe−i

~P ·~a = ~̂q + ~a

Looks like the opposite of

e−i
~P ·~aO(~x)ei

~P ·~a = O(~x+ ~a)

The ~̂q operator is not an operator localized at ~q. No reason for these (last two equations)
to look alike.
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Rotational Invariance

Given an R ∈ SO(3), there should be a U(R) satisfying

U(R)U(R)† = 1 (1.4)

U(1) = 1 (1.5)

U(R1)U(R2) = U(R1R2) (1.6)

Furthermore denote |ψ′〉 = U(R)|ψ〉

〈ψ′|~P |ψ′〉 = R〈ψ|~P |ψ〉

for any |ψ〉 i.e. U(R)† ~PU(R) = R~P (1.7)

and U(R)†HU(R) = H (1.8)

A U(R) satisfying all these properties is given by

U(R)|~k〉 = |R~k〉

That (1.5) and (1.6) are satisfied is trivial.
Proof that (1.4) is satisfied

U(R)U(R)† = U(R)

∫
d3k|~k〉〈~k|U(R)†

=

∫
d3k|R~k〉〈R~k| k′ = Rk, d3k′ = d3k

=

∫
d3k′|~k′〉〈~k′| = 1

Proof that (1.7) is satisfied

U(R)† ~PU(R) =
by (1.4)

U(R)−1 ~P (U(R)−1)† ↓ by (1.5) and (1.6)

= U(R−1)~PU(R−1)†

= U(R−1)~P

∫
d3k|~k〉〈~k|U(R−1)†

= U(R−1)

∫
d3k~k|~k〉〈~k|U(R−1)†

=

∫
d3k~k|R−1~k〉〈R−1~k| k = Rk′, d3k = d3k′

=

∫
d3k′R~k′|~k〉〈~k|

= RP
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You supply proof of (1.8).
This is the template for studying L.I.
Suppose a silly physicist took

|~k〉s =
√

1 + k2
z |~k〉

s〈~k|~k′〉s = (1 + k2
s)δ

(3)(~k − ~k′)

1 =

∫
d3k

1

1 + k2
z

|~k〉s s〈~k|

If he took Us(R)|~k〉s = |R~r〉s his proofs of (1.4), (1.7), (1.8) would break down because

d3k

1 + k2
z

6= d3k′

1 + k′2z
i.e.

d3k

1 + k2
z

is not a rotationally invariant measure!

Lorentz Invariance

〈~k|~k′〉 = δ(3)(~k − ~k′) is a silly normalization for Lorentz invariance.
d3k is not a Lorentz invariant measure.
We want a Lorentz invariant measure on the hyperboloid k2 = µ2, k0 > 0.
d4k is a Lorentz invariant measure.
Restrict it to the hyperboloid by multiplying it by a Lorentz invariant d4kδ(k2−µ2)Θ(k0).

This yields the measure on the hyperboloid1 d3k
2ω~k

, ω~k =

√
~k2 + µ2, k = (ω~k,

~k).

So we take |k〉
relativistically

normalized

=
√

(2π)3︸ ︷︷ ︸√2ω~k|~k〉
So factors of 2π

come out right in the
Feynman rules a few

months from now

.

k
o

k

1Think of the δ function as a function of k0 and use the general formula δ(f(k0)) =
∑

zeroes
of f , Ki

δ(k0−Ki)
|f ′(Ki)| .
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(Using d3xδ(~x2 −R2) can get R
2

sin θdθdφ)

Looks like factor multiplying d3k ought to get larger as |~k| gets large. This is an illusion,
caused by graphing on Euclidean paper. This is the same illusion as in the twin paradox.
The moving twin’s path looks longer, but in fact, its proper time is shorter.

Now the demonstration of Lorentz invariance: Given any Lorentz transformation Λ define

U(Λ)|k〉 = |Λk〉

U(Λ) satisfies

U(Λ)U(Λ)† = 1 (1.9)

U(1) = 1 (1.10)

U(Λ1)U(Λ2) = U(Λ1Λ2) (1.11)

U(Λ)PU(Λ) = ΛP (1.12)

The proofs of these are exactly like the proofs of rotational invariance, using

1 =

∫
d3k

(2π)32ω~k
|k〉〈k| d3k

(2π)32ω~k
=

d3k′

(2π)32ω~k′

We have a fairly complete theory except we still don’t know where anything is.
We need a position operator, satisfying

~X = ~X† (1.13)

R ~X = U(R)† ~XU(R) (1.14)

ei
~P ·~a ~Xe−i

~P ·~a = ~X + ~a (1.15)

Take ∂
∂ai

of (1.15) to get i[Pi, Xj] = δij.

Determination of ~X in position space

ψ(~k) ≡ 〈~k|ψ〉 〈~k|~P |ψ〉 = ~kψ(~k)

〈~k| ~X|ψ〉 = i
∂

∂~k
ψ︸︷︷︸(~k)

to satisfy
inhomogeneous part of
commutation relation

+ ~kF (|~k|2)︸ ︷︷ ︸ψ(~k)

an arbitrary vector

commuting with the ~P ’s,
a complete set, can be

written this way
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The extra arbitrary vector can be eliminated by redefining the phases of the states. In
the momentum state basis let

|~k〉 → |k〉N = eiG(|~k|2)|~k〉 (This is a unitary transformation, call it U .

In effect, U † ~XU is our new position operator.)

Here ~∇G(|~k|2) = ~kF (|~k|2)

The only formula this affects in all that we have done so far is the expression for 〈~k| ~X|ψ〉.
With the redefined states, it is

N〈~k| ~X|ψ〉n =

∫
d3k′N 〈~k|~k′〉︸ ︷︷ ︸

eiG(|~k|2)δ(3)(~k−~k′)

〈~k′| ~X|ψ〉N︸ ︷︷ ︸
[i ∂
∂~k′

+~k′F (|~k′|2)]eiG(|~k′|2)ψ(~k′)

=

∫
d3k′e−iG(|~k|2)δ(3)(~k − ~k′)

{[
��

�
��

��

− ∂

∂~k′
G(|~k′|2) +���

���~k′F (|~k′|2)

]
eiGψ + eiG

∂

∂~k′
ψ

}
= i

∂

∂~k
ψ(~k)

Up to an unimportant phase definition, we have shown that the obvious definition for ~X
is the unique definition, and we have done it without using L.I. or the explicit form of H.
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2 September 25

It is possible to measure a particle’s position in our theory, ~x is an observable, and this leads
to a conflict with causality.

Introduce position eigenstates

〈~k|~x〉 =
1

(2π)3/2
e−i

~k·~x

We will evaluate 〈~x|e−iHt|~x = 0〉 and see that our particle has a nonzero amplitude to be
found outside its forward light cone 2.

〈~x|e−iHt|~x = 0〉 =

∫
d3k〈~x|~k〉〈~k|e−iHt|~x = 0〉 H|~k〉 = ω~k|~k〉

=

∫
d3k

1

(2π)3
ei
~k·~xe−iω~kt ω~k =

√
~k2 + µ2

=

∫ ∞
0

k2dk

(2π)3

∫ π

0

sin θdθ︸ ︷︷ ︸∫ 1
−1 d(cos θ)

∫ 2π

0

dφ︸ ︷︷ ︸
2π

eikr cos θe−iωkt r = |~x|, k = |~k|

=
1

(2π)2

1

ir

∫ ∞
0

kdk(eikr − e−ikr)e−iωkt ωk =
√

k2 + µ2

=
−i

(2π)2r

∫ ∞
−∞

kdkeikre−iωkt

These steps can be applied to the F.T. of any function of |~k|.

Im <0 

Im >0 

iu

-iu

k
branch cut 
for

2By translational invariance and superposition we could easily get the evolution of any initial configuration
from this calculation.
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ei
√

k2+µ2
is a growing exponential as you go up the right side of the upper branch cut,

and a decreasing exponential on the left side. Given r > 0 and r > t the product eikre−iωkt

decreases exponentially as you go up the branch cut.
Given r > 0 and r > t deform the contour to:

half circle
at infinity does 
not contribute

The integral becomes

−i
(2π)2r

∫ ∞
µ

k=iz︷︸︸︷
(−z) d(iz)e−zr[e

√
z2−µ2t − e−

√
z2−µ2t] = − e

−µr

2π2r

∫ ∞
µ

zdze−(z−µ)r sinh(
√
z2 − µ2t)

The integrand is positive definite, the integral is nonzero.
We can measure a particle’s position in this theory. We can trap it in a box of arbitrarily

small size, and we can release it and detect it outside of its forward light cone. The particle
can travel faster than light and thus it can move backwards in time, with all the associated
paradoxes.

Admittedly, the chance that the particle is found outside the forward light cone falls off
exponentially as you get further from the light cone, and that makes it extremely unlikely
that I could go back and convince my mother to have an abortion, but if it is at all possible,
it is still an unacceptable contradiction.

In practice, how does this affect atomic physics? Not at all, because we never tried to
localize particles to spaces of order their Compton wavelength when doing atomic physics.
We say that the electron is in the TV picture tube and there is not much chance that it is
actually out in the room with you.

In principle, the ability to localize a single particle is a disaster, how does nature get out
of it?

Particle trapped in container with reflecting walls
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If the particle is localized to a space with dimensions on the order of L the uncertainty in
the particle’s momentum is ∼ 1

L
. In the relativistic regime this tells us that the uncertainty

in the particle’s energy is ∼ 1
L

. As L gets less than 1
µ

states with more than one particle
are energetically accessible. If the box contained a photon and the walls were mirrors the
photon would pick up energy as it reflected off the descending mirror, it could turn into two
photons as it reflected.

If we try to localize a particle in a box with dimensions smaller or on the order of
a Compton wavelength it is unknown whether what we have in the box is 1 particle, 3
particles, 27 particles or 0 particles.

Relativistic causality is inconsistent with a single particle theory. The real world evades
the conflict through pair production. This strongly suggests that the next thing we should
do is develop a multi-particle theory.

Any number of one type of free spinless mesons

The space we construct is called Fock space. This formalism is also used in thermodynamics with the grand
canonical ensemble. Particle number instead of being fixed, fluctuates around a value determined by the
chemical potential.

Basis for single particle states |~k〉

〈~k′|~k〉 = δ(3)(~k − ~k′) H|~k〉 = ω~k|~k〉 ~P |~k〉 = ~k|~k〉

This is the same as last time, except now this is just part of the basis.
Two particle states |~k1, ~k2〉 =︸︷︷︸

indistinguishability,
Bose statistics

|~k2, ~k1〉

〈~k1, ~k2|~k′1, ~k′2〉 = δ(3)(~k1 − ~k′1)δ(3)(~k2 − ~k′2) + δ(3)(~k1 − ~k′2)δ(3)(~k2 − ~k′1)

H|~k1, ~k2〉 = (ω~k1
+ ω~k2

)|~k1, ~k2〉
~P |~k1, ~k2〉 = (~k1 + ~k2)|~k1, ~k2〉

etc.



2. September 25 Notes from Sidney Coleman’s Physics 253a 17

Also need a no particle state |0〉

〈0 |0〉︸︷︷︸ = 1︸︷︷︸ H|0〉 = 0 ~P |0〉 = 0

not part of a continuum

The vacuum is unique, it must satisfy U(Λ)|0〉 = |0〉. All observers agree that the state
with no particles is the state with no particles.

Completeness relation

1 = |0〉〈0|+
∫
d3k|~k〉〈~k|+ 1

2!︸︷︷︸
∫
d3k1d

3k2|k1k2〉〈k1, k2|

to avoid double counting. Alternatively,

just check that this works on |~k,~k′〉

Now we could proceed by setting up equations for wave functions. To specify a state, a
wave function contains a number, a function of three variables, a function of six variables,
etc. Interactions involving a change in particle number will connect a function of six variables
to a function of nine variables. This would be a mess.

We need a better description. As a pedagogical device, we will work in a periodic cubical
box of side L for a while. Since a translation by L does nothing, the momenta must be
restricted to allowed values

~k =

(
2πnx
L

,
2πny
L

,
2πnz
L

)
satisfying

~k · (0, 0, L) = 2nzπ
~k · (0, L, 0) = 2nyπ
~k · (L, 0, 0) = 2nxπ

Dirac deltas become Kronecker deltas and integrals become sums

δ(3)(~k − ~k′)→ δ~k~k′

∫
d3k →

∑
~k

〈~k|~k′〉 = δ~k~k′ 〈~k1, ~k2|~k′1, ~k′2〉 = δ~k1
~k′1
δ~k2

~kh2
+ δ~k1

~k′2
δ~k2

~k′1

Occupation number representation

Each basis state corresponds to a single function

|~k1〉 ↔ n(~k) = δ~k~k1

|~k1, ~k2〉 ↔ n(~k) = δ~k~k1
+ δ~k~k2

|0〉 ↔ n(~k) = 0
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Given a function n(~k) in the occupation number description, we write the state

| n(·)︸︷︷︸〉 Inner product 〈n(·)|n′(·)〉 =
∏
~k

n(~k)!δn(~k)n′(~k)

no argument, to emphasize
that the state depends on the

whole function n, not just

its value for one specific ~k.

Define an occupation number operator

N(~k)|n(·)〉 = n(~k)|n(·)〉 H =
∑
~k

ω~kN(~k) ~P =
∑
~k

~kN(~k)

This is a better formalism, but it could still use improvement. It would be nice to have
an operator formalism that did not have any wave functions at all.

Note that H for our system has the form it would have if the system we were dealing
with was actually a bunch of harmonic oscillators. The two systems are completely different.
In ours the N(~k) tells how many particles are present with a given momentum. In a system

of oscillators, N(~k) gives the excitation level of the oscillator labelled by ~k.

Review of the simple harmonic oscillator

No physics course is complete without a lecture on the simple harmonic oscillator. We will
review the oscillator using the operator formalism. We will then exploit the formal similarity
to Fock space to get an operator formulation of our multi-particle theory.

H =
1

2
ω[p2 + q2 − 1] [p, q] = −i

If [p,A] = [q, A] = 0 then A = λI.
This is all we need to get the spectrum.
Define raising and lowering operators

a ≡ q + ip√
2

a† =
q − ip√

2
H = ωa†a

[H, a†] = ωa† [H, a] = −ωa [a, a†] = 1

Ha†|E〉 = a†H|E〉+ ωa†|E〉
= (E + ω)a†|E〉 a† is the raising operator

Ha|E〉 = (E − ω)a|E〉
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a
a
a

t

t

E+2
E+
E
E-

Ladder
  of
states

Because, 〈ψ|H|ψ〉 = ω〈ψ|a†a|ψ〉 = ω||a|ψ〉||2 ≥ 0 the ladder of states must stop going
down or else E becomes negative. The only way this can happen is if a|E0〉 = 0. Then
H|E0〉 = 0.

The lowest state of the ladder, having E0 = 0 is denoted |0〉. The higher states are made
by

(a†)n|0〉 ∝ |n〉 H|n〉 = nω|n〉
Get normalizations right a†|n〉 = cn|n+ 1〉

|cn|2 = 〈n|aa†|n〉 = n+ 1⇒ cn =
√
n+ 1

a|n〉 = dn|n− 1〉 |dn|2 = n dn =
√
n

Now we use [p,A] = [q, A] = 0 ⇒ A = λI to show that this ladder built from a state
with E0 = 0 is in fact the whole space. We do this by considering the projector, P , onto the
states in the ladder. Since a and a† keep you within the ladder

[a,P ] = [a†,P ] = 0⇒ [p,P ] = [q,P ] = 0

⇒ P = λI

The projector onto the ladder is proportional to the identity. There is nothing besides
the states we have found.

Now we will apply this to Fock space.
Define creation and annihilation operators for each momentum, a~k, a

†
~k′

, satisfying

[a~k, a
†
~k′

] = δ~k~k′ [a~k, a~k′ ] = 0 [a†~k, a
†
~k′

] = 0

Hilbert space built by acting on |0〉 with strings of creation operators.

|~k〉 = a†~k|0〉 a~k|0〉 = 0

a†~k1
a†~k2
a†~k3
|0〉 = |~k1, ~k2, ~k3〉

H =
∑
~k

ω~ka
†
~k
a~k

~P =
∑
~k

~ka†~ka~k
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If ∀~k 0 = [a~k, A] = [a†~k, A] =⇒ A = λI︸ ︷︷ ︸
This tells us there

are no other degrees
of freedom.

We’ve laid out a compact formalism for Fock space. Let’s drop the box normalization
and see if it is working.

[a~k, a
†
~k′

] = δ(3)(~k − ~k′) [a~k, a~k′ ] = 0 = [a†~k, a
†
~k′

]

H =

∫
d3kω~ka

†
~k
a~k

~P =

∫
d3k~ka†~ka~k

Check energy and normalization of one particle states.

〈~k′|~k〉 = 〈0|a~k′a
†
~k
|0〉 = 〈0|[a~k′ , a

†
~k
]|0〉

= δ(3)(~k − ~k′)〈0|0〉 = δ(3)(~k − ~k′)

[H, a†~k] =

∫
d3k′ω~k′ [a

†
~k′
a~k′ , a~k] = ω~ka~k ⇒

H|~k〉 = Ha†~k|0〉 = [H, a†~k]|0〉 = ω~k|~k〉

[~P, a†~k] = ~ka†~k ⇒
~P |~k〉 = ~k|~k〉

Check normalization of two-particle states |~k1, ~k2〉 = a†~k1
a†~k2
|0〉. Using commutation rela-

tions check

〈~k′1, ~k′2|~k1, ~k2〉 = δ(3)(~k1 − ~k′1)δ(3)(~k2 − ~k′2) + δ(3)(~k2 − ~k′1)δ(3)(~k2 − ~k′1)

Mathematical Footnote:

We’ve been calling the a~k and a†~k operators. An operator takes any normalizable vector in

Hilbert space to another normalizable vector: A|ψ〉 is normalizable whenever |ψ〉 is normal-
izable. Even x in 1-d QM is not an operator.

∫
dx|f(x)|2 < ∞��⇒

∫
dx|f(x)|2x < ∞. x is

an unbounded operator. An unbounded operator has A|ψ〉 normalizable for a dense set3

of |ψ〉. a~k and a†~k are even more awful than unbounded operators. An extra meson in a
plane wave state added to any state is enough to make it nonnormalizable. a~k is an operator
valued distribution. You only get something a mathematician would be happy with after
integration.

∫
d3kf(~k)a~k is acceptable with a “sufficiently smooth” function.

3Any |ψ〉 is the limit of a sequence in the dense set.
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3 September 30

In ordinary QM, any hermitian operator is observable. This can’t be true in relativistic
quantum mechanics. Imagine two experiments that are at space-like separation. If x1 ∈ R1

and x2 ∈ R2 then (x1 − x2)2 < 0.

space-time region
accessible to observer 1

space-time region
accessible to observer 1

R1 R2

Suppose observer 2 has an electron in his lab and she measures σk. If observer 1 can
measure σy of that electron it will foul up observer 2’s experiment. Half the time when
she remeasures σx it will have been flipped. This tells her that observer 1 has made a
measurement. This is faster than light communication, an impossibility. It is a little hard
to mathematically state the obvious experimental fact that I can’t measure the spin of an
electron in the Andromeda galaxy. We don’t have any way of localizing particles, any position
operator, yet. We can make a mathematical statement in terms of observables:

If O1 is an observable that can be measured in R1 and O2 is an observable that can be
measured in R2 and R1 and R2 are space-like separated then they commute:

[O2, O2] = 0

Observables are attached to space time points. A given observer cannot measure all
observables, only the ones associated with his or her region of space-time.

It is not possible, even in principle for everyone to measure everything. Out of the hordes
of observables, only a restricted set can be measured at a space-time region. Localization of
measurements is going to substitute for localization of particles.

The attachment of observables to space-time points has no analog in NRQM, nor in
the classical theory of a single particle, relativistic or nonrelativistic, but it does have an
analog in classical field theory. In electromagnetism, there are six observables at each point:
Ex(x) = Ex(~x, t), Ey(x), Ez(x), Bx(x), By(x), Bz(x). We can’t design an apparatus here
that measures the Ex field now in the Andromeda galaxy.

In classical field theory, these observables are numbers. In quantum mechanics, observ-
ables are given by operators. The fields will become quantum fields, an operator for each
spacetime point. We can see in another way that the electric field is going to have to become
a quantum field: How would you measure an electric field? You mount a charged ball, pith
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ball, to some springs and see how much the springs stretch. The location of the ball is given
by an equation like:

qẍ = Ex(x)←− might be
∫
d4xf(x)Ex(x) where f(x)

gives some suitable average over the pith ball.

The amount the ball moves is related to the ~E field, and if the world is quantum me-
chanical, x must be an operator, and so Ex must be an operator.

We don’t have a proof, but what is strongly suggested is that QM and relativistic causality
force us to introduce quantum fields. In fact, relativistic QM is practically synonymous with
quantum field theory.

We will try to build our observables from a complete commuting set of quantum fields.

φa(x)
a=1,...,N

operator valued functions of space-time.

Observables in a region R will be built out of φa(x) with x ∈ R. Observables in space-like
separated regions will be guaranteed to commute if

1. [φa(x), φb(y)] = 0 whenever (x− y)2 < 0.

We are going to construct our fields out of the creation and annihilation ops. These
five conditions will determine them:

2. φa(x) = φa†(x) hermitian, observable

and that they have proper translation and Lorentz transformation properties

3. e−iP ·aφa(x)eiP ·a = φa(x− a)

4. U(Λ)†φa(x)U(Λ) = ︸︷︷︸φa(Λ−1x)

If this were not a scalar
field, there would be extra

factors here reflecting a
change of basis; as well as

a change of argument

5. φa(x) =
∫
d3k[F a

k (x)a~k +Ga
k(x)a†~k]

We can think of our unitary transformations in two ways; as transformations on the
states |ψ〉 → U |ψ〉, or as transformations on the operators A→ U †AU . NOT BOTH!

What’s embodied in assumption (3):

Given U(~a) the unitary operator of space translation by ~a (U(~a) = e−i
~P ·~a) the translation

of a state |ψ〉 is a state |ψ′〉 = U(~a)|ψ〉. Suppose the value of some observable, like charge
density is

f(~x) = 〈ψ|ρ(~x)|ψ〉
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then it should be that
〈ψ′|ρ(~x)|ψ′〉 = f(~x− ~a).

x

xf( )

xa

f( - )ax

Rewrite the first equation with ~x→ ~x− ~a

f(~x− ~a) = 〈ψ|ρ(~x− ~a)|ψ〉

Equate 〈ψ|ρ(~x− ~a)|ψ〉 = 〈ψ′|ρ(~x)|ψ′〉

= 〈ψ|ei ~P ·~aρ(~x)e−i
~P ·~a|ψ〉

A hermitian operator is determined by its expectation values

ei
~P ·~aρ(~x)e−i

~P ·~a = ρ(~x− ~a)

(3) is just the full relativistic form of this equation. The equation with a = (t,~0) is just
the time evolution for Heisenberg fields.

For the exact same reason as x− a appears in the RHS of (3), Λ−1x appears in the RHS
of (4). (4) gives the Lorentz transformation properties of a

::::::
scalar field. This is not much of

an assumption. We can get fields transforming as vectors or tensors by taking derivatives of
the φa. Out of vector or tensor fields, we could make scalars.

In order to apply condition (4), it is nice to have the discussion phrased in terms of
relativistically normalized creation and annihilation operators.

Recall the relativistically normalized one particle states

|k〉 = (2π)3/2
√

2ω~k|~k〉

Introduce α†(k) = (2π)3/2
√

2ω~ka~k, α
†(k)|0〉 = |k〉.

Multiparticle states are made by

α†(k1) · · ·α†(kn)|0〉 = |k1, . . . , kn〉
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The Lorentz transformation properties of the states are

U(Λ)|0〉 = 0

U(Λ)|k1, . . . , kn〉 = |Λk1, . . . ,Λkn〉

and U(a) = eiP ·a is found from

P µ|0〉 = 0

P µ|k1, . . . , kn〉 = (k1 + · · ·+ kn)µ|k1, . . . , kn〉

In Eqs. (1.9)-(1.12) and Eqs. (1.1)-(1.3) of the Sept. 23 lecture we set up the criteria that
U(Λ) and U(a) must satisfy. At the time our Hilbert space consisted only of the one particle
part of the whole Fock space we have now. You should check that the criteria are satisfied
in Fock space.

We can determine Lorentz transformation and translation properties of the α†(k). Con-
sider,

U(Λ)α†(k)U(Λ)†|k1, . . . , kn〉 = U(Λ)α†(k)|Λ−1k1, . . . ,Λ
−1kn〉

= U(Λ)|k,Λ−1k1, . . . ,Λ
−1kn〉

= |Λk, k1 . . . , kn〉

That is U(Λ)α†(k)U(Λ)†|k1, . . . , kn〉 = α†(Λk)|k1, . . . , kn〉
|k1, . . . , kn〉 is an arbitrary state in our complete basis so we have determined its action

completely
U(Λ)α†(k)U(Λ)† = α†(Λk)

Similarly, or by taking the adjoint of this equation

U(Λ)α(k)U(Λ)† = α(Λk)

An analogous derivation shows that

eiP ·xα†(k)e−iP ·x = eik·xα†(k)

eiP ·xα(k)e−iP ·x = eik·xα(k)

Now to construct the field φ (if there is more than one we’ll label them when we’ve found
them) satisfying all 5 conditions. First we’ll satisfy condition (5) except we’ll write the linear

combination of a~k and a†~k in terms of our new α(~k) and α†(~k)

φ(x) =

∫
It would be stupid

not to use the
L.I. measure︷ ︸︸ ︷
d3k

(2π)32ω~k
[fk(x)α(k) + gk(x)α†(k)]
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By (3), φ(x) = eiP ·xφ(0)e−iP ·x, that is,

φ(x) =

∫
d3k

(2π)32ω~k
[fk(0)eiP ·xα(k)e−iP ·x + gk(0)eiP ·xα†(k)e−iP ·x]

=

∫
d3k

(2π)32ω~k
[fk(0)e−ik·xα(k) + gk(0)eik·xα†(k)]

We have found the x dependence of fk(x) and gk(x) now we will use (4) to get their k
dependence. A special case of (4) is

φ(0) = U(Λ)φ(0)U(Λ)†∫
d3k

(2π)32ω~k
[fk(0)α(k) + gk(0)α†(k)] =∫

d3k

(2π)32ω~k
[fk(0)U(Λ)α(k)U(Λ)†︸ ︷︷ ︸

α(Λk)

+gk(0)U(Λ)α†(k)U(Λ)†︸ ︷︷ ︸
α†(Λk)

]

change variables
measure is unchanged k → Λ−1k

=

∫
d3k

(2π)32ω~k
[fΛ−1k(0)α(k) + gΛ−1k(0)α†(k)]

The coefficients of α(k) and α†(k) must be unchanged ⇒ fk(0) = fΛ−1k(0) and gk(0) =
gΛ−1k(0).

k ranges all over the mass hyperboloid (k0 > 0 sheet), but a Lorentz transformation can
turn any of these k’s into any other. So fk(0) and gk(0) are constants, independent of k.

φ(x) =

∫
d3k

(2π)32ω~k
[fe−ik·xα(k) + geik·xα†(k)]

We have two linearly independent solutions of conditions (3), (4) and (5), the coefficients
of the complex constants f and g. We’ll name them. (Switching back to our old creation
and annihilation ops.)

φ+(x) =

∫
d3k

(2π)3/2
√

2ω~k
a~ke
−ik·x φ−(x) =

∫
d3k

(2π)3/2
√

2ω~k
a†~ke

ik·x

Note φ−(x) = φ+(x)† ± convention is bananas, but it
was est’d by Heisenberg and Pauli 50 years ago.

Now we’ll apply hermiticity. Two independent combinations satisfying (2) are

φ(x) = φ+(x) + φ−(x) and φ(x) =
1

i
[φ+(x)− φ−(x)]
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These are two independent cases of the most general choice satisfying (2):

φ(x) = eiθφ+(x) + e−iθφ−(x)

Now to satisfy (1). There are three possible outcomes of trying to satisfy (1).

Possibility A: Both of the above combinations are OK. We have two fields φ1 and
φ2 commuting with themselves and each other at spacelike separation. In this
possibility φ+(x) and φ−(x) commute with each other at spacelike separation.

Possibility B: Only one combination is acceptable. It is of the form φ = eiθφ++e−iθφ−.
While θ may be arbitrary, only one θ is acceptable.

Possibility C: The program crashes, and we could weaken (5) or think harder.

Let’s first calculate some commutators. Using their expansions in terms of the a~k and a†~k
and the commutation relations for a~k and a†~k we find

[φ+(x), φ−(y)] = 0 = [φ−(x), φ+(y)]

and [φ+(x), φ−(y)] =

∫
d3k

(2π)32ω~k
e−ik·(x−y) ≡ ∆+(x− y, µ2)︸ ︷︷ ︸

or just ∆+(x−y)

also [φ−(x), φ+(y)] = −∆+(x− y, µ2)

∆+ is manifestly Lorentz invariant ∆+(Λx) = ∆+(x).

Possibility A runs only if ∆+(x− y) = 0 for (x− y)2 < 0. We have encountered a similar
integral when we were looking at the evolution of one particle position eigenstates. In fact,

i∂0∆+(x− y) =

∫
d3k

(2π)3
e−ik·(x−y)

is the very integral we studied, and we found that it did
:::
not vanish when (x− y)2 < 0.

Possibility A is DEAD.
On to possibility B. Take φ(x) = eiθφ+(x) + e−iθφ−(x) and calculate

[φ(x), φ(y)] = ∆+(x− y)−∆+(y − x) θ dependence
drops out

Does this vanish when (x − y)2 < 0? Yes, and we can see this without any calcula-
tions. A space-like vector has the property that it can be turned into minus itself by a
(connected) Lorentz transformation. This and the fact that ∆+ is Lorentz invariant, tells
us that [φ(x), φ(y)] = 0 when x− y is space-like. We can choose θ arbitrarily, but we can’t
choose more than one θ. We’ll choose θ = 0. Any phase could be absorbed into the a~k and

a†~k.



3. September 30 Notes from Sidney Coleman’s Physics 253a 27

Possibility B is ALIVE, and we don’t have to go on to C.
We have our free scalar field of mass µ

φ(x) = φ+(x) + φ−(x) =

∫
d3k

(2π)3/2
√

2ω~k
[a~ke

−ik·x + a†~ke
ik·x]

Our field satisfies an equation (show using k2 = µ2)

(�+ µ2)φ(x) = 0 � = ∂µ∂µ

This is the Heisenberg equation of motion for the field. It is called the Klein-Gordon
equation. If we had quantized the electromagnetic field it would have satisfied Maxwell’s
equations.

Actually, Schrödinger first wrote down the Klein-Gordon equation. He got it at the same
time as he got the Schrödinger equation:

i∂0ψ = − 1

2µ
∇2ψ

This equation is obtained by starting with E = ~p2

2m
noting that E = ω (when ~ = 1) and

pi = ki and for plane waves ω = i∂0 and ki = 1
i
∂i.

Schrödinger was no dummy, he knew about relativity, so he also obtained (�+µ2)φ(x) = 0
from p2 = µ2.

He immediately saw that something was wrong with the equation though. The equation
has both positive and negative energy solutions. For a free particle the energies of its possible
states are unbounded below! This is a disgusting relativistic generalization of a single particle
wave equation, but with 50 years hindsight we see that this is no problem for a field that
can create and destroy particles.
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4 October 2

We have constructed the quantum field. It is the object observables are built from. More than
that though, we can reconstruct the entire theory from the quantum field. The structure we
built in the last three lectures is rigid. We can make the top story the foundation. Suppose
we started with a quantum field satisfying (as our φ does),

1. φ(x) = φ†(x), hermiticity

2. (�+ µ2)φ(x) = 0, K.-G. equation

3. [φ(x), φ(y)] = ∆+(x− y)−∆+(y − x) =
∫

d3k
(2π)32ω~k

[e−ik·(x−y) − eik·(x−y)]

4.
U(Λ)†φ(x)U(Λ) = φ(Λ−1x)
U(a)†φ(x)U(a) = φ(x− a)

}
φ is a scalar field

5. φ(x) is a complete set of operators, i.e. if ∀x [A, φ(x)] = 0⇒ A = λI.

then from these properties, we could reconstruct the creation and annihilation operators
and the whole theory. Conversely, all these properties follow from the expression for φ(x)
in terms of the creation and annihilation operators. The two beginning points are logically
equivalent.

Defining a~k and a†~k and recovering their properties

Property (2) of φ, that φ is a solution of the Klein-Gordon equation, tells us that

φ(x) =

∫
d3k[α~ke

−ik·x + β~ke
ik·x] (k0 = ω~k =

√
k2 + µ2)

This is because any solution of the Klein-Gordon equation can be expanded in a complete
set of solutions of the K.-G. eqn., and the plane wave solutions are a complete set. Because
φ is an operator, the coefficients in the expansion, α~k and β~k, are operators. Because of

property (1), α~k = β†~k. Just to please my little heart, let’s define

These funny factors will make the

commutation relations for the a~k and a†
~k

come out nice

α~k =
a~k

(2π)3/2
√

2ω~k
β~k = α†~k =

a†~k
(2π)3/2

√
2ω~k
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Then the expression is

φ(x) =

∫
d3k

(2π)3/2
√

2ω~k
[a~ke

−ik·x + a†~ke
ik·x]

This defines implicitly the a~k and a†~k. To find their commutation relations we’ll first have
to solve for them. Note that

φ(~x, 0) =

∫
d3k

(2π)3/2
√

2ω~k
[a~ke

−i~k·~x + a†~ke
i~k·~x]

While

φ̇(x) =

∫
d3k

(2π)3/2
√

2ω~k
[a~k(−iω~k)e

−ik·x + a†~k(iω~k)e
ik·x]

And

φ̇(~x, 0) =

∫
d3k

(2π)3/2

√
ω~k
2

[a~ke
−i~k·~x + a†~ke

i~k·~x]

The coefficient of 1
(2π)3/2 e

i~k·~x in the expansion for φ(~x, 0) is 1√
2ω~k

(a~k + a†
−~k

) therefore

1√
2ω~k

(a~k + a†
−~k

) =
∫

d3x
(2π)3/2φ(~x, 0)e−i

~k·~x

The coefficient of 1
(2π)3/2 e

i~k·~x in the expansion for φ̇(~x, 0) is
√

ω~k
2

(−ia~k + ia†
−~k

) therefore√
ω~k
2

(−ia~k + ia†
−~k

) =
∫

d3x
(2π)3/2 φ̇(~x, 0)e−i

~k·~x

That’s just the inverse Fourier transformation applied.
Now I can use these two expressions to solve for a~k. Take

√
2ω~k times the expression for

1√
2ω~k

(a~k + a†
−~k

) and add
√

2
ω~k

times the expression for
√

ω~k
2

(−ia~k + ia†
−~k

) and divide by 2 to

get

a~k =
1

2

[∫
d3x

(2π)3/2

(
φ(~x, 0) +

i

ω~k
φ̇(~x, 0)

)
e−i

~k·~x
]

Take the hermitian conjugate to get an expression for a†~k.

Having solved for the a~k and a†~k, we can now find their commutation relations. Write out

the double integral for [a~k, a
†
~k′

] and use property (3’) below (which is weaker than property

(3)). You should get δ(3)(~k − ~k′).
From property (4), you can derive, what U(a)†φ(x)U(a)†a~kU(a) and U(Λ)†a~kU(Λ)4 are.
You can also derive and state the analog of property (5).

4It is easier to find the action of Lorentz transformations on a(k) ≡ (2π)3/2
√

2ω~ka~k.
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The properties of the field φ(x) are actually a little overcomplete. We can weaken one of
them, (3), without losing anything. Since φ obeys the K.-G. equation, (2),

(�x + µ2)[φ(x), φ(y)] = 0

We see that the commutator obeys the K.-G. equation for any given y. For a given y, we
only need to give the commutator and the time derivative on one initial time surface, and
the K.-G. equation determines its evolution off the surface. So we will weaken (3) to

3’.
[φ(~x, t), φ(~y, t)] = 0
[∂0φ(~x, t), φ(~y, t)] = −iδ(3)(~x− ~y)

We can easily check that this is the right specialization of property (3) by doing the
integrals, which are easy with x0 = y0. (For a given y = (~y, t) we have chosen our initial
surface to be x0 = t. The equations in (3’) are called equal time commutation relations.)

[φ(~x, t), φ(~y, t)] =

∫
d3k

(2π)32ω~k
[e−i

~k·(~x−~y) − ei~k·(~x−~y)]
Change variables ~k → −~k

in second term

= 0

[∂0φ(~x, t), φ(~y, t)] =

∫
d3k

(2π)32ω~k
(−iω~k)[e

−i~k·(~x−~y) + ei
~k·(~x−~y)]

Again ~k → −~k in second term

=

∫
d3k

(2π)3
�
��2ω~k

(−i��ω~k)�2e
i~k·(~x−~y)

= −iδ(3)(~x− ~y)
(

Reminds us a little
of a bad dream in

which [pa, qb] = −iδab

)
In the remainder of this lecture we are going to develop a completely different approach

to quantum field theory. We will obtain a field satisfying properties (1), (2), (3’), (4) and
(5), and then we’ll stop. We have just shown that given a field satisfying these properties
we can recover everything we did in the first three lectures. The new approach is
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The method of the missing box

classical 
particle
mechanics

classical 
 field
theory

quantum
particle
mechanics

quantum
 field
theory

continuum
 limit

canonical
quantization

Anyone looking at this diagram can see there is a missing box

Taking the continuum limit essentially is just letting the number of coordinates, degrees
of freedom go to infinity. This is usually done in a cavalier way. It doesn’t matter a whole
lot if you have a discrete infinity or a continuous infinity. With a continuous infinity you can
Fourier transform the coordinates to obtain a discrete set of coordinates.

Canonical quantization is a turn the crank way of getting quantum mechanics, beginning
with a classical Hamiltonian.

We’ll combine these two standard operators to get the missing box, but first, a lightning
review of the essential principles of the three boxes we have.

Classical Particle Mechanics

We start with a Lagrangian, a function of the generalized coordinates, and their time deriva-
tives

L(q1, . . . , qN , q̇1, . . . , q̇N , t) qa(t), a ∈ 1, . . . , N

e.g. L = 1
2
mq̇2 − V (q)

We define the action S =
∫ t2
t1
dtL and apply Hamilton’s principle to get the equations of

motion. That is, we vary S by arbitrarily varying δqa(t) except at the endpoints

δqa(t1) = δqa(t2) = 0

and demand
0 = δS
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δS =

∫ t2

t1

dt

[∑
a

(
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a
)]

︸ ︷︷ ︸
parts integration

=

∫ t2

t1

dt
∑
a

(
∂L

∂qa
− d

dt
pa

)
pa≡ ∂L

∂q̇a

δqa + ���
��paδq

a|t2t1︸ ︷︷ ︸
vanishes because of
endpoint restriction

Since the variation δqa(t) is arbitrary

∂L

∂qa
= ṗa, for all a e.g. p = mq̇, ṗ = −dV

dq

These are the Euler-Lagrange equations.
Around 1920(!) the Hamiltonian formulation of classical particle mechanics was discov-

ered.
Define H(p1, . . . , pN , q1, . . . , qN , t) =

∑
a

paq̇
a − L

H must be written in terms of the p’s and q’s only, not the q̇’s. (This is not always possible.
The new variables must also be independent, so it is possible to vary them independently.
Examples where the p’s are not complete and independent are electromagnetism and a
particle on a sphere in R3. The Lagrangian for the latter system may be taken as

L =
1

2
m~̇r2 + λ(~r2 − a2)− V (~r)

The equation of motion for the variable λ enforces the constraint. In the passage to the
Hamiltonian formulation pλ = 0;5 pλ is not an independent function. In this system, one
way to et to the Hamiltonian description is to first eliminate λ and one more coordinate,
taking perhaps θ, φ, polar coordinates for the system, rewriting the Lagrangian, and then
trying again.)

Vary the coordinates and momenta

dH =
∑
a

(
dpaq̇

a +���padq̇
a

Fortunately we didn’t
have to expand out dq̇a

− ∂L

∂qa︸︷︷︸ dqa −
∂L

∂q̇a
dq̇a

ṗa by the E-L equations

)

Read off Hamilton’s equations

∂H

∂pa
= q̇a

∂H

∂qa
= −ṗa

Notice: ∂L
∂t

= 0⇒ dH
dt

= 0
in that case H is called the energy (which

is the name reserved for the conserved quantity
resulting from time translation invariance)

5How can I vary that?!?
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Quantum Particle Mechanics

We replace the classical variables pa, q
a by operator valued functions of time satisfying

[qa(t), qb(t)] = 0 = [pa(t), pb(t)]

and [pa(t), q
b(t)] = −iδba ~ = 1

The p’s and q’s are hermitian observables. They are assumed to be complete. They
determine the Hilbert space. For example 1-d particle mechanics, the space of square inte-
grable functions. A basis set can be the eigenstates of q. p or rather eipx tells you how to
relate the phases of the various eigenstates and indeed even that the range of q is R (not
[-1,1] or anything else).

The quantum Hamiltonian, which determines the dynamics, is just the classical Hamil-
tonian except it is now a function of the operator p’s and q’s. For any A

dA

dt
= i[H,A] +

∂A

∂t
←−

if there is explicit dependence on
time other than that implicit in the
time dependence of the p’s and q’s

H is the generator of infinitesimal time translations just as in classical mechanics.
H suffers from ordering ambiguities. Because p and q don’t commute, it is not clear, and

it may matter, whether you write p2q, qp2 or pqp. Sometimes this ambiguity can be cleared
up using other criteria. For example, in central force problems, we quantize in Cartesian
coordinates and then transform to central coordinates.

Heisenberg equations of motion

dqa

dt
= i[H, qa]

= i

(
−i∂H
∂pa

)
=
∂H

∂pa

⇓
This step depends only on the commutation

relations for the p’s and q’s. Fairly easy to see
for a polynomial in the p’s and q’s.

Similarly,
dpa
dt

= −∂H
∂qa

This is the motivation for the commutation relations. It is a way of putting the correspon-
dence principle into the theory. The quantum equations resemble the classical equations, at
least up to the ordering ambiguities, and any variation due to ordering ambiguities is down
by a factor of ~. We wouldn’t expect any general procedure for turning classical theories into
quantum theories, motivated only by the correspondence principle, to be able to fix those
ambiguities. We can be a little more precise about how the classical equations are actually
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recovered. In general, the Heisenberg equations of motion for an arbitrary operator A relate
one polynomial in p, q, ṗ and q̇ to one another. We can take the expectation value of this
equation to obtain (a quantum mechanical average of) an equation between observables. In
the classical limit, when fluctuations are small, expectations of products can be replaced by
products of expectations, 〈pn〉 → 〈p〉n, 〈pq〉 → 〈p〉〈q〉, and this turns our equation among
polynomials of quantum operators into an equation among classical variables.

The other two boxes are actually going to go quite quickly, because if you are just a little
cavalier, the continuum limit is little more than some new notation.

Classical Field Theory

We have an infinite set of generalized coordinates, real number functions of time, φa(~x, t)
labelled by a discrete index, a, and a continuous index, ~x.

φa(~x, t)↔ qa(t)

t↔ t

a↔ a, ~x

It is sometimes a handy mnemonic to think of t, ~x, as generalization of t, but that is
not the right way to think about it. For example we are used to giving initial value data at
fixed t in CPM. In CFT we don’t give initial value data at fixed t and ~x, that is obviously
incomplete. We give initial value data for fixed t and all ~x.

With cowboy boldness, everywhere in CPM we see a sum on a, we’ll just replace it with a
sum on a and an integral over ~x, and everywhere we see δab we’ll replace it with δab δ

(3)(~x−~y).
The Dirac delta function has the exact same properties in integrals that the Kronecker delta
has in sums.

The next thing to do is write down Lagrangians. Because a CPM Lagrangian can contain
products of qa with different a, our Lagrangian could contain products of φ(~x, t) with different
~x ∫

d3xd3yd3zfabc(~x, ~y, ~z)φ
a(~x, t)φb(~y, t)φc(~z, t)↔

∑
a,b,c

fabcq
a(t)qb(t)qc(t)

But note that a CPM Lagrangian does not contain products at different times.
With an eye to Lorentz invariance, and noticing that Lagrangians are local in time, we will

specialize to Lagrangians that are local in space. Also, you know that when taking continuum
limits, differences of neighboring variables become spatial derivatives and a combination like

1

a2
[ρ((n− 1)a, t) + ρ((n+ 1)a, t)− 2ρ(na, t)]

would become ∂2ρ
∂x2 in the continuum. But again with an eye to Lorentz invariance, because

only first derivatives with respect to time appear in the Lagrangian, we will only consider
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first derivatives with respect to the xi. So L has the form

L(t) =

∫
d3kL(φa(x), ∂µφ

a(x), x)

And the action S =

∫ t2

t1

dtL(t) =

∫
d4xL

The Euler-Lagrange equations which come from varying S will be Lorentz covariant if
L is a Lorentz scalar. At three points we have used Lorentz invariance to cut down on the
possible forms for L. These have been specializations, not generalizations. Now we’ll apply
Hamilton’s principle

0 = δS
(

under arbitrary variations δφ
satisfying δφa(~x, t1) = δφa(~x, t2) = 0

)
=
∑
a

∫
d4x

(
∂L

∂φa(~x, t)
δφa(~x, t) +

∂L
∂∂µφa︸ ︷︷ ︸
≡πµa

δ∂µφ
a︸ ︷︷ ︸

∂µδφa

)

=
∑
a

∫
d4x

[
∂L
∂φa
− ∂µπµa

]
δφa

⇓
Do parts integration. As usual, the
restrictions on δφa make the surface

terms at t1 and t2 drop out

⇒ ∂L
∂φa

= ∂µπ
µ
a (for all ~x and a) Euler-Lagrange

equations

πµa should not be thought of as a four-vector generalization of pa. The correspondence is

π0
a(~x, t)↔ pa(t)

In fact π0
a is often jut written πa.

We should say something about the surface terms at spatial infinity which we ignored
when we did our parts integration. One can say “we are only considering field configura-
tions which fall off sufficiently rapidly at spatial infinity that we can ignore surface terms.”
Alternatively we could work in a box with periodic boundary conditions. Anyway, we’ll just
be slothful.

A simple example of a possible L
Most general L satisfying (3) conditions

1. Build L out of one reals calar field, φ
φ = φ∗ (not φ = φ†, we’re not doing QFT yet)

2. L is a Lorentz scalar
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3. L is quadratic in φ and ∂µφ

(1) and (3) are for simplicity. A motivation for (3) is that a quadratic action yields linear
equations of motion, the easiest ones to solve. Most general L is

L =
1

2
a[∂µφ∂

µφ+ bφ2]

One of these constants is superfluous; we are always free to rescale φ, φ → φ√
|a|

. L
becomes

L = ±1

2
[∂µφ∂

µφ+ bφ2]

The Euler-Lagrange equations for our example are

πµ ≡ ∂L
∂∂µφ

= ±∂µφ and

∂µπ
µ − ∂L

∂φ
= 0 or ± (∂µ∂µφ− bφ) = 0

In general the Hamiltonian which was
∑

a paq̇
a − L in CPM is

H =
∑
a

∫
d3x(π0

a∂0φ
a − L) =

∫
d3xH

H =
∑
a

π0
a∂0φ

a − L is the Hamiltonian density

In our example

H = ±
∫
d3x[

1

2
(π0)2 +

1

2
(~∇φ)2 − bφ2]

Since each of these terms separately can be made arbitrarily large, if the energy is to be
bounded below, they each better have a positive coefficient. ± better be + and b better be

b = −µ2 definition of µ ≥ 0

The E-L equation is now ∂µ∂
µφ+ µ2φ = 0

Gosh, this is looking familiar now.
We are ready to fill in the last box. We are ready to canonically quantize classical field

theory. Since we are not worrying about the passage to an infinite number of variables, this
will be little more than a notational change in the canonical quantization of CPM. It would
not even have required a notational change if Newton hadn’t chosen two ways of writing S
for sum,

∫
and

∑
.
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Quantum Field Theory

We replace the classical variables φa, π0
a by quantum operators satisfying

[φa(~x, t), φb(~y, t) = 0 = [π0
a(~x, t), π

0
b (~y, t)]

and [π0
a(~x, t), φ

b(~y, t)] = −iδbaδ(3)(~x− ~y)

The Dirac delta for the continuous index ~x is just the continuum generalization of the
Kronecker delta. H =

∫
d3xH(π0

a, φ
a, x) determines the dynamics as usual. The commu-

tation relations are set up to reproduce the Heisenberg equations of motion. Since this is
just a change of notation there is no need to redo any proofs, but let’s check that things are
working in our example anyway.

H =

∫
d3x

1

2
[(π0)2 + (~∇φ)2 + µ2φ2]

∂0φ(~y, t) = i[H,φ(~y, t)] = i(−i)
∫
d3xπ0(~x, t)δ(3)(~x− ~y)

= π0(~y, t)

Similarly, ∂0π
0(~y, t) = ~∇2φ− µ2φ. you need the commutator [π0(~y, t), ~∇φ(~x, t)] which is

obtained by taking the gradient of the equal time commutation relation (ETCR).
We have reproduced our quantum field satisfying (1), (2), (3’), (4) and (5). This was

accomplished in one lecture rather than three because this is a mechanical method without
physical insight. The physical interpretation comes at the end instead of at the beginning.
In our first method, the constructive method, we shook each object we introduced to make
sure it made sense, and we finally obtained a local observable, the quantum field. we can’t
put interactions in in this method though, because in the very first steps we had to know
the whole spectrum of the theory, and about the only theory we know the exact spectrum
for is the free theory. In our magical canonical quantization method it’s easy to put in
interactions: just let L → L − λφ4. At the first order in perturbation theory the part of
λφ4 that has two creation and two annihilation operators produces two-into-two scattering!
At second order we’ll get two-into-four and two-into-six 6 scattering. Looks easy. . . if there
weren’t any booby traps. . . but boy are there going to be booby traps.

6pair production!
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5 October 7

The simplest example obtained from applying canonical quantization to a free scalar field
led to the same theory we got by constructing a local observable painstakingly in the theory
we had before.

We’ll double check that we get the same Hamiltonian we had in that theory. Evaluate

H =
1

2

∫
d3x[π2 + (∇φ)2 + µ2φ2] π = φ̇

Write φ in terms of its Fourier expansion

φ(x) =

∫
d3k

(2π)3/2
√

2ω~k
[a~ke

−ik·x + a†~ke
ik·x]

Substitution would lead to a triple integral, but the x integration is easily done yielding
a δ function, which does one of the k integrals7.

H =
1

2

d3k

2ω~k

{
a~ka−~k︸︷︷︸
~k′=−~k see
footnote 1

e−2iω~kt
(((

((((
(((

(−ω2
~k

+ |~k|2 + µ2)︸ ︷︷ ︸+a~ka
†
~k
(ω2

~k
+ |~k|2 + µ2)

That what multiplies e±2iω~k
t is 0 is good.

H should not be time-dependent.

+ a†~ka~k(ω
2
~k

+ |~k|2 + µ2) + a†~ka
†
−~k
e2iω~kt

︷ ︸︸ ︷
((((

(((
(((

(−ω2
~k

+ |~k|2 + µ2)

}
H had four types of terms: ones creating particles with momentum ~k and −~k, ones

destroying particles with momentum ~k and −~k, ones creating a particle with momentum ~k,
then destroying one with momentum ~k, and ones creating a particle with momentum −~k,
then destroying one with momentum −~k. These all conserve momentum.

H =
1

2

∫
d3kω~k(a~ka

†
~k

+ a~ka
†
~k
)

Almost, but not quite what we had before.

Using [a~k, a
†
~k′

] = δ(3)(~k − ~k′) gives H =
∫
d3kω~k

(
a†~ka~k + 1

2
δ(3)(0)

)
. δ(3)(0)! Can get some

idea of the meaning of this by putting the system in a box. H becomes

1

2

∑
~k

ω~k(a~ka
†
~k

+ a~ka
†
~k
) =

∑
~k

(
a†~ka~k +

1

2

)
In a box we see that this is just a zero point energy. (It is still infinite though.) Just

as the spectrum of the Hamiltonian H = 1
2
(p2 + ω2q2) starts at 1

2
ω, not zero, the spectrum

7
∫
d3xei

~k·~xei
~k′·~x = (2π)3δ(3)(~k + ~k′)⇒ ~k′ = −~k
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of our Hamiltonian starts at 1
2

∑
~k ω~k, not zero. That this constant is infinite even in a

box is because even in a box the field has an infinite number of degrees of freedom. There
can be excitations of modes with arbitrarily short wavelengths. The zero point energy is
ultraviolet divergent. In general, infinite systems, like an infinite crystal, also have “infrared
divergences.” If the energy density of an infinite crystal is changed by an infinite amount,
the total energy is changed by an infinite amount. Our Hamiltonian for the system in infinite
space, would still have an infinity (δ(3)(0)) even if the momentum integral were cut off, say

by restricting it to |~k| < K. That part of the infinity is eliminated by putting the system
in a box, eliminating long wavelengths. Our system in infinite space has a zero-point energy
that is also infrared divergent.

This is no big deal for two reasons.

(A) You can’t measure absolute energies, only energy differences, so it’s stupid to
ask what the zero point energy is. This even occurs in introductory physics. We
usually put interaction energies to be zero when particles are infinitely separated,
but for some potentials you can’t do that, and you have to choose your zero
another place.

(B) This is just an ordering ambiguity. Just as the quantum Hamiltonian for the
harmonic oscillator could be chosen as

H =
1

2
(p+ iωq)(p− iωq)

we could reorder our Hamiltonian (see below).

In general relativity the absolute value of the energy density does matter. Einstein’s
equations

Rµν −
1

2
gµνR = −8πGTµν

couple directly to the energy density T00. Indeed, introducing a change in the vacuum energy
density, in a covariant way,

Tµν → Tµν − λgµν
is just a way of changing the cosmological constant, a term introduced by Einstein and
repudiated by him 10 years later. No astronomer has ever observed a nonzero cosmological
constant.8 Our theory is eventually going to be applied to the strong interactions, maybe
even to some grand unified theory. Strong interactions have energies typically of 1 GeV and
a characteristic length of a fermi, 10−13 cm. With a cosmic energy density of 1039 GeV/cm3,
the universe would be about 1 km long according to Einstein’s equations. You couldn’t
even get to MIT without coming back where you started. We won’t talk about why the
cosmological constant is zero in this course. They don’t explain it in any course given at
Harvard because nobody knows why it is zero.

8[BGC note: As of 1998, measurements on supernovae have indicated that Λ > 0.]
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Reordering the Hamiltonian:

Given a set of free fields (possibly with different masses) φ1(x1), . . . , φn(xn), define the
normal ordered product

: φ1(x1) · · ·φn(xn) :

as the usual product except rearranged so that all the annihilation operators on the right
and a fortiori all creation operators on the left. No further specification is needed since
all annihilation operators commute with one another as do all annihilation operators. This
operation is only defined for free fields satisfying the K.-G. equation, which tells us we can
write the field in terms of time independent creation and annihilation operators.

Redefine H to be : H :. This gets rid of the normal ordering constant.9

This is the first infinity encountered in this course. We’ll encounter more ferocious ones.
We ran into it because we asked a dumb question, a physically uninteresting question, about
an unobservable quantity. Later on we’ll have to think harder about what we’ve done wrong
to get rid of troublesome infinities.

If we wanted to get as quickly as possible to applications of QFT, we’d develop scattering
theory and perturbation theory next. But first we are going to get some more exact results
from field theory.

Symmetries and Conservation Laws

We will study the relationship between symmetries (or invariances) and conservation laws
in the classical Lagrangian framework. Our derivations will only use classical equations
of motion. Hopefully everything will go through all right when Poisson brackets become
commutators, since the commutation relations are set up to reproduce the classical equations
of motion. In any given case you can check to see if ordering ambiguities or extra terms in
commutators screw up the calculations.

Given some general Lagrangian L(qa, q̇a, t) and a transformation of the generalized coor-
dinates

qa(t)→ qa(t, λ) qa(t, 0) = qa(t)

9 What’s wrong?

a†a = aa† − 1 Normal order both sides

: a†a : =: a†a : −1

0 = −1

Answer. We don’t “normal order” equations. Normal ordering is not derived from the ordinary product
any more than the cross product is derived from the scalar product. Normal ordering cannot accurately be
used as a verb.
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we can define

Dqa ≡ ∂qa

∂λ

∣∣∣∣
λ=0

This is useful because the little transformations will be important.
Some examples:

1. Space translation of point particles described by n vectors ~ra, a = 1, . . . , n. The
Lagrangian we’ll use is

n∑
a=1

ma

2
|~ra|2 −

∑
ab

Vab(|~ra − ~rb|)

The transformation is ~ra → ~ra + ~eλ, all particles in the system moved by ~eλ

D~ra = ~e

2. Time translations for a general system. Given some evolution qa(t) of the system, the
transformed system is a time λ ahead qa(t)→ qa(t+ λ)

Dqa =
∂qa

∂t

3. Rotations in the system of example (1)

~ra →

Rotation
matrix︷︸︸︷
R ( λ︸︷︷︸ ~e︸︷︷︸

angle, axis

)~ra D~ra = ~e× ~ra

(If ~e = ẑ, Dxa = ya, Dya = −xa, Dza = 0.)

Most transformations are not symmetries (invariances).

Definition: A transformation is a symmetry iff DL = dF
dt

for some F (qa, q̇a, t). This equality
must hold for arbitrary qa(t), not necessarily satisfying the equations fo motion.

Why is this a good definition? Hamilton’s principle is

0 = δS =

∫ t2

t1
dtDL =

∫ t2

t1

dF

dt
= F (t2)− F (t1)

Thus a symmetry transformation won’t affect the equations of motion (we only consider
transformations that vanish at the endpoints).

Back to our examples:
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1. DL = 0, F = 0

2. If L has no explicit time dependence, all of its time dependence comes from its depen-
dence on qa and q̇a, ∂L

∂t
= 0, then DL = dL

dt
, F = L

3. F = 0

Theorem (E. Noether say ‘Nota’): For every symmetry there is a conserved quantity.
The proof comes from considering two expressions for DL.

DL =
∑
a

(
∂L

∂qa
Dqa + paDq̇

a

)
used pa≡ ∂L

∂q̇a

=
∑
a

(ṗaDq
a + paDq̇

a) used E-L equations

=
d

dt

∑
a

paDq
a by equality of mixed partials

Dq̇a= d
dt
Dqa

By assumption DL = dF
dt

. Subtracting these two expressions for DL we see that the
quantity

Q =
∑
a

paDq
a − F satisfies

dQ

dt
= 0

(There is no guarantee that Q 6= 0, or that for each independent symmetry we’ll get
another independent Q, in fact the construction fails to produce a Q for gauge symmetries.)

We can write down the conserved quantities in our examples

1. (pa = ma~̇r
a), D~ra = ~e, F = 0.

Q =
∑
a

ma~e · ~̇ra = ~e ·
∑
a

ma~̇r
a

For each of three independent ~e’s we get a conservation law. The momentum

~P =
∑
a

ma~̇r
a is conserved.

(
d~P

dt
= 0

)
.

Whenever we get conserved quantities from spatial translation invariance, whether or
not the system looks anything like a collection of point particles, we’ll call the conserved
quantities the momentum.
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2. Dqa = ∂qa

∂t
, F = L. Note: Q is identical to H.

Q =
∑
a

paq̇
a − L is conserved

(
when

∂L

∂t
= 0

)
Whenever we get a conserved quantity from time translation invariance, we’ll call the
conserved quantity the energy.

3. D~ra = ~e× ~ra, F = 0.

Q =
∑
a

~pa · (~e× ~ra) =
∑
a

~e · (~ra × ~pa)

= ~e ·
∑
a

~ra × ~pa three laws

~J =
∑
a

~ra × ~pa is conserved

(
d ~J

dt
= 0

)

Whenever we get a conserved quantities from rotational invariance, we’ll call them the
angular momentum.

There is nothing here that was not already in the Euler-Lagrange equations. What this
theorem provides us with is a turn the crank method for obtaining conservation laws from a
variety of theories. Before this theorem, the existence of conserved quantities, like the energy,
had to be noticed from the equations of motion in each new theory. This theorem organizes
conservation laws. It explains, for example, why a variety of theories, including ones with
velocity dependent potentials all have a conserved Hamiltonian, or energy (example (2)).

From the conserved quantity, we can usually reconstruct the symmetry. This can be
done in classical mechanics using Poisson brackets. We’ll do it in quantum mechanics using
commutators.10

Assume Dqb and F depend only on the qa, not the q̇a so that their expression in the
Hamiltonian formulation only depends on the qa, not the pa. Then

[Q, qa] =

[∑
b

pbDq
b − F, qa

]
=
∑
b

[pb, q
a]︸ ︷︷ ︸

−iδab

Dqb

= −iDqa

This assumption is not at all necessary. Usually the result holds. For example the energy
generates time translations even though the assumption doesn’t hold.

10Show: [Qi, Qj ] = iεijkQ
k] when the Qi’s are generators of an SO(3) internal symmetry. For a general

internal symmetry group, the quantum Q’s recreate the algebra of the generators.
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Symmetries and Conservation Laws in (Classical) Field

Theory

Field theory is a specialization of particle mechanics. There will be more that is true in field
theory. What is this more?

Electromagnetism possesses a conserved quantity Q, the electric charge. The charge is
the integral of the charge density p, Q =

∫
d3xρ(~x, t). There is also a current ~ and there is

a much stronger statement of charge conservation than dQ
dt

= 0. Local charge conservation
says

∂ρ

∂t
+ ~∇ · ~ = 0

Integrate this equation over any volume V with boundary S to get

dQV

dt
= −

∫
S

dAn̂ · ~ using Gauss’s theorem and

(Q=
∫
V d

3xρ(~x,t))

This equation says you can see the charge change in any volume by watching the current
flowing out of the volume. You can’t have:

t

x

� �

simultaneously wink out of existence with nothing happening anywhere else.

This picture satisfies global charge conservation, but violates local charge conservation.
You have to be able to account for the change in charge in any volume, and there would have
to be a flow of current in between the two charges. Even if there were not a current and a
local conservation law, we could invoke special relativity to show this picture is inconsistent.
In another frame the charges don’t disappear simultaneously, and for a moment global charge
conservation is violated.

Field theory which embodies the idea of local measurements, should have local conser-
vation laws.

Given some Lagrangian density L(φa, ∂µφ
a, x) and a transformation of the fields

φa(x)→ φa(x, λ) φa(x, 0) = φa(x)

we define Dφa = ∂φa

∂λ

∣∣
λ=0

.
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Definition: A transformation is a symmetry iff DL = ∂µF
µ for some F µ(φa, ∂µφ

a, x). This
equality must hold for arbitrary φa(x) not necessarily satisfying the equations of mo-
tion.

We are not using special relativity. F µ is not necessarily a 4-vector (just some set of 4
objects).

Note that the previous definition can be obtained. To wit,

DL = D

∫
d3xL =

∫
d3x∂µF

µ =

∫
d3x∂0F

0 =
d

dT
F

where F =
∫
d3xF 0.

Why is this a good definition? Hamilton’s principle is

0 =

∫
δS =

∫
d4xDL =

∫
d4x∂µF

µ

=

∫
d3x[F 0(~x, t2)− F 0(~x, t1)]

blithe as usual about
contributions from

spatial infinity

Thus a symmetry transformation does not affect the equations of motion (we only consider
transformations that vanish at the endpoints when deriving the equations of motion.).

Theorem (maybe this is Noether’s theorem?): For every symmetry there is a conserved
current.

The proof comes from considering two expressions for DL.

DL =
∑
a

(
∂L

∂φa
Dφa + πµaD∂µφ

a

)
used πµa≡ ∂L

∂∂µφa

=
∑
a

(πµaDφ
a + πµaD∂µφ

a) used E-L equations

= ∂µ
∑
a

πµaDφ
a by equality of mixed partials

D∂µφa=∂µDφa

By assumption DL = ∂µF
µ. Subtracting these two expressions for DL we see that the

four quantities

Jµ =
∑
a

πµaDφ
a satisfy ∂µJ

µ = 0

which implies dQV
dt

= −
∫
S
dAn̂ · ~J

This equation justifies calling
J0 the density of stuff

and Ji the current of stuff.

, S =boundary of V . The total amount of stuff, Q is

independent of time.
There is an ambiguity in the definition of F µ and Jµ since F µ can be changed by any

χµ satisfying ∂µχ
µ = 0. In the particle mechanics case, F was ambiguous, but only by a
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time independent quantity. For arbitrary antisymmetric A we can let F µ → F µ + ∂νA
µν

(∂µ∂νA
µν = 0). As a result of this change Jµ → Jµ − ∂νAµν .

Q =

∫
d3xJ0 → Q−

∫
d3x∂iA

i = Q

i.e. Q is unchanged, ignoring contributions from spatial infinity as usual.
This is a lot of freedom in the definition of Jµ. For example in a theory with three fields

we can let
Jµ → Jµ − (φ3)′4∂ν(∂

µφ1∂νφ2 − ∂ν∂φ1∂νφ2)

This Jµ is as good as any other. There are 500 papers arguing about which energy-
momentum tensor is the right one to use inside a dielectric medium. 490 of them are idiotic.
It’s like if someone passes you a plate of cookies and you start arguing about which copy
is #1 and which is #2. They’re all edible! Sometimes one Jµ is more useful in a given
calculation than another, for some reason. Instead of arguing that the most convenient Jµ

is the “right” one, you should just be happy that you had some freedom of choice.
From cranking Hamilton’s principle, we can give another derivation of the relation be-

tween symmetries and conserved quantities.

δS = δ

∫
dtL =

∑
a

paDq
a|t2t1

for an arbitrary variation about a solution of the equations of motion. By assumption of a
symmetry

δS =

∫
dtDL =

∫
dt
dF

dt

∣∣∣∣t2
t1

Subtracting we see
∑

a paDq
a − F is time independent.

[Aside: Noether’s Theorem derived at the level11 of

the action

If without using the equations of motion, for an arbitrary function of space time α(x)
parametrizing a transformation, to first order in α(x)

δL = α(x)∂µk
µ + ∂µα(x)jµ

(Equivalent to DL = ∂µk
µ when α is a constant).

11i.e. using Hamilton’s principle rather than mucking around with the equations of motion
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Then by Hamilton’s principle, for fields satisfying the equations of motion,

0 =

∫
d4xδL =

∫
d4x(α(x)∂µk

µ + ∂µα(x)jµ)

=

∫
d4x(α(x)∂µk

µ − α(x)∂µj
µ) Let α(x) vanish at ∞

to do parts integration.

So it must be that Jµ = kµ − jµ is conserved.

Example: Space-time translation invariance

δφ = −εν∂νφ δ∂τφ = −∂τ (εν∂νφ)

δL =
∂L
∂φ

δφ+
∂L
∂∂τφ

δ∂τφ

= −∂L
∂φ

εν∂
νφ− ∂L

∂∂τφ
εν∂

ν∂τφ−
∂L
∂∂τφ

∂τ εν∂
νφ ν is a parameter for the

type of transformation.

= −ενL′ν − πµ∂νφ∂µεν µ plays the same role

I read off kµν = −gµνL, jµν = −πµ∂νφ so T µν = πµ∂νφ− gµνL is conserved.]

Noether’s Theorem: when the variation is a hermitian

traceless matrix. (useful in theories with fields most

easily written as matrices.)

Suppose (without using the equations of motion) δS =
∫
d4x Tr δω︸︷︷︸ ∂µ

matrix︷︸︸︷
F µ

hermitian, traceless
but otherwise arbitrary

.

Then Hamilton’s principle says

0 =

∫
d4xTr δω∂µF

µ

Then F µ is a matrix of conserved currents, except there is no conservation law associated
with the trace.

If you like, write this statement as

∂µ

(
F µ − 1

N︸︷︷︸ Id Tr F µ

)
dimension of Fµ

= 0
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Space-time translations in a general field theory

We won’t have to restrict ourselves to scalar fields because under space-time translations,
an arbitrary field, vector, tensor, etc., transforms the same way. Just let the index a also
denote vector or tensor indices.

Translations are symmetries as long as L does not have any explicit dependence on x. It
depends on x only through its dependence on φa and ∂µφ

a, ∂L
∂x

= 0.

φa(x)→ φa(x+ λe) e some fixed four vector

Dφa = eν∂νφ
a DL = eµ∂µL = ∂µ(eµL)

F µ = eµL Jµ =
∑
a

πµae
ν∂νφ

a − eµL = eνT
µν

T µν =
∑
a

πµa∂
νφa − gµνL

There are four conserved currents, four local conservation laws, one for each of the four
independent directions we can point e, i.e. ∂µT

µν = 0 since ∂µJ
µ = 0 for arbitrary e.

T µ0 is the current that is conserved as a result of time translation invariance, indeed,

H = T 00 =
∑
a

πaφ̇
a − L, H =

∫
d3xH

T 00 is the energy density, T i0 is the current of energy. T iµ are the three currents from
spatial translation invariance.

P i =

∫
d3xT 0i

T 0i = the density of the ith component of momentum

T ji = the jth component of the current of the ith component of momentum

For a scalar field theory with no derivative interactions, πµa = ∂µφ so

T µν =
∑
a

∂µφa∂νφa − gµνL

Note that T µν is symmetric, so you don’t have to remember which index is which. T µν

can be nonsymmetric, which can lead to problems, for example gravity and other theories
of higher spin. Can try to symmetrize it.
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6 October 9

Lorentz transformations

Under a Lorentz transformation all vectors transform as

aµ → Λµ
νa

µ

where Λµ
µ specifies the Lorentz transformation. Λµ

ν must preserve the Minkowski space inner
product, that is if

bµ → Λµ
νb
ν then aµb

µ → aµb
µ

This must be true for arbitrary a and b. (The equation this condition gives is gµνΛ
µ
αΛν

β =
gαβ.) We’ll be interested in one parameter subgroups of the group of Lorentz transformations
parametrized by λ. This could be rotations about some specified axis by an angle λ or a
boost in some specified direction by a rapidity λ. In any case, the Lorentz transformation is
given by a family

aµ → aµ(λ) = Λ(λ)µνa
ν

Under this (active) transformation (we are not thinking of this as a passive change of
coordinates) the fields φa transform as (φa is a scalar),

φa(x)→ φa(x, λ) = φa(Λ(λ)−1x)

We are restricting ourselves to scalar fields. Even though we only used scalar fields in
our examples of T µν , the derivation of the conservation of T µν from space-time translation
invariance applies to tensor, or vector, fields. With Lorentz transformations, we only consider
scalars, because there are extra factors in the transformation law when the fields are tensorial.
For example a vector field Aµ(x)→ Λµ

νA
ν(Λ−1x).

We need to get Dφ = ∂φ
∂λ

∣∣
λ=0

. We’ll define

DΛµ
ν ≡ εµν defines some matrix εµν

From the invariance of aµbν , we’ll derive a condition on εµν .

0 = D(aµbν) = (Daµ)bν + aµ(Dbν)

= εµνa
νbµ + aµενµb

ν

= εµνa
νbµ + ενµa

νbµ
⇓

relabel dummy indices
in the second term,

µ→ν,ν→µ.

= (εµν + ενµ)aνbµ ⇒ εµν = −ενµ

since this has to hold for arbitrary a and b. µ and ν range from 0 to 3, so there are 4·(4−1)
2

= 6
independent ε, which is good since we have to generate 3 rotations (about each axis) and 3
boosts (in each direction).
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As a second confidence-boosting check we’ll do two examples.
Take ε12 = −ε21 = 1, all other components zero.

Da1 = ε12a
2 = −ε12a

2 = −a2

Da2 = ε21a
2 = −ε21a

1 = +a1

a

x2

x1
infinitesimally 
shifted a

This says a1 gets a little negative component proportional to a2 and a2 gets a little
component proportional to a1. This is a rotation, in the standard sense about the positive
z axis.

Take ε01 = −ε10 = +1, all other components zero.

Da0 = ε01a
1 = −ε01a

1 = a1

Da1 = ε10a
0 = −ε10a

0 = a0

This says x1, which could be the first component of the position of a particle, gets a little
contribution proportional to x0, the time, which is definitely what a boost in the x1 direction
does. In fact, Da0 = a1, Da1 = a0 is just the infinitesimal version of

a0 → coshλa0 + sinhλa1

a1 → sinhλa0 + coshλa1

Without even thinking, the great index raising and lowering machine has given us all the
right signs.

Now assuming L is a scalar, we are all set to get the 6 conserved currents.
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From Λ−1(λ)Λ(λ) = 1, 0 = D(Λ−1Λ) and D Λ−1µ
ν |Λ=1 = −εµν

Dφ̇(x) =
∂

∂λ
φa(Λ−1(λ)µνx

ν)

∣∣∣∣
λ=0

There are extra
terms in Dφa if
φa are not scalars

= ∂σφ
a(x)D(Λ−1(λ)στx

τ )

= ∂σφ
a(x)(−εστ )xτ = −εστxτ∂σφa(x)

Using the assumption that L is a scalar depending only on x through its dependence on
φa and ∂µφ

a we have

DL = ελσx
λ∂σL

= ∂µ[ελσx
λgµσL]

The conserved current Jµ is

Jµ =
∑
a

πµa ελσx
λ∂σφa − ελσxλgµσL

= ελσ

(∑
a

πµax
λ∂σφa − xλgµσL

)
This current must be conserved for all six independent antisymmetric matrices ελσ, so

the part of the quantity in parentheses that is antisymmetric in λ and σ must be conserved
i.e. λµM

µλσ = 0 where

Mµλσ =

(∑
a

πµax
λ∂σφa − xλgµσL

)
− (λ↔ σ)

= xλ

(∑
a

πµa∂
σφa − gµσL

)
− (λ↔ σ)

= xλT µσ − xσT µλ

If the φa were not scalars, we would have additional terms, feeding in from the extra
terms in Dφa. The 6 conserved charges are

Jλσ =

∫
d3xM0λσ =

∫
d3x(xλT 0σ − xσT 0λ)

For example, J12, the conserved quantity coming from invariance under rotations about
the 3 axis, often called, J3 is (J i = 1

2
εijkJ

jk),

J3 = J12 =

∫
d3x(x1T 02 − x2T 01)
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If we had point particles with

T 0i(~x, t) =
∑
a

piaδ
(3)(~x− ~ra(t))

J3 would be ∑
a

(xa1p2
a − xa2p1

a) =
∑
a

(~ra × ~pa)3

We have found the field theory analog of the angular momentum. The particles them-
selves could have some intrinsic angular momentum. Those contributions to the angular
momentum are not in the J i. We only have the orbital contribution. Particles that have
intrinsic angular momentum, spin, will be described by fields of tensorial character, and that
will be reflected in extra terms in the J ij.

So far we have just found the continuum field theory generalization of three conserved
quantities we learn about in freshman physics. But we have three other conserved quantities,
the J0i. What are they? Consider

J0i =

∫
d3x[x0T 0i − xiT 00]

This has an explicit reference to x0, the time, something we’ve not seen in a conservation
law before, but there is nothing a priori wrong with that. We can pull the x0 out of the
integral over space. The conservation law is dJ0i

dt
= 0 so we have

0 =
d

dt
J0i =

d

dt

[
t

∫
d3xT 0i −

∫
d3xxiT 00

]
= t

d

dt��
��
�

∫
d3xT 0i︸ ︷︷ ︸
pi

+

∫
d3xT 0i︸ ︷︷ ︸
pi

− d

dt

∫
d3xxiT 00

Dividing through by p0 gives

1 = constant =
pi

po
=

d
dt

∫
d3xxiT 00

p0
=

d
dt

(“center of energy”i)

total energy

This says that the “center of energy” moves steadily. T 00 is the relativistic generalization
of mass. This is the relativistic generalization of the statement that the center of mass moves
steadily. You aren’t used to calling this a conservation law, but it is, and in fact it is the
Lorentz partner of the angular momentum conservation law.
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Internal Symmetries

There are other conservation laws, like conservation of electric charge, conservation of baryon
number, and conservation of lepton number that we have not found yet. We have already
found all the conservation laws that are in a general Lorentz invariant theory. These addi-
tional conservation laws will only occur in specific theories whose Lagrange densities have
special properties. Conservation laws are the best guide for looking for theories that actu-
ally describe the world, because the existence of a conservation law is a qualitative fact that
greatly restricts the form of the Lagrange density. All these additional charges are scalars,
and we expect the symmetries they come from to commute with Lorentz transformations.
The transformations will turn fields at the same spacetime point into one another. They will
not relate fields at different spacetime points. Internal symmetries are non-geometrical sym-
metries. Historically, the name comes from the idea that what an internal symmetry did was
transform internal characteristics of a particle. For us internal just means non-geometrical.
We’ll study internal symmetries with two examples.

The first example is

L =
1

2

2∑
a=1

(
∂µφ

a∂µφa − µ2φaφa
)
− g

(∑
a

(φa)2

)2

This is a special case of a theory of two scalar fields. Both fields have the same mass,
and the potential only depends on the combination (φ1)2 + (φ2)2.

This Lagrangian12 is invariant (DL = 0) under the transformation

φ1 → φ1 cosλ+ φ2 sinλ

φ2 → φ1 sinλ+ φ2 cosλ
SO(2) symmetry

The same transformation at every space time point. This is a rotation13 in the φ1,
φ2 plane. The Lagrangian is invariant because it only depends on (φ1)2 + (φ2)2 and that
combination is unchanged by rotations.

Dφ1 = φ2, Dφ2 = −φ1 DL = 0 F µ = 0

Jµ = πµ1Dφ
1 + πµ2Dφ

2 = (∂µφ1)φ2 − (∂µφ2)φ1

Q =

∫
d3xj0 =

∫
d3x(∂0φ

1φ2 − ∂0φ
2φ1)

12We have left particle mechanics behind and I’ll often use Lagrangian to mean Lagrange density.
13Clockwise rotation makes the signs come out conventionally if b and c (which we see a little bit later)

are defined like a and b in Itzykson and Zuber p. 121.
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We can get some insight into this quantity by going to the case g = 0 in which case φ1

and φ2 are both free fields and can be expanded in terms of creation and annihilation ops.

φa(x) =

∫
d3k

(2π)3/2
√

2ω~k
(aa~ke

−ik·x + aa†~k e
ik·x)

Now we’ll compute Q. Let’s have faith in our formalism and assume that the terms
with two creation ops or two annihilation ops go away. If they didn’t Q wouldn’t be time
independent since they are multiplied by e±2iω~kt.

Q =

∫
d3k

2ω~k
[a1
~k
a2†
~k

(−iω~k − iω~k) + 2iω~ka
2
~k
a1†
~k

]

We don’t have to worry about the order because a1
~k
, a2†
~k′

] = 0

Q = i

∫
d3k[a1†

~k
a2
~k
− a2†

~k
a1
~k

We are within reach of something intuitive. Define

b~k =
a1
~k

+ ia2
~k√

2
b†~k =

a1†
~k
− ia2†

~k√
2

That’s not the end of the definitions; we need the other combination to reconstruct a1
~k
,

a2
~k
, a1†

~k
, a2†

~k
. So define,

c~k =
a1
~k
− ia2

~k√
2

c†~k =
a1†
~k

+ ia2†
~k√

2

These linear combinations of operators are allowable 14. They are operators that create
(or destroy) a superposition of states with particle 1 and particle 2. If one state is degenerate

with another, and for a given ~k, |~k, 1〉 is degenerate with |~k, 2〉, it is often convenient to work
with linear combinations of these states as basis states. Because b†~k and c†~k create orthogonal

states, b~k and c†~k commute with each other, as is easily checked. The useful thing about these
linear combinations is that Q has a simple expression.

i(a1†
~k
a2
~k
− a2†

~k
a1
~k
) = i

b†~k + c†~k√
2
·
b~k − c~k√

2
+ i

b†~k − c
†
~k√

2
·
b~k + c~k√

2

=
1

2
[2b†~kb~k + 0b†~kc~k + 0c†~kb~k − 2c†~kc~k] = b†~kb~k − c

†
~k
c~k

14Exchanging the role of b~k and c~k is the way of making the signs come out conventionally with counter-
clockwise rotation.
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That is,

Q =

∫
d3k(b†~kb~k − c

†
~k
) = Nb −Nc

The b’s carry Q charge +1, the c’s carry Q charge -1. It’s like particles and antiparticles;
the b’s and c’s have the same mass and opposite charge. Q = Nb−Nc is true as an operator
equation. b and c type mesons are eigenstates of Q. 1 and 2 type mesons are not. An
eigenstate of Na and Nb is an eigenstate of Q, an eigenstate of N1 and N2 is not. By the
way H and ~P have familiar forms in terms of the b’s and c’s.

H =

∫
d3kω~k(b

†
~k
b~k + c†~kc~k)

~P =

∫
d3k~k(b†~kb~k + c†~kc~k)

Taking all these linear combinations suggests that we could have changed bases earlier
in the calculation and simplified things.

ψ =
φ1 + iφ2

√
2

=

∫
d3k

(2π)3/2
√

2ω~k
[b~ke

−ik·x + c†~ke
ik·x]

ψ always diminishes Q by 1 either by annihilating a b type particle or by creating a c
type particle.

[Q,ψ] = −ψ a Q “eigenfield”

There is also the hermitian conjugate of ψ, ψ†,

ψ† =
φ1 − iφ2

√
2

=

∫
d3k

(2π)3/2
√

2ω~k
[c~ke

−ik·x + b†~ke
ik·x]

(ψ† will be denoted ψ∗ in the classical limit. A quantum field ψ∗ will be understood to
be ψ†.) ψ† always increases Q by 1. [Q,ψ†] = +ψ†.

ψ and ψ† have neat commutation relations with Q. φ1 and φ2 have messy commutation
relations with Q.

[Q, φ1] =
1√
2

[Q,ψ + ψ†] =
1√
2

(−ψ + ψ†)

= −iφ2

[Q, φ2] = iφ1
In agreement with a formula which

is usually true [Q,φa] = −iDφa
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Under our transformation ψ → e−iλψ, ψ∗ → eiλψ∗. This is called a U(1) or phase
transformation. It is equivalent to SO(2).

Digression; we’ll get back to symmetries.

As quantum fields, ψ and ψ† are as nice as φ1 and φ2. They obey

(�+ µ2)ψ = 0 (�+ µ2)ψ† = 0

They obey simple equal time commutation relations:

[ψ(~x, t), ψ(~y, t)] = 0 = [ψ†(~x, t), ψ†(~y, t)] = [ψ(~x, t), ψ†(~y, t)]

[ψ(~x, t), ψ̇(~y, t)] = 0 = [ψ†(~x, t), ψ̇†(~y, t)]

[ψ(~x, t), ψ̇†(~y, t)] = iδ(3)(~x− ~y) = [ψ†(~x, t), ψ̇(~y, t)]

These equations can be obtained by doing something completely idiotic. Back to the
classical Lagrangian which is

L = ∂µψ
∗∂µψ − µ2ψ∗ψ (no 1

2)

Imagine a person who once knew a lot of quantum field theory, but has suffered brain
damage, is going to canonically quantize this theory. He has forgotten that ∗ stands for
complex conjugate, and he is going to treat ψ and ψ∗ as if they were independent fields.
Here he goes

πµψ =
∂L
∂∂µψ

= ∂µψ∗ πµψ∗ = ∂µψ

The Euler-Lagrange equations he gets are

∂µπ
µ
ψ =

∂L
∂ψ

i.e. �ψ∗ = −µ2ψ∗

The idiot got it right. He also gets �ψ = −µ2ψ. How about that!? Now he says “I’m
going to deduce the canonical commutation relations”:

iδ(3)(~x− ~y) = [ψ(~x, t), π0
ψ(~y, t)] = [ψ(~x, t), ∂0ψ

∗(~y, t)]

By God, he gets that right, too. How can you work with complex fields, which can’t be
varied independently, treat them as if they can be and nevertheless get the right answers?

We’ll demonstrate that this works for the equations of motion. It works very generally.
You can demonstrate that it works for the equal time commutation relations.

Suppose I have some action S(ψ, ψ∗). The equations of motion come from

0 = δS =

∫
d4x(Aδψ + A∗δψ∗)
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Naive Approach: Treating the variations in δψ and δψ∗ as independent we get

A = 0 and A∗ = 0

Sharp Approach: However δψ is not independent of ψ∗. We can use the fact that
ψ and ψ∗ are allowed to be complex. We can make purely real variations in ψ so that
δψ = δψ∗ and we can make purely imaginary variations in ψ so that δψ = −δψ∗. From the
real variation we deduce

A+ A∗ = 0

and from the imaginary variation we deduce

A− A∗ = 0

which implies A = A∗ = 0.
For the ETCR write ψ = ψr+iψi√

2
, ψ∗ = ψr−iψi√

2
. Nothing tricky or slick.

Back to internal symmetries. For our second example, take

L =
1

2

n∑
a=1

(∂µφ
a∂µφa − µ2φaφa)− g

(
n∑
a=1

(φa)2

)2

This is the same as our first example except we have n fields instead of 2. Just as in
the first example the Lagrangian was invariant under rotations mixing up φ1 and φ2, this
Lagrangian is invariant under rotations mixing up φ1, . . . , φn, because it only depends on
(φ1)2 + · · ·+ (φn)2. The notations are,

φa →
∑
b

Ra
b︸︷︷︸φb

n×n rotation matrix

There are n(n−1)
2

independent planes in n dimensions and we can rotate in each of them,

so there are n(n−1)
2

conserved currents and associated charges. This example is quite differ-
ent from the first one because the various rotations don’t in general commute. (They all
commuted in the first one by virtue of the fact that there was only one.) We don’t expect
the various charges to commute. If they did they would generate symmetries that commute.
Anyway, for any single rotation axis, the symmetry is just like the one we had in the first
example, so we can read off the current,

J [a,b]
µ = ∂µφ

aφb − ∂µφbφa

You can’t find combinations of the fields that have simple commutation relations with
all the Q[a,b]’s. For n = 3 you can choose the fields to have a simple commutation relation
with one charge, say Q[1,2]. This is just like isospin, which is a symmetry generated by I1,
I2 and I3. You can only choose the particle states π+, π0 and π− to be eigenstates of one of
them, I3.
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7 October 14

Lorentz transformation properties of conserved quanti-

ties

We’ve worked with three currents, Jµ, the current of meson number, T µν , the current of
the νth component of momentum, and Mµνλ, the current of the [νλ] component of angular
momentum. We integrated the zeroth component of each of these currents to obtain Q, P ν

and Jνλ respectively. These look like tensors with one less index, but do they have the right
Lorentz transformation properties?

We’ll prove that P ν =
∫
d3xT 0ν is indeed a Lorentz vector given that T µν is a two

index tensor and that T µν is conserved, ∂µT
µν = 0. The generalization to currents with

more indices or 1 index will be clear. We could do this proof in the classical theory or the
quantum theory. We’ll choose the latter because we need the practice. The assumption that
T µν is an operator in quantum field theory that transforms as a two-index tensor is phrased
mathematically as follows:

Given U(Λ) the unitary operator that effects Lorentz transformations in the theory

U(Λ)†T µν(x)U(Λ) = Λµ
σΛν

τT
στ (Λ−1x)

Now we’ll try to show that

P ν =

∫
d3xT 0ν(~x, 0)

is a Lorentz vector. Introduce n = (1, 0, 0, 0), a unit vector pointing in the time direction.
Then we can write P ν in a way that makes its Lorentz transformation properties clearer.

P ν =

∫
d4xnµT

µνδ(n · x)

Perform a Lorentz transformation on P ν

U(Λ)†P νU(Λ) =

∫
d4xnµU(Λ)†T µν(x)U(Λ)δ(n · x)

=

∫
d4xnµΛµ

σΛν
τT

στ (Λ−1x)δ(n · x)

Change integration variables x′ = Λ−1x and define n′ = Λ−1n

U(Λ)†P νU(Λ) =

∫
d4x′Λµρn

′ρΛµ
σΛν

τT
στ (x′)δ(n′ · x′)

=

∫
d4x′n′ρΛν

τT
ρτ (x′)δ(n′ · x′) Using ΛµρΛµσ = gρσ

= Λν
τ

∫
d4xn′ρT

ρτ (x)δ(n′ · x)
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In the last expression we’ve dropped the prime on the variable of integration. The only
difference between what we have and what we would like to get

U(Λ)†P νU(Λ) = Λν
τP

τ = Λν
τ

∫
d4xnρT

ρτδ(n · x)

is that n has been redefined. The surface of integration is now t′ = 0, and we take the
component n′µT

µν in the t′ direction. Our active transformation has had the exact same
effect as if we had made a passive transformation changing coordinates to x′ = Λ−1x. It’s
the same old story: alias︸︷︷︸

passive

(another name) versus alibi︸︷︷︸
active

(another place).

t
t'

n'

n

x'

x

You can think of this as Lorentz transforming the field or Lorentz transforming the
surface.

This doesn’t produce a vector P ν for any tensor T µν . For an arbitrary tensor, P ν is not
even independent of what time you compute at, let alone changing the tilt of the surface.
We need to use that T µν is conserved. More or less, that the current that flows through the
surface t′ = 0 is the same as the current that flows through the surface t = 0.

Note that nµδ(n · x) = ∂µθ(n · x), so that if I call the Lorentz transform of P ν , P ′ν , what
we are trying to show is

0 = P ν − Λ−1ν
σ P ′ν

=

∫
d4x[∂µθ(n · x)− ∂µθ(n′ · x)]T µν(x)

=

∫
d4x∂µ[θ(n · x)− θ(n′ · x)]T µν(x)

This integral over all spacetime is a total divergence. In the far future or the far past
θ(n · x) = θ(n′ · x) so there are no surface terms there, and as usual we won’t worry about
surface terms at spatial infinity.
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Discrete Symmetries

A discrete symmetry is a transformation qa(t) → q′a(t) that leaves the Lagrangian, L, un-
changed L→ L. This could be parity, this could be rotation by π about the z axis. (It does
not include time reversal, wait15.)

Since all the properties of the theory are derived from the Lagrangian, (the canonical
commutation relations, the inner product, the Hamiltonian all come from L) and since the
Lagrangian is unchanged, we expect that there is a unitary operator effecting the transfor-
mation

U †qa(t)U = q′a(t) U †HU = H

The discrete symmetry could be an element of a continuous symmetry group. It could
be rotation by 20◦. There is no conserved quantity associated with a discrete symmetry
however. What is special about the continuous symmetry is that there is a parameter, and
that you have a unitary operator for each value of the parameter, θ, satisfying

U(θ)†HU(θ) = H

You can differentiate this with respect to the parameter to find that

[I,H] = 0 I ≡ −i dU
dθ

∣∣∣∣
θ=0

≡ −iDU

There is nothing analogous for discrete symmetries.

Examples of internal symmetries (there is not a general

theory, but we’ll do prototypical examples)

Example (1). The transformation is φ(x)→ −φ(x) at every space-time point.

This is a symmetry for any Lagrangian with only even powers of φ, in particular,

L =
1

2
(∂µφ)2 − 1

2
µ2φ2 − λφ4 → L

There should be a unitary operator effecting the transformation

φ→ U †φU = −φ

For λ = 0, we will actually be able to construct U , that is give its action on the creation
and annihilation operators, and thus its action on the basis states.

15See Dirac Principles of QM, pp. 103ff
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Since φ is a linear function of a~k and a†~k it must be that

U †a~kU = −a~k
and the h.c. equation

U †a†~kU = −a†~k
We’ll also make a choice in the phase of U by specifying

U |0〉 = |0〉

We can determine the action of U on the basis states

U |k1, . . . , kn〉 = Ua†~k1
a†~k2
· · · a†~kn|0〉

= Ua†~k1
U †Ua†~k2

U † · · ·Ua†~knU
†U |0〉

= (−1)na†~k1
a†~k2
· · · a†~kn|0〉 = (−1)n|k1, . . . , kn〉

As an operator statement we see that

U = (−1)N(= eiπN if you prefer )
(N=meson number

=
∫
d3ka†

~k
a~k)

Suppose we could construct this operator when λ 6= 0. The existence of this unitary
operator tells you that you’ll never see 2 mesons scatter into 43 mesons or any odd number
of mesons. Mesons are always produced in pairs. More formally, it must be that 0 = 〈n|S|m〉
where n〉 is a state with n mesons, |m〉 is a state with m mesons and S is the scattering
matrix made from the Hamiltonian, whenever n+m is odd. For if n+m is odd

〈n|S|m〉 = 〈n|U †USU †U |m〉 = 〈n|U † (USU †)︸ ︷︷ ︸
S because UHU†=H

U |m〉

= (−1)n+m〈n|S|m〉 = −〈n|S|m〉

Our second example of a discrete internal symmetry will turn out to be Charge
Conjugation.

Recall that

L =
2∑

a=1

(
1

2
(∂µφ

a)2 − 1

2
µ2(φa)2

)
− λ[(φ1)2 + (φ2)2]2

had an SO(2) symmetry. In fact it has an O(2) symmetry, rotations and rotations with
reflections in the φ1, φ2 plane. It is invariant under proper and improper rotations. We’ll
take one standard improper rotation

φ1 → φ1 φ2 → −φ2
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Any other one can be obtained by composing this one with an element of the internal
symmetry group SO(2).

It is easy to write down the unitary operator in the case λ = 0. Then we have two
independent free scalar field theories

UC = (−1)N2

As mathematicians are fond of saying, we have reduced it to the previous case.
The action of U is especially nice if we put it in terms of the fields ψ and ψ† already

introduced

ψ =
φ1 + iφ2

√
2
→ U †CψUC =

φ1 − iφ2

√
2

= ψ†

ψ† → ψ

For this reason, this is sometimes called a conjugation symmetry. Because U †CQUC = −Q
it is also called charge16 conjugation or particle-anti-particle conjugation. From the action
on ψ and ψ† we see

U †Cb~kUC = c~k and U †Cc~kUC = b~k

and the equations obtained from these by hermitian conjugation. UC is unitary and hermi-
tian:

U2
C = 1 = UCU

†
C ⇒ UC = U †C

We could continue the discussion of discrete internal symmetries, but it is boring. You
could write down a Lagrangian with four fields that is invariant under rotation in four-
dimensional space and under permutations of any of the four fields. You could write down
a theory with the icosahedral group.

Parity Transformations

Any transformation that takes

φa(~x, t)→
∑
b

Ma
b φ

b(−~x, t)

we’ll call a parity transformation. (We have used the fact that we live in an odd number
of dimensions (3) and thus that ~x → −~x is an improper rotation, in our definition. If
we lived in two space dimensions we could do a similar thing with only x2 → −x2.) A
parity transformation transforms each fundamental observable at the point ~x into some
linear combination of fundamental observables at the point −~x.

16the charge from the SO(2) symmetry
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Usually parity takes L

The usual
confusing notation︷ ︸︸ ︷

(~x, t)→ L(−~x, t), when it is a symmetry, but all we really demand
is that parity takes

L(t)→ L(t) as usual.

Example (1) Parity is a symmetry of

L =
1

2
(∂µφ)2 − µ2

2
φ2 P : φ(~x, t)→ φ(−~x, t)

L→ L
(M = 1)

From

φ(~x, t) =

∫
d3k

(2π)3/2
√

2ω~k
[aa~ke

−i~k·~xe−iω~kt + aa†~k e
i~k·~xeiω~kt]

and U †Pφ(~x, t)UP = φ(−~x, t)

we can see that the action on the creation and annihilation operators must be

U †P

{
a~k
a†~k

}
Up =

{
a−~k
a†
−~k

}

and on the basis states

UP |~k1, . . . , ~kn〉 = | − ~k1, . . . ,−~kn〉

But there is a second possibility for parity

P ′ : φ(~x, t)→ −φ(−~x, t) (M = −1)

L→ L

Whenever there is an internal symmetry in a theory I can multiply one definition
of parity by an element of that symmetry group (discrete or continuous) and get
another definition of parity. In the case at hand the unitary operator UP ′ is given
by

UP ′ = (−1)NUP or UP ′ |~k1, . . . , ~kn〉 = (−1)n| − ~k1, . . . ,−~kn〉

Sometimes people distinguish between a theory with invariance under P : φ(~x, t)
→ φ(−~x, t) and a theory with invariance under P ′ : φ(~x, t) → −φ(−~x, t), by
calling the first the theory of a scalar meson and the second a theory of a pseudo
scalar meson. Our theory is invariant under both; it’s the old plate of cookies
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problem again. The theory has a set of invariances. As long as you are in
agreement about the total set of invariances of the theory, you shouldn’t waste
time arguing about what you’ll call each one. This is why the conventions on
the parity of some particles is arbitrary (relative parity). If −λφ4 is added to L
both P and P ′ are still invariances of L. With a φ3 interaction P is a symmetry,
P ′ isn’t. All the physicists in the world would agree that this is a scalar meson.
One of the cookies has been poisoned.

Example (2) This awful Lagrangian has been cooked up to illustrate a point. After
this lecture you won’t see anything this bad again.

L =
4∑

a=1

[
1

2
(∂µφ

a)2 − µ2
a

2
(φa)2

]
− gεµνλσ∂µφ1∂νφ

2∂λφ
3∂σφ

4

All four meson masses are different. The new interaction involving the totally
antisymmetric tensor in four indices is invariant under L.T. for the same reason
that ~a ·(~b×~c) is invariant under proper rotations. (~a ·(~b×~c) is multiplied by detR
under a rotation). Because εµνλσ is nonzero only if one of its indices is timelike,
the other three spacelike, three of the derivatives are on space coordinates. We
get three minus signs under parity. An odd number of mesons are going to have to
be pseudoscalar to get a net even number of minus signs. Because any φa → −φa
is an internal symmetry of the free Lagrangian, it doesn’t matter which one you
choose or which three you choose to be pseudoscalar.

Example (3) Take the perverse Lagrangian of the last example by and make it worse
by adding

4∑
a=1

(φa)3

Now there is no definition of parity that gives a symmetry. This theory violates
parity.

Example (4) Sometimes people say that because the product of two reflections is 1,
the square of parity is 1. This example is cooked up to show that a theory with
parity can have indeed U2

P 6= 1. Indeed UP cannot be chosen to satisfy U2
P = 1.

L =
4∑

a=1

[
1

2
(∂µφ

a)2 − µ2
a

2
(φa)2

]
+ ∂µψ

∗∂µψ −m2ψ∗ψ

− h
4∑

a=1

(φa)3 − gεµνλσ∂µφ1∂νφ2∂λφ3∂σφ4[ψ2 + ψ∗2]
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The transformation of the φa’s must be φa(~x, t) → +φa(~x, t). The only way to
make the last term parity invariant is for ψ ot transform as

ψ → ±iψ ψ∗ → ∓iψ∗

In either case U2
P 6= 1, U †PU

†
PψUPUP = −ψ. Fortunately, nothing like this occurs

in nature (as far as we know). If it did, and if parity were a symmetry (or an ap-
proximate symmetry) of the world we would have a name for fields transforming
like ψ, a “semi-pseudo-scalar”.

Time Reversal

First a famous example from classical particle mechanics, a particle moving in a potential

L =
1

2
mq̇2 − V (q) T : q(t)→ q(−t)

T is not a discrete symmetry the way we have defined it

T : L(t)→ L(−t)
in the usual confusing

notation where L(t) refers
to the time dependence
through the coordinates

Nevertheless T does take one solution of the equations of motion into another. You might
still hope there is a unitary operator that does the job in the quantum theory.

U †T q(t)UT = q(−t)

There are two paradoxes I’ll give to show this can’t happen.

1st Paradox Differentiate U †T q(t)UT = q(−t) with respect to t. Because p(t) ∝ q̇(t)

U †Tp(t)UT = −p(t)

Consider U †T [p, q]UT = −i. From the two relations we have juts obtained we also have

U †T [p(t), q(t)]UT = −[p(−t), q(−t)] = −i Particularly poignant
at t = 0

Looks like we would have to give up the canonical commutation relations to implement
time reversal. If that isn’t enough to make you abandon the idea of a unitary time
reversal operator I’ll continue to the
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2nd Paradox Roughly, UT should reverse time evolution, i.e. U †T e
−iHtUT = eiHt. I can

prove this. For any operator O(t)

O(t) = eiHtOe−iHt

Apply U †T the unitary transformation to both sides to obtain

O(−t) = U †T e
+iHtUTOU †T e

−iHtUT O = O(0)

but O(−t) = e−iHtUTOeiHt let V≡U†T e
−iHtUT

I’d like to show V = eiHt. What we have is e−iHtOeiHt = V −1OV which implies
V e−iHtO = OV e−iHt. V e−iHt commutes with any operator O. V e−iHt = 1. Now that
I’ve proved

U †T e
−iHtUT = eiHt

Take d
dt

∣∣
t=0

of this relation,

U †T (��−iH)UT = �iH,

canceling the i’s, we see that H is unitarily related to −H. The spectrum of H cannot
be bounded below, because (the spectrum of unitarily related operators is the same
and) the spectrum of H is not bounded above. AUGGH!

A unitary time reversal operator is an object that makes no sense whatsoever. The answer
is that time reversal is implemented by an antiunitary operator. Antiunitary operators are
antilinear. Dirac notation is designed to automate the handling of linear operators, so for
a while we’ll use some more cumbersome notation that does not automate the handling of
linear operators.

Let a, b denote states,
α, β denote complex numbers and
A,B denote operators.
(a, b) is the inner product of two states.

A unitary operator is an invertible operator, U , satisfying

(Ua, Ub) = (a, b) for all a, b unitarily

This is enough of an assumption to show U is linear (see related proof below). The
simplest unitary operator is 1.

U(αa+ βb) = αUa+ βUb linearity

The adjoint of a linear operator A is denoted A† and is the operator defined by (this
definition is not consistent if A is not linear)

(a,A†b) = (Aa, b) for all a, b



7. October 14 Notes from Sidney Coleman’s Physics 253a 67

I’ll show that U † = U−1 (which is sometimes given as the definition of unitarity).

(a, U−1b)

unitarity
of U︷︸︸︷
= (Ua, UU−1b) = (Ua, b)

A transformation of the states, a → Ua, can also be thought of as a transformation of
the operators in the theory

(a,Ab)→ (Ua,AUb) = (a, U †AUb) can alternatively be thought of as A→ U †AU .

An antiunitary operator is an invertible operator, Ω, (this is a notational gem, an upside
down U) satisfying

(Ωa,Ωb) = (b, a) for all a, b antiunitarity

We can immediately make a little table showing the result of taking products of unitary
and antiunitary operators. (The product of a unitary operator with an antiunitary operator

is an antiunitary operator, etc.)

U Ω

U
Ω

U Ω
Ω U

We can prove (this is the related proof referred to above) that any operator (not neces-
sarily invertible) satisfying the antiunitarity condition is antilinear.

(Ωa,Ωb) = (b, a)⇒ Ω(αa+ βb) = a∗Ωa+ β∗Ωb antilinearity

Consider (Ω(αa+βb)−α∗Ωa−β∗Ωb,Ω(αa+βb)−α∗Ωa−β∗Ωb). (You ask why?!) This
is the inner product of Ω(αa + βb) − α∗Ωa − β∗Ωb with itself. If this is zero, the fact that
the inner product is positive definite implies that Ω(αa+βb)−α∗Ωa−β∗Ωb = 0. The result
we want! Indeed, it is simply a matter of expanding this inner product out into its 9 terms,
applying the antiunitarity condition to each term, and then expand the 5 terms containing
αa + βb some more to show this is zero. (The analogous proof for operators satisfying the
unitarity condition also only uses properties of the inner product and is even easier.)

The simplest antiunitary operator is complex conjugation, K. For the elements of some
basis, bi, Kbi = bi and on any linear combination

K(
∑
i

αibi) =
∑
i

α∗i bi

For consistency (bi, bj) must be real. This is the familiar complex conjugation of nonrel-
ativistic quantum mechanics of position space wave functions. The basis is a complete set
of real wave functions.

A useful fact (especially conceptually) is that any antiunitary operator, Ω, is equal to
UK for some unitary U . Proof by construction: take U = ΩK.
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In a more limited sense, the transformation of the states by an antiunitary operator Ω,
a→ Ωa, can also be thought of as a transformation of the operators in the theory. Consider
the expectation value of a Hermitian operator (observable) in the state a. It transforms as

(a,Aa)→ (Ωa,AΩa) = (AΩa,Ωa) (hermiticity)

= (ΩΩ−1AΩa,Ωa) invertibility

= (a,Ω−1AΩa) antiunitarity

This transformation can alternatively be thought of as

A→ Ω−1AΩ

We don’t write Ω†AΩ because adjoint is not even defined for antilinear ops.
50 years ago [1931], Eugene Wigner proved a beautiful theorem telling us why unitary

and antiunitary operators are important in QM. He showed that (up to phases) they are the
only operators that preserve probabilities. It is not necessary to preserve inner products;
they aren’t measurable. It is the probabilities that are measurable. Look in the appendix of
his book on group theory.

Given that F (a) (F : H → H) is continuous and for any a and b

|(F (a), F (b))|2 = |(a, b)|2

then F (a) = eiφ(a)x
{

a unitary op
or an

antiunitary op
(φ : H → R)

Time reversal is not a unitary operator. Time reversal is antiunitary.
It is easy to see now how the two paradoxes are avoided.

Ω−1
T iΩT = −i

You can’t cancel the i’s as we did in paradox 2.

Ω−1
T (−iH)ΩT = iH ⇒ Ω−1

T HΩT = H

We can explicitly construct the time reversal operator in free field theory. The simpler
thing to look at in a relativistic theory is actually PT . Let’s find

ΩPT such that Ω−1
PTφ(x)ΩPT = φ(−x)

The simplest candidate is just complex conjugation, in the momentum state basis. That
is ΩPT does nothing, absolutely nothing to a~k and a†~k

Ω−1
PTa~kΩPT = a~k and Ω−1

PTa
†
~k
ΩPT = a†~k
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Furthermore we’ll take ΩPT |0〉 = |0〉 and it follows that

ΩPT |~k1, . . . , ~kn〉 = |~k1, . . . , ~kn〉

again nothing, they just lie there. What does this operator do to φ(x)?

φ(x) =

∫
d3k

(2π)3/2
√

2ω~k
[aa~ke

−ik·x + aa†~k e
ik·x]

Apply ΩPT to φ(x). It does nothing to 1

(2π)3/2
√

2ω~k
, it does nothing to a~k, and nothing to

a†~k.
But what about that i up in the exponential. It turns that into −i!

Ω−1
PTφ(x)ΩPT =

∫
d3k

(2π)3/2
√

2ω~k
[aa~ke

ik·x + aa†~k e
−ik·x]

= φ(−x) !

PT does nothing to momentum states. That is expected. Parity turns ~k → −~k and time
reversal changes it back again.
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8 October 16

Scattering Theory

For a wide class of quantum mechanical systems, the description of any
state is simple if you go far enough into the past or far enough into the
future.

We’ll illustrate this by a sequence of three increasingly complicated
systems.

1. NRQM, two particles interacting through a repulsive force, which dies off at large
separation.

H =
p2
A

2mA

+
p2
B

2mB

+ V (|~rA − ~rB|) V ≥ 0 V (∞) = 0

Any state of the system, a real normalizable state, not a plane wave, looks in the far
past / future like two particles far apart (actually a superposition of such states). The
potential always pushes the particles far apart for times in the far future, and because
the potential dies off they then look like noninteracting particles

t

t

A B

B
A

There is no trace of the interaction in the far future or the far past. The states act like
states with dynamics governed by a free Hamiltonian, H0, which is simple,

H0 =
p2
A

2mA

+
p2
B

2mB

The aim of scattering theory is to tell what (superposition of) simple
state(s) in the far future a simple state in the far past evolves into.



8. October 16 Notes from Sidney Coleman’s Physics 253a 71

How far in the “far past” you have to go depends on the initial condi-
tions and the interaction. If the interaction is the nuclear force and
we collide two neutrons at low energy which elastically scatter near
t = 0, then t = −7 years is far enough in the far past so that the system
looks like two non interacting nucleons. If however the initial con-
ditions are set up so that the elastic scattering occurs around t = −1
billion years then you might have to go to t = −(1 billion and seven)
years to make the system look simple.

It need not be that the simple Hamiltonian in the far future is the
same as the simple Hamiltonian in the far past.

2. NRQM, Three particles A, B, C which interact through interactions which are strong
enough to make an AB bound state. Start in the far past with C and the AB bound
state. Everything still looks like free particles governed by a free Hamiltonian but the
free Hamiltonian in the far past is

H0 =
p2
AB

2mAB

+
p2
C

2mC

Now let scattering occur. In the far future, we can get states that look like three
particles, A, B, C, non-interacting, governed by the free Hamiltonian

H0 =
p2
A

2mA

+
p2
B

2mB

+
p2
C

2mC

t

t

A B c

A B c

If you had a sufficiently advanced QM course, you may have studied such a system:

e+ +H → p+ e+ + e−

There is no way to truncate this system’s full Hamiltonian into a free part and an
interacting part, for which the free part describes the evolution of the system in the



8. October 16 Notes from Sidney Coleman’s Physics 253a 72

far future and the far past. If you use the far future H0, you don’t have an AB bound
state.

3. (A plausible picture of) the real world.

In the real world we have loads of (stable) bound states. If the real world has a
laboratory bench as a stable bound state, then I can do chalk-bench scattering, and
I’ll need a description of a freely flying piece of chalk and a freely flying laboratory
bench. The description of states in the far past requires states with free electrons,
hydrogen atoms, protons, Iron atoms, Iron nuclei, laboratory benches, chalk, and the
associated free Hamiltonians.

Let’s get some formalism up. (The first part of this lecture, with lots of words and few
equations, is the part of a lecture that makes some people nervous and some people
bored.)

Let H be the actual Hamiltonian of the world and H be the actual Hilbert space of the
world. If you go sufficiently far in the past, every state in the actual Hilbert space looks
simple. Let H0 be the Hilbert space of simple states and let |ψ〉 ∈ H0. Somewhere in
the real world Hilbert space there is a state that looks like |ψ〉 in the far past. We’ll
label that state |ψ〉in, |ψ〉∈ ∈ H. Given another state |φ〉 ∈ H0, there is another state
in the real world Hilbert space that looks like |φ〉 in the far future. We’ll label that
state |φ〉out, |φ〉out ∈ H. States in the complicated space are labelled by what they look
like in the far past or the far future.

What we are after in scattering theory is the probability, and hence the amplitude,
that a given state looking like |ψ〉 in the far past, looks like |φ〉 in the far future. We
are after

out〈φ|ψ〉in

The correspondence between |ψ〉in and |ψ〉 (for every state |ψ〉 ∈ H there is a state
that looks like |ψ〉in ∈ H in the far past) and between |φ〉in and |φ〉 allows us to define
an operator in the simple Hilbert space H0 : S, the scattering matrix, which is defined
by

〈φ|S|ψ〉 ≡ out〈φ|ψ〉in

An ideal scattering theory would have two parts

1. A turn the crank method of obtaining the “descriptor” states |ψ〉, |φ〉, that is, gener-
ating H0, from the real world Hamiltonian. We also need H0 which gives the evolution
of the descriptor states. H0 evolves the descriptor states without scattering.

2. A turn the crank method of obtaining S.
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90% of the rest of this course will be devoted to calculating the matrix elements of S
perturbatively.

That’s an ideal scattering theory. We want to get calculating so we’ll start with a bargain
basement, K-Mart scattering theory.

Low Budget Scattering Theory

Imagine that H can be written as H = H0 + f(t)H ′, f(t) = 0 for large |t|, and H0 a free
Hamiltonian that evolves states simply, without scattering. Unless the interaction is with
some externally specified apparatus, interesting Hamiltonians and the real world Hamiltonian
are not of this form. We want a simple description of states in the far past / future. Because
the interaction is off in the far past / future, the simple descriptor states are simply the
states in the full theory far enough in the past / future that f(t) = 0, H = H0. Furthermore,
the Hamiltonian that gives the evolution of the simple states, H0, is just the full Hamiltonian
H, far enough in the past / future that f(t) = 0.

Most Hamiltonians don’t have an f(t) in them that goes to zero as |t| → ∞. However,
many Hamiltonians are of the form H = H0 + H ′ where H0 is a Hamiltonian we know the
solution of. Maybe we could put an f(t) into the Hamiltonian without changing scattering
processes much. We know we can’t do this in system (2). No matter how far you go into
the far past / future, it is the interaction that holds the stable AB bound state together,
and you can’t shut the interaction off without the bound state falling apart, totally changing
scattering processes, no matter how long you wait to shut it off. The real world is like system
(2) and we can only get a little ways studying the real world if we hack it up like this. We
might get a ways studying system (1) like this. In the far past / future the particles in
system (1) are far apart and noninteracting. If f(t) → 0 in the far past / future, it should
not affect their evolution since they are not interacting then anyway.

Suppose we wanted to insert an f(t) to study a theory of electrons interacting through
a repulsive Coulomb force. We can see a flow developing. As a single electron goes off to ∞
away from all others, it still has a Coulomb field (cloud of photons) around it. If you weigh an
electron, you get a contribution

∫
E2

8π
d3x to the mass-energy in addition to the contribution

to the mass-energy at the heart of the electron. This is one and the same electric field that
causes the scattering to take place, and you can’t turn off scattering without turning off this
cloud. Maybe, if we turn the interaction off sufficiently slowly the simple states in the real
theory will turn into the states in the free theory with probability 1. We want f(t) to look
like:
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f(t)

T

t

f(t) turns on and off adiabatically. A more precise way of stating the condition under
which we hope inserting f(t) into the theory won’t change scattering processes much is there
must be a 1-1 correspondence between the asymptotic (simple) states of the full Hamiltonian
and the states of the free Hamiltonian. That means no bound states, no confinement. We
hope scattering processes won’t be changed at all under this assumption in the limit ∆→∞,
T → ∞, ∆

T
→ 0. The last limit is needed so that edge effects are negligible. We want

adiabatic turn on and off, but we also want the interaction to be on much longer than the
amount of time we spend turning it on and off. Similar requirements must be imposed if
you put a system in a spatial box, depending on what kind of quantities you want to know
about. In slightly racy language, the electron without its cloud of photons is called a “bare”
electron, and with its cloud of photons a “dressed” electron. The scattering process goes
like this: In the far far past a bare electron moves freely along. A billion years before it is to
interact it leisurely dresses itself. Then it moves along for a long time as a dressed electron,
briefly interacts with another (dressed) electron and moves for a long time again, dressed.
Then it leisurely undresses.

We need to develop Time dependent Perturbation Theory for Hamiltonians of the form

H = H0 +H ′(t)

H ′(t) may depend on time because of externally varying interactions or because of the
insertion of f(t). We’ll do the formalism in the interaction picture developed by Dirac. This
is the best formalism for doing time-dependent perturbation theory. If you have laser light
shining on an atom, and you know this formalism, it is the most efficient way of calculating
what happens to the atom, although it is higher powered than the minimum formalism you
need for that problem.

Schrödinger picture

We have states evolving in time according to

i
d

dt
|ψ(t) 〉S︸︷︷︸ = H(pS, qS, t)|ψ(t)〉S

for Schrödinger, since we’ll be
working in several pictures
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The fundamental operators, pS and qS are time independent

qS = qS(t) = qS(0) pS = pS(t) = pS(0)

The only operators that are not time independent are operators that explicitly depend
on time. The time evolution operator U(t, t′) is given by

|ψ(t)〉S = U(t, t′)|ψ(t′)〉S

U is completely determined by the 1st order differential equation in t

i
d

dt
U(t, t′) = H(pS, qS, t)U(t, t′)

and the initial condition U(t, t′)|t=t′ = 1. Think of t′ as a parameter. U is unitary (from the
Hermiticity of H), i.e. U(t, t′)† = U(t, t′)−1, which expresses the conservation of probability.
U also obeys the composition law

U(t, t′)U(t′, t′′) = U(t, t′′)

which implies
U(t, t′) = U(t′, t)−1

Heisenberg Picture

The states do not change with time

|ψ〉H = |ψ(0)〉H = |ψ(0)〉S

If AS

possible explicit
time dependence︷︸︸︷

(t) is an operator in the Schrödinger picture and AH(t) its counterpart in the
Heisenberg picture, demand that

S〈φ(t)|AS(t)|ψ(t)〉S =H 〈φ(t)|AH(t)|ψ(t)〉H
=S 〈φ(0)|AH(t)|ψ(0)〉S
=S 〈φ(t)|U(0, t)†AH(t)U(0, t)|ψ(t)〉S

∴ AH(t) = U(0, t)AS(t)U(0, t)† = U(t, 0)†AS(t)U(t, 0)

Suppose we have some function of operators and the time in the Schrödinger picture,
itself an operator. For example H itself is a function of pS, qS and t. To get the operator in
the Heisenberg picture, all you have to do is replace p’s and q’s by pH and qH .

HH(t) = H(pH(t), qH(t), t)
Expand H as a power

series and insert
U(t,0)U(t,0)† all over.



8. October 16 Notes from Sidney Coleman’s Physics 253a 76

Interaction Picture

Assume H can be written as H(p, q, t) = H0 − (p, q) + H ′(p, q, t). This defines the relation
between the functions H, H0 and H ′, the arguments of these functions will change.

The interaction picture is intermediate between the Schrödinger picture and the Heisen-
berg picture. You make the transformation you would make to get the Schrödinger picture
to the Heisenberg picture, but you do it using just the free part of the Hamiltonian only.

|ψ(t)〉I = eiH0(pS ,qS ,t)t|ψ(t)〉S
If there were no interaction H′, there would
be no time evolution of the states. That is

what makes the interaction picture so useful.

If H0 depended explicitly on time we would have to define a U0(t, 0) which would take
the place of e−iH0t, but we will have no occasion to be that general. If AS(t) is an operator
in the Schrödinger picture, and AI(t) its counterpart in the interaction picture, we get

AI(t) = eiH0(pS ,qS)tAS(t)e−iH0(pS ,qS)t (8.1)

by demanding

S〈φ(t)|AS(t)|ψ(t)〉S =I 〈φ(t)|AI(t)|ψ(t)〉I
We can find a differential equation for |ψ(t)〉I

i
d

dt
|ψ(t)〉I = i

d

dt

(
eiJ0(pS ,qS)t|ψ(t)〉S

)
= eiH0(pS ,qS)t[−H0(pS, qS) +H(pS, qS, t)]|ψ(t)〉S
= eiH0(pS ,qS)t[H ′(pS, qS, t)]e

−iH0(pS ,qS)t|ψ(t)〉I

= H ′(pI , qI , t)|ψ(t)〉I
Expand H′(pS , qS , t) in a

power series and insert
e−iH0teiH0t all over.

≡ HI(t)|ψ(t)〉I As promised, if H′ is zero, no time evolution.

In field theory, HI(t) will contain the free fields

φ(~x, t) = eiH0tφS(~x)e−iH0t

That is why all our results about free fields are still going to be useful.
We can define UI(t, t

′) by |ψ(t)〉I = UI(t, t
′)|ψ(t′)〉I

U †I (t, t′) = UI(t, t
′)−1 UI(t, t

′)UI(t, t
′′) = UI(t, t

′′)

UI(t, t
′) = UI(t

′, t)−1 UI(t, 0) = eiH0(pS ,qS)tU(t, 0)

In a field theory, φI(x) obey free eq of motion + commutation relations.
UI(t, t

′) can be determined from the first order differential equation in t it satisfies

i
d

dt
UI(t, t

′) = HI(t)U(t, t′) and the initial conditions UI(t, t
′)|t=t′ = 1
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Now we’ll apply interaction picture perturbation theory to scattering theory. In the
interaction picture the scattering process looks like this: In the far past the interaction is
not felt, both because of f(t) and the fact that these particles are far apart. The states just
like there, although the p’s and q’s are changing. The time of scattering approaches and the
state starts changing. After scattering, they stop scattering, like a game of musical chairs,
everything freezes again.

You want to connect the simple description in the far past to the simple description in
the far future. Because of f(t) the simple description in the far past / future is the actual
description in the far past / future. The states in the far past and future are their own
descriptors (used in arrowed step).

〈φ|S|ψ〉 ≡ out〈φ|ψ〉in = I〈φ(0)|ψ|(0)〉I
= I〈φ(∞)UI(∞,−∞)|ψ(−∞)〉I
= 〈φ|UI(∞,−∞)|ψ〉

⇓

∴ S = UI(∞,−∞)

Our number one priority then is to evaluate UI(∞,−∞). That will cause us to develop
Dyson’s formula and Wick’s theorem. Then we’ll apply this formalism to three models.

Proof that S = UI(∞,−∞) in the Schrödinger picture.

i
d

dt
|ψ〉in = H|ψ〉in |ψ(−∞)〉 = |ψ(−∞)〉in

i
d

dt
|ψ〉 = H0|ψ〉

out〈φ|ψ〉in ≡ 〈φ|S|ψ〉
out〈φ|ψ〉in = out〈φ(t)|ψ(t)〉in

any time will do

= out〈φ(∞)|U(∞, 0)U(0,−∞)|ψ(−∞)〉in

= 〈φ(∞)|U(∞,−∞)|ψ(−∞)〉
= 〈φ(0)|U0(∞, 0)†−1U(∞,−∞)U0(0,−∞)−1|ψ(0)〉
= 〈φ|UI(∞,−∞)|ψ〉

[S,H0] = 0 because S turns free states of a given energy into other free states of the same
energy.
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Dyson’s Formula

We would like to find the solution of the equation

i
d

dt
UI(t, t

′) = HI(t)UI(t, t
′) UI(t, t

′) = 1

Imagine that [HI(t), HI(t
′)] = 0, which is not true. Then the solution would be

((((
(((

((((
((

UI(t, t
′) = e−i

∫ t
t′ dt

′′HI(t′′)

Let’s define a new exponential so this equation is right. Given a string of operators define
the time-ordered product

T [A1(t1) · · ·An(tn)]

to be the string rearranged so that later operators are to the left of earlier operators, with
the operator with the latest time one the leftest. The ambiguity of what to do at equal times
does not bother us when the operators commute at equal times. This is certainly the case
when all the operators are the same, HI(t), evaluated at various t. T , the symbol for the
time ordering operation, is not an operator in Hilbert space. Time ordering is a notation.

Now we’ll show that the differential equation for UI(t, t
′) is satisfied by

Te−i
∫ t
t′ dt

′′HI(t′′) t > t′

Under the time ordering symbol everything commutes, so we can naively take a time
derivative to get

i
d

dt
Te−i

∫ t
t′ dt

′′HI(t′′) = T
(
HI(t)e

−i
∫ t
t′ dt

′′HI(t′′)
)

Now t is a special time. It is the latest time, so the time ordering puts HI(t) on the
leftest, and we can pull it out on the left to get

i
d

dt
Te−i

∫ t
t′ dt

′′HI(t′′) = HI(t)Te
−i

∫ t
t′ dt

′′HI(t′′)

This solution of the differential equation also obeys the boundary condition (any old
ordering does that).

The solution of a first order differential equation with given initial value is unique. There-
fore

UI(t, t
′) = Te−i

∫ t
t′ dt

′′HI(t′′) t > t′ Dyson’s Formula

To illustrate what Dyson’s formula means, we’ll look at the second order term in the
power series expansion for the exponential.

(−i)2

2!

∫ t

t′
dt1

∫ t

t′
dt2T (HI(t1)HI(t2))
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t

t

t'

t' t t

t <t t =t

t >t

2
2 2

2

1 1

1

1

Think of this as an integration over the square. If the time ordering symbol were not
there, you would be integrating H(t1)H(t2) over the whole square. Because of the time
ordering symbol, you get instead twice the integral of H(t1)H(t2) over the lower half of the
square, the shaded triangle.

Our formula is only valid for t > t′. You can easily get the formula for t < t′ by taking
the adjoint.

We are going to apply Dyson’s formula to three model theories in order of increasing
complexity.

Model 1 L = 1
2∂µφ∂

µφ− µ2

2 φ
2 − gρ(x)φ(x)

ρ(x)→ 0 as x→∞ in space or time. ρ(x) is a prescribed c-number function of
space-time, a source V which will create mesons. The equation of motion is

(�+ µ2)φ(x) = −gρ(x)

Electromagnetism with an external source which generates the EM field looks
like �Aµ = −ejµ. Except that our field is massive, has no vector index, and
is a quantum field, these two theories look similar. We’ll call model 1 quantum
meso-dynamics. We’ll be able to solve it exactly, which is not a big surprise; in
momentum space it is just a bunch of independent forced harmonic oscillators.

Model 2 L = 1
2∂µφ∂

µφ− µ2

2 φ
2 − gρ(~x)φ(x)

ρ(~x) → 0 as |~x| → ∞. This is the same as model 1 except the source is static.
You might think this time independent problem would be easier than model 1,
but it isn’t because the source does not turn off as |t| → ∞. We will have to use
(and thus gain experience with) our adiabatic turning on and off function, f(t).
This is the quantum scalar analog of electrostatics, so we’ll call it “mesostatics.”
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Model 3 L = 1
2∂µφ∂

µφ− µ2

2 φ
2 + ∂µψ

∗∂µφ−m2ψ∗ψ − gψ∗ψφ
The equation of motion for the φ field is

(�+ µ2)φ = −gψ∗ψ

This is beginning to look like the real thing. In real electrodynamics, the current
jµ is not prescribed, it is the current of charged particles. Here we have the
charged field ψ as a source for φ (ψ∗ψ is like a current). The φ field in turn
appears in the equation of motion for the ψ field.

(�+m2)ψ = −gψφ

This theory also looks a lot like Yukawa’s theory of the interaction between
mesons and nucleons, except our charged particles are spinless and we only have
one meson. We had better not push this theory too far (we’ll be doing low orders
in P.T. only). The classical Hamiltonian contains gψ∗ψ and that is not bounded
below for either sign of g.

Wick’s Theorem

When doing perturbative calculations in g in any of these three models, we are going to have
to evaluate time ordered products of strings of Hamiltonians between states. In model 1,
HI = gρ(x)φ(x). At fourth order in g for a meson scattered by the source we would have to
evaluate

〈~k′|T (

these are free fields︷ ︸︸ ︷
φ(x1)φ(x2)φ(x3)φ(x4))|~k〉

The time ordered product contains 16 arrangements of creation and annihilation oper-
ators, from a~k1

a~k2
a~k3
a~k4

and a~k1
a~k2
a~k3
a†~k4

to a†~k1
a†~k2
a†~k3
a†~k4

. If we could rearrange these into

normally ordered products, the only normally ordered product that could contribute would
be the one with one creation operator on the left and one annihilation operator on the right,
a great simplification. In model 3 we wil have to evaluate time ordered products like

T (φ(x1)ψ∗(x1)ψ(x1)φ(x2)ψ∗(x2)ψ(x2))

If we had an algorithm for normal ordering the time ordered product, we would again
have great simplifications when we sandwiched this between states of mesons and nucleons.
Wick’s theorem turns time ordered products of free fields into normal ordered products of
free fields. To state Wick’s theorem we’ll define the contraction.

A(x)B(y) ≡ T (A(x)B(y))− : A(x)B(y) :
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Suppose, without loss in generality, really, that x0 > y0. Then

T (A(x)B(y)) = A(x)B(y) = (A(+) + A(−))(B(+) +B(−)) =: AB : +[A(+), B(−)]

and A(x)B(y) = [A(+), B(−)] which is a c-number. This is also a c# when x0 < y0. So

whether x0 < y0 or y0 < x0, A(x)B(y) is a c# and is thus equal to its vacuum expectation
value. Using its definition

A(x)B(y) = 〈0|A(x)B(y) |0〉
Using the defn.︷︸︸︷

= 〈0|T (A(x)B(y))|0〉 −
(((

((((
(((〈0| : A(x)B(y) : |0〉

That’s why the calculation of 〈0|T (φ(x)φ(y))|0〉 in the first problem set is going to be
useful.

φ(x)φ(y) = 〈0|T (φ(x)φ(y))|0〉 =

∫
d4k

(2π)4
e±ik·(x−y) i

k2 − µ2 + iε

limε→0+ is understood. Convince yourself the ± doesn’t matter. You can also see that

ψ(x)ψ∗(y) = ψ∗(x)ψ(y) =

∫
d4k

(2π)4
e±ik·(x−y) i

k2 −m2 + iε

A little more obvious notation: : A(x)B(y)C(z)D(w) :≡: A(x)C(z) : B(y)D(w) and let
φ1 ≡ φa1(x1), φ2 ≡ φa2(x2), etc., just for this proof.

Theorem (Gian-Carlo Wick)

T (φ1, . . . , φn) =

term with
no contractions︷ ︸︸ ︷
: φ1 · · ·φn : + : φ1φ2 · · ·φn : +

all the other
n(n−1)

2
possible

terms with one
contraction

+ : φ1φ2φ3φ4 · · ·φn :

+
all the other

1
2
n(n−1)

2
(n−2)(n−3)

2
possible terms with

two contractions

+

...
all possible
terms with
<n−1

2
contractions

...

+

: φ1φ2φ3φ4 · · ·φn−1φn : if n is even

: φ1φ2φ3φ4 · · ·φn−2φn−1φn : if n is odd

You draw all possible terms with all possible contractions. That you get all that is no
surprise. The remarkable and graceful thing about this theorem is that each term occurs
with coefficient +1.

Proof (By induction) Define the RHS of the expression to be W (φ1 · · ·φn). We want to
show W = T . Trivial for n = 1, 2. Choose without loss of generality χ10 ≥ χ20 ≥ · · · ≥ χn0.
Then

T (φ1 · · ·φn) = φ1T (φ2 · · ·φn)

induction
step︷︸︸︷
= φ1W (φ2 · · ·φn) = φ

(−)
1 W +Wφ

(+)
1 + [φ

(+)
1 ,W ]
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This expression is normal ordered. The first two terms contain all possible contractions
that do not include φ1. The third term contains all possible contractions that do include
φ1. Together they contain all possible contractions. Either a contraction includes φ1 or it
doesn’t. The right hand side is thus W (φ1 · · ·φn).
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9 October 21

Diagrammatic Perturbation Theory

Dyson’s formula applied to S = UI(∞,−∞) is

UI(∞,−∞) = Te−i
∫
dtHI(t)

(Without the use of the time ordering notation, this formula for UI(t, t
′) was written

down by Dirac 15 years before Dyson wrote it this way, and Dyson says he should not have
credit for little more than a change in notation.)

From this and Wick’s theorem, which for those of you who really love combinatorics can
be written

T (φ1 · · ·φn) =: e
1
2

∑n
i,j=1φiφj ∂

∂φi

∂
∂φj φ1 · · ·φn :

We have enough work done to write down diagrammatic perturbation theory for S =
UI(∞,−∞). The easiest way to see this is to look at a specific model and a contribution to
UI(∞,−∞) at a specific order in g.

In model 3, HI = gf(t)ψ∗ψφ, HI =
∫
d3xHI ,

UI(∞,−∞) = Te−i
∫
d4xHI = Te−i

∫
d4xgf(t)ψ∗ψφ

the contribution at second order in g is

(−ig)2

2!

∫
d4x1d

4x2f(t1)f(t2)T (ψ∗ψφ(x1)ψ∗ψφ(x2))

One of the terms in the expansion of the time ordered product into normal ordered
products by Wick’s theorem is

(−ig)2

2!

∫
d4x1d

4x2f(t1)f(t2) : ψ∗ψ φ(x1)ψ∗ψφ(x2) :

This term can contribute to a variety of physical processes. The ψ field contains opera-
tors that annihilate a “nucleon” and operators that create an anti-“nucleon”. The ψ∗ field
contains operators that annihilate an anti-nucleon and create a nucleon. The operator

: ψ∗ψ φ(x1)ψ∗ψφ(x2) :=: ψ∗ψ(x1)ψ∗ψ(x2) : φ(x1)φ(x2)

can contribute to N +N → N +N . That is to say

〈 final 2
nucleon state| : ψ∗ψ(x1)ψ∗ψ(x2) : | initial 2

nucleon state〉
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is nonzero because there are terms in the two ψ fields that can annihilate the two nucleons
in the initial state and terms in the 2 ψ∗ fields that can then create two nucleons, to give a
nonzero matrix element. It can also contribute to N̄+N̄ → N̄+N̄ and N+N̄ → N+N̄ . You
can see that there is no combination of creation and annihilation operators in this operator
that can contribute to N +N → N̄ + N̄ . The ψ fields would have to annihilate the nucleons
and the ψ∗ fields cannot create antinucleons. This is good because this process does not
conserve the U(1) symmetry charge. However it looks like our operator can contribute to
vacuum→ N + N + N̄ + N̄ , which would be a disaster. The coefficient of that term after
integrating over x1 and x2 had better tun out to be zero.

Another term in the expansion of the time ordered product into normal ordered products
is

(−ig)2

2!

∫
d4x1d

4x2f(t1)f(t2) : ψ∗ ψφ(x1)ψ∗ ψφ(x2) :

This term can contribute to the following 2→2 scattering processes: N + φ → N + φ,
N̄ + φ→ N̄ + φ, N + N̄ → 2φ, 2φ→ N + N̄ .

A single term is capable of contributing to a variety processes because a single field is
capable of creating or destroying a particle.

The terms in the Wick expansion can be written down in a diagrammatic shorthand

according to the following rules. At Nth order in perturbation theory, you start by writing

down N interaction vertices and numbering them 1 to N . For model 3 at second order in

perturbation theory you write down

This line is for the φ in
ψ∗ψφ(x1). It creates
or destroys a meson

Ef1� Ef2�
This outgoing line is for the ψ∗ in

ψ∗ψφ(x2). It can be thought of as creating
a nucleon or annihilating an antinucleon

This incoming line is for the ψ in ψ∗ψφ(x2).
It can be thought of as annihilating
a nucleon or creating an antinucleon

The vertex represents the factor of fψ∗ψφ. From the fact that there are two in this

diagram you know to include (−ig)2

2!

∫
d4x1d

4x2

Contractions are represented by connecting the lines. Any time there is a contraction, join
the lines of the contracted fields. The arrows will always line up, because the contractions
for which they don’t are zero. An unarrowed line will never be connected to an arrowed line
because that contraction is also zero.

Our first term in the expansion of the time ordered product corresponds to the diagram

� E1ff2E �
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The second term corresponds to

d e�1��2�
The term in the Wick expansion

(−ig)2

2!

∫
d4x1d

4x2f(t1)f(t2) : ψ∗ψφ(x1)ψ∗ ψφ(x2) :

is zero because ψ∗ψ∗ = 0, so we never write down

d eF1F�2�
Because the arrows always line up, we can shorten

d e�1��2� to d e�1�2�
These diagrams are in one-to-one correspondence with terms in the Wick expansion of

Dyson’s formula.

We’ll call them Wick diagrams. They stand for operators and the vertices are numbered.

we are most of the way to Feynman diagrams which stand for matrix elements, but these

aren’t them yet. The vertices are numbered in Wick diagrams and

d e�2�1� is distinct from d e�1�2�
(there are two distinct terms in the Wick expansion) even though after integrating over x1

and x2 these are identical operators. In Feynman diagrams the lines will be labelled by
momenta.

On the other hand

1f�Nf2 is identical to 2f�Nf1



9. October 21 Notes from Sidney Coleman’s Physics 253a 86

(there is only one way of contracting all three fields at one vertex with all three at the

other). Although these two have been written down to look different they aren’t. Rotate

the right one by 180◦ and you see they are the same.

1f�Nf 2

The contraction this diagram corresponds to is

(−ig)2

2!

∫
d4x1d

4x2f(t1)f(t2) : ψ∗ψφ(x1)ψ∗ψφ(x2) :

In model 1 HI = gρ(x)φ(x) (we don’t have to insert a turning on and off function because

the interaction goes to zero as x→∞ in any direction and in particular in the time direction

in the far past / future). ρ(x) is a prescribed c-number source, so strongly made we don’t

have to worry about the back reaction of the field φ on the source. The vertex in this model

is

•f
That represents ρφ(x). At O(g) in UI we have (−ig)

∫
d4x1ρφ(x1) which is represented

by
1•f.

At O(g2) in UI we have
1•f 2•f and

1•f2•.
At O(g3) in UI we have

1•f 2•f 3•f,
1•f2• 3•f,

1•f 2•f3•, and
1•f3• 2•f.

A diagram at O(g4) is
1•f2• 3•f 4•f.

We have been putting the normal ordering inside the integrand. Of course we could put
it around the whole integral in which case we see that this O(g4) diagram corresponds to

(−ig)4

4!
:

∫
d4x1d

4x2d
4x3d

4x4ρ(x1)ρ(x2)ρ(x3)ρ(x4)φ(x1)φ(x2)φ(x3)φ(x4) :=

(−ig)4

4!
:

∫
d4x1d

4x2 φ(x1)φ(x2) ρ(x1)ρ(x2)

∫
d4x3φ(x3)ρ(x3)

∫
d4x4φ(x4)ρ(x4) :

That is, the integrands factor into products of terms corresponding to each connected17

part of the diagram. This suggests we can sum the series and then normal order in this

17“Connected” means (in any theory) that the diagram is in one connected piece. It doesn’t mean fully

contracted.
1•−2• 3•−4• is a fully contracted diagram that is not connected.

1•− is not contracted, but is connected.
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simple theory, because at all orders in g the diagrams only contain •f• and •f various
numbers of times. We could do the sum in this theory, but instead we will prove a general
theorem. ∑

all Wick diagrams =: e
∑

connected Wick diagrams :

In a theory with only two connected diagrams this theorem is powerful enough to solve
the theory exactly in a couple of lines. It will help a lot in model 3, but since there are still
an infinite number of connected diagrams in model 3, we won’t solve it. This formula is also
useful in condensed matter physics where you develop a perturbation theory for Tr e−βH .
The free energy which is the logarithm of the partition function is what is actually of interest.
This theorem’s analogue tells you that you don’t have to calculate a huge series for Tr e−βH

and then try to take its logarithm. The free energy is just the sum of the connected diagrams.
Let D be a general diagram with n(D) vertices. Associated with this diagram is an

operator
: O(D) :

n(D)!

We have explicitly displayed the n(D)! and we have pulled the normal ordering outside.
For example for

D =� E1fk2E � O(D) = (−ig)2

∫
d4x1d

4x2f(t1)f(t2)φ(x1)φ(x2)ψ∗ψ(x1)ψ∗ψ(x2)

I will define two diagrams to be of the same “pattern” if they differ just by permuting
the labels at the vertices, 1, 2, . . . , n(D).

Since after integration over x1, . . . , xn(D) two different diagrams of the same pattern give

identical contributions to UI and since there are n(D)! permutations of the numbers 1, . . . ,

n(D), you might expect the sum over all diagrams of a given pattern to exactly cancel the

n(D)!. This is not quite right however. For some diagrams there are permutations of the

vertices that have no effect, for example

d e1F2

B �
3
�

4e d
is not distinct from

d e4F1

B �
3
�

2e d
(and there are two more cyclic permutations) but it is distinct from the diagrams with
noncyclic permutations. This is in exact correspondence with the question of whether or not
there is a new term in the Wick expansion from permuting x1, . . . , xn(D).
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For any pattern, there will be some symmetry number, S(D), which is the number of
permutations that have no effect on the diagram D (and of course there is the analogous
statement, that there are S(D) permutations of x1, . . . , xn(D) that do not give additional
contributions in the Wick expansion). Summing over all distinct diagrams of the same
pattern as D yields

: O(D) :

S(D)

Let D1, D2, . . . , Dr, . . . be a complete set of connected diagrams, with one diagram of
each pattern. A general diagram, D, has nr components of pattern Dr. Because of the
factorization of the integrands and because we have explicitly pulled out the n(D)!

: O(D) :=:
∞∏
r=1

[O(Dr)]
nr :

Summing over all diagrams with the same pattern as D gives :O(D):
S(D)

. What is S(D)?

S(D) certainly contains
∏

r[S(Dr)]
nr . If I have 2 identical factors, I can take all the indices

on one of them and exchange them with the other. If I have n identical factors, there are
n! whole exchanges, So S(D) contains

∏
r nr!. The sum over all diagrams with the same

pattern as D gives
: O(D) :

S(D)
=

:
∏∞

r=1[O(Dr)]
nr :∏∞

r=1[S(Dr)nrnr!]

Now that we have done the sum over all diagrams of a given pattern, we have to sum
over all patterns. Notice that there is a 1-1 correspondence between patterns and sets {nr}.
Thus summing over all patterns is the same as summing over all sets {nr}.

So, ∑
all Wick diagrams =

∞∑
n1=0

∞∑
n2=0

· · · :
∏∞

r=1[O(Dr)]
nr :∏∞

r=1[S(Dr)nrnr!]

=:
∞∑

n1=0

∞∑
n2=0

· · ·
∞∏
r=1

[O(Dr)]
nr

S(Dr)nrnr!
:

=:
∞∏
r=1

 ∞∑
nr=0

[
O(Dr)
S(Dr)

]nr
nr!

 :

=:
∞∏
r=1

e
O(Dr)
S(Dr) :

=: e
∑∞
r=1

O(Dr)
S(Dr) :

=: e
∑

connected Wick diagrams :
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This is a neat theorem because it expresses a fact about diagrams, pictures, algebraically.
Now we’ll apply this to model 1.

Model 1 Solved

D1 =
1•f, D2 =

1•f2•, S(D2) = 2

UI(∞,−∞) =: eO1+
O2
2 :=: e

1•f +
1•f2•

2

O1 = −ig
∫
d4x1ρ(x1)φ(x1)

O2 = (−ig)2

∫
d4x1d

4x2 φ(x1)φ(x2) ρ(x1)ρ(x2) = some
number = α + iβ

You will compute α in the homework. We’ll get it here by a consistency argument,
demanding that UI be unitary.

Let’s rewrite O1, using the expansion for φ(x).

O1 = −ig
∫

d3k

(2π)3/2
√

2ω~k

∫
d4xρ(x)

(
e−ik·xa~k + eik·xa†~k

)
= −ig

∫
d3k

(2π)3/2
√

2ω~k

(
ρ̃(−k)︸ ︷︷ ︸
ρ̃(k)∗

a~k + ρ̃(k)a†~k

)
(

Using the Fourier transform convention (this convention will not be adhered to, see

Nov. 6)

f̃(k) =

∫
d4xeik·xf(x) f(x) =

∫
d4k

(2π)4
e−ik·xf̃(k)

also in three space dimensions

f̃(~k) =

∫
d3xei

~k·~xf(~x) f(~x) =

∫
d3~k

(2π)3
e−i

~k·~xf̃(~k)

)
So as not to carry around so many factors, define

f(~k) ≡ −ig
(2π)3/2

√
2ω~k

ρ̃(~k, ω~k)
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then
UI(∞,−∞) = e

1
2

(α+iβ)e
∫
d3kf(~k)a†

~ke−
∫
d3kf(~k)∗a~k

Now that we have solved the model we can answer the usual questions you ask about
when a field is driven by an external source.

Given that you start with nothing in the far past, |0〉, what is the probability of finding
n mesons in the far future?

The state in the far future is

UI(∞,−∞)|0〉 = e
1
2

(α+iβ)e
∫
d3kf(~k)a†

~k

= e
1
2

(α+iβ)

∞∑
n=0

1

n!

∫
d3k1 · · · d3knf(~k1) · · · f(~kn)|~k1, . . . , ~kn〉 (9.1)

The probability, Pn, of finding n mesons is thus

Pn =

∣∣∣∣e 1
2

(α+iβ) 1

n!

∫
d3k1 · · · d3knf(~k1) · · · f(~kn)|~k1, . . . , ~kn〉

∣∣∣∣2
= eα

1

(n!)2

∫
d3k1 · · · d3kn|f(~k1)|2 · · · |f(~kn)|2n!

= eα
1

n!

(∫
d3k1|f(~k1)|2

)n
Now is where we demand unitarity of UI to get α.

1
!

=
∑
n

Pn = eα
∑
n

1

n!

(∫
d3k1|f(~k1)|2

)n
= eαe

∫
d3k1|f(~k1)|2

α = −
∫
d3k|f(~k)|2

So Pn = e−|α|
|α|n

n!
Poisson distribution.

This state, created by a classical source, is called a coherent state. Coherent states of
the harmonic oscillator are

|λ〉 ≡ eλa
†|0〉

They are special because they diagonalize a

a|λ〉 = aeλa
†|0〉 = [a, eλa

†
]|0〉 = λeλa

†|0〉 = λ|λ〉

〈λ|x(t)|λ〉 and 〈λ|p(t)|λ〉 oscillate sinusoidally like the classical variables.
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The coherent states we have constructed are eigenvectors of φ(+)(x) with eigenvalue∫
d3k

(2π)3/2
√

2ω~k
e−ik·xf(~k)

Except for the 1
n!

this state’s n particle part is just the product of n 1 particle states. It
is about as uncorrelated as a state of mesons can be. If you remove a particle with φ(+)(x),
you get the same state back. Expectations of normal ordered products factorize.

What is the average number of mesons created?

〈N〉 =
∞∑
n=0

nPn =
∞∑
n=1

e−|α||α|n

(n− 1)!
= |α| (pull out an |α| and

reindex the sum) (9.2)

What is the average energy of the final state, i.e. the total energy of all the mesons
created?

〈H〉 =
∞∑
n=0

e−|α|

(n!)2

∫
d3k1 · · · d3kn|f(~k1)|2 · · · |f(~kn)|2 (ω~k1

+ · · ·+ ω~kn)︸ ︷︷ ︸
nω~k1

n!

=
∞∑
n=1

e−|α|

(n− 1)!
|α|n−1

∫
d3k|f(~k)|2ω~k =

∫
d3k|f(~k)|2ω~k

Average momentum?

〈~P 〉 =

∫
d3k|f(~k)|2~k

Model 2 solved (beginning)

Combinatorically, model 2 is identical to model 1, but physically the content is different.
The interaction doesn’t actually turn off in the far past / future. We put that in by hand.

HI = gφ(x)ρ(~x)f(t)

f(t)

T

t

Assuming the theory has a ground state, the vacuum-to-vacuum scattering matrix ele-
ment ought to be easy to calculate. ex nihil nihil. You start out with nothing you end up
with nothing.

If you calculate 〈0|S|0〉 however, you will not get one.

Let |0〉P = ground state of the whole
Hamiltonian, with energy E0

|0〉 = ground state of H0 as usual
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Let’s look at the scattering process in the Schrödinger picture.
For t < −T

2
we have |0〉; At t ≈ −T

2
, in time ∆, the interaction turns on adiabatically.

The adiabatic hypothesis says that |0〉 turns into |0〉P with probability 1. It can pick up
a phase, e−iγ− . From t = −T

2
to t = +T

2
, the state evolves with the full Hamiltonian, it

rotates as e−iE0t and picks up a total phase e−iE0T . At t ≈ T
2
, as the interaction turns off

adiabatically |0〉P turns back into |0〉, getting one more phase e−iγ+ . The state we have for
t > T

2
is e−i(γ−+γ++E0T |0〉.

We can transfer this to the interaction picture, to get

〈0|UI(∞,−∞)|0〉 = e−i(γ−+γ++E0T )

This is disgusting. A divergent phase. How will we get rid of it?
We’ll change the theory. The problem is that there is a mismatch between the ground

state energy of the full Hamiltonian and the ground state energy of the free Hamiltonian.
Subtract the mismatch and we’ll eliminate the problem.

HI →
[
g

∫
d3xφ(~x, t)ρ(~x)− a

]
f(t) a = E0

It’s obvious what will happen. The number, a, just exponentiates while the interaction
is on.

〈0|S|0〉 = e−i[(γ++γ−+E0T )−aT (1+O(∆
T )] !

= 1

take a = E0 +O

(
∆

T

)
This is the first example of what is called a counterterm. It counters a problem we ran

into in scattering theory. It doesn’t change the physics, but it fixes up the problem.
You might worry that there will be energy mismatches in the one or many particle energy

states even after we get the energy mismatch in the ground states fixed up. There shouldn’t
be though. Because the physical states get far away from the potential at large times, we
expect the energy difference between a state with one physical particle and the physical
vacuum, to be the same as the energy difference between the bare particle and the bare
vacuum. If the vacuum energies are lined up, the one particle state energies should be lined
up. We don’t expect this to be true in model 3. The particles interact with themselves and
they can never get away from that as a particle can get away from an external potential.
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10 October 23

Model 2 solved (conclusion)

HI = f(t)

[
g

∫
d3xφ(~x, t)ρ(~x)− a

]
a is the vacuum energy counterterm chosen so that

〈0|S|0〉 = 1

We have already argued that as T →∞, a→ E0, where E0 is the vacuum energy of the
interacting theory (without the counterterm a). Finding a is going to give us E0. Now it is
clear what the addition of a constant to the Hamiltonian does to UI(∞,−∞). The constant
just exponentiates. Let’s see this come out of our diagrammatic perturbation theory.

There are now three connected diagrams

1•f
(1)

1•f2•
(2)

x
(3)

Diagram (3), which has no lines coming out, is for the counterterm.

S = UI(∞,−∞) =: e(1)+(2)+(3) := e(2)+(3) : e(1) :

(Since (2) and (3) are just numbers.) To set 〈0|S|0〉 = 1 is to set

e(2)+(3) = 1 i.e. (3) = −(2)

Since a is an addition to the Hamiltonian, it had better be purely real. Diagram (3) is
then pure imaginary, and diagram (2) in order to be cancellable had better come out pure
imaginary. It didn’t come out pure imaginary in Model (1), but there the source was time
dependent.

Photons don’t scatter off nailed down charges. Mesons don’t scatter off nailed down
nucleons. They only scatter off real nucleons (or off nailed down nucleons if there is some
dynamical charged field in the theory).

(1) = −ig
∫
f(t)ρ(x)φ(x)d3xdt

and φ(x) =

∫
d3k

(2π)3/2
√

2ω~k

(
e−ik·xa~k + eik·xa†~k

)
so

(1) = −ig
∫

d3k

(2π)3/2
√

2ω~k

f̃(ω~k)a
†
~k
ρ̃(~k) +

f̃(ω~k)∗︷ ︸︸ ︷
f̃(−ω~k)

←−−→
hermitian conjugates

a~k ρ̃(−~k)︸ ︷︷ ︸
ρ̃(~k)∗


f(t), our turning on and off function, has a Fourier transform that looks like
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1
T

As T → ∞, f̃(ω~k) goes to zero for every ω~k 6= 0 and since ω~k ≥ µ f̃(ω~k) → 0 for all ~k.
That is (1)→ 0 as T →∞. (as long as we can set (3) = −(2)) we have found

S = 1

This theory is a complete washout as far as scattering is concerned. While this was easy
to see in the formalism we have built up, it was not easy when they were evaluating the
theory in the Born approximation. Not until miraculous cancellations of all the terms at 4th
order in the Born series occurred did people realize that they should try to prove S = 1 to
all orders.

Why is S = 1? A time independent source can impart no energy. Since it can only create
mesons one at a time and since ω = 0 is not on the mass shell, it cannot create mesons.

This result holds in the massless theory too. Since there is clearly no scattering for all
~k 6= 0, you only have to prove that for wave packets centered about ~k = 0, the failure at
~k = 0, a set of measure 0, does not screw up the wave packet.

Ground State Energy, Ground State Wavefunction

In most QM courses these are discussed in a model long before scattering. You usually use
time independent perturbation theory. I’ll show you how to get these quantities out of the
time dependent perturbation theory we have already developed.

Why is the ground state energy interesting? We have been studying the response of the
meson field to a classical source. In meson-“nucleon” theory, the source will be ψ∗ψ. Our
classical source theory is a lot like a meson-“nucleon” theory with the “nucleons” nailed
down. Take

ρ = “δ′′(3)(~x− ~y1) + “δ′′(3)(~x− ~y2)

The quotes are around the δ functions because we might want to smear them out a little
bit. This is the charge density of two nucleons at ~y1 and ~y2. By computing the ground state
energy and then by varying the positions we can find the potential between two “nucleons”.

This is the same thing we do in QM. We calculate the interaction between the two protons
due to their interaction with the electron in H+

2 by considering how the ground state energy
of the electron varies with the separation of the protons. The protons are nailed down in
that calculation, usually you say that the protons are so much heavier than the electrons and
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move so slowly that we can treat the response of the electron field to changes in positions
of the protons as if the changes take place adiabatically. Of course in that calculation we
also have a Coulomb potential between the protons. Here we are trying to get at the whole
internucleon potential by saying it all comes from the interaction with the meson field. Of
course the Coulomb potential in QM really comes from the interaction with the photons. . .

Now to calculate a = E0 by setting (3) = −(2):

(3) = −i
∫
dtf(t)(−a) = iaT

(
1 +O

(
∆

T

))
= iE0T

(
1 +O

(
∆

T

))
(2) =

(−ig)2

2!

∫
d4x1d

4xf (t1)f(t2)ρ(~x1)ρ(~x2)φ(x1)φ(x2)︸ ︷︷ ︸∫
d4k

(2π)4
i

k2−µ2+iε
eik·(x1−x2)

=
−ig2

2

∫
d3k

(2π)3
|ρ̃(~k)|2

∫
dk0

2π
|f̃(ω)|2 1

ω2 − ~k2 + iε

Now |f̃(k0)|2 is sharply concentrated at k0 = 0, we can replace ω in 1

ω2−~k2+iε
by 0 (and

then the iε is not needed any longer). Also∫ ∞
−∞

dω

2π
|f̃(ω)|2 =︸︷︷︸

famous theorem,
Parseval’s theorem

∫ ∞
−∞

dt|f(t)|2︸ ︷︷ ︸
T+O(∆)

= T

(
1 +O

(
∆

T

))

We could sum up these properties by saying something sloppy like

lim
T→∞

|f̃(ω)|2 = 2πTδ(ω)

but what I have just shown is all (no more, no less) than that sloppy statement means.

(2) =
ig2

2
T

(
1 +O

(
∆

T

))∫
d3k

(2π)3
|ρ̃(~k)|2 1

|~k|2 + µ2

The moment of truth: Set (3) = −(2), the T ’s and i’s cancel.

E0 =
T→∞

−g2

2

∫
d3k

(2π)3
|ρ̃(~k)|2 1

~k2 + µ2

The potential has come out in momentum space. To convert it to position space,

Define V (~x) = −g2 d3k

(2π)3

ei
~k·~x

~k2 + µ2

Then E0 =
1

2

∫
d3xd3yρ(~x)ρ(~y)V (~x− ~y)



10. October 23 Notes from Sidney Coleman’s Physics 253a 96

Then 1
2

is the usual factor found even in electrostatics from overcounting the interaction
when integrating over all space. For the two nucleon charge density, there will be four
contributions. Two will be the interaction of the nucleons with each other (cancelled by the
1
2
).

ρ(~x) = “δ′′(3)(~x− ~y1) + “δ′′(3)(~x− ~y2)

E0 = something independent of ~y1, ~y2︸ ︷︷ ︸
If “δ′′ → δ, this part →∞

Same problem as the self-energy
of a charged sphere in E.D.

+V (~y1 − ~y2)

The usual procedure for the integration of spherically symmetric Fourier transforms,
followed by a contour integration gives

V (r) =
−g2

4πr
e−µr r = |~y1 − ~y2| Yukawa potential

Looks like the Coulomb potential for r � µ−1 the Compton wavelength of the meson,
and falls off rapidly for r � µ−1.

The force is attractive (between like charges) (because the particle mediating it has even
integer spin) and short18 ranged because the mediating particle is massive. This potential
has some of the essential features of the real nuclear force. Of course it doesn’t include the
effect of the whole family of mesons in the real world of multi-meson processes, but with
µ = mπ it is a start.

The ground state wavefunction, is of course not a position space wavefunction (the ex-

pansion of |ψ〉 into |x〉’s), it is an expansion of |0〉P into the basis states |~k1, . . . , ~kn〉 of the
noninteracting theory.

To get the ground state wave function of model 2 using time dependent perturbation
theory, we’ll use the results of model 1.

Consider

ρ(~x, t) =

{
ρ(~x)eεt t < 0, ε→ 0+

0 t > 0

That is we turn it on very slowly, arbitrarily slowly so that at t = 0 we finally have the
full interaction of model 2, then we turn the interaction off abruptly.

Consider the S matrix in this theory

〈~k1, . . . , ~kn|UI(∞,−∞)|0〉 = 〈~k1, . . . , ~kn|UI(∞, 0)UI(0,−∞)|0〉

Since the interaction is turned on arbitrarily slowly, UI(0,−∞) should turn19 the bare
vacuum into |0〉P . UI(∞, 0), the evolution by the free Hamiltonian alone, which is 1 in the

18MW is much larger and the weak force is thus much shorter ranged.
19screw the phase factor
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interaction picture, does nothing on the left so

〈~k1, . . . , ~kn|UI(∞,−∞)|0〉 = 〈~k1, . . . , ~kn|0〉P

which is what we are after.
Now we can apply the results of model 1 (Oct. 21, Eq. (9.1))

〈~k1, . . . , ~kn|0〉P = 〈~k1, . . . , ~kn|UI(∞,−∞)|0〉

= e−
|α|
2 e

iβ
2 f(~k1) · · · f(~kn)

f(~k) =
1

(2π)3/2

1√
2ω~k

(−ig)ρ̃(~k, ω~k) |α| =
∫
d3k|f(~k)|2

ρ̃(k) =

∫
d4xeik·xρ(x) =

∫
d3xe−i

~k·~xρ(~x)

∫ 0

−∞
dteik

0teεt

=
ε>0

ρ̃(~k)
1

ik0 + ε
−−→
ε→0
− i

k0
ρ̃(~k)

The probability for having n mesons is

Pn = e−|α|
|α|n

n!

What is Pn for a point charge at the origin? That is

ρ(~x)→ δ(~x) (not “δ′′ smeared, the limit
of a real point charge)

Well,
ρ̃(~k)→ 1 and

this is bad news; at high k we have a UV divergence in the integral for |α|.

|α| =
∫
d3k|f(~k)|2 ∼

high k

∫
d3k

1

ω3
~k

∼
high k

∫
k2dk

k3

The integral is log divergent. Since 〈N〉 = |α| (Oct. 21, Eq. (9.2)) we see that not only
the energy of the field becomes infinite in the limit of a point nucleon, but the ground state
flees Fock space.

These infinities are scary but not harmful.
Physically observable quantities like the S matrix and the internucleon potential are

hearteningly sensible.
Even if we don’t go to the limit “δ′′ → δ, but instead take the limit of massless mesons

µ→ 0, 〈N〉 = |α| → ∞, this time because of a small k divergence. What about that?
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Answer: So what if there are an infinite number of mesons in the ground state. An
experimentalist will tell you he can only measure the existence of a meson down to some low
energy, not arbitrarily low. If there are 1,000,000 mesons with a wavelength between 1

2
light

year and 1 light year, so what. It might be a problem if there were an infinite amount of
energy at small ~k, but there isn’t.

〈H〉 =

∫
d3k|f(~k)|2ω~k

This is manifestly positive. Seems
to contradict Yukawa pot. result.

And the extra factor of ω~k moderates the IR divergence. The integral is finite even as
µ→ 0. Same with

〈~P 〉 =

∫
d3k|f(~k)|2~k

So it seems we have been lucky. In this simple theory, the divergences have restricted
themselves to unobservable quantities. Maybe the divergences will break this quarantine in
more complicated theories. In fact there is a surprisingly wide class of theories in which the
divergences don’t break the quarantine. They are called “renormalizable” theories.

Next: Mass renormalization.

Model 3 and Mass Renormalization

The ground state energy, in perturbation theory, of this system is not necessarily zero. In this
theory, that is not enough to make the 1-particle states of the Hamiltonian equal in energy
to the 1-particle states of the full Hamiltonian. Indeed, the energy of a “static nucleon”
depended on its interaction with the meson field. Not only did the vacuum energy of a state
with one static nucleon depend on g, the coupling, it depended on how smeared the nucleon
was.

The change in energy of a particle due to its interaction with another field is called “mass
renormalization.” The cure for this disease is also called “mass renormalization.”

Mass renormalization goes all the way back to hydrodynamics.
Suppose I have a ping pong ball, with mass equal to 1

20
of the water it displaces.

m0 =
1

20
ρV

20m 

1mo

og

g
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Elementary hydrostatics tells you that there is an upward force on the ping pong ball
equal to g times the mass of the water it displaces. There is also the downward force of
gravity on the ping pong ball itself. The net force on the ball is thus 19m0g upward. Putting
this in Newton’s equation we have

m0a = 19m0g a = 19g

The ball accelerates upwards at 19g.
This is nonsense, as anyone who has ever held a ping pong ball underwater knows. The

ping pong ball may accelerate up fast, but not at 19g. The answer is not friction. You can
see that the ping pong ball is not accelerating with 19g even when its velocity is low and
friction or viscosity is negligible.

The answer is that in order to move the ping pong ball, you have to move some fluid. In
order to accelerate the ping pong ball, you have to accelerate some fluid. Stokes solved the
fluid motion around a sphere.

flow lines in rest frame of sphere, moving with velocity ~v through fluid
If a ball that displaces volume V is moving with velocity ~v through the fluid, the fluid

flow has a momentum, in the same direction as the ball, of 1
2
ρV ~v. The total momentum of

the system, ball and fluid, is thus

1

2
ρV ~v +m0~v = 11m0~v

which we set equal to the force after taking d
dt

dp

dt
= 11m0a = 19m0g = F

a =
19

11
g

See the derivation in Landau and Lifshitz, Fluid Mechanics, leading up to the problem
on p.36, for a more detailed understanding of the problem.
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More motivation for mass renormalization:

Two limits of classical field theory:

Point particle limit: Mass renormalization occurs

Example: GR

Point particle of mass m creates a gravitational field which itself has energy density
and creates further gravitational field.

Classical field limit: Can read dispersion relation for low amplitude plane waves off of the
quadratic part of the Lagrangian.

Since the quantum field theory will probably exhibit all the behavior of the worst classical
limit, we better be prepared for mass renormalization.

Another example of renormalized perturbation theory:

You could try, in the statistical-mechanical theory of critical phenomena to calculate the
critical temperature, as well as other properties of the system in terms of the microphysical
parameters. However, you may be able to do computations much more easily if you trade in
one of the microphysical parameters for the critical temperature.

The classical theory of the electron also suffers mass renormalization. Imagine the elec-
tron as a charged shell. The bare mass is m0, the charge, e, the radius, r. There is a
contribution to the measured mass of the electron other than m0. There is the electrostatic
energy (divided by c2).

m︸︷︷︸ = m0 +
e2

2rc2

measured, physical mass

Model 3 is going to suffer mass renormalization. The energy of a single meson state or
a single nucleon state is going to depend on its interaction. We looked at static “nucleons”
interacting with the meson field in model 2. Recall that even for a single nucleon weighted
down at ~y

ρ(~x) = “δ′′(3)(~x− ~y)

the energy of the system depends in detail on how we smear out the δ function. In fact if
we don’t smear it out at all

ρ(~x) = δ(3)(~x)− ~y)

the energy of the meson ground state→ −∞. Now the energy of a one nucleon state includes
the change in energy of the meson field its presence causes, and although the features of this
effect mass change when the coupling to the φ field goes from ρ(~x)φ(x) (nailed down nucleons)
to ψ∗ψφ(x) (dynamical nucleons) there is no reason to expect it to go away.
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This is going to be bad news for scattering theory. Just as the failure to match up the
ground state energy for the noninteracting and full Hamiltonians in model 2 produced T and
∆ dependent phases in 〈0|S|0〉, the failure to match up one particle state energies in model

3 will yield T and ∆ dependent phases in ~k|S|~k′〉. Worse than that, it can even cause two
wave packets that were arranged to collide, not to collide. I’ll show how:

In our relativistic interacting theory, for sufficiently weak coupling, we expect that there
will be one nucleon states, |~p〉P , which are eigenstates of the full Hamiltonian, H:

H|~p〉P =
√
~p2 +m2|~p〉P

There are also eigenstates of the Hamiltonian, which because of this mass renormalization
mess, can have a different mass, If I prepare a packet of these free Hamiltonian eigenstates
they propagate along with group velocity

~v =
∂E

∂~p

(
=

~p

E
when E2 = ~p2 +m2

)
When I turn the interaction on (slowly, so that the free Hamiltonian eigenstate (bare

nucleon) turns into the dressed nucleon (full Hamiltonian eigenstate)) the group velocity
changes because the mass in E =

√
~p2 +m2 changes. I could set up a nucleon and meson

to scatter, and if I turn on the interaction too early or too late, they might not even come
close!

To fix up this problem, we are going to introduce new counterterms in our theory

L =
1

2
(∂µφ)2 − µ2

2
φ2 + ∂µψ

∗∂µψ −m2ψ∗ψ + f(t)
[
−gψ∗ψφ+ a︸︷︷︸

vacuum energy
density counterterm

+
b

2
φ2︸︷︷︸

meson mass counterterm

+ cψ∗ψ︸ ︷︷ ︸
“nucleon”

mass counterterm

]
(10.1)

µ is the measured mass of the meson. m is the measured mass of the nucleon.
When the interaction is off (f(t) = 0) this theory is a free theory with mesons of mass µ

and nucleons of mass m.
When the interaction is turned on (f(t) = 1), we arrange, by adjusting b and c, that

the one meson state has mass µ and the one nucleon state has mass m. This eliminates the
phases in the one particle matrix elements by matching the energy of the one particle state
(the vacuum energy, which is an infinite volume system may be infinite, being proportional
to the volume, is adjusted to zero with the help of a).
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To summarize, the conditions determining a, b, and c are

〈0|S|0〉 = 1⇒ a
one meson states

〈
︷︸︸︷
~q |S|

︷︸︸︷
~q′ 〉 = δ(3)(~q − ~q′)⇒ b

one nucleon states

〈
︷︸︸︷
~p |S|

︷︸︸︷
~p′ 〉 = δ(3)(~p− ~p′)⇒ c

The one meson and one nucleon states shouldn’t
do anything; they have got nothing to scatter (only vacuum)

This procedure should match up the energies of states of widely separated nucleons and
mesons, without any additional twiddling. The energy of two widely separated mesons, even
in model 3 when they are affected by self-interaction, should be the sum of their respective
energies. Matching the energies of the vacuum and the one particle state matches the energy
of states of widely separated mesons too. Although the particles in model 3 never become
separated from their own fields, in the far past / future, they always become widely separated
from each other.

Sometimes it is useful to think about

µ2
0 ≡ µ2 − b and m2

0 ≡ m2 − c

the coefficients of 1
2
φ2 and ψ∗ψ in the full Lagrangian, respectively, although they have very

little physical significance. What our procedure amounts to is breaking up the free and
interacting parts of the Hamiltonian in a less naive way. You are always free to break up
the free and interacting parts of the Hamiltonian any way you like, although you won’t get
anywhere unless you can solve the free Hamiltonian.

We have put b
2
φ2 and cψ∗ψ in with the interaction gψ∗ψφ because that way the mass

of the meson (nucleon) is µ(m) when the interaction is of (manifestly) and the mass of the
meson (nucleon) is µ(m) when the interaction is on (by our careful checks of b and c).

This procedure gives us a BONUS.
By making b and c (hence µ2

0 and m2
0) quantities you compute, our perturbation theory

is expressed in terms of the actual physical masses, not the dumb quantities, µ0 and m0.
If you treated m0 and µ0 as fundamental, you would calculate all your cross sections,

bound state energy levels, all quantities of interest, in terms of them, and them to make
contact with reality, you would have to calculate µ and m, the physical masses, in terms of
m0 and µ0 too. Since no one is interested in your m0 and µ0, to present your results, you
would have to reexpress all your cross sections in terms of µ and m.

We have bypassed that mess by turning perturbation theory on its head. Instead of
a perturbation theory for m2, µ2 and all other physical quantities in terms of m2

0 and µ2
0,

we have a perturbation theory (for m2
0 and µ2

0) and all physical quantities in terms of the
observed masses, m and µ.
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11 October 28

Feynman Diagrams in Model 3

〈0|(S − 1)|0〉 = 〈~p|(S − 1)|~p′〉
one-nucleon

= 〈~k|(S − 1)|~k′〉
one-meson

Let’s look at nucleon-nucleon scattering at O(g2). That is the first order at which there is
a contribution to

〈p′1p′2︸︷︷︸ |(S − 1)| p1p2︸︷︷︸
two-nucleon states

〉

The −1 in S − 1 is there because we aren’t really interested in the no scattering process,
p1 = p′1 and p2 = p′2 or p1 = p′2 and p2 = p′1, which comes from 1, the O(g0) term in

S = Te−ig
∫
d4x(ψ∗ψφ− b

2g
φ2− c

g
ψ∗ψ)

(Since the power series for b and c begin at order g1 at the earliest (they are zero if g = 0),
it is not misleading to pull the g out in front of the whole interaction and talk about the
O(g0) contribution to S.)

There are no arrows over p1, p2, p′1 and p′2 because we are going to use the states that
transform nicely under Lorentz transformations

U(Λ)|p1, p2〉 = |Λp1,Λp2〉
|p1, p2〉 = b†(p1)b†(p2)|0〉
b†(p) = (2π)3/2

√
2ω~pb~p

So we don’t have to worry about Bose statistics demand p1 6= p2 and p′1 6= p′2. We can
recover what we’ve lost by building wave packets concentrated around p1 = p2.

The term in S with two factors of the interaction is

(−ig)2

2!

∫
d4x1d

4x2T [ψ∗ψφ(x1)ψ∗ψφ(x2)]

After all the hoopla about the turning on and off function, we are abandoning it, being
sloppy: The only term in the Wick expansion of this term in S that can contribute to two
nucleons goes to two nucleons is

(−ig)2

2!

∫
d4x1d

4x2 : ψ∗ψ φ(x1)ψ∗ψφ(x2) :

φ(x1)φ(x2) is some number. Let’s look at

〈p′1p′2| : ψ∗(x1)ψ(x1)ψ∗(x2)ψ(x2) : |p1p2〉 (11.1)
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The nucleon annihilation terms in ψ(x1) and ψ(x2) have to be used to annihilate two
incoming nucleons. The nucleon creation terms in ψ∗(x1) and ψ∗(x2) have to be used to
create two nucleons, so as not to get zero inner product (alternatively I could say they have
to be used to “annihilate two nucleons on the left”). In equations

〈p′1p′2| : ψ∗ψ(x1)ψ∗ψ(x2) : |p1p2〉 = 〈p′1p′2|ψ∗(x1)ψ∗(x2)|0〉〈0|ψ(x1)ψ(x2) : |p1p2〉

You can easily show that the two contributions to the second matrix element are (the
c.c. equation is also used)

〈0|ψ(x1)ψ(x2)|p1p2〉 = e−ip1·x1−ip2·x2 + e−ip1·x2−ip2·x1

↑ p1 absorbed at x1

(11.2)

So there are four contributions to our matrix element

〈p′1p′2| : ψ∗ψ(x1)ψ∗ψ(x2) : |p1p2〉 =
(
eip
′
1·x1+ip′2·x2 + eip

′
1·x2+ip′2·x1

)(
eip1·x1+ip2·x2 + eip1·x2+ip2·x1

)
= eip

′
1·x1+ip′2·x2−ip1·x1−ip2·x2

F
+ eip

′
1·x2+ip′2·x1−ip1·x2−ip2·x1

L

+ eip
′
1·x2+ip′2·x1−ip1·x1−ip2·x2

I
+ eip

′
1·x1+ip′2·x2−ip1·x2−ip2·x1

O
(11.3)

Notice that the pair of terms on the first line differ only by x1 ↔ x2 and that the pair of
terms on the second line only differ by x1 ↔ x2. Since x1 and x2 are to be integrated over

and since φ(x1)φ(x2) is symmetric under x1 ↔ x2 these pairs give identical contributions to
the matrix element. We’ll just write one of the pairs, which cancels the 1

2!
. We have,

(−ig)2

∫
d4x1d

4x2 φ(x1)φ(x2)
(
eip
′
1·x1+ip′2·x2−ip1·x1−ip2·x2 + eip

′
1·x2+ip′2·x1−ip1·x1−ip2·x2

)
= (−ig)2

∫
d4x1d

4x2

∫
d4k

(2π)4

[
eix1·(p′1−p1+k)eix2·(p′2−p2−k)

+ eix1·(p′2−p1+k)eix2·(p′1−p2−k)
] i

k2 − µ2 + iε
(11.4)

I have used the expression for φ(x1)φ(x2) and grouped all the exponential factors by
spacetime point.

With these two integrals (there are two terms in the integrand) go two pictures
p′1� p1�
k↓ bp′2� p2�

(a)

N+N→N+N
Feynman diagrams @ O(g2)

p′2� p1�
k↓ bp′1� p2�

(b)

Notice external lines each
have an associated momentum.
The vertices are not numbered.

(11.5)
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and two stories20. The story that goes with picture (a) is this. A nucleon with momentum
p1 comes in and interacts. Out of the interaction point comes a nucleon with momentum p′1
and a “virtual meson.” This “virtual meson” then interacts with a nucleon with momentum
p2 and out of the interaction point comes a nucleon with momentum p′2. The interaction
points x1 and x2 can occur anywhere, and so they are integrated over. Furthermore, this
“virtual meson” can have any momentum k and this is integrated over, although you can
see from the factor i

k2−µ2+iε
, “Feynman’s propagator” that it likes to be on the meson mass

shell, although with k0 = ±
√
~k2 + µ2.

Fairy tales like this helped Feynman discover and think about quantum electrodynamics.
In our formalism, they are little more than fairy tales, but in a formulation of quantum
particle mechanics called the path integral formulation they gain some justification. The
words not only match the pictures, they parallel the mathematics.

The x1 and x2 integrations are easy to do. We get

(ig)2

∫
d4k

(2π)4

i

k2 − µ2 + iε

[
(2π)4δ(4)(p′1 − p1 + k)(2π)4δ(4)(p′2 − p2 + k)

+ (2π)4δ(4)(p′2 − p1 + k)(2π)4δ(4)(p′1 − p2 + k)
]

(11.6)

Because the interaction is spacetime translationally invariant, after integrating the in-
teraction point over all space-time we get delta functions which enforce energy-momentum
conservation at every vertex.

All the features of this computation generalize to more complicated S matrix element
contributions. I’ll give a set of rules for writing down these integral expressions for contri-
butions to S matrix elements. First, I’ll explain in general why there are no combinatoric
factors in model 3 to worry about, no symmetry numbers in the integral expressions.

Take a given operator in the Wick expansion, which has an associated Wick diagram

D, a diagram ←→ : O(D) :

n(D)!

Designate which of the lines leading out of the diagram annihilates each incoming particle,
and which of the lines creates each outgoing particle.

This is one contribution to the S matrix element.
Now consider summing over the permutation of the numbered points in the Wick diagram.

While only n(D)!
S(D)

of these permutations actually correspond to different terms in the Wick

expansion, in model 3, all n(D)! of these permutations correspond to contributions to the S
matrix element. This cancels the 1

n(D)!
exactly.

20 Conventions: in on right
out on left
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There are other possible designations (in general) for the way the external lines connect
to the vertices of the Wick diagram. If they differ just by a permutation of the vertices
then we have already counted them (by cancelling the 1

n(D)!
). If they don’t differ by just

a permutation of the vertices then they correspond to a different Feynman diagram (the
difference between (a) and (b) in Eq. (11.5)

Only in certain theories, like Model 3, do the n(D)! permutations of the vertices al
make different contributions to the S matrix, and in fact this is true in model 3 only when
a diagram21 has at least one external line. In that case there is an unambiguous way of
identifying each vertex in the diagram. Contributions to 〈0|S|0〉, which have no external
lines, can have symmetry factors. The unambiguous labelling statement for diagram (a) is

p′1� p1�
k↓ bp′2� p2�

The upper vertex is uniquely labelled as the one where p1 is absorbed.

The lower vertex is the one connected to the upper vertex by a muon line.

In this theory, as soon as one vertex is labelled (by an external line) they are all uniquely
labelled.

Feynman Rules for Model 3

You should convince yourself by taking some other low order terms in the Wick expansion
of S and looking at some simple matrix elements they contribute to that the following set
of rules applied to the diagram always gives you the correct contribution to the S matrix
element.

For external lines

{
incoming
outgoing

}
momenta are directed

{
in

out

}
.

21in fact, each connected part has to have at least one external line
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Assign a directed momentum to every internal line.

For every Write

internal meson line

←kf
∫

d4k

(2π)4

i

k2 − µ2 + iε

internal nucleon line

←p�
∫

d4p

(2π)4

i

p2 −m2 + iε

vertex

←p′
� ←p�

k↖d (−ig)(2π)4δ(4)(p′ − p− k)

meson vacuum counterterm

•

(2π)4δ(4)(0) would turn into the
volume of all spacetime if

the system were in a box. This
c.t. diagram is designed to cancel
diagrams without external lines
which you will see also have a

factor of δ(4)(0)

ia(2π)4δ(4)(0)

meson mass counterterm

←k′
fx ←kf

although the meson mass
counterterm had a 1

2
in

the Lagrangian, there is no
1
2

here because there are
two ways to do the interaction

ib(2π)4δ(4)(k − k′)

nucleon mass counterterm

←p′
�x ←p� ic(2π)4δ(4)(p− p′)

A catalog of all Feynman diagrams in model 3 up to O(g2) (except those related by C or
T will not be written down twice)

Order g

(1) �fE = 0 if µ < 2m by energy momentum conservation.

(2) `Ow@f = 0

Order g2

(3)

�fE�fE
= 02 if µ < 2m
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(4)

(a) f�Nf
(b) �n`f`�n
(c)

•
↑

vacuum energy c.t. to O(g2)



Because we demand there be no corrections to
〈0|S|0〉 these sum to zero. This fixes the vacuum

energy c.t. to O(g2)

In 4(c) think of the c.t. as O(g2). Its value is determined by the fact that it has to cancel
some O(g2) contributions to the vacuum-to-vacuum S matrix element.

(5)

(a) �falnf�
(b) �x�

↑
nucleon mass c.t. to O(g2)


Sum to zero because we demand that
there are no corrections to 〈~p|S|~p′︸ ︷︷ ︸

one nucleon each

〉

(c)
`�n
�b�

this diagram comes out zero for the same reason as (2) does.

(6)

(a) f`L�`f
(b) fxf


Sum to zero because we demand that
there are no corrections to 〈~k|S|~k′︸ ︷︷ ︸

one meson each

〉

The remaining order g2 diagrams are more interesting. They contribute to the following
processes

(7) N +N −→ N +N (connected by C to N̄ + N̄ −→ N̄ + N̄)

(8) N + N̄ −→ N + N̄

(9) N + φ −→ N + φ (connected by C to N̄ + φ −→ N̄ + φ)

(10) N + N̄ −→ φ+ φ (connected by T to φ+ φ −→ N + N̄)
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Although φ + φ −→ φ + φ appears in this theory, indeed it must appear, it does not do
so until O(g4). The diagram is

d eF
B ��e d

We have already written down the contributions to process (7). The diagrams are
p′1� p1�
k↓ bp′2� p2�

(a)

and

p′2� p1�
k↓ bp′1� p2�

(b)

a.k.a.

They give (see Eq. (11.6))

(−ig)2 i

(p1 − p′1)2 − µ2 + iε
(2π)4δ(4)(p′1 + p′2 − p1 − p2)

+ (−ig)2 i

(p1 − p′2)2 − µ2 + iε
(2π)4δ(4)(p′1 + p′2 − p1 − p2)

Note that the 1
(2π)4 associated with d4k exactly cancels with the (2π)4 associated with

the δ functions used to do the integral. All our formulas have been arranged so that 2π’s
always go with δ’s and 1

2π
’s always go with

∫
dk’s.

Note that you can shortcut these trivial integrations over δ functions by just assigning in-
ternal momenta so as to conserve momentum whenever an internal momentum is determined
by the other momenta at a vertex.

Finally, note that performing the trivial integrals over δ functions always gives you a
factor

(2π)4δ(4)( pf︸︷︷︸
sum of all

final momenta

−

sum of all
initial momenta︷︸︸︷

pi ) at least when the diagram
is of one connected piece

We define afi, the invariant Feynman amplitude by

〈f |(S − 1)|i〉 = iafiδ
(4)(pf − pi)

The factor of i is inserted to match the phase convention of NRQM.
For N +N −→ N +N

ia = (−ig)2

[
i

(p1 − p′1)2 − µ2 + iε
+

i

(p1 − p′2)2 − µ2 + iε

]
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Let’s look at this in the COM frame.

p1 = (
√
p2 +m2, p

unit vector︷︸︸︷
~e )

p2 = (
√
p2 +m2,−p~e)

p3 = (
√
p2 +m2, p~e′)

p4 = (
√
p2 +m2,−p~e′)

~e · ~e′ = cos θ, θ is the scattering angle in the COM frame.

ET = 2
√
p2 +m2 is often used to characterize collisions. In the nonrelativistic limit,

which we will be taking, p is more useful.
Define the momentum transfer, ∆, and the crossed momentum transfer, ∆c, by

(p1 − p′1)2 = −∆2

(p1 − p′2)2 = −∆2
c

In our COM variables

∆2 = 2p2(1− cos θ) ∆2
c = 2p2(1 + cos θ)

The invariant Feynman amplitude is

a = g2

[
1

∆2 + µ2
+

1

∆2
c + µ2

]
We have dropped the iε because it is unnecessary. For physically accessible values of ∆2

and ∆2
c the denominators are never less than µ2.

The first term is peaked (peaked sharper at higher p) in the forward (θ ≈ 0) direction.
The second term produces an identical peak in the backward direction. Of course when
identical particles collide who is to say what is forward and what is backward. θ = 0 is
indistinguishable from a scattering angle of θ = π. The probability had better have come
out symmetrical.

People were scattering nucleons off nucleons long before quantum field theory was around,
and at low energies they could describe scattering processes adequately with NRQM. Let’s
try to understand our amplitude in NRQM. First we’ll find the NR analog of the first term.
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In the COM frame, two body scattering is simplified to the problem of scattering of a
potential (classically and quantum-mechanically). P.T. at lowest order gives

〈~k′|S − 1|~k〉 ∝ 〈~k′|V |~k〉

=

∫
d3rV (~r)e−i

~∆·~r “Born” approximation

= Ṽ (~∆) ~∆ = ~k′ − ~k

To explain the first term in our scattering amplitude using NRQM we must have

Ṽ (~∆) ∝ 1

∆2 + µ2
=⇒ Ṽ (~r) ∝ g2e−µr

r

Our amplitude, which is characterized by having a simple pole in a physically unobserv-
able region, at ∆2 = −µ2, corresponds to the Born approx. to the Yukawa interaction!

The second term also has an analog in NRQM. With two identical particles, the Hamil-
tonian should contain an exchange potential

H = H0 + V
Yukawa
potential

+ V E︸︷︷︸
exchange Yukawa potential

E|~r1, ~r2〉 = |~r2, ~r1〉
E is the exchange operator

V |~r1, ~r2〉 ∝
g2e−µr

r
|~r1, ~r2〉 r = |~r1 − ~r2|

The exchange Yukawa potential is the source of a simple pole in the amplitude at ∆2
c =

−µ2, also in a physically unobservable region. The NRQM amplitude is proportional to
Ṽ (~∆)+Ṽ (~∆exch) (~∆exch = ~k′+~k). In a partial wave expansion of the amplitude, the exchange

potential gives a contribution

{
identical
opposite

}
to the direct potential if l is

{
even
odd

}
.

This is because in the COM an eigenstate of angular momentum is an eigenstate of the
exchange operator E with eigenvalue (−1)2.
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12 October 30

N + N̄ → N + N̄ “nucleon antinucleon” scattering

p′1 ← ← p1

p′2 ← ← p2

p1 − p′2 ↓
p1 + p2 ←

←

←

←
←

p1

p2
p′2

p′1

Notice that my labeling of internal lines has been done so as to be consistent with energy-
momentum conservation. This does away with the two steps of:

1. labelling the momenta arbitrarily and

2. performing the trivial integration over the arbitrarily labelled momenta that are actu-
ally fixed by δ functions.

From the diagram I write down

ia = (−ig)2

[
i

(p1 − p′1)2 − µ2
+

i

(p1 + p2)2 − µ2

]
This has a less symmetric structure than than the amplitude for N + N → N + N , but

that is not unexpected. The symmetry of the amplitude for N + N → N + N was forced
upon us because of identical particles in the incoming and outgoing states. Bose statistics
does not apply to the the incoming and outgoing states of N and N̄ .

We’ve already found what the first term is by going to the COM frame and taking the
NR limit. It is a Yukawa potential. What about the second term? In the COM frame

(p1 + p2)2 = 4
√
p2 +m2

2
= [2(p2 +m2)]2 = E2

T

where ET the total energy in the COM frame. Now

1

(p1 + p2)2 − µ2
=

1

E2
T − µ2

=
1

ET − µ
1

ET + µ
' 1

2m+ µ

1

ET − µ
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in the NR limit.

We have not replaced ET by 2m in the second term because 2m could be very near µ.
This can cause a rapid variation in this factor. We’ll see this is because the intermediate
state is spinless. Notice that this amplitude is independent of the scattering angle, θ. A
partial wave decomposition would show a contribution only to the S wave.

What is the explanation of this in terms of NRQM?

Let us suppose there is an energy eigenstate just below threshold, i.e an energy eigenstate
with an energy slightly less than 2m. Then even in perturbation theory, it may cause a
significant contribution to the scattering amplitude in the second term of the Born expansion

a ∝ 〈f |V |i〉+
∑
n

〈f |V |n〉〈n|V |i〉
ET − EN ± iε

where En could be a possible source of an energy eigenstate pole.

2m

0

u

Vacuum

One meson

Two nucleons at rest

Two nucleons

In the COM frame the energy spectrum of possible intermediate states looks like a state
with En = µ and non vanishing matrix elements could produce a pole in the amplitude.
(Continuum states produce a branch cut in the amplitude). A pole occurs in the partial
wave that has the same angular momentum as the intermediate state.

N + φ⇒ N + φ meson-nucleon scattering

← ←
←

p′

q′ q

p + q p

←
q←

pp′

q′

←
p− q′
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The language that goes along with the second graph, the crossed graph, is that the
outgoing meson is emitted first, then the incoming meson is absorbed. Of course this is no
more kinematically possible for the intermediate nucleon than the first graph.

ia = (−ig)2

[
i

(p+ q)2 −m2 + iε
+

i

(p− q′)2 −m2 + iε

]
This is an energy eigenstate pole and an exchange Yukawa potential. Perhaps it is clear

to see that this is an exchange Yukawa potential if we redraw the second graph as

p′ ← ← q

q′ ← ← p

p− q′ ↑

Notice there is no direct Yukawa term. There is a resonance in the p wave of pion
nucleon scattering called the N∗(12−−). There is nothing in the s wave. Usually one thinks
of a resonance as caused by an attractive force that nearly creates a bound state. Usually
the s state is the most tightly bound (This is a classical expectation one has because the
angular momentum barrier is the lowest). What kind of force could create a p wave state
but no s wave state? A repulsive exchange force, which is attractive in odd partial waves.
Because the particles have different masses this potential is different from the ones we’ve
had before. The second term in the amplitude

−g2 1

(p− q′)2 −m2 + iε︸︷︷︸
unnecessary

= g2 1

−(p− q′)2 +m2

has a denominator in the COM frame of

−(p− q′)2 +m2 = −(
√
p2 +m2 −

√
p2 + µ2)2 + p2(1 + 2 cos θ)︸ ︷︷ ︸

∆2
c

+m2

since
p = (

√
p2 +m2, p~e)

p′ = (
√
p2 +m2, p~e′)
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q = (
√
p2 + µ2,−p~e)

q′ = (
√
p2 + µ2,−p~e′)

This has the usual p2(1 + 2 cos θ) exchange Yukawa forward peak, but what we would
call the range is p dependent, i.e energy dependent

1

(range of pot)2 = −(
√
p2 +m2 −

√
p2 + µ2)2 +m2

The energy dependent part vanishes when µ2 = m2. Note that as p→∞ this→ m2 and
as p→ 0 this → −(m− µ)2 +m2 = 2mµ− µ2 = µ(2m− µ).

It can have a long range at low energies if the mass µ is small. If one is bold, we can start
applying these ideas to real pion nucleon interactions. However we still need to develop spin
and isotopic spin to really get things right (the sign of the potential for one) and the pion-
nucleon coupling is strong which means lowest order calculation can’t be trusted (except at
long range or high partial waves).

N + N̄ → φ + φ ”nucleon-anti-nucleon” annihilation.

In 1930, this was sensational.

q ← ← p

q′ ← ← p′

p− q ↓

← p′
←

↓ p− q′

← p
←
q

q′

The first graph is a Yukawa potential. The second is an exchange Yukawa potential.

Our next topic is a discussion of the connection between Yukawa potentials, exchange
Yukawa potentials and energy eigenstate poles in relativistic scattering theory.

In NRQM, there is absolutely no connection between these things. You can have any one
(or two) without having all three. We’ll develop some formation which will be useful later
to describe the connection.
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Crossing [Symmetry]

[Symmetry]: Brackets because this has nothing to do with symmetries and particles in the
sense we have discussed them.

Imagine a general 2 → 2 scattering process 1 + 2 → 3̄ + 4̄. We’ll denote the amplitude
(or some contribution to the amplitude) by

1

2

3

4

where the numbers on the lines tell you what type of particles propagate along these lines
(with the arrows), and you aren’t supposed to worry about what type of interactions are
hidden from view when the lines go behind the shield.

The particle of type 1 is incoming, its momentum is p1, the particle of type 2 is also
incoming, with momentum p2, the particle of type 3̄ is outgoing, with momentum p3, and
the particle of type 4̄ is outgoing with momentum p4. This you can tell because of our con-
vention of putting incoming lines on the right and outgoing lines on the left, we read graphs
as if time flowed from right to left, in analogy with the way we write down matrix elements.

Now we are going to abandon that convention.

Then who is to say this is not the amplitude for 3 + 4 → 1̄ + 2̄, reading left to right, or
3 + 1→ 2̄ + 4̄, reading top to bottom (or even 1→ 2̄ + 3̄ + 4̄??).

Well, we have another method for fixing a convention, which is useful (but not necessary)
for discussing crossing. The honest to goodness physical momenta in the theory always are
on the upper sheet of their mass hyperboloids, i.e

p2
3 = m2

3

or
po 2

3 = m2
3 + |~p3|2

and
p0

3 > 0
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There are no negative energy states in our theories.22 Thus there will be no confusion
if we flag a momentum by sending it to minus itself. If someone gives you a momentum p,
with p0 < 0, you know what they are really giving you is a physical momentum, −p and a
wink, a flag, an extra bit of information. We’ll use that extra bit of information to specify
whether a particle is incoming or outgoing.

We will orient all momenta inward on our general 2→ 2 graph:

← p1
1

← p2
2

→ p3
3

→ p4
4

The orientation on the page no longer matters. And if, say, p0
1 and p0

3 are less that zero
and p0

2 and p0
4 are greater than zero, what this actually stands for is (what we used to mean

by)

← p2
2

← p4
4

→ −p1
1

→ −p3
3

which is the amplitude for 2 + 4 ⇒ 1̄ + 3̄. Note that the notation has been set up, so that
in all cases, the energy momentum conserving delta function is δ(4)(p1 + p2 + p3 + p4).

Mathematically, instead of graphically, what we have defined is a new function of these
momenta. (p1 + p2 + p3 + p4 is restricted to be zero. If you like you could think of the
function as a function of four momenta, which is zero whenever p1 + p2 + p3 + p4 is not equal
to zero23.) Just to keep an air of symmetry we’ll display all four momenta in the function.

ia(p1, p2, p3, p4)

This function is the amplitude for a particle of type 2 with momentum p2 and a particle
of type 4 with momentum p4, and scatters into a particle of type 1̄ with momentum −p1,

22Ignore everything written about QFT when it starts talking about negative energy particles.
23[But don’t.] afi should be thought of as a function of parameters that parametrize the surface p21 =

p22 = p23 = p24 =,2. p1 + p2 + p3 + p4 = 0. 3 independent momenta ⇒ 6 Lorentz invariants, 4 constraints ⇒ 2
parameters.
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and a particle of type 3̄ with momentum −p3, when p0
2 and p0

4 are > 0 and p0
1 and p0

3 are
< 0. It is also the amplitude for a bunch of other processes when the time components of
the three independent momenta take on their various possible signs. Another way of writing
the amplitude for 2 + 4 → 1̄ + 3̄ using this function is to take all the momenta, p1, p2, p3

and p4 to their honest to goodness physical values (p0
1, p

0
2, p

0
3 and p0

4 > 0) and write

ia(−p1, p2,−p3, p4)

There is no reason we can’t assemble the amplitude for all these different processes into a
single process like this, but there is also no obvious reason it is any more useful that graphing
the Dow Jones on the positive axis and the temperature in Miami on the same graph on the
negative real axis.

90
o

30
o

1929

Food for thought (3→ 3 scattering)

↙ virtual nucleon

[Tools for analysis of this limit:

1. macro? causality?

2. Landau rules

3. Graphs with single poles]
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Also think of this as 2→ 2 scattering followed 1 billion light years later by another 2→ 2
scattering.

1 billion years

A scattering in another galaxy One scattering

There must be some appropriate limit where 2→ 2 followed by 2→ 2 is a limit of 3→ 3.
The virtual internal line must somehow become almost real. That’s why you can get a vague
description of virtual particles by thinking about them as real particles.

Let’s define three relativistic invariants to describe 2→ 2 scattering processes.

s ≡ (p1 + p2)2 = (p3 + p4)2

t ≡ (p1 + p3)2 = (p2 + p4)2

u ≡ (p1 + p4)2 = (p2 + p3)2

If particle 3 is outgoing, −p3 is its actual 4-momentum.
For the process 1 + 2→ 3̄ + 4̄,

√
s is the total COM energy, −t is the momentum transfer

squared, and −u is the crossed momentum transfer squared. I have made these last two
choices arbitrarily. If 1 6= 2 and 3̄ 6= 4̄ and if 1 = 3̄ or 2 = 4̄, the choice is standard. If
1 6= 2 and 3̄ 6= 4̄ and if 1 = 4̄ or 2 = 3̄, the choice is bassackwards; I ought to call −u the
momentum transfer2 and −t the crossed momentum transfer2. In all other cases, anybody’s
designation is arbitrary.

Now, there are only two relativistic invariants describing a 2 → 2 scattering process of
spinless particles. They are often taken as the COM total energy and scattering angle. s, t,
and u are three relativistic invariants. They must be redundant. Here is a (nice symmetric)
derivation of their interdependence.

2(s+ t+ u) = (p1 + p2)2 + (p3 + p4)2 + (p1 + p3)2 + (p2 + p4)2 + (p1 + p4)2 + (p2 + p3)2

= 3
4∑

a=1

m2
a + 2

∑
a>b

pa · pb



12. October 30 Notes from Sidney Coleman’s Physics 253a 120

Now use
0 = (

∑
a

pa)
2 =

∑
a

ma
2 + 2

∑
a>b

pa · pb

to see

2(s+ t+ u) = 2
4∑

a=1

m2
a

i.e
s+ t+ u =

∑
a

ma
2

There is a symmetrical way of graphing three variables in the plane, when they are
restricted like this. Look at the plane in s− t− u space, s+ t+ u =

∑
am

2
a

ma

2

ma

2

ma

2

Looking down perpendicular at this plane, you get the idea of representing, s, t and u in
the plane by

s = ~r · ês +
1

3

∑
a

m2
a

t = ~r · êt +
1

3

∑
a

m2
a

u = ~r · êu +
1

3

∑
a

m2
a



12. October 30 Notes from Sidney Coleman’s Physics 253a 121

êt

êu

ês

unit vectors at 120◦ angles

Each vector ~r in the plane gives you a triple s, t, u, and since ês + êt + êu is obviously ~0
(rotational invariance) the set satisfies s+ t+ u =

∑
ama

2. We have a ”Mandelstam-Kibble
plot”.

the line s=  m2

the line s=0

the line s=    m21
3

the line u=0the line t=0

threshold

When all four masses are equal, m2
a = m2, a = 1, 2, 3, 4, the shaded area, s > 4m2,

u < 0, t < 0 is the physically accesible region for the process 1 + 2→ 3̄ + 4̄ and the process
3 + 4→ 1̄ + 2̄.

[MORE FOOD: The article “Uniqueness property of the Twofold Vacuum Expectation”
by Paul G. Federbush and Kenneth A. Johnson, Phys. Rev. 120, 1926 (1960) was attached
at this point.]

In an abuse of the scattering term “channel”, the process 1 + 2 → 3̄ + 4̄ is called the
s-channel, and the crossed process 1 + 3→ 2̄ + 4̄ and 1 + 4→ 2̄ + 3̄ are called the t-channel
and u channel respectively because

√
t and

√
u are the total COM energy in these process.

In model 3, the lowest order scattering amplitude for the process N +φ→ N +φ was (using
our new wacky conventions, p0

3, p
0
4 < 0).
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p4 → ← p1

p3 → ← p2

↓ p1 + p4
+

←
p2
←

p1 ←→ p3

p4 ←
p1 + p2

= (−ig)2

(
i

(p1 + p4)2 −m2 + iε
+

i

(p1 + p2)2 −m2 + iε

)
= (−ig)2

(
i

u−m2 + iε︸ ︷︷ ︸
exchange Yukawa

interaction

+
i

s−m2 + iε︸ ︷︷ ︸
energy eigenstate

pole

)

The lowest order scattering amplitude for the corresponding u channel process (I’m think-
ing of 1 = N , 2 = φ, 3 = N , 4 = φ) is N + φ→ N + φ

← ←
←

p3 →

p2 p4

p1 + p2 p1 ←

←
p4
←

p1 ←→ p3

p2

←
p1 + p2

= (−ig)2

(
i

u−m2 + iε︸ ︷︷ ︸
energy eigenstate

pole

+
i

s−m2 + iε︸ ︷︷ ︸
exchange Yukawa

)

How about that: the amplitude are the same although the interpretation of the two are
different.

What about the t channel process N + N̄ → 2φ.

p2 → ← p1

p4 → ← p3

↓

← p3

←
↓

← p1

←
p2

p4
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= (−ig)2

(
i

s−m2 + iε
+

i

u−m2 + iε

)
Again the amplitude is the same although the interpretation is different. (I’d rather not
assign a NR interpretation to the two graphs because non-relativistically N + N̄ → 2φ can’t
occur.)

Every one of these amplitudes is the exact same function of s, t, and u. That is: the first
amplitude is only defined in the shaded region

t=0u=0

pole at u=m2

pole at s=m2

s=0

(for simplicity take µ = m) where s, the COM energy squared, is greater than 4m2 and t
and u are less than zero.

The second amplitude is only defined when u > 4m2 and s and t are less than zero. What
we have observed is that if we analytically continue an amplitude for some process outside
of its physical region to the physical region of some other process, we get the amplitude for
that other process.

From our picture of the s− t− u plane, it may look to you like the analytic continuation
can’t be performed even for the simple O(g2) amplitudes we have discussed because the poles
in s and u show up as lines which cut off one physical region from another. This is wrong
because you can go around these poles by letting the variables become complex. Further-
more, they are avoidable singularities, that is, it doesn’t matter how you go around them,
you get the same analytic continuation. This brings up a tougher question: at this order
in perturbation theory our amplitude just have poles, but at higher orders they will have
branch cuts, so can the analytic continuation from one physical region to another still be
performed and if so, do you get the correct amplitude? The answer is yes and you do get the
amplitude for one physical process by analytically continuing the amplitude for another, but
you must follow specific prescriptions when going around the essential singularities. (More
on this March 19, 8?).
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Given this relation between amplitudes for different processes, we have related energy
eigenstate poles, Yukawa interactions and exchange Yukawa interaction, three things which
had no connection in nonrelativistic quantum mechanics. These effects are one and the same,
a pole in s in an s channel process looks like an energy eigenstate pole. In the u channel
process that same pole looks like an exchange Yukawa potential.

They are two aspects of the same analytic function restricted to two disconnected region
of the plane. The next thing to ask is how do we lose the relationship when we take the
nonrelativistic limit, c→∞. As c→∞, the three physical regions on the Mandelstam plot
which are separated by a distance of of O(mc2) get very far apart. They are only near each
other for finite c.

mc2

The other thing we do in the NR limit is chuck terms of order (v/c)2 which of course is an
arbitrarily good approximation in this limit. The problem is that even if you have an excellent
approximation to an analytic function if you analytically continue the approximation a long
ways you may get something that doesn’t remotely resemble the analytic function. An
example will suffice. Consider ex on the real axis for x < −1 million. In that region 0 is
a wonderful approximation to the function. But now analytically continue this wonderful
approximation to x = +1 million, and you discover you have completely missed the boat. It
is in the way that the connection between different amplitudes is lost when you take non-
relativistic limit and chuck those teensie but important terms of O(v

c
)2 and higher. Although

this has been illustrated only for 2→ 2 scattering it applies to any process.
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CPT symmetry

There are three scattering processes related to 1 + 2→ 3̄ + 4̄ by various crossings. They are

3 + 4→ 1̄ + 2̄

2 + 4→ 1̄ + 3̄

2 + 3→ 1̄ + 4̄

Note that the physical region for 3+4→ 1̄+2̄ is in the same region as that of 1+2→ 3̄+4̄.
There is no need to do any analytic continuation to show that the amplitude for these two
processes are the same. All you have to do is note that they are related by pa → −pa,
a = 1, . . . , 4 and that all the Feynman rules are quadratic in the momenta so there is no way
this operation can change the amplitude. Although we haven’t discussed theories without
parity invariance, if there is any grace in the world, parity violating interactions will involve
an ε tensor contracted with four momenta and that too is an even power of momenta. This
is an argument to all orders in perturbation theory that even in a parity violating theory the
amplitude for these two processes are equal. The argument applies to any process n particles
→ m particles by the same argument. The Feynman rules are invariant under pa → −pa,
a = 1, . . . , n, n + 1, . . . , n + m. This equality has nothing to do with analytic continuation.
Graphically, if

2

nn+1

n+m p

p

1

p
p

p
n+m

n+1

n

2

1

is calculated in a Lorentz invariant theory, it is invariant under pa → −pa, a = 1, . . . , n+m.
This is the CPT theorem.

Why is it called the CPT theorem? I’ll only explain why in the 2 → 2 case, so I don’t
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have to invent some notation. The most general 2→ 2 process is

1
p1

+ 2
p2

→ 3̄
p3

+ 4̄
p4︸ ︷︷ ︸

physical
4 momenta

amplitude = a(p1, p2,−p3,−p4)

If I charge conjugate the incoming and outgoing states, I get a related process

1̄ + 2̄→ 3 + 4.

In a charge conjugation invariant theory this process would have the same amplitude but in
general it doesn’t. Now let’s consider the time reversed process that would be

3 + 4→ 1̄ + 2̄,

because if you run a movie backward the products of a reaction become the reagents and
the reagents become the products. Furthermore, what once went north now goes south and
what once went up now goes down, that is, the velocities are reversed. If we also apply
parity we undo the reversal of velocities and the final process is

3
p3

+ 4
p4

→ 1̄
p1

+ 2̄
p2︸ ︷︷ ︸

physical
4 momenta

amplitude = a(−p1,−p2, p3, p4)

Whether or not these three operations individually affect the amplitude, we have shown
above that the combined effect of all three operations, CPT , can’t change the amplitude
on general grounds. If CPT violated is ever observed, Lagrangian quantum field theory is
cooked. Contrast: If C violation is observed, we just write down C non-invariant interactions.

Phase space and the S matrix

Our job is to make contact with the numbers experimenters measure. To do this we square
our S matrix elements and integrate over the possible final states a detector might register,
and we get a probability that a counter will advance. Our S matrix elements are propor-
tional to δ(4)(pf − pi). Squaring them is senseless. What went wrong?

What went wrong is that the states we are using are not normalizable. They extend
throughout all of space. The scattering process occurs at every point in space, and since two
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plane wave states never get far apart no matter how long you wait, the scattering process
goes on for all time.

A half-assed way to salvage the situation is to put the systems in a box, so that we
can normalize the plane-wave states and to turn the interaction on for a finite amount of
time T . A more satisfying way to salvage the situation is to build wave packets, which are
normalizable, and do get far apart in the far past / future. We are in a hurry, so we’ll put
the world in a box of volume V .

The states in a box of volume V with periodic boundary condition are |~k1, . . . , ~kn〉 where

ki,x,y,z =
2πni,x,y,z

L
, L3 = V .

dots represent
allowed k values

ky

kx

2
L

The states |~k1, . . . , ~kn〉 are built up from the vacuum by creation operators

|~k1, . . . , ~kn〉 = a†~k1
· · · a†~kn|0〉

a~k|0〉 = 0

[a†~k, a
†
~k′

] = 0

[a~k, a~k′ ] = 0

[a~k, a
†
~k
] = δ~k,~k′︸︷︷︸

Kronecker
delta

= 〈~k|~k′〉

The free field in the box has the expansion

φ(x) =
∑
~k

(
a~ke
−ik·x√

2Ep
√
V

+
a†~ke

ik·x√
2Ep
√
V

)

We want to know, what is the probabilities of making a transition to some infinitesimal
volume of phase space specified by d3k1 · · · d3kn (n final particles). It is the probability of
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going to one of the final states in that infinitesimal region times the number of states in that
infinitesimal region,

d3k1

(2π)3
V · · · d

3kn
(2π)3

V

Let’s look at the transition probability to go to one of the final states in that region

|〈f |(S − 1)|i〉|2.

We will restrict our attention to the two simplest and most important initial states: one
particle and two particle initial states. We will normalize the two particle initial state
unconventionally. We will consider

|i〉 =

{
|~k〉 Decay

|~k1, ~k2〉
√
V Scattering

|~k〉 and |~k1, ~k2〉 are box normalized. Why the factor
√
V ? Without it, each particle has

probability 1 of being somewhere in the box. The probability that they are both near a given
point and can scatter is ∝ 1

V 2 . Of course, they could both be near any point in the box, so

the probability that they will scatter from anywhere is ∝ 1
V

. With the factor
√
V you can

think of one particle as having probability 1 of being in any unit volume, and the other as
having probability one of being somewhere in the box. With these conventions, we expect

〈f |S − 1|i〉 = iaV Tfi (2π)4δ
(4)
V T (pi − pf )

( ∏
final particles

1√
2Ef
√
V

)( ∏
initial particles

1
√

2Ei
√
V

)

where

(2π)4δ
(4)
V T (p) ≡

∫
V

d3x

∫
dtf(t)eip·x

The extra factors you have never seen before come from the expansion of the fields.
The coefficient of the creation operator a†~k, which annihilate a particle on the left and the
coefficient of the annihilation operator, a~k, which annihilate a particle on the right is

1
√
V 2ωk

.

You get one of these factors for every particle that is annihilated on the left or right
by the fields. We did not get these before because the coefficient of a(k) and a(k)† in the

field is
1

(2π)3

1

2ω~k
which exactly cancels the factor we get when a(k) hits the relativistically

normalized state |k′〉
a(k)|k′〉 = (2π)32ω~k|0〉
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The product over initial states in our formula has had the single factor of 1√
V

pulled out

in the decay case, and the two factors of 1√
V

cancelled to just one by the
√
V we put in by

hand in the scattering case, leaving again a single factor of 1√
V

which we have explicitly put
in as the last factor of the formula.

To get the transition probability, we square the transition amplitude. We multiply this
by the numbers of states in the infinitesimal region of final state phase space to get the
differential transition probability. To get something that does not depend on the time we
turn the interaction on for T , we divide by T . You should get

Differential Transition Probability

Unit time
=

1

V T
|aV Tfi |2

(
(2π)4δ

(4)
V T (pi − pf )

)2 ∏
final particles

d3kf
(2V )32Ef

∏
initial particles

(1 or 2)

1

2Ei

Now we take the limits V , T →∞.

aV Tfi −→ afi

|aV Tfi |2 −→ |afi|2

δ
(4)
V T −→ δ(4)

((2π)4δ
(4)
V T )2 → Here’s where we have to be careful

Recall: δ
(4)
V T is a function concentrated near the origin. It becomes more and more so as

V , T →∞. Also it is normalized to 1 for all V , T .∫
d4p δ

(4)
V T (p) =

1

(2π)4

∫ ∞
−∞

dtf(t)

∫
V

d3x

∫
d4peip·x︸ ︷︷ ︸

(2π)4δ(4)(0)

= 1

For these two reasons we say limV T→∞ δ
(4)
V T (p) = δ(4)(p).

What about (δ
(4)
V T (p))2 ?

In the limit V, T →∞, it is concentrated about p = 0 just as surely as δ
(4)
V T (p) is. We can

find its normalization∫
d4p[δ

(4)
V T (p)]2 =

1

(2π)8

∫
dt

∫
dt′f(t)f(t′)

∫
V

d3x

∫
V

d3x′
∫
d4peip·xeip·x

′

︸ ︷︷ ︸
(2π)4δ(4)(x+x′)

=
1

(2π)4

∫
dt|f(t)|2

∫
V

d3x =
1

(2π)4
V T
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For these two reasons we say

lim
V,T→∞

1

V T
(2π)4(δ

(4)
V T (p))2 = δ(4)(p)

Thank God a factor of 1
V T

appears in our formula for the differential transition probability
per unit time so we can take the V , T →∞ limit to get

differential transition probability

unit time
=

|afi|2 (2π)4δ(4)(pf − pi)
∏

final particles

d3kf
(2π)32Ef︸ ︷︷ ︸

This factor which is manifestly Lorentz invariant
is called the “invariant density of states”, D,
or the ”relativistic density of final states”.

∏
initial particles,

1 or 2

1

2Ei

Note that you have no excuse for not getting the (2π)’s right. Every 2π goes with a δ
function and every 1

2π
goes with a k integration.
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13 November 4

Applications of

Differential Transition Probability

Unit time
= |afi|2D

∏
initial particles

(1 or 2)

1

2Ei

D = (2π)4δ4(pf − pi)
∏

final particles

d3kf
(2π)32Ef

(13.1)

Decay

dΓ =
Diff decay prob

Unit time
=

1

2E
|afi|2D

The total decay probability per unit time is dΓ summed and integrated over all possible final
states

Decay Probability

Unit time
=

1

2E

∫∑
final states

|a|2D︸ ︷︷ ︸
It is obvious

that this part is L.I.

We’ll evaluate the decay probability rate in the rest frame of the decaying particle. This is
the “decay width”, Γ.

Γ =
Rest decay probability

Unit time
=

1

2m

∫∑
|a|2D (13.2)

Since the
∫∑
|a|2D is L.I.

Decay probability

Unit time
=
m

E
Γ =

dτ

dt
Γ

where τ is the particle’s proper time. The shelf life of a moving particle is longer, its decay
rate is slower exactly by a factor of elapsed proper time / elapsed observer time.

Cross sections

dσ =
Diff Trans Prob

Unit time× Unit flux
=

1

4E1E2︸ ︷︷ ︸ |afi|2D
1

|~v1 − ~v2|︸ ︷︷ ︸
These ~v’s are initial state particle velocities and energies
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The factor
1

|~v1 − ~v2|
takes care of the per unit flux. Let’s understand this factor with our

conventions.
Our convention |i〉 =

√
V |~k1, ~k2〉

The transition probability per unit time is some mess

t.p.

u.t.
= (some mess)

Let’s suppose the particle with momentum ~k2 presents some area, A to the particle beam
with momentum ~k1. Think of the particle with momentum ~k1 as having probability 1 of
being in any volume and the particle with momentum ~k2 as being located somewhere in the
whole box with probability one.

A

A

A

v1

v2

v1v2-(

(

t

v2t

tv1

~v2t is the vector displacement of the particle with momentum ~k2 in a time t. ~v1t is the
motion of the beam in time t. The orientation of A is so as to be ⊥ to ~v2− ~v1, that is, so as
to catch the most flux. The cylinder is the volume swept out in the beam in a time t. Its
volume is

|~v2 − ~v1|tA
The flux is thus |~v2 − ~v1| and the

t.p

u.t.× unit flux
=

(some mess)

|~v2 − ~v1|

Another Convention is to take |i〉 = |~k1, ~k2〉.

Then the transition probability per unit time would have come out as

t.p

u.t.
=

1

V
( some mess︸ ︷︷ ︸

This is the same “(some mess)” as
in the previous equation, whatever it is

)

The flux for this normalization is however

1

V
|~v1 − ~v2|
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So
t.p.

Unit time × Unit flux
= �
�1
V

(some mess)

�
�1
V
|~v1 − ~v2|

is the same
√

.

I want to emphasize that this is the nonrelativistic velocity and NR velocity addition formula
that appears here. If two beams approach with speed c head on the flux is 2c.

The total cross section is

σ =
1

|~v1 − ~v2|
1

4E1E2

∑
final states

|afi|2D (13.3)

If ~v1 is parallel or antiparallel to ~v2 and the total cross section really has the interpretation
of an area, then it should be unaffected by boosts along ~v1 and ~v2.

A
v
1

v
2v

1
v
2//

The total number of particles that smash into the area A will depend on the velocity
of the observer. It will be proportional to the flux in that frame. However the idea of a
perpendicular area should be Lorentz invariant for boosts along ~v1 − ~v2 direction. Since

σ =
1

|~v1 − ~v2|
1

4E1E2

∑
|afi|2D︸ ︷︷ ︸

is supposed to have the interpretation of an area. It should be unaffected by these boosts.
The underbraced term is invariant under any Lorentz transformation. What about the factor
in front? Take ~v1 and ~v2 to be along the x direction.

P1 = (E1, p1x, 0, 0)

P2 = (E2, p2x, 0, 0)

Then

E1E2|~v1 − ~v2| = E1E2

∣∣∣∣p1x

E1

− p2x

E2

∣∣∣∣ = |p1xE2 − p2xE1| = |ε23µνp1µp2ν |

which is obviously invariant under rotations on the 0 − 1 plane (boosts along ~v1). This
justifies the interpretation of the cross section as an area.
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D for a two body final state in the COM frame

D contains both δ functions and integrals that can be trivially performed by using those δ
functions. We can do them once and for all. Of course this turns independent variables (in
|afi|2 and in where they arise kinematically) into dependent variables.

In the center of mass frame ~pi = 0 and Ei = ET while

D =
d3p1d

3p2

(2π)64E1E2

(2π)4δ(3)(~p1 + ~p2)︸ ︷︷ ︸
final particle energies

and momenta

δ(E1 + E2 − ET )

=
d3p1

(2π)34E1E2

2πδ(E1 + E2 − ET )

~p2 = −~p1

The δ(3)(~p1 + ~p2) is used to do the ~p2 integration. You must now remember that ~p2

depends on ~p1 whenever it appear (in E2 or in |afi|2).

Let’s rewrite d3p1, as p2
1dp1dΩ1 and use the energy delta function to do the p1 integration.

Thought of as functions of ~p1, E2
1 = ~p1

2 + m2
1, and E2

2 = ~p2
2 + m2 = ~p1

2 + m2, we have
E1dE1 = p1dp1, E2dE2 = p2dp2.

∂(E1 + E2)

∂p1

=
p1

E1

+
p1

E2

=
p1ET
E1E2

So

D =
1

16π2E1E2

dΩ1
p2

1∣∣∣∂(E1+E2)
∂p1

∣∣∣ =
1

16π2

p1dΩ1

ET
(13.4)

2→ 2 scattering in the COM frame

In the COM frame,

4Ei1Ei2|~v1 − ~v2| = 4|Ei2~pi1 − Ei1~pi2|
= 4|Ei2~pi1 + Ei1~pi1|
= 4ETpi1

= 4ETpi (13.5)
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(The i subscript reminds you that these are initial particle momenta and energies)

dσ =
1

16π2

pfdΩ1

ET

1

4ETpi
|afi|2 =

1

64π2E2
T

dΩ1
pf
p1

|afi|2

dσ

dΩ
=

1

64π2E2
T

pf
pi
|afi|2

Note that for an exothermic reaction we can have pi = 0 while pf 6= 0. dσ
dΩ

and hence σ
can be infinite even when the amplitude afi is finite. This why they slow down the reaction
in atomic piles.

It is simple to understand this. As pi → 0, the amount of time the two particles spend
in the danger zone near each other, which goes as 1

pi
becomes infinite.

We maximize the chance of neutron capture in the pile by making the neutron cruise out
of the pile as slowly as possible.

Contact with elastic 2→ 2 scattering in NRQM

Our formula for dσ
dΩ

is
dσ

dΩ
=

1

64π2E2
T

pf
pi
|afi|2 =

1

64π2E2
T

|afi|2

for elastic scattering. Compare this with

dσ

dΩ
= |f |2

from NRQM and see

|f | = 1

8πET
|afi|

We’ll get the phase when we do the optical theorem.

Example, Model 3

L′ = −gψ∗φφ

�fE = −ig

p′↖� qf
↙pE = (−ig)(2π)4δ(4)(p+ p′ − q)
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ia = −ig +O(g3), pretty simple, couldn’t be simpler.

From Eqs. (13.2) and (13.4)

Γ =
1

2µ

∫∑
|a|2D

=
1

2µ
g2

∫
p1dΩ1

16π2 ET︸︷︷︸
µ

=
g2p1

8πµ2
=

g2

8πµ2

√
(
1

2
µ)2 −m2

=
g2

16πµ2

√
µ2 − 4m2

Optical Theorem

The optical theorem in NRQM is based on a simple idea. There is an incoming wave incident
on a target, and an outgoing wave. The outgoing wave is the superposition of the incoming
wave that passes right through the target and goes off in the forward direction, and the
scattered wave which goes off in all directions. Since there is some probability that a particle
in the beam is scattered off, and since probability is conserved, there must be a decrease
in the intensity in the beam in the forward direction. The total probability for scattering
in all directions but exactly forward, which mathematically is σ, the total cross section,
must be equal to the decrease in probability of going exactly in the forward direction, which
mathematically is an interference term between the wave that passes right through and the
scattered wave in the forward direction.

There is nothing in this argument that is nonrelativistic, so we should be able to get a
analog of the optical theorem in our relativistic scattering theory.

The mathematical statement of conservation of probability in the scattering process is

SS† = 1

We want to make a statement about our amplitudes, afi, which are proportional to matrix
elements of S − 1, so we’ll rephrase the conservation of probability as

(S − 1)(S − 1)† = SS†︸︷︷︸
1

−S − S† + 1 = −(S − 1)− (S − 1)†

Now
〈f |(S − 1)|i〉 = iafi(2π)4δ4(pf − pi)
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and
〈f |(S − 1)†|i〉 = −ia∗if (2π)4δ4(pf − pi)

Our rephrased statement of the conservation of probability has matrix elements of

〈f |(S − 1)(S − 1)†|i〉 = −〈f |(S − 1)|i〉 − 〈f |(S − 1)†|i〉

By inserting a complete set of intermediate states, the left hand side (LHS) becomes

LHS =

∫∑
intermediate
states |m〉

〈f |(S − 1)|m〉〈m|(S − 1)†|i〉

=
∑

intermediate
states with nm

particles

an overcounting factor if the
nm particles are identical︷︸︸︷

1

nm!

∫
d3k1

(2π)32E1

· · · d3knm
(2π)32Enm

afma
∗
im(2π)4δ4(pf − pm)(2π)4δ4(pm − pi)

Because of the δ4(pm−pi), we can replace the pm in δ4(pf−pm) by pi, so that we explicitly
have that LHS is proportional to δ4(pf − pi).

The RHS of the rephrased statement of the conservation of probability is

RHS = −iafi(2π)4δ4(pf − pi) + ia∗if (2π)4δ4(pf − pi)

Both the LHS and RHS are proportional to (2π)4δ4(pf − pi).
Comparing the LHS with the RHS, we have∑

intermediate states
with nm particles

1

nm!

∫
d3k1

(2π)32E1

· · · d3knm
(2π)32Enm

(2π)4δ4(pm − pi)︸ ︷︷ ︸ afma∗im = −iafi + ia∗if

= 2Im afi

The underbraced factor is what we would call the invariant density of states for the
process i→ m, Dm (see Eq. (13.1)). If we choose f = i, we get

∑
intermediate

states with nm
particles

an overcounting factor if the
nm particles are identical︷︸︸︷

1

nm!

∫
Dm|aim|2 = 2Im aii
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This says the total transition probability (statement might be off by a factor of E2
T ) per

unit time is equal to twice the imaginary part of the forward scattering amplitude.

If the process has a two particle initial state, we can rewrite this as a statement about
cross sections. In the COM frame this says (see Eqs. (13.3) and (13.5))

�4
2
ETpiσ = �2Im aii

(since the LHS is zero till O(g4) for 2N → 2N scattering, we see that the RHS must be zero
till O(g4). This proves that the forward scattering amplitude for 2N → 2N is real at O(g2)).

In NRQM the optical theorem for elastic scattering (pi = pf = p) is

p

4π
σ = Im f |θ=0

Barring a different θ dependence in the phase conventions, we can finally state

f =
1

8πET
a

3 body final state phase space in the COM frame

D =
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

(2π)4δ(3)(~p1 + ~p2 + ~p3) · δ(E1 + E2 + E3 − ET )

=
1

(2π)5
d3p1d

3p2
1

8E1E2E3

δ(E1 + E2 + E3 − ET )

The momentum conserving δ function has been used to eliminate ~p3. From now on ~p3 and
E3 are not independent variables.

~p3 = −(~p1 + ~p2)

E3 =
√

(~p1 + ~p2)2 +m2
3

Now we’ll rewrite d3p1 as p2
1dp1dΩ1. Instead of writing d3p2 as p2

2dp2dΩ2, d3p2 = p2
2dp2dφ12d cos θ12,

where φ12 is an azimuthal angle about ~p1 and θ12 is a polar angle measured from ~p1 and θ12

is a polar angle measure from ~p1.

p
1

p
2 �12
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We are going to use the energy conserving δ function to do the θ12 integration. E3

depends on θ12,

E2
3 = p2

1 + 2~p1 · ~p2 + p2
2 +m2

3 = p2
1 + p2

2 +m2
3 + 2p1p2 cos θ12

Therefore ∂E3

∂ cos θ12
= p1p2

E3
and thus d cos θ12δ(E1 + E2 + E3 + E4) = E3

p1p2
.

θ12 is now a dependent variable.

D =
1

(2π)5
p2

1dp1dΩ1p
2
2dp2dφ12

E3

p1p2

1

8E1E2E3

=
1

256π5

p1dp1

E1︸ ︷︷ ︸
dE1

p2dp2

E2︸ ︷︷ ︸
dE2

dΩ1dφ12 (Valid in COM frame)

(Amazing simple result if you use the right variable)

Suppose the amplitude a is independent of Ω1 and φ12, as in the decay of a spinless meson
(at rest), or for a particle with spin decaying, if you average over initial spin states, then we
can do the angular integrations (which give 8π2) to get

1

32π3
|a|2dE1dE2

as the differential transition probability per unit time into an energy range E1 for particle 1
and E2 for particle 2.

If I make a plot of experimental data points as a function of E1 and E2, they will be
distributed according to |a|2, because dE1dE2 is the Euclidean measure on the plane

E2

E1

There will be a kinematically imposed boundary to the sprinkling of data, but within those
boundaries, the sprinkling of data is directly proportional to |a|2.

Our next topic is the beginning of a discussion of Green’s functions, scattering with wave
packets, and the LSZ reduction formula.
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Feynman Diagrams With External Lines Off The Mass

Shell

We’ll restrict ourselves (for notational simplicity only) to considering diagrams in which only
one type of scalar meson appears on the external lines. (By scalar, I just mean uncharged,
with no Lorentz indices on its field, that is, no spin, not a specification of its parity transfor-
mation properties. A parity need not even exist for the formalism we are about to develop
to be applicable (“charged scalar” means charged, but no spin. If I really wanted to specify
parity effect, I would say “scalar under parity transformations”, or whatever.)) We’ll still
let particles of all types run around on the internal lines.

Let a blob like this

≡ G̃(4)(k1, . . . , k4)

represent a sum of Feynman diagrams. It could be all Feynman diagrams to some order in
perturbation theory, or in our imagination the sum of all diagrams to all orders in pertur-
bation theory.

Can we assign any meaning to this blob if the momenta on
the external lines are unrestricted, off the mass shell, maybe
not even satisfying k1 + k2 + k3 + k4 = 0?

We are going to come up with three affirmative answers to this question. Something neat
is that they all agree.

Answer 1

The blob could be an internal part of a more complicated graph
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k2

k4
k3

(The Feynman rules instruct you to label all internal momenta arbitrarily and integrate over
them.)

Suppose in our study of other graphs in the theory, for example

all of which have the form

,

that we have already summed the blob, in our work calculating those graphs to some order.

Then it would be nice not to repeat that work when calculating ,
it would be nice to just plug the result in from a table of blobs.
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So we have one sensible, even useful, definition of the blob. We will define it to be what
it would be if it were an internal part of a bigger graph (or a sum of internal parts in bigger
graphs). Our Feynman rules for the bigger graph, which has its external lines on the mass
shell, then tell us exactly how to define the blob.

We still have a couple of conventional choices to make in defining a blob. We could
include or not include the n propagators that hang off G̃(n)(k1, . . . , kn) and we could include
or not include the overall energy momentum conserving δ function. We’ll include it all.

Here’s a simple example. A big graph that contains G̃(2)(k1, k2) is

k2

k1

More explicitly various contributions of this type are

k2

k1 ,

k2

k1 and

k2

k1

These correspond to contributions to
k1→fp ←k2f of

k1→fk ←k2f,
k1→f@←l�

k1+l→

W@ ←k2f and
k1→f@�W@k@�W@ ←k2f.

To order g2 we have
k1→fp ←k2f ≡ G̃(2)(k1, k2)

= (2π)4δ(4)(k1 + k2)

[
i

k2
1 − µ2 + iε

+

∫
d4l

(2π)4

i

(k1 + l)2 −m2 + iε

i

l2 −m2 + iε

i

k2
1 − µ2 + iε

i

k2
2 − µ2 + iε

]
Because of the overall energy momentum conserving delta function, which enforces k1 =

−k2, there is some ambiguity in the way to write down the contributions to G̃(2)(k1, k2) to
O(g2). It could just as well have been written

(2π)4δ(4)(k1+k2)

[
i

k2
2 − µ2 + iε

+

(
i

k2
2 − µ2 + iε

)2 ∫
d4l

(2π)4

i

(−k2 + l)2 −m2 + iε

i

l2 −m2 + iε

]
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We can also write down a few contributions to

G̃(4)(k1, . . . , k4) = =

k1→fk ←k4f
k2→
fk ←k3
f+

k1→fk ←k3f
k2→
fk ←k4
f+

k1→fk ←k2f
k3→
fk ←k4
f+O(g2)

= (2π)4δ(4)(k1+k4)
i

k2
1 − µ2 + iε

(2π)4δ(4)(k2+k3)
i

k2
2 − µ2 + iε

+2 permutations+O(g2)

Since the second δ function enforces k2 = −k3 we can rewrite the first δ function as

δ(4)(k1 + k2 + k3 + k4)

if you like, to display over all energy momentum conservation explicitly.

One thing we can do with these blobs is to recover S matrix elements. We cancel off the
external propagator and put the momenta back on their mass shells

〈k′1, k′2|(S − 1)|k1, k2〉 =
∏

r=1,2,1′,2′

to cancel the external
propagator we had included in G̃︷ ︸︸ ︷

k2
r − µ2

i
G̃(4)(−k′1,−k′2, k1, k2) (*) LSZ reduction formula

Because of the four factors of zero out front when the momenta are on mass shell, the graphs
that we wrote out above do not contribute. Indeed, they should not contribute to S − 1.
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14 November 6

Fourier transform (convention of Nov. 6):

f(x) =

∫
d4k

(2π)4
f̃(k)eik·x

This is a little unfortunate because

e−iEt+i
~k·~x (E > 0)

is generally called a positive frequency plane wave (because i ∂
∂t

acting on it give E and 1
i
∂
∂x

acting on it gives ~k) and thus if f̃(k) has support for positive k0, f(x) negative frequency.

A source with positive frequencies creates particles while a source with negative frequen-
cies absorbs particles. This is summed up in the Feynman rule

• →kf⇐⇒ iρ̃(−k)

(See Eqs. (14.1)-(14.3) if you don’t know or remember how to get this Feynman rule)

Answer 1 (cont’d)

We have found one meaning for our blob. We can use it to obtain another function, its
Fourier transform.

Using the Fourier transform convention

f(x) =

∫
d4k

(2π)4
f̃(k)eik·x

f̃(k) =

∫
d4xf(x)e−ik·x

(Which you’ll notice has a different sign in the exponent from what we used on Oct. 21)

(The power theorem is

∫
d4xf(x)g(x) =

∫
d4k

(2π)4
f̃(k)g̃(−k))

We have

G(n)(x1, . . . , xn) =

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

eik1·x1+···+ikn·xnG̃(n)(k1, . . . , kn)
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where

G̃(n)(k1, . . . , kn) =

This is the sum of all (let’s make this definite) Feynman diagrams to all orders (if the
blob does not exist then the blob represents a formal power series in g) and the blob includes
factors for the external propagators and the factor for overall energy momentum conservation
(2π)4δ(4)(k1 + · · ·+ kn)

Answer 2

Consider modifying H, say in model 3,

H → H− ρ(x)φ(x) (L → L+ ρ(x)φ(x))

where ρ(x) is a specified c number source, not an operator. This adds a new vertex, a model
1 type vertex

• →kf⇐⇒ iρ̃(−k)

The new Feynman rule was just quoted in class, let’s see it arise in a simple example.

Let’s suppose we have got the original Hamiltonian’s vacuum counterterm all calculated
out to some high order in perturbation theory so that there are no corrections to 〈0|S|0〉 to
this high order. The modification of the Hamiltonian (density) H → H − ρ(x)φ(x) spoils
this. There are now contributions to 〈0|S|0〉 proportional to ρn at low orders in g. At order

ρ and order g, we have •f@�W@ At order ρ and O(g3) we have

Unfortunately, these are not interesting simple examples, because unless ρ̃(0) is nonzero
they vanish because of energy-momentum conservation.

At order ρ2 and order g0 we have •f•.
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At order ρ2 and order g2 we have •f@O�@f•, as well as
•f@O�@
•f@O�@

,

•f•

flN� ,

and O�@f@O� •f•

This is a nice simple example, let’s look at it. It comes from the term second order in ρ
and second order in g in

S = UI(∞,−∞) = Te−i
∫
d4x(gψ∗ψφ−ρφ)

i.e.
(−ig)2

2!

(i)2

2!

∫
d4x1d

4x2d
4x3d

4x4ρ(x3)ρ(x4)T (ψ∗ψφ(x1)ψ∗ψφ(x2)φ(x3)φ(x4))

The process is vacuum → vacuum, so we are looking for the completely contracted terms in
the Wick expansion of the time ordered product. They are

ψ∗ψ φ(x1)ψ∗ψφ(x2)φ(x3)φ(x4) ←→ O�@f@O� •f•

ψ∗ψ φ(x1)ψ∗ψφ(x2)φ(x3)φ(x4)

ψ∗ψ φ(x1)ψ∗ψφ(x2)φ(x3)φ(x4)

 ←→ •f@O�@ •f@O�@

ψ∗ψφ(x1)ψ∗ψφ(x2)φ(x3)φ(x4) ←→ •f• flN�
ψ∗ψφ(x1)ψ∗ψφ(x2)φ(x3)φ(x4)

ψ∗ψφ(x1)ψ∗ψφ(x2)φ(x3)φ(x4)

 ←→ •f• •f@O�@f•

The last two are the ones I want to look at in detail. They differ by an exchange of
x1 ↔ x2 only, and since these are dummy variables of integration they together make a
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contribution to 〈0|S|0〉 of

(−ig)2 (i)2

2!

∫
d4x1d

4x2d
4x3d

4x4ρ(x3)ρ(x4)ψ∗(x1)ψ(x2)︸ ︷︷ ︸
(1)

ψ∗(x1)ψ(x2)︸ ︷︷ ︸
(2)

φ(x1)φ(x3)︸ ︷︷ ︸
(3)

φ(x2)φ(x4)︸ ︷︷ ︸
(4)

(1) :

∫
d4p

(2π)4
eip·(x1−x2) i

p2 −m2 + iε

(2) :

∫
d4q

(2π)4
eiq·(x1−x2) i

q2 −m2 + iε

(3) :

∫
d4k

(2π)4
eik·(x1−x3) i

k2 −m2 + iε

(4) :

∫
d4l

(2π)4
eil·(x2−x4) i

l2 −m2 + iε

We have∫
d4p

(2π)4

d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

i

p2 −m2 + iε

i

q2 −m2 + iε

i

k2 −m2 + iε

i

l2 −m2 + iε

× (−ig)2(i)2

∫
d4x1d

4x2d
4x3d

4x4ρ(x3)ρ(x4)eix1·(p+q+k)eix2·(−p−q+l)eix3·keix4·l

Now if you go back to Eq. (11.2) to Eq. (11.5) and especially Eq. (11.2) in the lecture of
Oct. 28, you’ll see that when we have a factor eix1·(p+q+k) that corresponds to a picture with
p, q and k flowing out of x1. Our picture for the integral at hand is

• ←kf@→q�
→p

W@ →lf•

The left vertex, corresponding to space-time point x1 (but I hate to label it as such be-
cause it is just a dummy integration variable which is going to be integrated over, and in
our combinatoric arguments for Feynman diagrams, we have kept the vertices unlabelled)
is creating a nucleon with momentum p, creating an antinucleon with momentum q, and
creating a meson with momentum k.

The x integrals are easy to perform, we have∫
d4p

(2π)4

d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

i

p2 −m2 + iε

i

q2 −m2 + iε

i

k2 −m2 + iε

i

l2 −m2 + iε

× (−ig)2(i)2ρ̃(k)ρ̃(l)(2π)4δ(4)(p+ q + k)(2π)4δ(4)(−p− q + l)
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This is just what you would have directly written down using our old Feynman rules
supplanted by

• ←kf⇐⇒ iρ̃(k)

except for that
1

2!
out front, which I’ll explain in a moment.

This was a moderately interesting graph to show how the Feynman rule comes out. If
you know how the Feynman rule comes out, but you want to check whether it’s ρ̃(k) or
ρ̃(−k) just look at the lowest order (in ρ, zeroth order in g) contribution to

〈0|S|k〉 = 〈0|UI(∞,−∞)|k〉

= 〈0|
[
I + i

∫
d4xρ(x)φ(x)

]
|k〉+ · · ·

= 0 + • ←kf+ · · · (14.1)

(|k〉 is relativistically normalized and I’ll use the relativistically normalized creation and an-
nihilation operators in the expansion for φ(x).)

But,

〈0|φ(x)|k〉 =

∫
d3k′

(2π)32ω′k
e−ik·x 〈0|a(k′)|k〉︸ ︷︷ ︸

(2π)32ωkδ(3)(~k−~k′)

= e−ik·x (14.2)

So

• ←kf = i

∫
d4xρ(x)e−ik·x = iρ̃(k) (14.3)

Now for that 1
2!

out front (see also the short argument after Eq. (14.4)). Earlier (after
Eq. (11.6) of lecture on Oct. 28), we sung and danced about how there were no symmetry
factors in model 3. That argument still goes through, and it still only applies to diagrams
where each connected part has at least one external line. What we have here is a vacuum
to vacuum diagram, no external lines, and we now have to worry about symmetry factors.

Suppose we have a graph in the Wick expansion with n powers of ρφ and m powers of
gψ∗ψφ, which comes with a 1

n!
1
m!

from the exponential.

4

3

2

1

5

6

7

8 9

1'
2'

3'

4' 5'
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(In this example n = 9 and m = 5)

Each of the m! permutations of the model 3 vertices, keeping the source vertices fixed,
is a new term in the Wick expansion. They are all uniquely identified by the way they are
attached to the source vertices. There are no model 3 vertices that are not somehow attached
to a source vertex. That would be a disconnected bubble, which is a contribution to 〈0|S|0〉
with the source off, and by assumption, the vacuum energy counterterm has been adjusted
so that there are no corrections to 〈0|S|0〉 with the source off.

Now what about the n! permutations of source vertices. Some of them make no new
contributions to the Wick expansion. For example 5 ↔ 6 and 8 ↔ 9, but also 2 ↔ 3,
because that has already been counted as 1′ ↔ 2′.

Any of the n! permutations that do make a new contribution to the Wick expansion, that
is, that have not already been counted in the permutations of the m model 3 vertices, are
accounted for in another way.

For example, 7↔ 8 or 6↔ 8 gives a new term in the Wick expansion.

To see the accounting work, look at the messy example in momentum space. It is

(i)9

9!

∫
d4k1

(2π)4
· · · d

4k9

(2π)4
ρ̃(−k1) · · · ρ̃(−k9)×

k k

k

k

k

k

kk

k

1

2

3

4
5

6 7

8 9

︸ ︷︷ ︸
Feynman diagram with

external lines off the mass shell

Instead of using the permutation 7↔ 8 to partially cancel off the 1
9!

out front consider it as
the same mess m with a new diagram in the integrand.

k k

k

k

k

k

kk

k

1

2

3

4
5

6

7

8

9

Of course when the momenta are integrated over, this is identical to the integral above.

Now both of these would be counted in G̃(k1, · · · , kq) and in fact every permutation of the
9 source vertices that leads to a new term in the Wick expansion corresponds to a diagram
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in G̃(k1, k2, · · · , kq).

Of course there are diagrams with n = 9 and m = 5 that are not of the same pattern as
the one drawn (differ by more than a permutation of vertices). For example

3

1 2

4

5

6

7 8

9

1

2

3

4

5

There is a Feynman diagram in G̃(k1, . . . , kq) for this too

k

k

k

k

k

k

kk

k

3

1
2

4

5

6

7
8

9

Let

denote the sum of all diagrams to all orders in g (i.e. all m) and at nth order in ρ that
contribute to 〈0|S|0〉.
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What these combinatoric arguments say is

=
(i)n

n!

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

ρ̃(−k1) · · · ρ̃(−kn)×

=
(i)n

n!

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

ρ̃(−k1) · · · ρ̃(−kn)G̃(k1, . . . , kn) (14.4)

Having gone all the way back to Wick expansion arguments to show the combinatorics are
right for this, I’ll try to make a shorter argument.

The source creates n mesons, which are distinguishable by virtue of the fact that they
all carry different momenta k1, . . . , kn. They interact in all possible ways. That gives us
(i)nρ̃(−k1) · · · ρ̃(−kn)G̃(k1, . . . , kn). Now we integrate over all momenta k1, . . . , kn, and in
doing so we make an overcounting by n! .

BEST ARGUMENT

One last way of arguing this. Instead of considering this as an nth order calculation
in ρ, temporarily think of it as a first order calculation in each of n different sources
ρ1(x), . . . , ρn(x). Then the diagram where source 1 creates a particle with momentum k1 and
source 2 creates a particle with momentum k2 really is distinguishable from a diagram where
source 1 creates k2 and source 2 creates k1. There is no overcounting when you integrate
over all momenta. That contribution to 〈0|S|0〉 would be

(i)n
∫

d4k1

(2π)4
· · · d

4kn
(2π)4

ρ̃(−k1) · · · ρ̃(−kn)G̃(k1, . . . , kn)

How does this imagined calculation differ from ours? Well, in the exponential ρ̃1(x1) · · · ρ̃1(xn)
comes with coefficient 1, while ρ(x1) · · · ρ(xn) comes with coefficient 1

n!
.

To all orders

〈0|S|0〉 = 1 +
∞∑
n=1

(i)n

n!

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

ρ̃(−k1) · · · ρ̃(−kn)G̃(n)(k1, . . . , kn)

= 1 +
∞∑
n=1

(i)n

n!

∫
d4x1 d

4x2 d
4x3 d

4x4 ρ(x1) · · · ρ(xn)G(n)(x1, . . . , xn)
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This is the second answer to our question. The Fourier transform of the sum of Feynman
diagrams with n external lines off the mass shell is a Green’s function (that’s what G stands
for). In a theory with linear response only G(1) 6= 0. From conservation of probability
alone, you can see that the response of a quantum mechanical vertex can’t be linear. Green
introduced the first Green’s function in the early 19th century. From a prescribed charge
distribution, ρ(~x), his Green’s function gave you the electrostatic potential, φ(~x).

φ(~x) =

∫
d3x′G(~x, ~x′)ρ(~x′)

G(~x, ~x′) =
1

|~x− ~x′|
satisfies

∇2φ = −~∇ · ~E = −4πρ ( ~E = −~∇φ)

Let’s explicitly note that the vacuum to vacuum transition amplitude depends on ρ by
writing 〈0|S|0〉ρ (don’t confuse the subscript ρ with a p).
〈0|S|0〉ρ is a functional of ρ. You give me a function on spacetime, ρ(x), and I give you

back a number, 〈0|S|0〉ρ. Actually, it is just a function of an infinite number of variables, the
value of the source at each spacetime point, and the nomenclature “functional” is redundant,
we could just say “function”. Mathematicians don’t call a vector in an infinite dimensional
space “vectoral”. 〈0|S|0〉ρ comes up often enough, it gets a name, Z[ρ]

Z[ρ]︸︷︷︸
The square brackets

remind you that
this is a function
of a function ρ

≡ 〈0|S|0〉ρ

Z[ρ] is called a generating functional for the Green’s functions because in the infinite
dimensional generalization of a Taylor series, we have

δnZ[ρ]

δρ(x1) · · · δρ(xn)

∣∣∣∣∣
ρ=0

= (i)nG(n)(x1, . . . , xn)

The δ instead of a ∂ reminds you that you are taking a partial derivative of z with respect
to ρ(x), holding a (4 − d) continuum of other variables fixed. These are called functional
derivatives.

Ex nihil omnes: All physical information (all Green’s functions, and hence all S matrix
elements) about the system is coded in the vacuum persistence amplitude in the presence of
an external source ρ.
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Z[ρ] is called a generating functional in analogy with the functions of two variables which
when you Taylor expand in one variable, the coefficients are a set of functions like the Leg-
endre polynomials in the other. Sometimes it is very useful to put a whole set of functions in
one neat package like that. An example will be the Ward identities, which are a statement
about Green’s functions resulting from a symmetry. It can be put very compactly in term
of Z.

Because of our great theorem∑
all Wick diagrams = : e

∑
connected diagrams :

The sums are sums of normal ordered terms.
Apply this to a model which has had a source added. Take the vacuum expectation value

of both sides. The LHS is just 〈0|S|0〉ρ, i.e. Z[ρ].
We have

Z[ρ] = 〈0| : e
∑

connected diagrams : |0〉 = e〈0|
∑

connected diagrams |0〉

This is true because the terms in the sum in the exponential are themselves normal ordered,
convince yourself. Taking the natural logarithm,

ln Z[ρ] = 〈0|
∑

connected diagrams |0〉

=
∞∑
n=1

(i)n

n!

∫
d4k1

(2π)4
· · · d

4kn
(2π)4

ρ̃(−k1) · · · ρ̃(−kn)G̃c(k1, . . . , kn)

G̃c is the sum of all connected Feynman diagrams, with k1, . . . , kn possibly off shell, including
the overall energy momentum conserving δ function, and the external propagator, which blow
up on mass shell.

Answer 3

One more way of interpreting G(n)(x1, . . . , xn). By a cunning trick we will show that
G(n)(x1, . . . , xn) is a VEV (“Vacuum Expectation Value”) of a time ordered string of Heisen-
berg fields. As we did in obtaining answer 2, let

H → H− ρφ(x)

H0 +H′ → H0 +H′ − ρφ(x)

As far as Dyson’s formula is concerned, you can break the Hamiltonian up into a “free”
and interacting part in any way you please. Let’s take the “free” part to be H0 + H′ and
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the interaction to be −ρφ(x). I put quotes around “free”, because in this new interaction
picture, the fields evolve according to

φ(~x, t) = eiHtφ(~x, 0), e−iHt

H =

∫
d3xH H = H0 +H′

These fields are not free. They do not obey the free field equations of motion. You can’t
define a contraction for these fields, and thus you can’t do Wick’s theorem. These fields are
what we would have called Heisenberg fields if there was no source. For this reason we’ll
subscript them with an H.

Let’s see what this tells us about Z[ρ].

Z[ρ] = 〈0|S|0〉ρ = 〈0|Te+i
∫
d4xρ(x)φH(x)|0〉

just expand = 1 +
∞∑
n=1

(i)n

n!

∫
d4x1 d

4x2 d
4x3 d

4x4 ρ(x1) · · · ρ(xn)〈0|T (φH(x1) · · ·φH(xn))|0〉

and we read off
G(n)(x1, . . . , xn) = 〈0|T (φH(x1) · · ·φH(xn))|0〉 (14.5)

To summarize, we have found three meanings for the (sum of all) Feynman diagrams
with (n) external lines off the mass shell.

1. It is a handy blob we can plaster into the interior of a larger diagram.

2. Its Fourier transform (times (i)n

n!
) is the coefficient of the nth order term in ρ in the

expansion of the vacuum to vacuum persistence amplitude in the presence of a source,
ρ.

3. Its Fourier transform is the VEV of a time ordered string of Heisenberg fiels.

This can all be taken as motivation, because we are going to start from scratch and do a

REFORMULATION OF SCATTERING THEORY
No more turning on and off function

Imagine you have a well-defined theory, with a time independent Hamiltonian, H =∫
d3xH (the turning on and off function is gone for good), whose spectrum is bounded below,



14. November 6 Notes from Sidney Coleman’s Physics 253a 155

whose lowest lying state, is not part of a continuum, and the Hamiltonian has actually been
adjusted so that this state, |0〉p︸︷︷︸

don’t confuse p with ρ

, the physical vacuum, satisfies

H|0〉p = 0

The vacuum is translationally invariant and normalized to one

~p|0〉p = 0 and p〈0|0〉p = 1

Now let H → H− ρ(x)φ(x) and define

Z[ρ] ≡ p〈0|S|0〉p
∣∣∣
in the presence of the source ρ

= p〈0| U(−∞,∞)︸ ︷︷ ︸
Schrödinger picture evolution operator

for the Hamiltonian
∫
d3x(H−ρφ)

|0〉p

and define

G(n)(x1, . . . , xn) =
1

in
δnZ[ρ]

δρ(x1) · · · δρ(xn)

Two Questions:

1. Is G(n) defined this way (the F.T.) of the sum of all Feynman graphs? Let’s call the

G(n) defined as the sum of all Feynman graphs G
(n)
F and the Z which generated those

ZF . The question is: Is G(n) = G
(n)
F ? or equivalently, is Z = ZF ?

Answer will be “yes.”

2. Are S−1 matrix elements obtained from Green’s functions in the same way as before?
For example, is

〈k′1, k′2|(S − 1)|k1, k2〉 =
∏

a=1,2,1′,2′

k2
a − µ2

i
G̃(−k′1, k′2, k1, k2) ?

Answer will be “almost.”

Answer to question 1: Is G(n) = GF (n)?
Using Dyson’s formula, in the exact same way as we did in Eq. (14.5), gives

G(n)(x1, . . . , xn) = p〈0|T (φH(x1) · · ·φH(xn))|0〉p (14.6)
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Does ZF [ρ], the generating functional you get by blindly summing graphs generate the same
Green’s functions?

H splits up into H0 +H′. Let HI = H′(φI). The thing which after Wick’s theorem and
a combinatoric argument or two had a graphical expansion is

ZF [ρ] = lim
t±→±∞

〈0|︸︷︷︸
Base eigenstate

of H0
H0|0〉=0

Te
−i

∫ t+
t−

d4x[HI−ρφI ]|0〉

We used to adjust the constant part of HI to eliminate vacuum bubbles in our old
scattering theory when ρ = 0. That is, we adjusted the vacuum energy counterterm, so
that the vacuum to vacuum graphs (with no source vertices) summed to zero. There is an
equivalent way of throwing away the vacuum bubbles. You divide out of ZF [ρ] the sum of
all vacuum to vacuum graphs with no source vertices explicitly, and then you don’t have to
worry about a vacuum energy c.t., i.e. you divide by the same thing with ρ = 0.

ZF [ρ] = lim
t±→±∞

〈0|Te−i
∫ t+
t−

d4x[HI−ρφI ]|0〉

〈0|Te−i
∫ t+
t−

d4xHI |0〉

To get G
(n)
F (x1, . . . , xn) we do n functional derivatives w.r.t. ρ and then set ρ = 0 (and divide

by in)

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0|Te−i
∫ t+
t−

d4x[φI(x1)···φI(xn)HI ]|0〉

〈0|Te−i
∫ t+
t−

d4xHI |0〉
We have got a little work to do to show this is the same as G(n) in Eq. (14.6). Fortunately,

both these expressions are manifestly symmetric under the n! permutations of the x1, . . . , xn,
so it suffices to prove they are equal for one ordering which for convenience we choose so
that

x0
1 > x0

2 > · · · > x0
n or for short t1 > t2 > · · · > tn

The time ordering in the expression for G(n) is just lexicographic ordering

G(n)(x1, . . . , xn) = p〈0|T (φH(x1) · · ·φH(xn))|0〉p
= p〈0|φH(x1) · · ·φH(xn)|0〉p

Using the standard shorthand for e−i
∫ tb
ta
d4xHI = UI(tb, ta), the time ordering in the expression

for G
(n)
F is

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0|UI(t+, t1)φI(x1)UI(t1, t2)φI(x2) · · ·φI(xn)UI(tn, t−)|0〉
〈0|U(t+, t−)|0〉
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at least in the limt±→±∞ when t+ > t1 > · · · > tn > t−. Convince yourself.24

Everywhere UI(ta, tb) appears, rewrite it as UI(ta, 0)UI(0, tb) and then use

φH(xi) = UI(ti, 0)†φI(xi)UI(ti, 0) = UI(0, ti)φI(xi)UI(ti, 0)

to get

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0|UI(t+, 0)φH(x1)φH(x2) · · ·φH(xn)UI(0, t−)|0〉
〈0|U(t+, 0)U(0, t−)|0〉

Considering the whole mess sandwiched with UI(0, t−)|0〉 in the numerator or denomina-
tor as some fixed state 〈φ|, let’s work on

lim
t−→−∞

〈φ|UI(0, t−)|0〉 = lim
t−→−∞

〈φ|UI(0, t−) eiH0t−︸ ︷︷ ︸
fancy way of
inserting 1

|0〉

∗see
below︷︸︸︷
= lim

t−→−∞
〈φ| U(0, t−)︸ ︷︷ ︸
Schrödinger picture

|0〉
Using an easily derivable
relationship between the
evolution operator in the

various pictures, Oct. 16, Eq. (8.1)

insert a
complete

set
= lim

t−→−∞
〈φ|U(0, t−)

[
|0〉p p〈0|+

∫∑
|n〉〈n|

]
︸ ︷︷ ︸

all other eigenstates of
the full Hamiltonian, H
H|0〉p=0, H|n〉=En|n〉

|0〉

= 〈φ|0〉p p〈0|0〉+ lim
t−→−∞

∫∑
all other

eigenstates

eiEnt−〈φ|n〉〈n|0〉

*: You see it doesn’t really matter from this point on that it is a bare vacuum that U(0, t0) is
acting on. What we are showing is that for two arbitrary fixed states limt−→−∞〈φ|U(0, t−)|ψ〉 =
〈φ|0〉p p〈0|ψ〉 .

Now every state but the vacuum is part of a continuum. As long as 〈φ|n〉〈n|0〉 is a
continuous function, the limit vanishes. The integral is a continuous function that oscillates
more and more wildly as t− → −∞. In the limit it integrates to zero. A similar argument
shows

lim
t+→∞

〈0|UI(t+, 0)|ψ〉 = 〈0|0〉p p〈0|ψ〉

Physically what this theorem about oscillation integrands (the Riemann-Lebesgue lemma)
says is that if you look at a state in some fixed region (take its inner product with some

24I usually put “convince yourself” when I haven’t written enough to make something clear, but if I wrote
more it would take just as long to figure out what I was saying as it would take to convince yourself.
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fixed state 〈φ|) and you wait long enough, the only trace of it that will remain is its (true)
vacuum component. All the one and multi-particle states will have run away.

G
(n)
F (x1, . . . , xn) = �

�
��〈0|0〉p p〈0|φH(x1) · · ·φH(xn)|0〉p����p〈0|0〉

�
��
�〈0|0〉p p〈0|0〉p����p〈0|0〉

= G(n)(x1, . . . , xn)

and there is no longer any reason to distinguish between them.

Question 2: Are S − 1 matrix elements obtained from Green’s functions in the same
way as before?

By introducing a turning on and off function, we were able to show that

〈l1, . . . , ls|(S − 1)|k1, . . . , kr〉 =
∏

a=1,...,s

l2a − µ2

i

∏
b=1,...,r

k2
b − µ2

i
G̃(r+s)(−l1, . . . ,−ls, k1, . . . , kr)

The real world does not have a turning on and off function. Is this formula right?

The answer is “almost.”

We will show how to obtain S−1 matrix elements from Green’s function without resorting
to perturbation theory. We will make no reference to free Hamiltonia, bare vacua, interaction
picture fields, etc. Accordingly, take

φ(x) ≡ φH(x)

|0〉 ≡ |0〉p
|0〉 is the ground state of the full Hamiltonian which as usual we assume to be translationally
invariant and not part of a continuum, i.e. normalizable.

P µ|0〉 = 0

〈0|0〉 = 0 = 1

We will assume there are physical one meson states, |k〉, relativistically normalized,

H|k〉 =

√
~k2 + µ2|k〉

~P |k〉 = ~k|k〉

〈k′|k〉 = (2π)32ω~kδ
(3)(~k − ~k′)
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The reason that the answer to question 2 is “almost” is because the field, φ, which enters
the formula for S−1 matrix elements throughG(n) (G(n)(x1, . . . , xn) = 〈0|T (φ(x1) · · ·φ(xn))|0〉),
does not have quite the right properties. First, it may have a VEV, and second, in general
it is not normalized so as to create a one particle state from the vacuum with a standard
amplitude. It is normalized to obey the canonical commutation relations. We correct for
these things by defining a renormalized field, φ′ in terms of φ.

More precisely, 〈0|φ(x)|0〉 may not be zero. However this VEV is independent of x by
translational invariance.

〈0|φ(x)|0〉 = 〈0|eiP ·xφ(0)e−iP ·x|0〉 = 〈0|φ(0)|0〉

We also have by translational invariance

〈k|φ(x)|0〉 = 〈k|eiP ·xφ(0)e−iP ·x|0〉 = eik·x〈k|φ(0)|0〉

By Lorentz invariance, you can easily see that 〈k|φ(0)|0〉 is independent of k. It is some

number, Z
1
2
3 (traditionally called the “wave function renormalization”), in general 6= 1,

Z
1
2
3 ≡ 〈k|φ(0)|0〉

which we hope is nonzero.

We define a new field φ′ which has zero VEV and is normalized to have a standard
amplitude to create one meson

φ′(x) = Z
− 1

2
3 (φ(x)− 〈0|φ(0)|0〉)

〈0|φ′(x)|0〉 = 0

〈k|φ′(x)|0〉 = eik·x

LSZ formula stated

Define the renormalized Green’s functions, G′(n),

G′(n)(x1, . . . , xn) ≡ 〈0|T (φ′(x1) · · ·φ(xn))|0〉

and G̃′(n), their Fourier transforms, then S − 1 matrix elements are given by

〈l1, . . . , ls|(S − 1)|k1, . . . , kr〉 =
∏

a=1,...,s

l2a − µ2

i

∏
b=1,...,r

k2
b − µ2

i
G̃′(r+s)(−l1, . . . ,−ls, k1, . . . , kr)
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This is the Lehmann-Symanzik-Zimmermann reduction formula.

The only assumptions needed about the total scalar field φ′ is that it satisfy

〈0|φ′(x)|0〉 and 〈k|φ′(x)|0〉 = eik·x

In particular, its relationship to φ(x), the field that appears in the Lagrangian with a
standard kinetic term, is not used. Any field that satisfies these properties, whose Green’s
functions you have, gives you the S matrix.

The proof of the LSZ reduction formula is as follows. First we’ll find a way of making
one meson wave packets. The method will be inspired by the way a limiting process gave us
the physical vacuum when we started with the bare vacuum. Once we know how to make
one meson states we’ll wave our arms some and describe how to get many meson in and out
states. Then we’ll be set to get S matrix elements in terms of the Green’s function of the
renormalized fields that were used to create the in and out states.

LSZ reduction formula proof

A notation for normalizable wave packet states

|f〉 ≡
∫

d3k

(2π)32ω~k
F (~k)|k〉

(You can recover F (~k) from |f〉: F (~k) = 〈k|f〉.)

associated with each of these wave packets, we have a negative frequency solution of the
K.-G. equation.

f(x) ≡
∫

d3k

(2π)32ω~k
F (~k)e−ik·x

(2 + µ2)f(x) = 0

Note that as |f〉 → |k〉 (i.e. F (~k′)→ (2π)32ω~kδ
(3)(~k − ~k′))

f(x)→ e−ik·x

Define an operator which is a function of time only out of any operator which is a function
of ~x and t (here taken to be φ′):

φ′f (t) = i

∫
d3x(φ′∂0f − f∂0φ

′)
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Those of you who are familiar with the initial value theory of the K.-G. equation will not
find this a strange combination. It will turn out to create a particle in state |f〉, in the limit
t→ ±∞.

From the properties of φ′(x) and f(x)

〈0|φ′f (t)|0〉 = 0 and

〈k|φ′f (t)|0〉 = i

∫
d3x

∫
d3k′

(2π)32ω~k′
F (~k′)〈k|

[
φ′∂0e

−ik′·x − e−ik′·x∂0φ
′(x, t)

]
|0〉

= i

∫
d3x

∫
d3k′

(2π)32ω~k′
F (~k′)〈k|

[
− iω~k′e

−ik′·x − e−ik′·x∂0

]
〈k|φ′(x, t)|0〉︸ ︷︷ ︸

eik·x

= i

∫
d3x

∫
d3k′

(2π)32ω~k′
F (~k′)(−iω~k′ − iω~k)e

−ik′·x+ik·x

= F (~k) independent of time

A similar derivation except for one crucial minus sign shows

〈0|φ′f (t)|k〉 = 0

In these few matrix elements, φ′f (t) is acting like a creation operator for a physical meson
wave packet. We will now take the limit t→ ±∞, and in this limit we’ll see that many more
matrix elements of φ′f (t) look like the matrix elements of a creation operator.

Consider any state with two or more particles satisfying P µ|n〉 = P µ
n |n〉.

〈n|φ′f (t)|0〉 = 〈n|i
∫
d3x
[
φ′(~x, t)∂0f − f∂0φ

′(~x, t)
]
|0〉

= i

∫
d3x
[
∂0f − f∂0

]
〈n|φ′(~x, t)|0〉︸ ︷︷ ︸
eiPn·x〈n|φ′(0)|0〉

= i

∫
d3x
[
∂0f − fiP 0

n

]
eiPn·x〈n|φ′(0)|0〉

= i

∫
d3x
[
∂0 − iP 0

n

] ∫ d3k

(2π)32ω~k
F (~k)e−ik·xeiPn·x〈n|φ′(0)|0〉

= i

∫
d3k

(2π)32ω~k
F (~k)(−iω~k − iP

0
n)

∫
d3xe−ik·xeiPn·x︸ ︷︷ ︸

(2π)3δ(3)(~k−~Pn)·e−iω~kt+iP
0
nt

〈n|φ′(0)|0〉

=
ω~Pn + P 0

n

2ω~Pn
F (~Pn)〈n|φ′(0)|0〉e−i(ω~Pn−P

0
n)t
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The important thing to notice is that this matrix element contains e−i(ω~Pn−P
0
n)t and that

ω~Pn < P 0
n for any multiparticle state. A multiparticle state with momentum ~Pn always has

more energy than a single particle state with momentum ~Pn. A two particle state with ~P = 0
can have any energy from 2µ to ∞. The one particle state with ~P = 0 has energy ω~P = µ.

Now consider 〈ψ|φ′f (t)|0〉 in the limit t→ ±∞ where |ψ〉 is a definite (not varying with
t) normalizable state. Insert a complete set.

lim
t→±∞

〈ψ|φ′f (t)|0〉 = lim
t→±∞

〈ψ|

|0〉〈0|+ ∫ d3k

(2π)32ω~k
|k〉〈k|+

∫∑
multiparticle

states|n〉

|n〉〈n|

φ′f (t)|0〉

= 0 +
d3k

(2π)32ω~k
〈ψ|k〉F (~k) + lim

t→±∞

∫∑
|n〉

〈ψ|n〉
F (~Pn)(ω~Pn + P 0

n)

2ω~Pn

= 〈ψ|f〉+ 0

The integrals over the various continua of multiparticle states have integrands which
oscillate more and more wildly as t → ±∞. They integrate to zero in the limit by the
Riemann-Lebesgue lemma.

The phases were arranged to cancel in the one particle state matrix elements only.

The analogous derivation showing limt→±∞〈0|φ′f (t)|ψ〉 = 0 goes through because the
phases add (and thus obviously never cancel) for every momentum eigenstate, one or multi-
particle in the inserted complete set.

Physically what we have shown is this: We have created a state which in part looks like
a one meson wave packet, plus a little multiparticle garbage. If we look at this state in some
definite region in space time (take its inner product with some definite state |ψ〉, and send
the time of reaction to −∞), all the multiparticle states will run away. Of course the one
particle state may run away too. We prevent this by modifying the state we create in such
a way that the one meson packet always has the same relationship to the meson that’s the
funny combination φ′f (t). No multiparticle state has the right dispersion relation to keep
the same relationship to the observer under this modification.
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What we have done so far has been rigorous, at least it can be made rigorous, with only a
little effort. For the creation of multiparticle in and out states we are going to have to do
some vigorous handwaving.

Consider two normalizable wave packets described by F1(~k) and F2(~k) which have no
common support in momentum space. This excludes scattering at threshold.

What is lim
t→+(−)∞

〈ψ|φ′f2(t)|f1〉 ?

The handwaving requires we picture this in position space. Because F1 and F2 describe
packets headed in different directions if you wait long enough (go back far enough) the two
wave packets will be widely separated in position. Then the application of φ′f2(t) to |f1〉
is for all purposes to an observer near the f2 packet, like an application of φ′f2 to the vacuum.

You may be bothered that a position space picture doesn’t really exist, there is no ~x
operator. However there is still some concept of localization up to a few Compton wave-
lengths. If a teensy exponential tail with 1

e
distance 1

m
is too big for you for some purpose,

wait another thousand years.

This physical argument says

lim
t→+(−)∞

〈ψ|φ′f2(t)|f1〉 = 〈ψ|f1, f2〉out (in)

By definition, the S matrix, is what tells you the probability amplitude that looks like a
given state in the far past will look like another given state in the far future.

〈f3, f4|S|f1, f2〉 ≡ out〈f3, f4|S|f1, f2〉in

= lim
t4→∞

lim
t3→∞

lim
t2→−∞

lim
t1→−∞

〈0|φ′f3†(t3)φ′f4†(t4)φ′f2(t2)φ′f1(t1)|0〉

Note that in the limits, this is time ordered and thus we have succeeded in writing
S matrix elements in terms of the renormalized Green’s functions, So we could quit now,
but we are going to massage this expression. In doing so, we’ll extend the idea of an S
matrix element. Physically there is no way to create plane wave states. Thus there is no
way to measure of define S matrix elements of plane wave states. However, after we get
done massaging the RHS of the above equation, we will get an expression that you can put
plane wave states into without getting nonsense. We’ll make this the definition of S matrix
elements of plane wave states, 〈k3, k4|(S − 1)|k1, k2〉. The utility of this object is that you
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can integrate it, smear it a little, to recover physically measurable S matrix elements. Now
I’ll tell you the answer, that is, what we will soon show is a sensible definition for

〈k3, k4|(S − 1)|k1, k2〉 =

∫
d4x1 · · · d4x4e

ik3·x3+ik4·x4−ik1·x1−ik2·x2×

(i)4
∏
r

(2r + µ2)〈0|T (φ′(x1) · · ·φ′(x4))|0〉

That looks unfamiliar and messy, but it actually isn’t. Recall that

〈0|T (φ′(x1) · · ·φ′(x4))|0〉 ≡ G′(x1, . . . , x4)

=

∫
d4l1

(2π)4
· · · d

4l4
(2π)4

eil1·x1+···+il4·x4G̃′(l1, . . . , l4)

If you substitute this in the expression for 〈k3, k4|(S − 1)|k1, k2〉, it collapses to

〈k3, k4|(S − 1)|k1, k2〉 =
∏
r

k2
r − µ2

i
G̃′(k1, k2,−k3,−k4)

This says that an S − 1 matrix element is equal to a Green’s function with the external
propagators removed. This is almost exactly the result that came out of our low budget
scattering theory, with the only difference being that the Green’s function is of renormalized
fields. The result we will first obtain won’t be an expression for 〈k3, k4|(S − 1)|k1, k2〉. We
get that by abstracting the expression for 〈f3, f4|(S − 1)|f1, f2〉 which looks just like the
expression for 〈k3, k4|(S− 1)|k1, k2〉 stated above except e−k1·x1 is replaced by f1(x1), e−ik2·x2

by f2(x2), e−ik3·x3 by f3(x3) and e−ik4·x4 by f4(x4). That is, what we will show is

〈f3, f4|(S − 1)|f1, f2〉 =

∫
d4x1 · · · d4x4f

∗
3 (x3)f ∗4 (x4)f1(x1)f2(x2)×

(i)4
∏
r

(2r + µ2)〈0|T (φ′(x1) · · ·φ′(x4))|0〉

Let’s get on with the proof, beginning with a lemma.

Given any function, f(x), satisfying (2 + µ2)f(x) = 0, and f → 0 as |x| → ∞ and a
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general field A, then

i

∫
d4xf(2 + µ2)A = i

∫
d4x
[
f∂2

0A+ A(−∇2 + µ2)f
]

= i

∫
d4x(f∂2

0A− A∂2
0f)

=

∫
dt ∂0

∫
d3x i(f∂0A− A∂0f)︸ ︷︷ ︸

this is something that appears
often enough that it is worth

giving it a name. It is a function
of time only, call it −Af (t)

= −
∫
dt ∂0A

f (t)

=

(
lim
t→−∞

− lim
t→∞

)
Af (t)

Also, if A is hermitian,

i

∫
dxf ∗(x)(2 + µ2)A =

(
lim
t→∞
− lim

t→−∞

)
︸ ︷︷ ︸

note difference in sign from conjugating
the i in the def’n of Af (t)

Af†(t)

Now we’ll apply this equation to the RHS of the equation we want to prove. First do the
x1 integration, you get(

lim
t1→−∞

− lim
t1→∞

)∫
d4x2 d

4x3 d
4x4f

∗
3 (x3)f ∗4 (x4)f2(x2)×

(i)3
∏

r=2,3,4

(2r + µ2)〈0|T (φ′f1(t1)φ′(x2)φ′(x3)φ′(x4))|0〉

We push a time derivative through a time-ordered product in these steps. It is OK in the
limit we have. Then the x2 integration(

lim
t1→−∞

− lim
t1→∞

)(
lim

t2→−∞
− lim

t2→∞

)∫
d4x2 d

4x3 d
4x4f

∗
3 (x3)f ∗4 (x4)×

(i)2(23 + µ2)(24 + µ2)〈0|T (φ′f1(t1)φ′f2(t2)φ′(x3)φ′(x4))|0〉
Etcetera.(

lim
t1→−∞

− lim
t1→∞

)(
lim

t2→−∞
− lim

t2→∞

)(
lim
t3→∞

− lim
t3→−∞

)
︸ ︷︷ ︸

note the difference in sign

(
lim

t4→−∞
− lim

t4→∞

)

〈0|T (φ′f1(t1)φ′f2(t2)φ′f3†(t3)φ′f4†(t4))|0〉
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If we had reduced the integrals in some other order we would have a different order of
limits here. All 4! orderings lead to the same result however, and we’ll just do the order we
have arrived at.

When t4 → −∞, it is the earliest time and thus the time ordering puts it on the right.
However φ′f4†(t4) with the vacuum on the right and any other state on the left vanishes in
the limit. When t4 → +∞, it is the latest time and the time ordering puts it on the left,
and we get the matrix element of 〈f4| with the rest of the mess. We have(

lim
t1→−∞

− lim
t1→∞

)(
lim

t2→−∞
− lim

t2→∞

)(
lim
t3→∞

− lim
t3→−∞

)
︸ ︷︷ ︸

note the difference in sign

〈f4|T (φ′f1(t1)φ′f2(t2)φ′f3†(t3))|0〉

The exact same considerations apply to the t3 limits except we get the matrix elements
of out〈f3, f4| with the remaining mess ‘out’ because both fields are applied to the vacuum in
the far future. Doing the t2 limits does not result in such a simplification. We get(

lim
t1→−∞

− lim
t1→∞

)(
out〈f3, f4|φ′f1(t1)|f2〉 − lim

t2→∞
out〈f3, f4|φ′f2(t2)φ′f1(t1)|0〉

)
The first term was expected. The second term looks real bad. Let’s compartmentalize

our ignorance by just giving a name to this state we have created

〈ψ| ≡ lim
t2→∞

out〈f3, f4|φ′f2(t2)

On to the evaluation of the t1 limit. We get

out〈f3, f4|f1, f2〉in − out〈f3, f4|f1, f2〉out −����〈ψ|f1〉+����〈ψ|f1〉

The last two terms cancel, because there is no difference between a matrix element of
limt1→+∞ φ

′f2(t2)|0〉 and limt1→−∞ φ
′f2(t2)|0〉 ¨̂ . The two terms remaining are exactly what

we wanted to get. We have obtained

〈f3, f4|(S − 1)|f1, f2〉

REMARKS:

1. The mathematical expression we started with makes sense even for f1, f2, f3, f4 plane
waves. We’ll make that expression the definition of an S − 1 matrix element of plane
waves. Of course you only get something physically measurable when you integrate,
smear, the expression. The situation is very analogous to V (~x − ~y) in the expression
U =

∫
d3xd3yV (~x − ~y)ρ(~x)ρ(~y). No one can build a point charge, and thus no one
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can make a charge distribution that directly measures V (~x− ~y), that is, one for which
the interaction energy is V (~x − ~y). All you can do is measure U for various charge
distributions. Then you can abstract to the notion of V (~x−~y). “the potential energy of
between two point charges.” You only recover something physically measurable when
you integrate, smear, the expression for S − 1 matrix elements of plane waves. The
formula analogous to U =

∫
d3xd3y V (~x− ~y)ρ(x)ρ(y) is

〈f3, f4|(S − 1)|f1, f2〉 =

∫
d3k1

(2π)32ω ~k1

· · · d3k4

(2π)32ω ~k4

F ∗3 (~k3)F ∗4 (~k4)F1(~k1)F2(~k2)×

〈k3, k4|(S − 1)|k1, k2〉

2. The proof only required that the field you begin with have a nonzero vacuum to one
particle matrix element. Then you shift that field by some constant, and multiply it
by another constant to get the renormalized field, whose Green’s functions are what
actually entered the proof. There is thus a many to one correspondence between fields
and particle. From the point of view of the reduction formula, φ̃ = φ + 1

2
gφ2 is just

as good as field (at least except for one exceptional value of g that makes the vacuum
to one particle matrix element of φ̃ vanish). You do not have to begin with one of the
fields that seemed to be fundamental in the Lagrangian.

3. There is no problem in principle of obtaining scattering matrix elements of composite
particles and bound states. In the QCD theory of the strong interaction, the mesons
are bound states of a quark and an antiquark. If q(x) is a quark field, you would expect
q̄q(x) to have a nonvanishing vacuum to one meson matrix elements. “All” you need
to calculate 2→ 2 meson scattering then would be

G′(4)(x1, x2, x3, x4) ≡ 〈0|T (q̄q(x1)q̄q(x2)q̄q(x3)q̄q(x4))|0〉

where q̄q(x) is the renormalized field. Of course no one has gotten G′(4).

4. If we have some exact knowledge of the position space properties of a field, it may be
possible to use these properties in the LSZ formula to get some exact knowledge about
S − 1 matrix elements.

5. Using methods of the same type as those used in the derivation of the LSZ formula,
other formulas can be derived. For example, one can “stop half way” in the reduction
formula and obtain

〈k3, k4|(S − 1)|k1k2〉 =

∫
d4x3 d

4x4e
ik3·x3eik4·x4×

(i)2(23 + µ2)(24 + µ2)〈0|T (φ′(x3)φ′(x4))|k1, k2〉in
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This is used to derive theorems about the production of “soft” (low energy) photons.

We can also use LSZ methods to derive expressions for the matrix elements of fields
between in and out states. For example, I can show

out〈k1, . . . , kn|A(x)|0〉 =

∫
d4x1 · · · d4xne

ik1·x1+···+ikn·xn×

(i)n
∏
r

(2r + µ2)〈0|T (φ′(x1) · · ·φ′(xn)A(x)|0〉

where φ′(x) is a correctly normalized field that can create the outgoing mesons and
A(x) is an arbitrary field. Of course this is really an abstraction of

out〈f1, . . . , fn|A(x)|0〉 =

∫
d4x1 · · · d4xnf

∗(x1) · · · f ∗(xn)

(i)n
∏
r

(2r + µ2)〈0|T (φ′(x1) · · ·φ′(xn)A(x)|0〉

Applying the methods used above, after the proof of the lemma, we get(
lim
t1→∞

− lim
t1→−∞

)
· · ·
(

lim
tn→∞

− lim
tn→−∞

)
〈0|T (φ′f1†(t1) · · ·φ′fn†(tn)A(x)|0〉

Just as easily as we evaluated the t3 and t4 limits, these limits can be evaluated to get

out〈f1, . . . , fn|A(x)|0〉

A second look at model 3 and its renormalization:

L =
1

2
(∂µφ)2 − µ2

0

2
φ2 + ∂µψ

∗∂µψ −m2
0ψ
∗ψ − g0ψ

∗ψφ

The upshot of what we have done so far is that some 0 subscripts have been added to
the Lagrangian. The coefficient of −1

2
φ2 in L may not be the meson mass squared, m2

0 may
not be the charged muon (nucleon) mass squared. Furthermore g0 may not be what we
want to call the coupling constant. In real electrodynamics there is a parameter e defined
by some experiment. It would be lucky, extremely lucky, if that were the coefficient of some
term in the electrodynamics Lagrangian. In general it isn’t. We’ll subscript the coupling
constant, compute the conventionally defined coupling constant from it, and then invert
the equation to eliminate g0, which is not directly measured, from our expressions for all
other quantities of interest. Also, when calculating our scattering matrix elements, we need
Green’s functions. What we have a perturbative expansion for if we treat −g0ψ

∗ψφ as our
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interaction Lagrangian, is the Green’s functions of φ. Those Green’s functions aren’t exactly
what we are interested in. We want the Green’s function of φ′, the field satisfying

〈0|φ′|0〉 = 0

〈p|φ′(0)|0〉 = 1

φ′ = Z
− 1

2
3 (φ− 〈φ〉0)

So along the way in calculating quantities of interest, we’ll have to calculate the Green’s
function of φ′ from the Green’s functions of φ. This determination of φ′, m, µ, and g from
m0, µ0, g0 and the above conditions, and then the plugging ins of the inverse of these equa-
tions into other quantities of interest sounds like a mess. It can be avoided.

We rewrite L with six new parameters, A, . . . , F .

L =
1

2
(∂µφ

′)2 − µ2

2
φ′2 + ∂µψ

∗′∂µψ′ −m2ψ∗′ψ′ − gψ∗′ψ′φ′ + LCT

LCT = Aφ′ +
B

2
(∂µφ

′)2 − c

2
φ′2 +D∂µψ

′∗∂µψ′ − Eψ∗′ψ′ − Fψ∗′ψ′φ′ + const

The six new parameters are going to be determined order by order in perturbation theory
by six renormalization conditions.

1. 〈0|φ′|0〉 = 0

2. 〈q|︸︷︷︸
one meson

φ′(0)|0〉 = 1

3. 〈p|︸︷︷︸
one anti-nucleon

ψ′(0)|0〉 = 1

4. The meson mass is µ

5. The nucleon mass is m

6. g agrees with the conventionally defined g.

Six unknowns, six conditions.

Of course, if you actually wanted to know the relationship of φ′ to φ, the field whose
kinetic term has coefficient 1 in the Lagrangian (and thus obeys the canonical commutation
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relation)25, and has no linear term, you can read it off. You can also read off the bare meson
mass, the bare nucleon mass, g0, and the relationship of ψ′ to ψ.

1

2
(1 +B)(∂µφ

′)2 +
1

2
(µ2 + C)φ′2 + Aφ′ + const =

1

2
(∂µφ)2 − µ2

0

2
φ2

Z3 = 1 +B

µ2
0 =

1

Z3

(µ2 + C), etc.

(See the discussion from Eq. (10.1) to the end of the lecture of Oct. 23 for these same ideas
expressed before we knew / worried about Z3 and 〈0|φ|0〉)

What you have now is a perturbation theory for the quantities you are really interested
in in terms of the conditions on φ′ and ψ′, and experimentally input parameters.

The differences in the two kinds of perturbation theory is what you call the interaction
Lagrangian. We’ll be taking −gψ∗′ψ′φ′+LCT as the interaction. This is called renormalized
perturbation theory.

Instead of computing scattering matrix elements µ2, m2 and g from µ0, m0 and g0, the
wrong parameters to hold fixed, and then inverting to get S matrix elements in terms of µ2,
m2 and g, we compute everything in terms of the right quantities, the experimentally input
parameters, µ2, m2 and g.

This procedure has a bonus, as long as you stick to observable quantities expressed in
terms of physical parameters, you avoid the infinities which plague quantum field theory.

There are three technical obstacles we will have to overcome to implement this program.

1. There are derivative interactions in LCT .

2. Renormalization conditions (4), (5), (6) are not expressed in terms of Green’s functions,
the things we usually compute.

3. We have to make contact with the committee definition of g. Then we may still have
to worry about defining it in terms of Green’s functions [(2)].

25This parenthetical remark should be emphasized more. It is φ that satisfies [φ, φ̇] = iδ(3) with coefficient
1, not φ′.
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Let’s go into more detail on how 〈0|φ′|0〉 = 0 determines A.

A is going to be some power series in g.

A =
∑
r

Ar

Ar ∝ gr

Diagrammatically,

x
k←f corresponds to iA(2π)4δ(4)(k)

(r)

x
k←f corresponds to iAr(2π)4δ(4)(k)xf =

∑
r (r)

xf
I’ll now explain how to determine A order by order in perturbation theory.

Suppose that we know all Feynman graphs and have determined all counterterms to order
gn.

To determine A to order gn+1, that is to get An+1 we apply the renormalization condition
〈0|φ′|0〉 = 0. Graphically, pf = 0 at order gn+1.

(We demand this for all values of g, so the coefficient of gn+1 in its power series must vanish).

We can breakpf = 0 at O(gn+1) into two parts

pf︸ ︷︷ ︸
at order gn+1

=
∑ pf︸ ︷︷ ︸

graphs of order gn+1

with more than one vertex
behind the shield

+
∑ pf︸ ︷︷ ︸

graphs of order gn+1

with only one vertex

The graphs with more than one vertex behind the shield have a special property. If they
are going to be of order gn+1 every vertex has to be of order gn or less. Thus these graphs
only contain known stuff, by hypothesis.

The graph with only one vertex at order gn+1 with one external line also have a special
property. There is only one of them.

(n+1)

x
k←f
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Setting
(n+1)

x
k←f = −

∑ p ←kf︸ ︷︷ ︸
graphs of order gn+1

with more than one vertex
behind the shield

determines An+1. We can cancel completely a potentially momentum dependent sum of
graphs by adjusting a single number because it is always ∝ δ(4)(k). p ←kf = 0 for all k.
Now there is a nice simplification in all graphs because of this cancellation. Suppose we have

Any 
Tadpole

this can be anything

A part of graph that is connected to the rest of the graph by one and only one line is
called a tadpole. Physical Review’s editors rejected spermion.

Consider the same anything but summed over all possible tadpoles that can be attached
to that same line.

∑
all tadpoles
including

counterterms

 
Tadpole

= = 0

The total result is that you can just ignore all tadpoles. (Unless you cared about A).

The program for determining B, . . . , F successively will be similar, but first we have to
surmount three obstacles (see page 170 in the lecture of Nov. 13) before we can do anything.
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(1) Problems with derivative couplings and why they don’t arise here

In the presence of a derivative interaction,

πµ 6= ∂µφ, in general.

This means that the interaction Hamiltonian is not just −LI , the interaction Lagrangian.

A second problem is that to get from Dyson’s formula to Feynman diagrams, we had
to employ the Wick expansion which turns time ordered products of free fields into normal
ordered products. The Wick expansion does not apply to derivatives of fields, and we can’t
pull the derivatives out of the time ordered product

T (∂µφ(x) · · · ) 6= ∂µT (φ(x) · · · )
and then apply the Wick expansions.

Later we will develop a new method to deal with these problems.

For now, we’ll just note that these two problems frequently cancel out, and that in a few
simple examples, we can explicitly show this.

(Act as if HI = −LI and as if ∂µ → ikµ)

What do I mean by “cancel out”?

If you are naive, and you act as if HI = −LI and as if T (∂µφ · · · ) = ∂µT (φ · · · ) you get
the right answer.

A simple example

Take the simplest field theory

L =
1

2
(∂µφ)2 − µ2

2
φ2

and introduce a new field φ′ = Z
− 1

2
3 φ, take Z3 to be arbitrary. In terms of φ′

L = Z3

[
1

2
(∂µφ

′)2 − µ2

2
φ′2
]

=
1

2
(∂µφ

′)2 − µ2

2
φ′2 + (Z3 − 1)

[
1

2
(∂µφ

′)2 − 1

2
µ2φ′2

]
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The Green’s functions of φ′ are simply related to the Green’s functions of φ, because
φ′ = Z

−1/2
3 φ.

〈0|T (φ(x1) · · ·φ(xn))|0〉 = Z
n/2
3 〈0|T (φ′(x1) · · ·φ′(xn))|0〉

We’ll show that this holds perturbatively using the naive method above. Actually, first
we will only show it for one Green’s function but we’ll be more general in a moment.

Define a connected Green’s function G̃
(n)
c (k1, . . . , kn), to be the sum of all connected

graphs with n external line that contribute to G̃(n)(k1, . . . , kn). The only nonzero connected
Green’s function for one scalar field with no interactions is

G(2)
c (k1, k2) = (2π)4δ4(k1 + k2)

i

k2
1 − µ2 + iε

only contribution is
k2→
f ←k1
f

That’s the right answer in this exactly soluble theory. What does naive perturbation
theory give for G̃

(2)′
c (k1, k2), the sum of all connected graphs that contribute to G̃(2)′(k1, k2).

The interaction is (Z3 − 1)

[
1

2
(∂µφ

′)2 − 1

2
µ2φ′2

]
It has as Feynman rule

k2→
fx ←k1
f←→ i(Z3 − 1)

1

2
2!((−ikµ1 )(−ikµ2 )− µ2)(2π)4δ(4)(k1 + k2)

= −i(Z3 − 1)(−k2
1 + µ2)(2π)4δ(4)(k1 + k2)

The connected con graphs contributing to G
(2)′
c (k1, k2) are

k1→
f ←k2
f+

k1→
fx ←k2
f+

k1→
fx

k1→
fx ←k2
f+

k1→
fx

k1→
fx

k1→
fx ←k2
f+ · · · birds on a rail

= (2π)4δ(4)(k1 + k2)
i

k2
1 − µ2 + iε

[
1 +
−i(Z3 − 1)(−k2

1 + µ2)i

k2
1 − µ2 + iε

+

(
−i(Z3 − 1)(−k2

1 + µ2)i

k2
1 − µ2 + iε

)2

+ · · ·

]
= (2π)4δ(4)(k1 + k2)

i

k2
1 − µ2 + iε

[
1− (Z3 − 1) + (Z3 − 1)2 + · · ·

]
= (2π)4δ(4)(k1 + k2)

i

k2
1 − µ2 + iε

1

1 + (Z3 − 1)

= Z−1
3 (2π)4δ(4)(k1 + k2)

i

k2
1 − µ2 + iε
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We have shown
G(2)′
c (k1, k2) = Z−1

3 G(2)
c (k1, k2)

using a naive method, but this agrees with the right result.

A slightly less simple example.

Consider a theory of one scalar meson with arbitrary nonderivative self interactions

L =
1

2
(∂µφ)2 − 1

2
µ2φ2 +

N∑
r=3

grφ
r

Again let φ′ = Z
−1/2
3 φ

L =
1

2
(∂µφ

′)2 − 1

2
µ2φ′2 + (Z3 − 1)

[
1

2
(∂µφ

′)2 − 1

2
µ2φ′2

]
+

N∑
r=3

grφ
′rZ

r/2
3

We are going to compute a general Green’s function in this theory in terms of the Green’s
function of the theory without Z3 by making a graphical relation.

Consider any graph in the Green’s function of φ.

Corresponding to this graph, the progenitor, there are a whole bunch of graphs in the
Green’s function of φ′ which look just like this graph except there are an arbitrary number
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of birds on each line.

and etc.

We can sum up this bunch of graphs with our naive Feynman rule. The only effect of
all these birds is to replace each internal and external propagator by Z−1

3 times the free

propagator. There is also an effect on the value of the graph coming from all those Z
r/2
3

factors at the vertices. Suppose there are n external lines, I internal lines and Vr vertices
with r legs. The graphs we have summed give

Z−n3 Z−I3︸ ︷︷ ︸
product of n+I

independent geometric series

∏
r

Z
rVr/2
3 = Z

−n−I+
∑
r rVr/2

3

times progenitors contributions to G(n). It looks like the contributions to G(n)′ depend on
Z3 in a graph dependent way, but we aren’t done yet.

There is a conservation law, conservation of ends.

Every external line ends on a vertex. Every internal line has both ends on a vertex.
Every r legged vertex connects to r of these ends. Therefore

n+ 2I =
∑

rVr

or

−n− I +
∑
r

rVr
2

= −n
2

The graphs we have summed give Z
−n/2
3 . Since all the contributions to G′(n) have this

factor
G′(n) = Z

−n/2
3 G(n)

as expected.
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This is the right result. It justifies the naive treatment we will apply to LCT on Model 3.

Overcoming the second obstacle, that renormalization conditions (2), (3), (4) and (5)
aren’t expressed in terms of Green’s function (we will worry about (6) later). This will
require a study of G(2)′.

G(2)′(k1, k2) =
k1→fp ←k2f

=

∫
d4x d4ye−ik1·x−ik2·y〈0|T (φ′(x)φ′(y))|0〉

Now
T (φ′(x)φ′(y)) = θ(x0 − y0)φ′(x)φ′(y) + θ(y0 − x0)φ′(y)φ′(x)

so it is sufficient to study 〈0|φ′(x)φ′(y)|0〉 and then take this combination at the end.
〈0|φ′(x)φ′(y)|0〉 is called a Wightman function.

〈0|φ′(x)φ′(y)|0〉 =

∫∑
complete set of

intermediate
momentum

eigenstates |n〉
Pµ|n〉=Pnµ|n〉

〈0|φ′(x)|n〉〈n|φ′(y)|0〉

So,

〈0|φ′(x)φ′(y)|0〉 =

∫∑
|n〉

e−iPn·(x−y)|〈0|φ′(0)|n〉|2

= |����
��〈0|φ′(0)|0〉︸ ︷︷ ︸

=0

|2 +

∫
d3p

(2π)32ω~p
e−ip·(x−y)| 〈0|φ′(0)

one meson︷︸︸︷
|p〉︸ ︷︷ ︸

=1

|2 (16.1)

+

∫∑
all other momentum
eigenstates |n〉besides

vacuum and one meson

e−iPn·(x−y)|〈0|φ′(0)|n〉|2

We have broken up the sum into vacuum, one meson and all other intermediate states
and applied renormalization conditions states and applied renormalization conditions (1)
and (2). We have an name for ∫

d3p

(2π)32ω~p
e−ip·(x−y)

it is ∆+(x− y, µ2).
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µ2, the physical meson mass is what comes out here. It is in ω~p ( ω~p =
√
~p2 + µ2 ) and

it comes from inserting physical one meson momentum eigenstates.

Let’s massage the sum over all other momentum eigenstates∫∑
all other |n〉

e−iPn·(x−y)|〈0|φ′(0)|n〉|2 =

∫∑
all other |n〉

e−iPn·(x−y)

∫
d4p δ4(p− Pn)|〈0|φ′(0)|n〉|2

The integral over p is just a fancy way of writing 1, but now we can do something tricky
with it. Take e−iPn·(x−y) inside the p integration and rewrite it as e−ip·(x−y). We have∫

d4p e−ip·(x−y)

∫∑
all other |n〉

δ4(p− Pn)|〈0|φ′(0)|n〉|2

︸ ︷︷ ︸
This is a manifestly Lorentz
invariant function of p, that

vanishes when p0<0. It
is conventionally called

1
(2π)3

σ(p2)θ(p0)

=

∫
d4p

(2π)3
e−ip·(x−y)σ(p2)θ(p0)

(To agree with unfortunate but longstanding conventions, we are abandoning our ‘every
p integration gets a 1

2π
, every δ function gets a 2π’ rule.)

The density σ(p2) has some definite properties. It is always ≥ 0. In perturbation theory,
it equals zero if p2 < min(4m2, 4µ2), because there are no bound states in P.T. Outside of
P.T., it still is zero for p2 < mass2 of the lightest neutral bound state, call it µ2 + ε, ε > 0.
(If the lightest neutral bound state has a mass less than the meson mass, then that is what
we would be calling the meson.)

So what we have found so far is

〈0|φ′(x)φ′(y)|0〉 = ∆+(x− y, µ2) +

∫
d4p

(2π)3
e−ip·(x−y)σ(p2)θ(p0)

= ∆+(x− y, µ2) +

∫
d4p

(2π)3
e−ip·(x−y)

∫ ∞
0

da2 σ(a2)θ(p0)

= ∆+(x− y, µ2) +

∫ ∞
0

da2σ(a2)∆+(x− y, a2)

(Sometimes ρ(a2) ≡ δ(a2 − µ2) + σ(a2) is used)

σ(a2) ≥ 0

σ(a2) = 0 for a2 < µ2 + ε

This is the Lehmann-Källén (“Chalain”) spectral decomposition.
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We can use this to make a statement about Z3 using φ′ = Z
1/2
3 φ and the fact that φ

obeys the canonical commutation relation.

〈0|[φ′(~x, t), φ̇′(~y, t)]|0〉 = Z−1
3 iδ(3)(~x− ~y) by c.c.r

〈0|[φ′(~x, t), φ̇′(~y, t)]|0〉 = iδ(3)(~x− ~y) +

∫ ∞
0

da2 σ(a2)iδ(3)(~x− ~y)

by using
∂

∂y
∆+(~x− ~y) = iδ(3)(~x− ~y)

hence Z−1
3 = 1 +

∫ ∞
0

da2 σ(a2) ≥ 1

⇒ In general Z3 < 1. We will show that if Z3 = 1 you have free field theory, later in the
course.

(*: [φin, φ̇in] = iδ(3)(~x− ~y) because φ and π can be changed to φin, πin by a canonical trans-
formation.)

We set out to study G(2)′(k, k′). What we have shown implies that

G(2)′(k, k′) = (2π)4δ(4)(k + k′)

(
i

k2 − µ2 + iε
+

∫ ∞
0

da2σ(a2)
i

k2 − a2 + iε

)
= (2π)4δ(4)(k + k′) +D′(k2)

D′(k2) = “renormalized propagator”

=
i

k2 − µ2 + iε
+

∫ ∞
0

da2σ(a2)
i

k2 − a2 + iε
(16.2)

(Note that [−iD′(p2)]∗ = −iD′(p2∗) Schwarz reflection property.)

This is a highly nontrivial expression. It defines a function everywhere in the complex
k2 plane (even though the propagator was not originally defined there). The function is
analytic except at k2 = µ2 where it has a pole with residue i and along the positive real axis
beginning at k2 = µ2 + ε, where it has a branch cut. The value on the positive real axis is
given by the iε prescription, which says you take the value just above the cut.
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� 2� �+2

k2

physical value is obtained by
approaching cut from above

This    has nothing to do
with the i  prescription

�
�

Our renormalization conditions, (2) and (4) are encoded in the function.

(4) The meson mass is µ⇔ D′ has a pole at µ2

(2) 〈0|φ′(0)|q〉 = 1⇔ The residue at this pole is +i.
(look back and see where (2) was used in the derivation of the expression for D′)

We are going to keep massaging G(2)′ to find a slicker statement of our renormalization
conditions.

Define another new kind of Green’s function, the one particle irreducible Green’s func-
tion. Again it will be defined graphically.

1PI

k1

k2

k3

k4

kn

≡
the sum of all connected graphs
that cannot be disconnected by

cutting a single internal line

Our convention will be that this does not include the overall energy momentum conserv-
ing δ function or the external propagators.

The cute thing about this Green’s function when n = 2 is the following expression for
G(2)′

k1→fp ←k2f =ff+f1PIpf+f1PIpf1PIpf+ · · ·

That is, nothing can happen, or we can have an interaction, but before we get to the
other external line there is never a point where we get just one line, or there is only one line
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like that or ...

By definition, the LHS is (2π)4δ(4)(k + k′)D′(k2). If we define

k→f1PIp k→f = iπ′(k2)

π′(k2) = “self-energy,” we can sum the series on the RHS. It is

i

k2 − µ2 + iε

[
1 +

π′(k2)

k2 − µ2 + iε

( π′(k2)

k2 − µ2 + iε

)2

+ · · ·
]

(2π)4δ(4)(k + k′)

=
i

k2 − µ2 + iε

1

1− π′(k2)
k2−µ2+iε

(2π)4δ(4)(k + k′)

Now you can see why π′(k2) is called the “self-energy”. It is like a momentum dependent
mass. Identifying the coefficient of (2π)4δ(4)(k + k′) on the LHS and RHS,

D′(k2) =
i

k2 − µ2 − π′(k2) + iε

Now for the slick rephrasing of the renormalization conditions:

D′ has a pole at µ2 ⇔ π′(µ2) = 0

The residue of this pole is i⇔ dπ′

dk2

∣∣∣
k2=µ2

= 0

Perhaps this is easier to see if you think of expanding π′(k2) around k2 = µ2 in a power
series.

π′(k2) = π′(µ2) +
dπ′

dk2

∣∣∣
µ2

(k2 − µ2) + · · ·

These two terms must vanish or it screws up the location and residue of the pole.
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17 November 20

Having succeeded in expressing renormalization conditions (2) and (4) as statements about
the 1PI two-point function, I’ll now explain how to determine B and C order by order in
perturbation theory (those of you that have taken quantum field theory once or twice before
probably recognize that this is going to be a rerun of the argument for determining A).

LCT = · · ·+ 1

2
B(∂µφ

′)2 − 1

2
Cφ′2 + · · ·

f1PIpf = iπ′(k2)

π′(µ2) = 0

dπ′

dk2

∣∣∣∣
µ2

= 0

We can express the Feynman rule for the B and C counterterms together as

k→fx ←k′f corresponds to i(2π)4δ(4)(k+k′)(−Bk ·k′−C) = i(2π)4δ(4)(k+k′)(−Bk2−C)

Writing B and C as power series expansions

B =
∑
r

Br Br ∝ gr

C =
∑
r

Cr Cr ∝ gr

We can also write fxf =
∑
r

f(r)xf
k→f(r)x ←k′f corresponds to i(2π)4δ(4)(k + k′)(Brk

2 − Cr)
Assume everything is known to O(gn), including all the counterterms, and we’ll show

that Bn+1 and Cn+1 can be determined.

k→f1PIp →kf︸ ︷︷ ︸
at order gn+1

= known stuff︸ ︷︷ ︸
sum of all 1PI graphs
with more than one
vertex at order gn+1

+
k→f(n+1)x →kf︸ ︷︷ ︸

the only O(gn+1)
1PI graph with
only one vertex

iBn+1µ
2 − iCn+1 = − (known stuff)|µ2

iBn+1 = − d(known stuff)

dk2

∣∣∣∣
k2=µ2
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Similar arguments apply to the nucleon self energy.

p←�1PIp ←p� = iΣ′(p2)

which can be used to express renormalization conditions (3) and (5) as

Σ′(m2) = 0

dΣ′

dp2

∣∣∣∣
p2=m2

= 0

Of course these subtractions are not going to allow you to ignore corrections to the 1PI
two point function.

k→f1PIp →kf has a complicated momentum dependence in general, which is not eliminated
by just subtracting a constant and a term linear in k2. However, this does allow you to ignore
corrections to lines on the mass shell, that is external lines in the computations of S matrix
elements. That is because in the computation of an S matrix element, the only thing that
matters about an external line is the location and residue of the pole.

lim
k2→µ2

k2 − µ2

i
×

k k

= lim
k2→µ2

k2 − µ2

i
×

k

The location and residue of the pole in the full propagator is, in renormalized perturba-
tion theory, the exact same as that of the free propagator.

We can do some examples before worrying about obstacle (3), that is renormalization
condition (6).

Calculation of π′(k2) to order g2

−iπ′(k2) =f1PIpf
=f@�W@f+f(2)xf
= iπf (k

2) + iB2k
2 − iC2
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where

−iπf (k2) ≡f@�W@f
The renormalization conditions are

πf (k
2) +B2k

2 − C2 = 0

dπf
dk2

∣∣∣∣
µ2

−B2 = 0

If you don’t care what B2 and C2 are, these can be rephrased as

π′(k2) = πf (k
2)− πf (µ2)− (k2 − µ2)

dπf
dk2

∣∣∣∣
µ2

(17.1)

we should check that B2 and C2 are real however.

−iπf (k2) =
←kf@←k+q�

→q

W@ ←kf = (−ig)2

∫
d4q

(2π)4

i

q2 −m2 + iε

i

(q + k)2 −m2 + iε

There are three problems in doing this integral.

1. Not spherically symmetric. I suppose we could parametrize the integral with a polar
angle measured from k but,

2. We are in Minkowski space, and it isn’t even spherical symmetry we have.

3. The integral is divergent; at high q it looks like
∫

d4q
(2π)4

1
q4 which if the integral was

spherically symmetric would be ∼
∫

q3dq
q4 , and if it was cut off at some large radius in

momentum space Λ, would be ∼ ln Λ. (This is called log divergent.)

This last problem is the easiest to take care of: πf (k
2)− πf (µ2) is not divergent.

Renormalized perturbation theory, which was implemented to make expansions in the
right parameters has saved us from this unexpected infinity.

To make this thing manifestly spherically symmetric (actually L.I.) we use Feynman’s
trick for combining two denominators.∫ 1

0

dx
1

[ax+ b(1− x)]2
=

1

b− a
1

ax+ b(1− x)

∣∣∣∣1
0

=
1

b− a

(
1

a
− 1

b

)
=

1

ab
(17.2)
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Apply this to the two denominators in πf , with

a = (q + k)2 −m2 + iε

b = q2 −m2 + iε

−iπf (k2) = g2

∫
d4q

(2π)4

∫ 1

0

dx
1

[((q + k)2 −m2 + iε)x+ (q2 −m2 + iε)(1− x)]2

= g2

∫
d4q

(2π)4

∫ 1

0

dx
1

[q2 + xk2 + 2k · qx−m2 + iε]2

[q′ = q + kx] = g2

∫ 1

0

dx

∫
d4q′

(2π)4

1

[q′2 + k2x− k2x2 −m2 + iε]2
(17.3)

We could do this integral in a moment if we were living in Euclidean space. It is not
spherically symmetric though.

So now we’ll study integrals of the form

In(a) =

∫
d4q

(2π)4

1

(q2 + a)n
=

∫
d3q dq0

(2π)4

1

(q0 2 − ~q2 + a)n

where a has a positive imaginary part. (The case of interest has n = 2, a = k2x(1 − x) −
m2 + iε.)

The location of the poles in the q0 integration splits into two cases

Case: Re(~q2 − a) > 0 Case: Re(~q2 − a) < 0

x

q0

x

x

q0

x

In either case, the contour can be rotated as shown (called the “Wick rotation”), so that
it runs up the imaginary q0 axis. Because this rotation does not cross any poles the value
of the integral is unchanged. Now that q0 runs from −i∞ to +i∞, define a new variable q4

that runs from −∞ to ∞.
q4 = −iq0
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dq0 = idq4

d4q = id4qE = idq4 d
3q

In(a) = i

∫
d4qE
(2π)4

1

[−q2
4 − ~q2 + a]n

= i

∫
d4qE
(2π)4

1

(−q2
E + a)n

This is now a spherically symmetric integral in 4-d Euclidean space. Using V (S3) = 2π2

and setting z = q2
E, q3

EdqE = 1
2
zdz, we have

In(a) = i
π2

(2π)4

∫ ∞
0

zdz
1

(−z + a)n

=
i

16π2

(−1)n−1

(n− 1)!

dn−1

dan−1

∫ ∞
0

zdz
1

−z + a

=
(−1)n−1

(n− 1)!

dn−1I1(a)

dan−1

This is only a formal expression because I1(a) =
∫∞

0
zdz 1

−z+a has a divergent part. If we
cut the integral off at some large value Λ2 (in a bit we’ll send Λ→∞) we have

I1(a) =

∫ Λ2

0

dz
z − a+ a

−z + a
=

∫ Λ2

0

dz

(
−1 +

a

−z + a

)
=

∫ Λ2

0

dz

(
−1 +

a

−z + a

)
For large z, the integrand is −1− a

z
+O

(
a2

z2

)
.

I’ll evaluate I1(a) in a way which is only valid when the integral is part of a convergent
combination ∫ ∞

0

zdz
∑
n

Cn
−z + an

where
∑

nCn = 0 and
∑

n ancn = 0

This will guarantee that those first two terms in the integrand of order 1 and 1
z

have
coefficient zero.

I1(a) =
−i

16π2
lim

Λ→∞

∫ Λ2

0

dz

(
1 +

a

z − a

)
=
−i

16π2
lim

Λ→∞
[z + aln (z − a)]|Λ

2

0

=
−i

16π2
lim

Λ→∞

[
��Λ2 +���

�
aln Λ2︸ ︷︷ ︸

vanishes in convergent
combinations

(
1 +O

(
�
��
a

Λ2︸︷︷︸
=0,in Λ→∞ limit

))
− aln (−a)

]

(for our purposes) =
i

16π2
aln (−a)
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What about I2(a) ?

−16π2iI2(a) =

∫ ∞
0

zdz
1

(z − a)2

=

∫ ∞
0

dz
z − a+ a

(z − a)2

=

∫ ∞
0

dz

(
1

z − a
+

a

(z − a)2

)
For large z the integrand is 1

z
+O( 1

z2 ).
What follows is only valid in either of two cases.

I. The integral is part of a convergent combination∫ ∞
0

zdz
∑
n

Cn
(z − an)2

where
∑
n

Cn = 0

II. You plan to differentiate I2 with respect to a to get I3, I4, etc.

As before we make sense of I2(a) by itself by cutting the integral off at some large value Λ2.
The limit Λ→∞ will be taken at the end.

I2(a) =
i

16π2

∫ Λ2

0

dz

(
1

z − a
+

a

(z − a)2

)
=

i

16π2

[
ln (z − a)− a 1

z − a

]Λ2

0

=
i

16π2

[
��

��ln (Λ2)︸ ︷︷ ︸
vanishes

(
1 +
�
�
��O(
a

Λ2
)
)
−
���

���
���a

Λ2
(1 +O(

a

Λ2
))︸ ︷︷ ︸

=0 in Λ→∞ limit

−ln (−a)− �1︸︷︷︸
vanishes

]

Let’s see why the terms I claim vanish, vanish in either case.

I. The condition
∑

nCn = 0 which was put in to make the coefficient of 1
z

vanish makes
the infinite terms as Λ→∞ vanish. It also gets rid of the −1, since that is independent of a.

II. ln (Λ2) and 1 are both constants independent of a. Taking a derivative w.r.t. a elimi-
nates these terms.

So I2(a) = −i
16π2 ln (−a) for our purposes.
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Note that if you take −dI1(a)
da

to get I2(a) you get −i
16π2 (ln (−a) + 1), and the 1 that van-

ishes in convergent combinations or when differentiated to get I3, I4, etc., can be chucked.

Let’s get I3, I4, etc. For n ≥ 3,

In(a) =
(−1)n−1

(n− 1)!

dn−1I1(a)

dan−1

=
(−1)n−1

(n− 1)!

dn−1

dan−1

(
i

16π2
aln (−a)

)
=

i

16π2

(−1)n−1

(n− 1)!

dn−2

dan−2
(ln (−a) + 1)

=
i

16π2

(−1)n−1

(n− 1)!

dn−3

dan−3

(
1

a

)
=

i

16π2
(−1)n−1(−1)n−3 (n− 3)!

(n− 1)!

1

an−2

=
i

16π2

1

(n− 1)(n− 2)an−2

These facts are summarized on the following table of integrals.

The Minkowski-space integral,

In(a) =

∫
d4q

(2π)4

1

(q2 + a)n
,

with n integer and Im a > 0, is given by

In(a) = i[16π2(n− 1)(n− 2)an−2]−1,

for n ≥ 3. For n = 1, 2,

I1 =
i

16π2
aln (−a) + · · · ,

and

I2 =
−i

16π2
ln (−a) + · · · ,

where the triple dots indicate terms that cancel in a sum of such terms such that the total
integrand vanishes for high q more rapidly than q−4.

Eq. (17.3) is an expression for πf to which we can apply our expression for I2, with
a = k2x− k2x2 −m2 + iε.

πf (k
2) =

g2

16π2

∫ 1

0

dx ln (−k2x(1−x)+m2−iε)+terms that vanish in convergent combinations
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Eq. (17.1) is an expression for π′ in terms of πf .

π′(k2) = πf (k
2)− πf (µ2)− (k2 − µ2)

dπf
dk2

∣∣∣∣
µ2

=
g2

16π2

∫ 1

0

dx

[
ln
−k2x(1− x) +m2 − iε
−µ2x(1− x) +m2

+
(k2 − µ2)(+x(1− x))

−µ2x(1− x) +m2

]
This thing, πf (µ

2), which was subtracted off of πf (k
2), corresponds to the mass coun-

terterm in L, −1
2
Cφ′2. It is infinite, C is infinite, the bare mass of the meson is infinites.

However, that is unimportant. The bare mass of the meson does not enter into any
expression relating physical quantities. We should worry whether this infinite term we have
stuck into L is real.

The only way the expression for πf (µ
2) (and

dπf
dk2

∣∣∣∣
µ2

) gets an imaginary part is when the

argument of the logarithm in the integral becomes negative, which can happen for ranges of
x within [0, 1] if µ2 > 4m2. This can be seen by graphing x(1− x)

x

1

x(1-x)

4

1
2

10

Of course in this case we have no business treating the meson as a stable particle anyway.

Recall that (Nov. 18, after Eq. (16.2)) we have already found the analytic structure of
D′(k2), and

D′(k2) =
i

k2 − µ2 − π′(k2) + iε

(Note that [iD′(k2)]∗ = iD′(k2∗)⇒ π′(k2)∗ = π′(k2∗))

Let’s look at the analytic structure of π′(k2) to second order in perturbation theory, the
function we have just obtained an expression for, for real k2, but which can be defined by
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this expression for complex k2.

π′(k2) =
g2

16π2

∫ 1

0

dx

{
ln
−k2x(1− x) +m2 − iε
−µ2x(1− x) +m2

+
(k2 − µ2)x(1− x)

−µ2x(1− x) +m2

}
This expression is not only well defined, it is analytic for Im k2 6= 0. It is also analytic for

Im k2 = 0, −∞ < k2 < 4m2, but starting at 4m2, because the branch cut in the logarithm
needs to be defined for ranges of x ∈ [0, 1], there is a branch cut in π′.

�

2

2

k2

physical value is obtained by
approaching cut from above

4m

'is real for k real
and < 4m2

The iε prescription when k2 is real and greater than 4m2 says to define the logarithm and
hence π′ by approaching the cut from above. Compare this with the analytic structure of D′

and you’ll see that perturbation theory is satisfying formulas obtained outside of perturbation
theory. (D′ had a pole at µ2. This is in agreement. When you invert D′ to get π′ you get a
zero.)

This and the fact that our counterterm was real when µ2 < 4m2 (a requirement necessary
for the existence of a physical meson), are satisfying consistency checks. All right theories
are internally consistent. (However, all internally consistent theories are not right.)

Loop Lore

How do you generalize the wonderful tricks done here to graphs with more propagators and
more loops?



17. November 20 Notes from Sidney Coleman’s Physics 253a 191

We’ll introduce Feynman parameters, n − 1 of them if there are n propagators, that
combine all the propagators into one denominator. Then we’ll be able to do a shift and a
Wick rotation and then a spherically symmetric integral. What remains and is very difficult
is the integration over the Feynman parameters. In difficult but important applications those
integrations are done accurately by computer.

Combining denominators

n∏
r=1

1

ar + iε
=
∏
r

[
−i
∫ ∞

0

dβre
iβr(ar+iε)

]

= (−i)n
∫ ∞

0

dβ1 · · · dβnei
∑
r βr(ar+iε)

∫ ∞
0

dλ δ

(
λ−

∑
s

βs

)
︸ ︷︷ ︸

Fancy way of
inserting 1

into the integrand

= (−i)n
∫ ∞

0

dλ

∫ ∞
0

dβ1 · · · dβn ei
∑
r βr(ariε)δ

(
λ−

∑
s

βs

)

Now for some rescalings. First rewrite

δ

(
λ−

∑
s

βs

)
as

1

λ
δ

(
1−

∑
βs
λ

)
Then introduce new integration variables αi = βi

λ

n∏
r=1

1

ar + iε
= (−i)n

∫ ∞
0

dλ

∫ ∞
0

dα1 · · · dαnλn−1eiλ
∑
αr(ar+iε)δ

(
1−

∑
i

αi

)

=

∫ ∞
0

dα1 · · · dαnδ

(
1−

∑
i

αi

)
(−i)n

∫ ∞
0

λn−1dλeiλ
∑
αr(ar+iε)

=

∫ ∞
0

dα1 · · · dαnδ

(
1−

∑
i

αi

)
(−i)n

[−i
∑

r αr(ar + iε)]n
(n− 1)!

So,

n∏
r=1

1

ar + iε
= (n− 1)!

∫ ∞
0

dα1 · · · dαnδ

(
1−

∑
i

αi

)
1

[
∑

r αr(ar + iε)]n
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where I have noticed that the δ function vanishes whenever any of the αi are greater than
one, and used that to stop the αi integration at 1. This is a nice symmetric form; easy to
remember. However, we can use the δ function to do the integral over one of the Feynman
parameters, leaving n− 1 of them, as advertised.

n∏
r=1

1

ar + iε
= (n− 1)!

∫ 1

0

dα1

∫ 1−α1

0

dα2

∫ 1−α1−α2

0

dα3 · · ·
∫ 1−α1−α2−···−αn−2

0

dαn−1

1

[
∑n−1

r=1 αrar + (1−
∑n−1

r=1 αr)an + iε]n

This generalizes the result of Eq. (17.2). Take n = 2, α1 = x, and you have

1

A1 + iε

1

A2 + iε
=

∫ 1

0

dx
1

[A1x+ A2(1− x) + iε]2

A shorter derivation using the Γ function

Uses: Γ(x) ≡
∫ ∞

0

dt tx−1e−t, Γ(n+ 1) = n!

Feynman parameters Aj real, αj > 0

I =

∫ ∞
0

dt tα−1e−At =
1

Aα
Γ(α)

1∏
j(A

αj
j )

=
∏
j

∫∞
0
dtj t

αj−1
j e−Ajtj

Γ(αj)

∫ ∞
0

ds δ(s−
∑

tj)︸ ︷︷ ︸
Fancy way of

writing 1

(tj = sxj) =

∫ ∞
0

ds
∏
j

∫∞
0
sαjdxj x

αj−1
j e−sAjxj

Γ(αj)

δ(1−
∑
xj)

s

=
∏
j

∫ 1

0
dxj x

αj−1
j

Γ(αj)

∫ ∞
0

ds s(
∑
j αj)−1e−s

∑
j xjAj

=
∏
j

∫ 1

0
dxj x

αj−1
j

Γ(αj)

Γ(
∑

j aj)

(
∑

j xjAj)
∑
j αj

1∏
j(A

αj
j )

=
Γ(
∑

j αj)∏
j Γ(αj)

∫
dx1 · · · dxjδ

(
1−

∑
j

xj

) ∏
j x

αj−1

(
∑

j xjAj)
∑
αj
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Examples

1.
1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2

2. Take Aj = 1,

∏
j Γ(αj)

Γ(
∑

j αj)
=

∫
δ

(
1−

∑
j

xj

)∏
j

dxj x
αj−1
j , generalized binomial ex-

pansion.

3. Beta function
Γ(α1)Γ(α2)

Γ(α1 + α2)
=

∫ 1

0

dx xα1−1(1− x)α2−1

Now that we have introduced the Feynman parameters into the integral, how do we make
the loop integration trivial?

Suppose we have a graph with I internal lines, and L loops, that is L momentum integrals
still left to be done after using the energy-momentum conserving δ functions.

k

l-k

l

k+p l+p

pp

has L = 2, I = 5. The integral to be done looks like∫
d4k d4l

(k2 −m2)(l2 −m2)((k − l)2 − µ2)((k + p)2 −m2)((l + p)2 −m2)

To this we would apply our denominator combining identity. Let’s write down the general
case. Call the independent loop momenta ki, i = 1, . . . , L, and the external momenta, qj. All
momenta on the I internal lines are linear combinations of the ki and qj. After introducing
the Feynman parameters, the integral to be done is of the form∫ 1

0

dα1 · · · dαIδ
(

1−
∑

α
)∫ d4k1 · · · d4kL

DI
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where D =
L∑

i,j=1

Aijki · kj +
L∑
i=1

Bi · ki + C

A is an L×L matrix that is linearly dependent on the Feynman parameters. It is positive
definite except at the endpoints of the Feynman parameter integrations. B is a vector with
L four vector components. It is linear in the Feynman parameters and linear in the external
momenta. C is a number, depending linearly on the Feynman parameters, and the external
momenta squared and the masses squared that appear in the propagators. It has a small
positive imaginary part.

Now shift the k integration to eliminate the terms linear in k.

k′i = ki +
1

2

∑
j

(A−1)ijBj

d4ki = d4k′i

D =
L∑

ij=1

Aijk
′
i · k′j + C ′

where C ′ = C − 1

4

∑
ij

BiA
−1
ij Bj

C is still linear in external momenta squared and the masses squared, but now it has some
awful dependence on the Feynman parameter because of A−1

ij . It still has a small positive
imaginary part.

Now diagonalizing Aij with an orthogonal transformation on the set of four vectors k′i

k′i = Oijk
′′
2 detO = 1

L∏
i=1

d4k′i =
L∏
i=1

d4k′′i

D =
L∑

i,j=1

AijOikk
′′
k ·Ojlk

′′
l + C ′

=
L∑

i,j=1

(OTAO)klk
′′
k · k′′l + C ′

=
L∑
i=1

aik
′′
i · k′′i + C ′
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where (OTAO)kl = δklal.

Finally we’ll make a transformation to eliminate the ai

k′′i =
1
√
ai
k′′′i

L∏
i=1

d4k′′i =
L∏
i=1

(
1
√
ai

)4

d4k′′′i

= (detA)−2

L∏
i=1

d4k′′′i

The integral to be done has been reduced to∫ 1

0

dα1 · · · dαIδ
(

1−
∑

α
)

(detA)−2

∫
d4k′′′1 · · · d4k′′′L

DI

where D =
L∑
i=1

k′′′i · k′′′i + C ′

Now we can perform Wick rotations on each of the k′′′ 0i variables independently to get∫ 1

0

dα1 · · · dαIδ
(

1−
∑

α
)

(detA)−2in
∫
d4k′′′1E · · · d4k′′′LE

DI

d4k′′′i = id4ki E

ki 4 = ik′′′ 0i

D = −
L∑
i=1

k2
E + C ′

This is one big spherically symmetric integral in 4L dimensions! Easily done with only
a slight generalization of our integral table. We have reduced a general graph to an awful
integral over Feynman parameters; this is progress. Note that you don’t actually have to
diagonalize A when applying this formula. All you need in the end is detA.
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18 November 25

The definition of g in Model 3

Renormalization condition (6), the committee definition of g, has not been stated or turned
into an equation among Green’s functions. The statement is needed to fix the counterterm
in L

L = · · · − Fψ∗′ψ′φ′ + · · ·
which has Feynman rule

p′↘�x ←qf
↗pE = −iF (2π)4δ(4)(p+ p′ + q)

Model 3 does not exist in the real world, so no committee has actually gotten together to
define g. We’ll play committee.

Define

p′↘�1PIp ←qf
↗pE = −i︸︷︷︸

The −i is a sensible
convention, put there so

that at lowest
order Γ=g

Γ(p2, p′2, q2)

Why can we consider Γ to be a function of p2, p′2 and q2?

Γ is a Lorentz invariant, so it must be a function of Lorentz invariants only. There are only
two independent momenta, q = −p− p′, so the only Lorentz invariants are p2, p′2 and p · p′.
However p · p′ can be traded in for q2.

So here is our committee definition of g:

g ≡ Γ′(p2, p′2, q2)

The bars mean some specific point in momentum2 space.

This is a reasonable if not obvious generalization of the types of conditions we used to
determine A,B,C,D and E. The proof of the iterative determination of F is identical.

While all points p2, p′2, q2 are equally good as far as determining F is concerned, there
is one that is more equal than others. It might well be the one the committee picks, because
as we will show, it has some experimental significance. The point is

p2 = p′2 = m2 q2 = µ2
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To actually find a trio of four-vectors satisfying these conditions, as well as p+p′+q = 0,
you have to make some of their components complex. This point is not kinematically acces-
sible. One can show in general however, that the domain of analyticity of Γ′, considered as
a function of three complex variables, is sufficiently large to define the analytic continuation
of Γ′ from any of its physically accessible regions to this point.

What is this point’s experimental significance?

Look at the process φ+N → φ+N . Diagrammatically,

connected Green's
function

= 1PI

stuff that is 1PI

+ not 1PI

stuff that 
isn't 1PI

We can say more about the stuff that isn’t 1PI. By definition, there is some line in the
graph which can be cut and the graph falls into two pieces. If I ignore interactions on the
external legs, the cutting of the internal line separates the graph into two pieces each having

two external lines. The
1

2

(
4

2

)
= 3 possibilities, look like s, t and u channel graphs. If

cutting the internal line separates the incoming meson and nucleon from the outgoing ones
the graph must be a contribution to (I hope you can convince yourself)

the other two possibilities are
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Using our definitions, the first graph (on mass shell) is

−iΓ(s,m2, µ2)D′(s)(−iΓ(m2, s, µ2))

This has a pole at s = m2 because the full nucleon propagator has a pole there, and
because of our renormalization conditions, we can write down what the residue of that pole
is. s = m2, we have

−ig i

s−m2
(−ig) + analytic stuff at s = m2

Because of our definitions, the residue of the pole of these graphs is −ig2.

Now what about the other two graphs. They look like they have poles at u = m2

and t = µ2, but we don’t expect them to have a pole at s = m2. Furthermore, the graph

d1PIpeE � probably has all sorts of cuts, but it is unlikely that it has a pole at s = m2 because

there is no propagator on the inside of the graph that carries the whole incoming momentum.

To summarize

dpeE � =
−ig2

s−m2
+ plus analytic or at least no pole, near s = m2

Experimentally, the residue of this pole can be measured by looking at φ+N scattering
in the physical region, and extrapolating down to s = m2. You just measure the s wave
scattering. When this was done, they found pole-like behavior with g ≈ 13.5. Actually, they
weren’t very good at making pion beams back when they did this, so they measured the
pole in γ + p→ p + π, which measures eg. When g = 13.5 was determined this way, it put
the last nail in the coffin for the attempts to consider the strong interactions perturbatively
with the pion and nucleons as fundamental particles.

Consider the process N +N → N +N . By similar arguments, we can split up
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connected

1PI

1PI

into four 
 things

1PI

and two more

The thing to note is that this decomposition leads us to expect

�pEE � = (−ig)2 i

t− µ2
+ stuff with no pole at t = µ2

Since t ≈ µ2 is unphysical, to measure the effect of this pole, you again have to extrapolate.

Our simple model states that the residue of this pole is the same, −ig2. When they did
this experiment with p + p → p + p, after doing some work to eliminate electromagnetic
effects, they got agreement (to within 10%). Futhermore, the fit showed that the location
of the pole was at t = m2

π (They only fit the high partial waves, where they felt justified
calculating with P.T.)

Renormalization vs. infinities

The O(g3) correction to Γ′ in model 3 is finite. The counterterm

(3)

is
needed only to make the theory agree with the committee definition of g. To see that the
graph is finite, look at its high momentum behavior. Without even combining denominators
you can see that at high q the integral looks like

∫
d4q
q6 . This extreme convergence is peculiar

to model 3 (and other models where all the couplings have positive mass dimension as we
will later see).

Consider a model with a four scalar field interaction.

L = · · ·+ gφ4 + · · ·
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φ4 could be ABCD or (ψ∗ψ)2.

Look at the lowest order correction to a propagator:

Whoops, there is , but it is

constant and is really easy to cancel

After combining denominators you see that the integral looks like at high q

∫ 2 loops︷︸︸︷
d8q

q6︸︷︷︸
three propagators

quadratic divergence

Fortunately there are renormalization countertermsfxf to cancel this infinity.

What about other graphs in this theory? There is

∼
∫
d4q

q4
log divergent

There is a committee definition of g, and a φ4 counterterm which can cancel off the log
divergence

What about
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This is finite, which is good, we would need a φ6 counterterm to cancel this graph’s di-
vergence if it weren’t convergent. That would require another committee definition, say for
3→ 3 scattering at some momentum.

Definition (This is a more stringent definition than is often used.) A Lagrangian is renor-
malizable only if all the counterterms required to remove infinites from Green’s functions are
terms of the same type as those present in the original Lagrangian.

Suppose a theory has a φ5 (ABCDE) interaction. Then

is log divergent, and you would need a φ6 counterterm to cancel
it. Since the theory did not originally contain a φ6 interaction, we say φ5 theory is not
renormalizable.

It seems fairly clear that to correct this defect, you just add a φ6 term to your Lagrangian,
then your φ6 counterterm will be of the same type as the interaction term in the original
Lagrangian. But then, there is

and

to worry about. These are also log divergent and they require φ7 and φ8 counterterms to
cancel them. So gφ5 +hφ6 is not a renormalizable interaction either. You can see that adding
jφ7 and kφ8 to the Lagrangian is not going to help.

This shows that any polynomial interaction of degree higher then 4 is not renormalizable.
We have not shown that polynomials of degree 4 or less are renormalizable, but what we
have found so far suggests it.

Now these theories with an infinite series of interactions are disgusting because they
contain an infinite number of independently adjustable parameters. Unless you make some
additional statement, you cannot make any predictions. One possibility is to hunt for some

relationship among the terms in the infinite series. Perhaps L =
1

2
∂µφ

2− µ2

2
φ2− λ cosαφ is

renormalizable.

Perhaps S =
∫
d4x
√
−gR, the Einstein-Hilbert action is renormalizable. Suffice it to say

that no one has ever been able to construct a renormalizable non-polynomial interaction
that is not equivalent to free field theory.
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Unstable particles

Let’s look at model 3 in the regime µ > 2m. In that case, πf (k
2) is not real at the subtraction

point. You can see this by looking at πf or you can look at the nonperturbative formula

Im π′(k2) = −π σ(k2)

|D′(k2)|2

σ(k2) 6= 0 when k2 = µ2 > 4m2 so Im π′ 6= 0. Our subtraction, which says

π′(µ2) = 0 and
dπ′

dk2

∣∣∣
k2=µ2

= 0

would be causing us to subtract imaginary terms from the Lagrangian. This is unaccept-
able because a non-Hermitian Hamiltonian is unacceptable. One road is to just say, for
µ > 2m, the meson is unstable, I have no business calculating meson-meson scattering or
nucleon-meson scattering, or anything else involving an external meson, so just drop all
renormalization conditions and subtractions related to the meson.

This road is not ideal for two reasons. The definition of the theory does not change in
any smooth way as µ increases beyond 2m, and we lose the bonus of renormalization, the
elimination of infinities. We will modify our subtraction procedure for µ > 2m so that it
still removes ∞’s, and is continuously related to the subtractions made for µ < 2m, but so
that we do not make imaginary subtractions. Our modified procedure is to quite a degree
ad hoc, but we will see that it is useful. For µ > 2m, demand

Re π′(µ2) = 0

Re
dπ′

dk2

∣∣∣
k2=µ2

= 0

We will see that with these renormalization conditions for µ > 2m, and the usual one for
µ < 2m, that as you increase µ, the pole in D′(k2) moves up the real axis until it touches
the branch cut, and then it moves onto the second sheet (The poles can run, but they can’t
hide.)

D'(k )2 k 
2
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What do I mean by second sheet? The value of D′(k2) for k2 > 4m2 (and real) is obtained
by taking the limit from positive imaginary k2 down onto the real axis, according to the iε
prescription. The value of D′(k2) for Im k2 < 0 is defined by that integral expression for
D′(k2) in terms of σ(a2). D′(k2) has a discontinuity across the cut. What we get when we
analytically continue D′(k2) to Im k2 < 0 from its value for Im k2 > 0, to get a function
that is continuous along the old cut, is called D′(k2) on the second sheet.

A couple other ways of saying this:

The branch point is fixed, the value along the real axis is physical and can’t be changed,
but within those restrictions, we can move the cut leading from the branch point to ∞
around any way we like.

The second sheet is what you get from peering down from above the cut. In some sense
this is much closer to the physical region, because it is not separated by a discontinuity.

In model 3, for µ > 2m, we will now compute (−iD′)−1 to O(g2) when k2 − µ2 is order
g2.

[−iD′(k2)]−1 = k2 − µ2 − π′(k2)

A formula we will use is

Im π′(k2) = |D′(k2)|−2(− π︸︷︷︸
3.14...

)σ(k2)

= −1

2
|D′(k2)|−2

∫∑
|n〉6=|0〉,|p〉
|p〉: one meson

|〈n|φ′(0)|0〉|2(2π)4δ(4)(k − Pn)

using the definition of σ.

Now let’s work on [−iD′(k2)]−1

[−iD′(k2)]−1 = k2 − µ2 − π′(µ2)− (k2 − µ2)︸ ︷︷ ︸
this is O(g2)

dπ′

dk2︸︷︷︸
this is O(g2)

∣∣∣
k2=µ2

+O(g4)

= k2 − µ2 − Re π′(µ2)︸ ︷︷ ︸
Obey our convenient

renormalization
condition

−i Im π′(µ2) +O(g4)
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Now using that formula for Im π′(k2),

[−iD′(k2)]−1 = k2 − µ2 +
i

2

∫∑
n6=|0〉,|k〉 |〈n|φ′(0)|0〉|2(2π)4δ(4)(k − Pn)

[D′(k2)]2

∣∣∣∣∣
k2=µ2

+O(g4)

= k2 − µ2 + iµΓ +O(g4)

= k2 −
(
µ− iΓ

2

)2

+O(g4)

The nice thing I have noticed in the next to last step is that what multiplies i
2

in the
first expression is µΓ when k2 = µ2. Compare with Eq. 13.2 from Nov. 4. The |D′|−2

serves to exactly eliminate the external propagators you would get in relating 〈n|φ′(0)|0〉 to
〈n|(S − 1)|k〉 ∝ ia.

This does not prove that Γ is a lifetime−1. That Γ was an inverse lifetime in the theory
with a turning on and off function does not suffice to show that it is a lifetime in our full-
blown scattering theory.

To summarize what we have found so far, we have found that in model 3, with µ > 2m,
and some ad hoc renormalization conditions, in the small g limit, there is a pole in D′(k2)
at k2 = (µ− iΓ

2
)2 on the second sheet. D′(k2) is still analytic on the cut complex plane. In

a sense, this pole is close to the physical region. Our perturbative analysis shows that as
g → 0, Γ → 0, and the actual value of D′(k2) along the real axis should be more and more
dominated by the presence of this pole when k2 ≈ µ2.

What we have done so far has depended on perturbation theory in model 3, although the
way Γ appeared, it is clear how a perturbative calculation would go in other models. What
we will do next does not depend on perturbation theory in the coupling constant, or on any
model.

Our only assumption now will be that

D′(k2) =
i

k2 − µ2 + µiΓ
+ small terms

for some range of the real axis near k2 = µ2. That is the pole on the second sheet dominated
the behavior of D′(k2) near k2 = µ2.

We will now do two thought experiments and show that this behavior is what experi-
mentalists are talking about when they say they have discovered an unstable particle.
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Our first thought experiment is to blast the vacuum at ~x = t = 0. A theorist blasts the
vacuum by turning on a source

L → L+ ρ(~x, t)φ′(~x, t)

ρ(~x, t) = λδ(4)(x)

An experimentalist blasts the vacuum at ~x = t = 0 by crashing two protons together at the
origin of coordinates.

The amplitude that you’ll get any momentum eigenstate |n〉 is proportional to

λ〈n|φ′(0)|0〉+O(λ2)

The probability of having momentum k in the final state is proportional to

λ2

∫∑
|n〉

|〈n|φ′(0)|0〉|2(2π)4δ(4)(Pn − k) +O(λ3) = 2πλ2σ(k2)θ(k0) +O(λ3)

In the sum, I don’t have to specify |n〉 6= |0〉, |k〉 (one meson) (as long as I stay away
from k = 0 so δ(4)(Pn − k) = 0 when |n〉 = |0〉) since there are no physical one meson states
to emerge from blasting the vacuum when “the meson is unstable”.

σ(k2) is in turn proportional to −Im π′

σ(k2) = −(Im π′(k2))|D′(k2)|2

So the probability of finding momentum k not equal to zero, k0 > 0 is proportional to

−λ2Im π′(k2)|D′(k2)|2 +O(λ3)

Finally using the form of D′ which is assumed to dominate near k2 = µ2 (π′(k2) = −µiΓ)
we have

λ2µΓ

(k2 − µ2)2 + µ2Γ2
+O(λ3)

u2 k2

Probability of 
finding an invariant
mass of k2
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We can look at the center of mass energy of the decay products. That is, we can think
of this probability distribution as a function of E, the decay products’ COM energy, instead
of as a function of k2. The probability of finding a COM energy E in the decay products is
proportional to (drop the O(λ3))

µΓ

(E2 − µ2)2 + µ2Γ2
=

µΓ

(E − µ)2(E + µ)2 + µ2Γ2

≈ µΓ

(E − µ)2(2µ)2 + µ2Γ2

=
µΓ

(4µ2)
[
(E − µ)2 + Γ2

4

]
(Approximation preserves the character of the function if Γ� µ)

u E

Probability of 
finding energy E in
the decay product
COM frame

Pmax

Pmax
2

This is called a Breit-Wigner or Lorentzian line shape, and it is familiar from QM. Γ is
the full width at half maximum, or decay width. As Γ gets smaller, the peak gets narrower
and higher.

So we have shown that µ and Γ, which locate the pole on the second sheet of D′(k2) are
the mass and decay width respectively that an experimenter reports when she says she has
found an unstable particle.

Experimenters have another way of measuring Γ, which is purported to be equivalent.
They use a clock, and the average lifetime is Γ−1. We will now do a second thought experi-
ment to show that this second way of determining Γ is equivalent.
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19 December 2

We have explained “width” in the phrase “decay width”. With a second thought experiment
we’ll explain “decay”. In thought experiment 2, we’ll produce an unstable particle near the
origin and detect it a long ways away at some region near y. The region of production cannot
be too sharply localized as we are going to make states only with k2 ≈ µ2.

t

x

We’ll make the initial state by hitting the vacuum with
∫
d4x f(x)φ′(x), f(x) is fairly

well localized in position space and its Fourier transform (f̃(k) =
∫
d4x eik·xf(x)) is fairly

well localized in momentum space about a momentum k. Initial state is∫
d4x f(x)φ′(x)|0〉

f(x)

x

f(k)

kk

I’ll detect the particle by finding the amplitude that this state becomes the state∫
d4x g(x− y)φ′(x)|0〉
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g(x-y)

x

g(k)

k
ly

g(x− y) is concentrated around y, g̃(k) is concentrated around l, The amplitude, param-
eterized by y is

A(y) = 〈0|
∫
d4x′g∗(x′ − y)φ′(x′)

∫
d4xf(x)φ′(x)|0〉

If the point y is far later in time than the origin, we can make this a time ordered vacuum
expectation value with negligible error.

A(y) =

∫
d4xd4x′ g∗(x′ − y)f(x)〈0|T (φ′(x′)φ′(x)|0〉

=

∫
d4xd4x′

∫
d4k

(2π)4

d4k′

(2π)4
eik·(x

′−y)g̃∗(k)e−ik
′·xf̃(k′)〈0|T (φ(x′)φ′(x))|0〉

=

∫
d4k

(2π)4

d4k′

(2π)4
e−ik·yg̃∗(k)f̃(k′)

∫
d4xd4x′ eik·x

′
e−ik

′·xG′(x′, x)︸ ︷︷ ︸
G̃′(−k,k′)≡(2π)4δ(4)(k−k′)D′(k2)

Compare this F.T. convention with the one for f on the previous page

=

∫
d4k

(2π)4
e−ik·yg̃∗(k)f̃(k)D′(k2) This integral gives zero, unless k ≈ l

Recall that g̃(k) is concentrated around l and f̃(k) is concentrated around k, with k2 ≈ µ2.
Assume that D′(k2) is dominated by a stable or unstable particle pole at k2 ≈ µ2 and that
f̃(k) is sufficiently tightly concentrated around k that we can make the approximation

A(y) =

∫
d4k

(2π)4
e−ik·yg̃∗(k)f̃(k)

i

k2 − µ2 + iµΓ

(The stable case is handled by taking the limit Γ→ 0+).
We want to analyze this for large y, which is difficult because the phase of the exponential

is varying rapidly as k changes. Furthermore as k2 increase through µ2, the phase of the
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propagator changes rapidly. There is a method for handling these kinds of integrals.

Method of stationary phase

Given I =

∫
dteiφ(t)f(t), where φ is a rapidly varying function of t except for a few points

where dφ
dt

= 0, call them ti. (See Whittaker and Watson Modern Analysis).

phi(t)

t
1t t 2

-1000

1000

Then the integral gives nothing almost everywhere, except at those points where the phase
stops wildly varying for a moment. At those points ti, the contribution can be approximated
by

I =
∑
i

eiφ(ti)f(ti)

∫
dt e

i
2
φ′′(ti)(t−ti)2

︸ ︷︷ ︸√
2π

|d2φ/dt2|
∣∣
ti

eiπ/4

We will rewrite
i

k2 − µ2 + iµΓ
as an exponential so we can use this method. Unfortu-

nately we introduce another integral, but it can also be done by the method of stationary
phase.

i

k2 − µ2 + iµΓ
=

∫ ∞
0

ds

2µ
ei

s
2µ

(k2−µ2+iµΓ)

Assume the variation in phase of g̃∗(k)f̃(k) is slow compared to the variation in the
exponential, or take g = f .

A(y) =

∫ ∞
0

d
( s

2µ

)∫ d4k

(2π)4
e−ik·y+i s

2µ
(k2−µ2+iµΓ)g̃∗(k)f̃(k)
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To do the k integration by stationary phase, set

0 =
∂

∂kµ

(
− k · y +

s

2µ
(k2 − µ2)

)
= −yµ +

s

µ
kµ

Thus the only stationary phase point in the k integrations is at k0 =
µ

s
y,

∣∣∣∣ d2φ

dkµ 2

∣∣∣∣
∣∣∣∣∣
k0

=
s

µ

A(y) ≈ −
∫ ∞

0

ds

2µ

1

(2π)2

(µ
s

)2

g̃∗
(µ
s
y
)
f̃
(µ
s
y
)
ei
s
2

(−µ+iΓ)e−i
µ
2s
y2

To do the s integration by stationary phase, set

0 =
∂

∂s

(
− s

2
µ− µ

2s
y2
)

s =
√
y2

Note that there is no stationary phase point if y2 is spacelike. As y →∞, y2 < 0, there
is no probability that a particle will be detected. We have recovered causality.

Call
√
y2 “s0”, then

∣∣∣∣d2φ

ds2

∣∣∣∣
s0

=
µ

s0

, and

A(y) = −eiπ/4
√

2πs0

µ

1

2µ

1

(2π)2

(
µ

s0

)2

g̃∗
(
µ

s0

y

)
f̃

(
µ

s0

y

)
e−iµs0e−

Γs0
2

These factors can be understood. Suppose you classically propagate a stable particle

with velocity vµ =
kµ
µ

. In a proper time s, it will arrive at a point yµ = vµs, where

v2
µ = 1 ⇒ s =

√
y2. This is just classical kinematics, but you see we have recovered it in

the limit of large y from quantum field theory. The conditions of stationary phase are the
equations of classical kinematics.

The factor e−iµs0 is just e−iEt of quantum mechanics that has come out in a Lorentz
invariant generalization. There is a factor s

−3/2
0 . That is there because if you wait long

enough, every packet because of an initial uncertainty in velocity is spreading out in all
directions linearly with time. In 3-D this means that the probability density at the center

of the packet goes down like
1

t3
. So the amplitude falls like

1

t3/2
. The Lorentz invariant gen-

eralization of this is that the amplitude at the center of the packet falls like
1

(proper time)3/2
.
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Finally there is the unstable case. We have e−Γs0/2 in the amplitude, which means that
the probability has a factor e−Γs0 . They are indeed decaying and again we have gotten the
Lorentz invariant generalization of e−Γt; Γ is the decay rate per unit proper time.

¿¿ This talk of “correct generalization” must be made more precise. It should be pos-
sible to do the computation in the frame where y = (~y,~0). However our stationary phase
computations are not justified in that case ??

“WHERE IT BEGINS AGAIN”

If we had been proceeding logically, starting from first principles, making the most general
statements about relativistic quantum field theory we could and, only after exhausting those,
made simplifying assumptions and approximations, we would have begun the course by listing
all possible field transformation laws, then we would have constructed all possible quadratic
Lagrangians, that is all possible combinations that are at most quadratic in the fields and
transform as scalars under the Lorentz group. Then we would do canonical quantization
and in the process discard many of the Lagrangians because of one or another inconsistency,
like the Hamiltonian not being bounded below. At this point we would have all possible
free particle theories, and we would start adding interactions, higher order polynomials, to
the Lagrangian. The actual order we have been doing this course, is to spend a lot of time
studying relativistic invariants made up of the simplest kind of fields, scalar fields. Under
Lorentz transformations a set of scalar fields transform like

φa(x) a = 1, . . . , n Λ ∈ SO(3, 1)

Λ : φa(x)→ φa(Λ−1x)

The only Lorentz scalars you can construct have derivatives, 0, 2, 4, . . . of them, which
act on the scalars and are completely contracted with gµν or εµνλσ.

2φ, ∂µφ2∂
µφ3

εµνλσ∂µφ1∂νφ2∂λφ3∂σφ4

The list of possible quadratic Lagrangians is pretty short, and we have gone a long ways
toward exploring them. In fact we have even gone a long ways toward studying the total list
of interacting scalar fields since the renormalization vs infinities arguments pretty well rule
out Lagrangian that are more than quartic in the fields. We haven’t exhausted the study of
scalars, but we are now going to go on to

DISCOVERING ALL POSSIBLE LORENTZ TRANSFORMATION LAWS
OF FIELDS



19. December 2 Notes from Sidney Coleman’s Physics 253a 212

We’ll phrase the analysis in a quantum language, but the all that we are about to do can
be carried through classically. Assume we have a finite number of fields,

φa(x) a = 1, . . . , N

Let Λ denote an abstract element of SO(3, 1), the part of the Lorentz group connected
to the identity. More concretely, Λ can also be thought of as a 4× 4 matrix, that preserves
the metric, Λµ

αΛν
βg

αβ = gµν , is proper, det(Λ) = 1, and is orthochronous, Λ0
0 > 0. For each

Λ there is a unitary transformation

U(Λ)†φa(x)U(Λ) = Da
b(Λ)φb(Λ−1x) (Σb implied)

For each Λ there is some N ×N matrix Da
b(Λ) that gives a linear relationship between

the complete set of commuting observables at Λ−1x and those at x, for all x. If we think of
the D’s as matrices and the φ’s as column vectors, we can write

U(Λ)†φ(x)U(Λ) = D(Λ)φ(Λ−1x)

(D’s are N ×N matrices, “The dimensions of D is N”)

A property of the U ’s reflects itself in the D’s (It only takes a couple of lines to prove
this)

U(Λ1)U(Λ2) = U(Λ1Λ2) =⇒ D(Λ1Λ2) = D(Λ1)D(Λ2)

Also U(1) = 1 =⇒ D(1) = 1 and from these two properties of the D’s, D(Λ−1) = D(Λ)−1.
It seems that the D matrices obey all the properties of the group, and you might think from
any set of D’s you could reconstruct the group. You can’t though. Many elements of the
group can map into a single D matrix, that is it is possible that D(Λ) = D(Λ′) while Λ 6= Λ′.
The trivial prototypical example is (all fields are scalar) D(Λ) = 1 for all Λ. A set of D’s
that obey the group laws is called a representation. If D(Λ) = D(Λ′) =⇒ Λ = Λ′, the
representation is “faithful”.

A person who is tired of group theory is tired of life.

An additional complication that we are only going to consider in a very cavalier way,
i.e. the possibility which is impossible to rule out in quantum mechanics that

U(Λ1)U(Λ2) 6= U(Λ1Λ2), U(Λ1)U(Λ2) = U(Λ1Λ2)eiφ(Λ1,Λ2)

The product law is not exactly true in general. It only need be true up to a phase. It
turns out that for SO(3) and SO(3, 1), the phase can be removed except in representations
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called spinor representations where a rotation by π about any axis ~e followed by another
rotation by π about ~e gives

U( ~eπ︸︷︷︸
notation for the unitary

operator that rotates around ~e by π

)U(~eπ) = −1

The rotations by π are physically equivalent to no rotation at all, so you would expect
to have gotten 1. (If you want to study this the only good reference I know of is Bargmann,
V., “On Unitary Ray Representations of Continuous Groups,” Annals of Mathematics, Vol.
59,(1954) p.1, and it is in the basement of Cabot. I am not recommending this however. We
will get all the right results with much less effort by being cavalier and lucky.) The possibility
that the product of the unitary operators is only the unitary operator of the product up to
a phase reflects itself identically in the composition law for the D’s. (Another thing to note
about the D’s is that they are not in general unitary. Try as you may, you cannot use the
unitary of the U ’s to prove unitary of the D’s).

Our task of finding all possible Lorentz transformation laws of fields has been reduced to
the task of making a catalog of all finite dimensional representations of SO(3, 1).

Shortening the catalog of finite dimensional representations of SO(3, 1)

Suppose I have a representation D(Λ). I can make a new representation of SO(3, 1), that
obeys all three conditions, by defining

D′(Λ) = SD(Λ)S−1

where S does not vary with Λ, it is some definite invertible matrix. Equivalent to this
though is just a redefinition of the basis fields. If the fields transform as Λ : φ(x)→ φ(Λ−1x),
the new basis φ′(x) = Sφ(x) transforms as Λ : φ′(x) → D′(Λ)φ′(Λ−1x). This is not worth
listing as a new kind of field theory. Define two representations D and D′ to be equivalent
if there exists an invertible S such that

D′(Λ) = SD(Λ)S−1 for all Λ

and write D′ ∼ D. If there is no such S, D and D′ are inequivalent D′ 6∼ D. Our
catalog will only include inequivalent representations of SO(3, 1), one representation from
each “equivalence class.”

I’ll give a useful example. The Lorentz transformation of parity is not in SO(3, 1), because
it is not connected to the identity, it has determinant −1. (You can think of parity, P ,
abstractly or as a 4 × 4 matrix.) For every Λ ∈ SO(3, 1), I can obtain another element of



19. December 2 Notes from Sidney Coleman’s Physics 253a 214

SO(3, 1), Λp ≡ PΛP (P = P−1). The association is one to one, and it preserves the group
multiplication law. ΛpΛ

′
p = (ΛΛ′)p. These properties make it an “automorphism”. With

this automorphism of SO(3, 1). I can construct a new representation of the group from any
given representation. Starting with a representation D, define

Dp(Λ) = D(Λp)

This new rep obeys all three conditions.
It may or may not be true that Dp ∼ D.
To make the example more concrete, let’s look at what the parity automorphism does to

one of the representations of SO(3, 1) we all know and love, say the two index tensor.

Λ : T µν → Λµ
αΛν

βT
αβ (Transformation law of a tensor)

We read off Dµν
αβ(Λ) = Λµ

αΛν
β. The D’s in the representation induced by the parity

automorphisms are

Dp
µν
αβ(Λ) = Dµν

αβ(Λp) = (PΛP )µα(PΛP )νβ

Now we expect that we have not constructed an inequivalent representation of SO(3, 1)
this way. After all what parity is really doing is just turning T 00 → T 00, T ij → T ij and
T i0 → −T i0, T 0j → −T 0j. If it is interpretable as a change of basis, we must be able to find
the similarity transformation relating the two representations. Let’s massage the expression
for Dp until we find it.

Dp
µν
αβ = (PΛP )µα(PΛP )νβ

= P µ
σΛσ

τP
τ
αP

ν
φΛφ

ψP
ψ
β

= P µ
σP

ν
φΛσ

τΛ
φ
ψP

τ
αP

ψ
β Sµνσφ ≡ P µ

σP
ν
φ

= SµνσφD(Λ)σφτψS
−1τψ

αβ i.e. Dp(Λ) = SD(Λ)S−1

(you can do the vector case. I did the two index tensor because it is a little less trivial)

Shortening the catalog of finite dimensional inequivalent representations of
SO(3, 1)

Suppose someone has two theories, one with a set of fields

φ1a a = 1, . . . , N1

transforming as
Λ : φ1(x)→ D(1)(Λ)φ1(Λ−1x)
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and the other with a set of fields

φ2a a = 1, . . . , N2

transforming as
Λ : φ2(x)→ D(2)(Λ)φ2(Λ−1x)

Now this person comes to you and says, I have a new theory with N1 +N2 fields, which
he has assembled into a vector φ, and they transform like

Λ : φ(x)→ D(Λ)φ(Λ−1x)

D(Λ) =

(
D(1)(Λ) 0

0 D(2)(Λ)

)
For example, theory 1 could contain a vector and theory 2 could contain a scalar. The

new theory would have to be five dimensional. This is hardly a big breakthrough. It is such a
simple extension of what was previously known that it is not worth including in our catalog.
Define this representation D to be the “direct sum” of D(1) and D(2), D = D(1)⊕D(2). It has
dimension N1 + N2. The D’s are in block diagonal form. Call a representation “reducible”
if it is equivalent to a direct sum, otherwise, call it “irreducible”.

Our task is to build the remarkably shorter catalog, the catalog of finite dimensional
inequivalent irreducible representations of SO(3, 1).

By a wonderful fluke, peculiar to living in 3+1 dimensions, the representations of SO(3, 1)
can be rapidly obtained from the representations of SO(3). You know all about the repre-
sentations of SO(3) from undergraduate QM, so we will be able to wrap the catalog up by
the end of next lecture. If we lived in 9 + 1 dimensions, there would be no quick reduction
of the problem of finding the representations of SO(9, 1) to the problem of finding the rep-
resentations of SO(9), which 9 + 1 dimensional students solve as undergraduates. We will
review the representations of SO(3) just enough to refresh your memory. They are carefully
constructed in a few pages in a way that generalizes to other groups beginning on page 16
of Howard Georgi’s Lie Algebras in Particle Physics. Actually what is constructed there are
the representations of the Lie algebra of SO(3) rather than the representations of the Lie
Group but you’ll see that is what we want.

THE FINITE DIMENSIONAL INEQUIVALENT IRREDUCIBLE
REPRESENTATIONS OF SO(3)

An element R of SO(3) can be thought of abstractly or as a 3×3 matrix. It is specified by
giving an axis of rotation, and an angle of rotation about the axis, ~e and θ. Let’s standardize
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the vector that defines the axis by taking it to be a unit vector. The product ~eθ defines the
rotation completely, R(~eθ). Its length gives the amount of rotation in the counterclockwise
direction when looking down toward the tail of the vector ~e.

If we let θ take on any value from 0 to 2π we have included twice every element of SO(3).
The reason being is that a rotation about ~e by an angle θ is exactly the same as a rotation
about −~e by an angle 2π−θ. So we’ll restrict θ ∈ [0, π]. This still include twice the rotations
by π because

R(~eπ) = R(−~eπ)

The group SO(3) is topologically like the ball (not the sphere S2, the ball B3) in three
space of radius π, except antipodal points on the surface of the ball are identified.

Just so you have some impressive jargon at your disposed, the ball just described, with
the identification, is topologically like the projective 3 sphere.26 I can explain that in one
lower dimension where I can visualize it. The projective 2 sphere is S2 with each pair of
antipodal points identified. Each point on the whole bottom half of the sphere below the
equator has a point it is identified with the half of the sphere above the equator. Chuck the
whole bottom half of the sphere leaving the top half and the equator. Each point on the
equator is still identified with one other point on the equator. But it is clear that

(x’s represents a pair of identified points) Just flatten the sphere out into the disk and
this disk is the “ball” in two space, with antipodal points on the ball identified.

A method of infinitesimal analysis

d

dθ
R(~eθ)|θ=0 ≡ −i~e · ~J

26[BGC note: The standard name for these spaces are real projective 3-space RP3 and real projective
2-space or the real projective plane RP2.]
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This expression defines ~J , a set of three 3×3 matrices if you think of R as a 3×3 matrix,
and something more abstract if you think of R more abstractly. The three matrices are called
the Lie algebra of SO(3). There are three because SO(3) is a three parameter group. (SO(n)

is an n(n−1)
2

parameter group). How do you see that this derivative is linear in ~e? Recall the
picture of SO(3) as a ball. Assume all the differentiability you desire. What this derivative

is is a directional derivative in the direction ~e at the center of the ball and −i ~J is the gradient.

Someplace in this analysis we have to put in the properties of SO(3). Rather than making
mathematical statements about 3 × 3 matrices, we’ll put in two properties physically that
are enough to specify the group.

(1). R(~eθ′)R(~eθ) = R(~e[θ + θ′])

(2). R′−1R(~eθ)R′ = R(R′−1~eθ)

These are physically motivated statements about properties of rotations.
Property (1) is obvious. How to see property (2)? A way of characterizing the axis of

rotation is to say it is the axis such that any vector parallel to this axis is unchanged by the
rotation. R′−1~e is unchanged by the RHS of (2). It is also unchanged by the LHS because
R′ turns it into ~e, which is unchanged by R(~eθ) and R′−1 turns it back into R′−1~e. Thus the
LHS is a rotation by θ about R′−1~e. We won’t actually use all the information contained in
(1) and (2). We will only use them in infinitesimal form, that is, we’ll take derivative with
respect to θ and θ′. This loss of information decreases the restrictions on the form of the
representations, and is the reason we pick up representation up to a phase, even though the
formalism hasn’t explicitly included them.

Applying the infinitesimal analysis to a representation. Take

d

dθ
D(R(~eθ))|θ=0 ≡ −i~e · ~J

(The ~J ’s are the “generators” of this representation)

This is a very concrete equation. The D’s are some representation of dimension N and the
three ~J ’s are some N×N matrices. (1) can be made into a statement about representations.

D(R(~eθ′))D(R(~eθ)) = D(R(~e[θ + θ′]))

Take
d

dθ′
, and set θ′ = 0 to get (on the RHS

d

dθ
=

d

dθ′
)

−i~e · ~J D(R(~eθ)) =
d

dθ
D(R(~eθ))
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This is a simple differential equation. The solution with the boundary conditionD(R(~e0)) =
1 is

D(R(~eθ)) = e−i~e·
~Jθ

(The ~J ’s “generate the representation”)

Now we can transfer our definitions about inequivalence and irreducibility to the gener-
ators. If the rep D is generated by ~J and the representation D′ by ~J ′ and D ∼ D′ that is
D(R) = SD′(R)S−1 for some S and all R then

Se−i~e·
~J ′θS−1 = e−i~e·

~Jθ ⇐⇒ S ~J ′S−1 = ~J i.e. ~J ∼ ~J ′

Equivalence of two reps is the same as equivalence of their generators. What about
irreducibility? If a representation is reducible, then it is equivalent to a representation that
has block diagonal form for all rotations. So ~e · ~J = i d

dθ
D(R(~eθ))|θ=0 has block diagonal

form. Reducibility of a rep is the same as reducibility of its generators. I can even phrase
this a little more strongly.

If D(R) =

(
D(1)(R) 0

0 D(2)(R)

)
then ~J =

(
J (1) 0

0 J (2)

)
and if D ∼ D(1) ⊕D(2) then ~J ∼ ~J (1) ⊕ ~J (2)

The task of finding inequivalent irreducible finite dimensional representations D of SO(3)

has been reduced to the task of finding inequivalent irreducible sets of 3 matrices ~J , whose
properties we are considering.

As a statement about representations, (2) is

D(R′−1)D(R(~eθ))D(R′) = D(R(R′−1~eθ))

Take i d
dθ

at θ = 0 to get

D(R′−1) ~e · ~J D(R′) = (R′−1~e) · ~J = ~e ·R′ ~J

(the last equality using the fact rotation matrices preserve scalar products)

Dropping the primes, and using the fact that ~e is an arbitrary unit vector, this says

D(R−1) ~JD(R) = R~J

which is the statement that the generator of the rotations, the 3 ~J ’s (N × N matrices)
transform like a vector.
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You can go further by writing R, parametrizing R by ~e and θ (it shouldn’t cause confusion
to use these variables again). What we have found is

ei
~J ·~eθ ~Je−i~e·

~Jθ = ~J + θ~e× ~J +O(θ2)

where on the RHS I have used a physical property of the rotation group, that for small
θ, a rotation matrix acting on a vector changes it by

θ~e× ~V +O(θ2)

(use the RH rule to make sure this agrees with the convention and picture before). Take
−i d

dθ
of this equation to get

[ ~J · ~e, ~J ] = −i~e× ~J

Take ~e = êx and look at y component to get

[Jx, Jy] = iJz

also can get
[Ji, Jj] = iεijkJk

The generators ~J form a representation of the Lie algebra of the group. They satisfy the
same commutation relations.

Facts about finite dimensional inequivalent irreducible representation of the Lie
algebra of the rotation group

A complete set of them is the

~J (s) s = 0,
1

2
, 1,

3

2
, · · · “spin” s

~J (0) = ~0 ~J ( 1
2

) =
~σ

2
(J

(1)
i )jk = −iεijk

J (s)
z |m〉 = m|m︸︷︷︸

no sum

〉 m = −s,−s+ 1,−s+ 2, . . . , s− 2, s− 1, s

in a usual basis for the 2s+ 1 dimensional vector space the ~J (s) act on.

The ~J (s) are hermitian. Every representation is equivalent to a hermitian representation.
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Facts about finite dimensional inequivalent irreducible representation up to a
phase of the rotation group, D(s)(R(~eθ)) = e−i~e·

~J(s)θ

(1). The reps of the Lie algebra just listed not only generate the reps of the rotation group,
they generate the reps up to a phase. The integer s are representations. The half
integers s are reps up to a phase. More specifically, they are double valued

D(s)(R(2π~e)) = (−1)2s1

(2). dim D(s) = 2s+ 1

(3). The hermiticity of the ~J (s) implies the D(s) are unitary (D(s)(R−1) = [D(s)(R)]−1 ×
[D(s)(R)]†). Every representation of the rotation group is equivalent to a unitary

representation of the rotation group. Of course, in dumb bases, like ~i,~j, 7~k for the
space D(1) acts on, the D’s preserve x2 + y2 + 1

49
z2, and they are not unitary.

(4). If I have any representation of any group G, g ∈ G, Da
b(g), I can define a new repre-

sentation, g ∈ G, D∗ab(g) = (Da
b(g))∗ (no matrix transpose).

This new representation has the same dimension as the original representation. It may
or may not be equivalent to the representation you obtained it from. If D is irreducible,
the new rep D∗ is irreducible. In SO(3) since there is only one inequivalent irreducible
representation of a given dimension, a rep must be equivalent to its associated complex
conjugate rep. Furthermore

D(s) ∼ D(s)∗ and D(s)(R(~eθ)) = e−i~e·
~Jθ (19.1)

implies ~J (s) ∼ − ~J (s)∗. The − sign is present because of the i in the exponential.

(5). Direct product of representations. A new notation, the notation of bras and linear op-

erators, (J
(s)
z |m〉 = m|m〉, no sum implied) appeared out of the blue. It is intuitively

clear that a matrix of numbers acting on a column vector, can be reinterpreted as a
linear operator acting on a vector space, but I would like to make the connection precise.

Suppose I have an n dimensional representation, that is, an n×n matrix for every element
of a group, Di

j(g). Now let me define a linear operator, D(g), (I am sorry this notation
also been used for the matrix although we shall see why the ambiguity is small), which will
act on an n dimensional vector space, with an orthonormal basis |i〉, i = 1, . . . , n. D(g) is
defined by

D(g)|i〉 =
∑
j

|j〉〈j|D(g)|i〉 =
∑
j

|j〉Dj
i(g)
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The intermediate step was motivational, the definition is

D(g)|i〉 ≡
∑
j

|j〉Dj
i(g)

From the definition, and the fact that the basis is orthonormal, you can recover the
matrix Dj

i(g) from the abstract linear operator.

〈j|D(g)|i〉 = 〈j|(
∑
k

|k〉Dk
i(g)) =

∑
k

δjkD
k
i(g) = Dj

i(g)

Let’s see what the composition law∑
j

Di
j(g)Dj

k(g
′) = Di

k(gg
′)

which must be satisfied by a representation, implies about our new abstract linear oper-
ator

D(g)D(g′)|i〉 = D(g)
(∑

j

|j〉Dj
i(g
′)
)

=
∑
j,k

|k〉Dk
j(g)Dj

i(g
′)

=
∑
k

|k〉Dk
i(gg

′)

= D(gg′)|i〉

Therefore D(g)D(g′) = D(gg′).

It is nice to see this work out, because we also write the composition law of the matrices
as

D(g)D(g′) = D(gg′)

Now we see that is true for the matrices and the abstract linear operators. There was
some danger this was not going to work out. We might have gotten D(g)D(g′) = D(g′g) for
the operator composition law.

In this spiffy notation, I’ll define the tensor product of two representations. First to
define tensor product space. If I have two vector spaces

V1 with a basis |i〉1, i = 1, . . . , d1 and V2 with a basis |j〉2, j = 1, . . . , d2. I define a
vector space V1 × V2 with a basis

|i, j〉 ≡ |i〉1 ⊗ |j〉2
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The dimension of V1 × V2 is d1 · d2.

Given a linear operator on V1, A, and a linear operator on V2, B, I can define a linear
operator on V1 × V2 called A⊗B by

(A⊗B)|i, j〉 = (A|i〉1)⊗ (B|j〉2)

or
〈i′, j′|A⊗B|i, j〉 = 1〈i′|A|i〉1 2〈j′|B|j〉2

Now if we have a representation D(1) acting on V1 and D(2) acting on V2, we can define
a new representation denoted D(1) ⊗D(2) acting on V1 × V2:

D(1) ⊗D(2)(g) = D(1)(g)⊗D(2)(g)

The new representation may or may not be reducible.

If the two representations are the same, that is d = d1 = d2, V = V1 = V2 and D =
D(1) = D(2), we can show that D ⊗D is reducible (except in the case d = 1). The trick is
that in this case it makes sense to talk about

i√
2

(
|i〉 ⊗ |j〉+ |j〉 ⊗ |i〉

)
and

1√
2

(
|i〉 ⊗ |j〉 − |j〉 ⊗ |i〉

)
(or in another notation

1√
2

(
|i, j〉+ |j, i〉

)
and 1√

2

(
|i, j〉 − |j, i〉

)
).

You can think of this as a new basis. The number of basis elements of the first type is
d(d+1)

2
, the number of the second is d(d−1)

2
. You can get fancy by defining projection operators

P+(|i〉 ⊗ |j〉) ≡ 1

2
(|i〉 ⊗ |j〉+ |j〉 ⊗ |i〉)

and

P−(|i〉 ⊗ |j〉) ≡ 1

2
(|i〉 ⊗ |j〉 − |j〉 ⊗ |i〉)

(The d(d+1)
2

elements of the symmetric part of the basis satisfy P+|sym〉 = |sym〉, P−|sym〉 =
0).

The 1
2

is put in so that P 2
+ = P+ and P 2

− = P−, also P+ + P− = 1, P+P− = 0.

With these projection operators, I’ll show that D⊗D is reducible. What I need to show
is that

(D ⊗D)(g)P± = P±(D ⊗D)(g)
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It’s just a matter of using definitions (somehow math proofs are always just a matter of
using the definitions although it is usually beyond me to do it)

(D ⊗D)(g)P±|i〉 ⊗ |j〉 =
1

2
(D ⊗D)(g)

(
|i〉 ⊗ |j〉 ± |j〉 ⊗ |i〉

)
=

1

2

(
D(g)|i〉 ⊗D(g)|j〉 ±D(g)|j〉 ⊗D(g)|i〉

)
= P±D(g)|i〉 ⊗D(g)|j〉 = P±(D ⊗D)(g)|i〉 ⊗ |j〉

That does it. It may not be obvious to you that this shows that the representation is
reducible, since our definition of reducibility was in terms of matrices, so I’ll make the con-
nection precise and I’ll try to phrase the connection so that you can see a representation is
reducible whenever you have a set of projection operator like P+ and P−, commuting with it.

If you have a set of projection operators

Pi, i = 1, . . . ,m P 2
i = Pi PiPj = 0, i 6= j∑

i

Pi = 1

then I can choose the basis of the vector space they act on so that it breaks up into bases
for various subspace that are either annihilated or unaffected by the Pi.

(In the example of importance, there are n(n+1)
2

bases vectors unaffected by P+ and anni-

hilated by P−, while the other n(n−1)
2

basis vector unaffected by P− and annihilated by P+)

I’ll write the basis vector as |i, α〉, (i has nothing to do with direct products, just a way of
labelling the basis; and α = 1, . . . , di, where di is the dimension of the ith subspace), where

Pi|i, α〉 = |i, α〉

Pi|j, α〉 = 0 j 6= i

The big assumption about these projection operators is that they commute with the
representation operators. Let’s call the rep D.

PiD(g) = D(g)Pi for all i and g

Let’s look at the matrix associated with D(g) in this basis and see what we can show
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about it.

Diα
jβ = 〈i, α|D(g)|j, β〉

= 〈i, α|D(g)
∑
k

Pk|j, β〉

= 〈i, α|D(g)Pj|j, β〉
= 〈i, α|PjD(g)|j, p〉 ∝ δji

(The proportionality constant depends g, i, j, α and β but that doesn’t matter.)

This is the statement that in this basis, the matrix D(g) is block diagonal.
d1 × d1

d2 × d2

. . .
. . .

dm × dm


In the example of importance, by finding P+ and P− that commute with D⊗D, we have

shown that D ⊗D is equivalent to

[(D ⊗D)iαjβ(g)] =

(
Some n(n+1)

2
× n(n+1)

2
matrix 0

0 n(n−1)
2
× n(n−1)

2

)

These two blocks may or may not be further reducible. If the n(n+1)
2

dim block is reducible
into m irreducible components, D(1), . . . , D(n), each of these representations is said to be in
the symmetric part of the tensor product. If the n(n−1)

2
dimension block is reducible into

m′ irreducible components, D′(1), . . . , D′(m), each of these is said to be in the antisymmetric
part of the tensor product.

So after a multipage rambling explanation of tensor product, I’ll finally state the fifth
fact about the rotation group. Tensoring two irreducible reps together

D(s1) ⊗D(s2) ∼ D(s1+s2) ⊕Ds1+s2−1 ⊕Ds1+s2−2 ⊕ · · · ⊕D|s1−s2|

= ⊕
s1+s2∑

s=|s1−s2|

D(s)

Tensoring two identical reps togethers

D(s) ⊗D(s) = D(2s) ⊕D(2s−1) ⊕D(2s−2) ⊕ · · · ⊕D(0)
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where D(2s), D(2s−2), · · · are in the symmetric part. D(2s−1), · · · are in the antisymmetric
part. D(0) is symmetric if s is an integer, antisymmetric if s is a 1

2
integer.

They just alternate.
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20 December 4

Parametrizing the connected homogeneous Lorentz group

The rotation group was parametrized by a direction ~e and an angle θ. We’ll show that
SO(3, 1) can be parametrized by ~e, θ, and another direction and “angle”, by showing that
any Lorentz transformation can be decomposed into a rotation and a boost. A Lorentz
transformation is called a rotation if it takes

t→ t and ~x→ R~x

We’ll denote such a Lorentz transformation by R and you’ll have to understand from
context when R ∈ SO(3, 1) and when R is a 3× 3 orthogonal matrix.

A boost in the x direction by an “angle”, velocity parameter, φ, has taken

t→ t coshφ+ x sinhφ

x→ x sinhφ+ x coshφ

y → y

z → z

We’ll denote such a L.T. A(exφ), restricting 0 ≤ φ < ∞ to avoid parametrizing each
boost more than one way. In general

A(~eφ) : t→ t coshφ+ ~e · ~x sinhφ

~x→ ~e t sinhφ+ ~x+ ~e (coshφ− 1) ~e · ~x

(This generalization is forced upon you by Eq. (20.3).)

To go along with the formula

R(~e θ′)R(~e θ) = R(~e [θ + θ′]) (20.1)

We also have the formula (which can be verified with a little algebra) (the algebra involves
using formulas for sinh(φ1 + φ2) and cosh(φ1 + φ2)).

A(~eφ′)A(~eφ) = A(~e[φ+ φ′]) (20.2)

This is why the velocity parameter is such a useful parameter for boosts, it just adds.

Now to prove that any Lorentz transformation can be uniquely decomposed into a rota-
tion followed by a boost. The proof is by construction and the construction is unambiguous,
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it has no freedom, which implies uniqueness.

Starting with a general Lorentz transformation Λ consider its action on the vector e0 ≡
(1,~0). Since this vector has time component > 0 and since all L.T. connected to the identity
preserve this when the vector is timelike, we must have

Λ : e0 → (γ, α~e)

where α, γ real and greater then zero but otherwise unknown and ~e is some unit vec-
tor. The key thing about Lorentz transformations is that they leave the length of a vector
unchanged, so we know there is a restriction on γ and α

γ2 − α2 = 1 and γ > 0

=⇒ γ =
√

1 + α2

Let’s rename α = sinhφ, φ > 0, then γ = coshφ and the most general thing that e0 can
transform into under a Lorentz transformation is

Λ : e0 → (coshφ,~e sinhφ)

This determination of an “angle” φ and a direction ~e allows me to (uniquely) read off
the boost that will bring e0 back to rest, it is

A−1(~eφ)

A−1(~eφ) Λ : e0 → e0

This means this product is some rotation, call it R.

A−1(~eφ) Λ = R

Λ = R A(~eφ)

Just like when we were working with SO(3), formulas like Eqs. (20.1) and (20.2) show
that rotations and boosts can be written as exponentials. In a rep D it implies

d

dθ
D(R(~e θ))|θ=0 ≡ −i~L · ~e, D(R(~e θ)) = e−i

~L·~e θ

d

dφ
D(A(~eφ))|φ=0 ≡ −i ~M · ~e, D(A(~eφ)) = e−i

~M ·~eφ

Just as for SO(3), if you know the inequivalent irreducible reps of ~L and ~M , the generators

of SO(3, 1), you know the inequivalent irreducible reps up to a phase of SO(3, 1). ~L is playing
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the exact same role as ~J did in our discussion of SO(3), in fact we would have reused ~J if it
weren’t that it is conventionally used for something else. So from the properties of rotations,
we have

[Li, Lj] = iεijkLk (
∑
k

implied)

(that came from R′−1R(~eθ)R′ = R(R′−1~eθ))

A property of the Lorentz group is that

R−1A(~eφ)R = A(R−1~eφ) (20.3)

(can be used to get the general boost from a boost in the ~x direction)

(you can convince yourself that both sides are boosts by φ along R−1~e) Out of this (take
i d
dφ

) comes the statement (applied to rep D).

D(R−1) ~e · ~M D(R) = R−1 ~e · ~M

which implies

D(R−1) ~M, D(R) = R ~M

(These are just like the SO(3) arguments, so I haven’t written them in detail)
which implies after a little more work

[Li,Mj] = iεijkMk

Using

D(R)−1 Mi D(R) = Rij︸︷︷︸
3×3 orthogonal
rotation matrix

Mj (
∑
j

implied)

It is easy to see that

D(R)−1MiMjD(R) = RikRjlMiMj

that is MiMj transforms like a two index tensor under rotations. Therefore [Mi,Mj] is
a two index antisymmetric tensor under rotation. If the Lie algebra of SO(3, 1) is going
to close, the commutator of two boost generators must be a linear combination of a boost
generator and a rotation generator. The most general thing I can make that is a two index
antisymmetric tensor that is linear in the boost and rotation generators, which transform
like vectors, is

αεijkMk + βεijkLk
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Therefore it must be that

[Mi,Mj] = iεijk[αMk + βLk]

Still more evasive reasoning shows that α = 0. Using the Parity automorphism intro-
duced on December 2, we get a new representation from the one we were working with by
defining DP (Λ) = D(ΛP ). Now for a rotation, PRP = R, so DP (R) = D(R). The gen-
erator of rotations in Dp are the same as those in D. However for PA(~eφ)P = A(−~eφ)
so the generators of boosts are minus the generators of boosts in D. This can be sum-
marized, Li → Li, Mi → −Mi. The commutation relations have to still work under this
transformation. [Li, Lj] = iεijkLk is OK. [Li,−Mj] = iεijk(−Mk) is OK but [−Mi,−Mj] =
iεijk[α(−Mk) + βLk] is OK only if α = 0.

In fact with a fair amount of work, you can check from the definitions, [Mi,Mj] =
−iεijkLk. (The − sign would not be present if this were SO(4) instead of SO(3, 1)). From
the commutation relations of the Lie algebra of any group, there is a general method called
the method of highest weight. Fortunately, a miracle occurs, and we will not have to go
through that method.

Define
~J (±) =

1

2
(~L± i︸︷︷︸

no i would be here
if it were SO(4)

we were studying

~M)

~L = ~J (+) + ~J (−)

−i ~M = −︸︷︷︸
This − sign is obvious

(
~J (+) − ~J (−)

)
You can verify from the commutators of the ~L’s and ~M ’s that

[J
(±)
i , J

(±)
j ] = iεijkJ

(±)
k

and
[J

(±)
i , J

(∓)
j ] = 0

The ~J (+)’s and ~J (−)’s form two independent, commuting SO(3) algebra. What we want
to find is matrices (my brain is better equipped to think about matrices than abstract linear
operator, but you can think about it either way) that have these commutation relations –
we want a complete set of inequivalent irreducible ones.
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Here are some: For any s1, s2, s1 = 0, 1
2
, 1, . . . , s2 = 0, 1

2
, 1, · · · , take

J
(+)
i = J

(s1)
i ⊗ Id2s2+1︸ ︷︷ ︸

(2s2+1)×(2s2+1)
dimensional identity

(20.4)

and
J

(−)
i = Id2s1+1︸ ︷︷ ︸

(2s1+1)×(2s1+1)
dimensional identity

⊗ J
(s2)
i (20.5)

The J
(s)
i are our friends from the last lecture. Let me show that this satisfies one of the

commutation relations. (You can check the others).

[J
(+)
i , J

(+)
j ] = [J

(s1)
i ⊗ Id2s2+1, J

(s1)
j ⊗ Id2s2+1]

= J
(s1)
i ⊗ Id2s2+1 J

(s1)
j ⊗ Id2s2+1 − i↔ j

= J
(s1)
i J

(s1)
j ⊗ Id2s2+1 − i↔ j

= [J
(s1)
i , J

(s1)
j ]⊗ Id2s2+1

= iεijkJ
(s1)
k ⊗ Id2s2+1

= iεijkJ
(+)
k

Now you can solve for the ~L’s and ~M ’s in term of the ~J (±).

~L = ~J (+) + ~J (−) = ~J (s1) ⊗ Id2s2+1 + Id2s1+1 ⊗ ~J (s2)

Because the ~J (s) are hermitian27, ~L is hermitian.

~M =
1

i

(
~J (+) − ~J (−)

)
is antihermitian (because of the

1

2
)

The commutation relations among the ~J (+) and ~J (−) (which were derived by using the

definitions in term of ~L and ~M), give us back the correct commutation relations for ~L and ~M .

Exponentiating ~L and ~M for any choice of s1 and s2 gives a representation called D(s1,s2).
I’ll define

Λ(~eθ, ~fφ)

D(s1,s2)(Λ(~e θ, ~fφ)) = e−i
~L·~eθe−i

~M ·~fφ

= e−i(
~J(+)+ ~J(−))·~eθe−( ~J(+)− ~J(−))·~fφ

(only for ~e ‖ ~f) = e−i
~J(+)(~eθ−i ~fφ)e−i(

~J(−)(~eθ+i ~fφ)

27If you can’t prove this from (A⊗B)† = A† ⊗B† please feel free to come ask me to elaborate.
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This has a simpler form for a pure boost or a pure rotation.

D(s1,s2)(A(~eφ)) = e−( ~J(+)− ~J(−))·~eφ

D(s1,s2)(R(~eθ)) = e−( ~J(+)+ ~J(−))·~eθ

It turns out that these are only representations up to a phase of SO(3, 1) if s1 + s2 is a
half integer. The claim is that these are a complete set of inequivalent irreducible reps up
to a phase of the Lorentz group.

I would like to explain the distinction between D(s1,s2), a representation of SO(3, 1), and
D(s1)⊗D(s2), the direct product of two representations of SO(3), which is in general reducible.

D(s1) ⊗D(s2)(R(~eθ)) = e−i
~J(s1)·~eθ ⊗ e−i ~J(s2)·~eθ

This is a representation of SO(3), it has three generators, and they are given by taking

i
d

dθ
(D(s1) ⊗D(s2))

(
R(~eθ

)∣∣∣
θ=0

= ( ~J (s1) ⊗ Id2s2+1 + Id2s1+1 ⊗ ~J (s2)) · ~e

These three generators (one for each direction ~e can point), bear some resemblance to
the six generators of SO(3, 1):

~J (+) = ~J (s1) ⊗ Id2s2+1 and ~J (−) = Id2s1+1 ⊗ ~J (s2)

and if you restrict yourself to elements of SO(3, 1) such that the coefficient of J
(+)
i is the

same as the coefficient of J
(−)
i , that is, the rotations, you really have got the same thing.

But, the coefficient of J (+) is independent of that of J (−). D(s1) ⊗D(s2) is a reducible rep of
SO(3), D(s1,s2) is an irreducible rep of SO(3, 1).

A standard basis for the representation D(s1,s2) is the basis |m+,m−〉,

m+ = −s1,−s1 + 1, . . . , s1 − 1, s1

m− = −s2,−s2 + 1, . . . , s2 − 1, s2

which simultaneously diagonalizing the two commuting hermitian operators J
(+)
z and

J
(−)
z :

J (±)
z |m+,m−〉 = m±|m+,m−〉

It would have been possible to carry out the analysis in a more Lorentz invariant fashion
by defining (according to Ramond, p.10)

J ij = εijkLk
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J0i = −J i0 = −Mi

J00 = J ii = 0 no sum

The commutation relation would have been unified into

[Jµν , Jαβ] = igναJµβ − igµαJνβ − igνβJµα + igµβJνα

A Lorentz transformation would be parametrized by an antisymmetric matrix εµν

D(Λ(εµν)) = e−iεµνJ
µν

This approach buys you nothing but elegance, at the expense of clarity.

Another thing worth noting is that a parallel analysis can be made of SO(4). It is kind
of nice to look through then calculations and see where i’s are changed to −i’s and where
gµν becomes δµν .

Carefully spelling out and proving any of the statements before would be instructive. I
feel I have put enough of the outlines here that I could pursue the proofs to my satisfaction.
I would enjoy making some of these statement more concrete. If people come ask me about
them it will force me to do so.

Facts about D(s1,s2) summarized

(1). The dimension of D(s1,s2) is (2s1 + 1)(2s2 + 1).

(2). When s1 + s2 is a half integer, we have representation up to a phase

D
(
R(~eπ)

)
D
(
R(~eπ)

)
= −1

(3). For R ∈ SO(3, 1), a rotation D(s1,s2)(R) is unitary, however for A ∈ SO(3, 1), a boost,
D(s1,s2)(A) is not. In fact it is hermitian.

This can be seen from the hermiticity of ~J (+) and ~J (−).

This agrees with some general theorem of group theory, worth noting.

The finite dimensional representations of a compact group are always equivalent to uni-
tary representations; the generators can always be chosen to be hermitian in some basis.
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SO(3, 1) is not a compact group. The range of boosts is infinite: 0 ≤ φ <∞.

The unitary representations of a non-compact group are always infinite dimensional.
The finite dimensional ones are never unitary.

Although the ~J± we have found are hermitian, their coefficients, when Λ is not a ro-
tation, in the exponential are not purely imaginary.

One can consider ∞ dimensional unitary reps. These would presumably describe an
∞ number of particle types. To agree with reality, infinitely many particles would
somehow have to be hidden...

(4). What rep do we get by taking the complex conjugate of D(s1,s2). Since ~J (±) ∼ − ~J (±)∗

(follows from their expressions in terms of ~J (s1) and ~J (s2) and the properties of ~J (s).
(Dec. 2, Eq. (19.1) )).The representation of a rotation is equivalent28

D(s1,s2)∗
(
R(~eθ)

)
= e+i( ~J(+)+ ~J(−))∗·~eθ

∼ e−i(
~J(+)+ ~J(−))·~eθ = D(s1,s2)

(
R(~eθ)

)
The representation of a boost however is screwed up in a way that cannot be undone
by some equivalence.

D(s1,s2)∗(A(~eφ)) = e−( ~J(+)− ~J(−))∗ · ~eφ

∼ e−( ~J(−)− ~J(+))·~eφ

The roles of ~J (−) and ~J (+) have ben exchanged. This is true for both the rotations,
~J (+) ↔ ~J (−) does nothing to them, and the boosts. We can identify the new rep we
have made by noting that the exchange of ~J (+) ↔ ~J (−) is just like the exchange of s1

and s2. That is
D(s1,s2)∗(Λ) ∼ D(s2,s1)(Λ)

If you believe that D(s1,s2) is not equivalent to D(s2,s1) (unless s2 = s1), this shows that
D(s1,s2)∗ is not equivalent to D(s1,s2) (unless s1 = s2).

28The sketch of fact (4) can be made more concrete by giving a name S to the matrix that satisfies

S−1 ~J (s)S = − ~J (s) and using it to display the similarity transformation between D(s1,s2)∗ and D(s1,s2).
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(5). The effect of parity on a rep was already discussed Li → Li, Mi → −Mi, is also
interpretable as

J (+) ↔ J (−)

so
D(s1,s2)
p ∼ D(s2,s1)

(6). D(s′1,s
′
2)⊗D(s′′1 ,s

′′
2 ) = ⊕

s′1+s′′1∑
s1=|s′1−s′′1 |

s′2+s′′2∑
s2=|s′2−s′′2 |

D(s1,s2). If s1 = s′1 = s′′1 and s2 = s′2 = s′′2, then

in the tensor product

– D(2s,2s) is symmetric, D(2s,2s−1) is antisymmetric.

– D(2s,2s−2) is symmetric, D(2s,2s−3) is antisymmetric, etc.

– D(2s−1,2s−1) is symmetric, D(2s−1,2s−2) is antisymmetric.

– D(2s−2,2s−2) is symmetric, etc.

The proof of these statements would probably be instructive to construct. I expect
with some thought they can be derived from the analogous statements about SO(3) in
short order.

(7). If you understood the distinction between D(s1,s2) and D(s1) ⊗ D(s2), this fact about
D(s1,s2) will be easy to understand.

Any time you have a representation of a group (up to a phase), you have a represen-
tation of any of its subgroups (up to a phase).

Even if the representation of the group is irreducible, the representation of the sub-
group may be reducible.

By restricting ourselves to the rotations, a subgroup of SO(3, 1), we get a representation
of SO(3) which is in general reducible. In fact we are down to the case where the

coefficients of ~J (+) and ~J (−) are identical, and for those coefficients, we have exactly
the same possible representation matrices as if we had taken D(s1) ⊗D(s2). So D(s1,s2)

“induces” a rep of SO(3) which is

D(s1) ⊗D(s2) ∼ ⊕
s1+s2∑

s=|s1−s2|

D(s)
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(s, 0) and (0, s) are irreducible reps of SO(3, 1) and SO(3).

Examples
Where is the vector?

If the vector representation which we all know and love, is irreducible (I’ve never been
able to reduce it), it must be equivalent to one of the four dimensional representations we
have constructed. The only irreducible four dimensional reps on our list are

D(3/2,0) D(0,3/2) and D(1/2,1/2)

(2 · 3/2 + 1)(0 + 1) (2 · 0 + 1)(2 · 3/2 + 1) (2 · 1/2 + 1)(2 · 1/2 + 1)
4 4 4

(these are only three ways to factor 4).

D(3/2,0) cannot be the vector for any of several reasons.

1. The complex conjugate of D(3/2,0) is D(0,3/2) which is inequivalent to D(3/2,0). However
the vector is equivalent to its complex conjugate. Manifestly, because in the usual
basis, the matrices that transform a vector are purely real.

2. A similar argument applies by considering the effect of parity.

3. If you restrict yourself to the rotation subgroup of SO(3, 1), the four vector represen-
tation is reducible into a three vector and a rotational scalar. D(3/2,0) however remains
irreducible under this restriction. It is a spinor with spin 3/2 under rotation.

Identical arguments rule out D(0,3/2).

D(1/2,1/2) must be the vector. It looks funny, but it must be right. It certainly can’t
be ruled out along the lines of above three arguments. Later we’ll make a vector out of
D(1/2,0) ⊗D(0,1/2), which is equivalent to D(1/2,1/2).

What about rank 2 tensors

Usually we get a rank 2 tensor by taking the tensor product of two vectors. If Aµ and
Bν transform like vectors, AµBν transforms like a tensor. If D(1/2,1/2) is a vector then
D(1/2,1/2) ⊗D(1/2,1/2) must be a tensor. Now

D(1/2,1/2) ⊗D(1/2,1/2) ∼ D(1,1) ⊕ D(0,1) ⊕ D(1,0) ⊕ D(0,0)

S A A S
dim 9 dim 3 dim 3 dim 1
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There must be a way to reduce the tensor T µν into 9, 3, 3, and 1 dimensional subspaces
that transform independently under SO(3, 1). We can rewrite

T µν =
1

2
(T µν + T νµ) +

1

2
(T µν − T νµ)

≡ Sµν︸︷︷︸
10 dim

+ Aνµ︸︷︷︸
6 dim

and from our general arguments about symmetric and antisymmetric tensor products,
these two subspaces must transform independently. The 10 dim symmetric subspace must
contain a 9 dim and 1 dim subspace which transform independently. Indeed, the linear
combination

gµνS
µν is a Lorentz invariant,

so that 1 dimensional subspace transforms independently of the other 9 components of
Sµν which are in

Sµν − 1

4
gµνS

µν

the “traceless” part of S. This is D(1,1), the symmetric traceless tensor. In general,
D(n/2,n/2) is the symmetric traceless tensor of part n.

Just for completeness, let’s find the two irreducible parts of Aµν . Given any antisymmetric
two index tensor, you can define a new antisymmetric tensor by

ADµν =
1

2
εµναβA

αβ ε0123 = +1

AD01 = A23 the
1

2
was inserted to avoid AD01 = 2A23

AD01 = −A23, AD23 = A01

The cute thing about this operation is that

ADDµν = −Aµν

The square of the dualing operation is −1, and the eigenvalues must be ±i. The dualing
operation also commutes with Lorentz transformations (that have det (Λ) = +1). Thus, the
Lorentz transformations transform the subspace of each eigenvalue of the dualing operation
independently.

Aµν =
1

2
(Aµν + iADµν) +

1

2
(Aµν − iADµν)

≡ A(+)µν + A(−)µν
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A(±)Dµν =
1

2

[
ADµν ± iADDµν

]
=

1

2

[
ADµν ∓ iAµν

]
= ∓iA(±)µν

The six dimensional antisymmetric part of the tensor product has been broken into two
3 dimensional parts, which must be D(1,0) and D(0,1). It is no surprise that this splitting
required taking complex combinations because D(1,0) and D(0,1) are not equivalent to their
complex conjugates.

Spinors

This is the example we are really interested in. We’ll be using, for the rest of the course,
fields transforming like D(1/2,0) and D(0,1/2). In fact, this is really the only application of the
last couple lectures that is going to be used. (The scalar and vector reps you (presumably)
already understood.) So if you get a good handle on how to manipulate these two repre-
sentations, you don’t really have to understand all the representation theory that has gone
before.

We’ll study D(0,1/2). Using the formulas in Eqs. (20.4) and (20.5), with s1 = 0, s2 = 1
2
,

and using

~J (0) = ~0, ~J (1/2) =
~σ

2

we have
~J (+) = ~0, ~J (−) =

~σ

2

In this representation, a rotation is given by

D(R(~e θ)) = e−i(
~J(+)+ ~J(−))·~e θ

= e−i~σ·~e θ/2

A boost is represented by

D(A(~eφ)) = e−( ~J(+)− ~J(−))·~eφ = e+~σ·~eφ/2

Because of the plus sign in e+~σ·~eφ/2, let’s call a field that transforms under D(0,1/2), u+.
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In the D(1/2,0) rep, a rotation is represented the same way 29, but a boost has a minus
sign in the exponential, so the field transforming as D(1/2,0) will be called u−.

Because D(0,1/2)∗ ∼ D(1/2,0), u∗+ must transform like D(1/2,0). If we want to think of u∗+
as a new vector, we’ll write u†+. Since

D(1/2,0) ⊗D(0,1/2) ∼ D(1/2,1/2)

The product of u and u† must be a four vector, and if we can find the right combination,
we can make that explicit. An easy way to find the right combinations is to recall the
transformations of spinors under the subgroup of rotations. Both u+ and u†+ transform as
rotational spinors, and a rotational scalar can be made by taking

u†+u+ and a rotational vector is u†+~σu+

The four vector must be (u†+u+, αu
†
+~σu+). α is unknown from this argument, but we can

find it by looking at a boost along ez with rapidity φ,

A(~ezφ) : u+ → e+σzφ/2u+

and u†+ → u†+(eσzφ/2)† = u†+e
σzφ/2

so

u†+u+ → u†+e
σzφu+

= u†+(coshφ+ σz sinhφ)u+

= coshφu†+u+ + sinhφu†+ σz u+

If we take α = 1, i.e. v0 = u†+u+, ~v = u†+~σu+, this says

v0 −→ coshφv0 + sinhφvz

Let’s see what vz (v3 if you want to keep your indices up) and vx (or vy) transform into

vz = u†+σzu+ −→ u†+e
σzφ/2σze

σzφ/2u+

= u†+(σz coshφ+ sinhφ)u+

= coshφ vz + sinhφ v0

vx = u†+σxu+ −→ u†+e
σzφ/2σxe

σzφ/2u+

29It better be. Up to equivalences there is only one way for an irreducible rep of a given dimension to
transform under rotations.
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But using eσzφ/2 = cosh
φ

2
+ sinh

φ

2
σz and σzσx = −σxσz, we see that we have found

vx −→ u†+e
+σzφ/2e−σzφ/2σxu+ = vx

Similarly vy −→ vy.

If you had gone through this procedure for u−, you would have found that the vector is

wµ = (u†−u−,−u
†
−~σu−)

It looks like the two component fields we have found have a fighting chance of describing
spin 1/2 particles.
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21 December 9

Promote the two component objects u± into two component functions of space time, spinor
fields.

Criteria for a free theory made up of a u+ field.

L(u+, u
†
+, ∂µu+, ∂µu

†
+)

(i). S =
∫
d4x L had better be real, S = S∗ .

(ii). L must be a Lorentz scalar, but not necessarily parity invariant.

(iii). L bilinear in the fields so we get a linear equation of motion and a free field theory

(iv). No more than two derivatives in L. If we can’t construct anything of this type we’ll
go to three, four or more derivative

(v). Want the theory to have a conserved charge

u+ −→ eiθu+ u†+ −→ e−iθu†+

(Rule out Majorana neutrinos) because all known spin 1/2 particles in the world do
carry some conserved quantum number, like baryon number.

Property (v) with property (iii) force us to have one u+ and one u†+ factor in each term.

Now the product u+u
†
+ is a four vector, which is neither a scalar itself, nor can a scalar be

built from it with an even number of derivatives. However, a scalar can be built from it and
one derivative. So (ii) and (iv) imply

L ∝ (u†+∂0u+ + u†+~σ · ~∇u+)

The coefficient of proportionality must be purely imaginary to satisfy (i) (proof involves
a parts integration). By rescaling u+ and u†+ we have

L = ±i
[
u†+∂0u+ + u†+~σ · ~∇u+

]
(For u− we would have arrived at L = ±i

[
u†−∂0u− − u†−~σ · ~∇u−

]
)
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This is called the Weyl Lagrangian. Let’s derive the equation of motion by varying w.r.t.
u†+

∂0u+ + ~σ · ~∇u+ = 0

We can see that any solution of this equation is a solution of the Klein-Gordon equation
by acting on it with ∂0 − ~σ · ~∇ to get

(∂2
0 −∇2)u+ = 0.

(An identity matrix has been suppressed). To derive this you need to use equality of
mixed particles and σiσj = iεijkσk + δij, where a 2× 2 identity is again suppressed in δij.

So all the solutions of the Weyl equation satisfy the wave equation, and they must be of
the form

u+(x) = u+e
−ik·x k2 = 0. (no need yet for k0 > 0)

where u+ is some constant two component column vector.

(For u− we would have gotten ∂0u− − σ · ~∇u− = 0, which leads to u−(x) = u−e
−ik·x)

Now we plug these potential solutions back into the equation to get the condition on the
constant spinors

(k0︸︷︷︸
2×2 identity
is understood

−~σ · ~k)u+ = 0

Let’s take ~k = k0ez. This then says

(1− σz)u+ = 0 u+ =

(
1
0

)

(At this point we would have gotten u− =

(
0
1

)
.)

In general u+ is the eigenstate of

~σ · ~k
k0

with eigenvalue 1 which since |~k| = k0

has the interpretation of being the spin along the direction of motion (at least for k0 > 0).

Unlike the normal theory of spinors, for a given kµ, we only have one solution, one di-
rection of spin. This would not be possible if these particles weren’t massless. If they were
massive, you could always boost to their rest frame, turn their spin around and then boost
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back, and you’ll have a particle with spin pointed the opposite direction. The spin of a
massless particle is usual referred to as helicity, the component of angular momentum along
the direction of motion. Spin is usually reserved for massive particles. It is the angular
momentum in the rest frame.

Because D
(0,1/2)
P = D(1/2,0) which is inequivalent to D(0,1/2) there is no parity transfor-

mation in this theory. More physically, we have found a theory with a single u+ spinor has
only one helicity. Since parity reverses linear momentum, but leaves angular momentum
unaffected, a theory with particles of only one helicity can’t be parity invariant.

Some guesses about the quantum field u+ and the particles it will annihilate
and create

The solution of the Weyl equation going like e−ik·x with k0 > 0 will probably multiply an
annihilation operator in the expansion of the quantum field u+. By the known transformation
properties of the solution of the field equation, we can obtain the transformation properties
of the states it annihilates. We expect

〈0|u+(x)|k〉 ∝ e−ik·x
(

1
0

)
k2 = 0, k0 > 0, kx = ky = 0, kz = k0

or

〈0|u+(0)|k〉 ∝
(

1
0

)
We are going to find the Jz value of |k〉:

Jz|k〉 = λ|k〉, find λ

In the quantum theory
U(R(~ez θ)) = e−iJzθ

and thus
U(R(~ez θ))|k〉 = e−iλθ|k〉

U(R(~ez θ))|0〉 = |0〉

On the other hand U †
(
R(~ezθ)

)
u+(0)U

(
R(~ez θ)

)
= D(0,1/2)

(
R(~ez θ)

)
u+(0) and this equa-

tion can be used by taking the 〈0| − |k〉 matrix elements. We get

e−iλθ
(

1
0

)
∝ e−iσzθ/2

(
1
0

)
= e−iθ/2

(
1
0

)
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i.e. λ =
1

2
. The annihilation operator multiplying u+e

−ik·x, k0 > 0, will annihilate parti-

cles with helicity 1
2

along the direction of motion.

(When Weyl came up with this theory, which describes neutrinos, the world thought the
world was parity invariant, and his theory was dismissed quickly. People thought he was
just playing with irrelevant mathematics).

Creation operators in the expansion of u+(x) will create λ = −1
2

particles. The field

always changes the helicity by the same amount. The field u†+ will annihilate particles with
helicity λ = −1

2
and create particles with λ = +1

2
.

The annihilation operators in the u− field annihilate particles with helicity −1
2
, like neu-

trinos are observed to have, and the creation operators create particles with helicity +1
2
,

the antineutrinos. Conventionally, such a field is called “left handed”. By the right hand
rule, a “right handed” field annihilates “right handed” particles, that is, ones whose angular
momentum is along the direction of motion (agrees with I+Z, p.88).

Instead of canonically quantizing this theory now, we are going to move on and find a
Lagrangian for massive particles that can include parity. The representation the fields are in
must be equivalent to the representation obtained by parity. We could look at the irreducible
reps of this type, Dn/2,n/2, but when you restrict to rotations, these reps contain do not con-
tain spinors, in fact as already stated, they turn out to be rank n symmetric traceless tensors
under SO(3, 1). The simplest parity invariant reducible rep with spinors is D(1/2,0)⊕D(0,1/2),
a set of two complex doublets, u+ and u−. We’ll restrict the possible Lagrangian by set of
conditions like those at the start of this lecture.

L(u+, u−, u
†
+, u

†
−, ∂µu+, . . .) must be

(i). Bilinear

(ii). Real, at least S = S∗

(iii). No more than one derivative.

(iv). L is a Lorentz scalar.

(v). The Lagrangian has a U(1) symmetry under which u+ and u− transform the same way:

u± −→ eiθu± u†± −→ e−iθu†±
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(vi). The theory has a parity operation

u+(~x, t) −→ a u−(−~x, t)

u−(~x, t) −→ b u+(−~x, t)

under which L is invariant.

(D(1/2,0) ⊗D(1/2,0) ∼ D(1,0)(Λ)⊕D(0,0)(Λ) ∝ u†+u−)

After rescaling u+ and u−, the only Lagrangian satisfying the first five conditions is

L = ±
[
iu†+(∂0 + ~σ · ~∇)u+ + iεu†−(∂0 − ~σ · ~∇)u− −mu†+u− −m∗u

†
−u+

]
where ε = ±1.

By adjusting the relative phase of u− and u+, we can always take m to be real and
nonnegative.

Let’s find out if we can define a parity of the type in condition (vi).

u†+(∂0 + ~σ · ~∇)u+ −→ u†−(−~x, t) a∗ (∂0 + ~σ · ~∇) a u−(−~x, t)

= |a|2u†−(−~x, t)
(
∂0 − ~σ ·

∂

∂(−~x)

)
u−(−~x, t)

If this term in the parity transformed Lagrangian is going to equal the term in the original
Lagrangian

iεu†−(∂0 − ~σ · ~∇)u−

we must have ε = +1 and |a|2 = 1. By considering the effect of parity on the other terms,
you also get

|b|2 = 1 and ab∗ = 1

The conditions on a and b can be summarized by saying

a = b = eiλ

P : u±(~x, t) −→ eiλu∓(−~x, t)

Now if a theory has an internal symmetry (and this one has an internal U(1) symmetry),
then I can redefine parity to be the old parity composed with any element of the internal
symmetry group, and I’ll have just as good a definition of parity. In this case, compose
parity with the symmetry

u±(x) −→ e−iλu±(x)
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Then the new parity has the effect

P : u±(~x, t) −→ u∓(−~x, t)

The Lagrangian we have found is the Dirac Lagrangian, although it doesn’t look like it
yet. Let’s derive the equations of motion. By varying u†+, you get

i(∂0 + ~σ · ~∇)u+ = mu−

and by varying u±
i(∂0 − ~σ · ~∇)u− = mu+

This is Dirac’s equation although it doesn’t look like it yet. The solutions of the Dirac
equation are solutions of the Klein-Gordon equation. To see this, multiply the first equation
by −i(∂0 − ~σ · ~∇) and use the second equation to get

(∂2
0 − ~∇2)u+ = −m2u+

or
(2 +m2)u+ = 0

This verifies that the thing we have been calling m actually is a mass, and not m/2 or
m3/5 or whatever.

We are now going to modify the equations in order to make them more obscure and so-
phisticated looking. Actually we’ll be building a machinery which will speed up calculations.
Assemble the two two-component fields into a single four component one.

ψ ≡
(
u+

u−

)
(This is not the only way to do this, see below).

Then

L = ±
[
iu†+(∂0 + ~σ · ~∇)u+ + iu†−(∂0 − ~σ · ~∇)u− −mu†+u− −mu

†
−u+

]
can be rewritten as

L = ±
[
i
(
ψ†∂0ψ + ψ†~α · ~∇ψ

)
−mψ†βψ

]
where ~α’s and β are 4× 4 hermitian matrices

~α =

(
~σ 0
0 −~σ

)
β =

(
0 1
1 0

)
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each entry represents a 2× 2 block.

In this spiffy notation, we can also write the effect of parity as

P : ψ(~x, t) −→ βψ(−~x, t)

The equation of motion obtained by varying ψ† is

i(∂0 + ~α · ~∇)ψ = βmψ

This is the Dirac equation (1929).

A pleasant surprise is that in this notation we can also give the effect of a Lorentz boost
without defining a whole bunch more matrices. The equations

Λ : u+ −→ e~σ·~eφ/2u+

u− −→ e−~σ·~eφ/2u−

can be assembled into
Λ : ψ −→ e~α·~eφ/2ψ

The generator of boosts (what is dotted into −i~eφ in the exponential) is

~M =
i~α

2

We can get the generators of rotations quickly by using

[Mi,Mj] = −iεijkLk

~L =
1

2

(
~σ 0
0 ~σ

)
I said ψ =

(
u+

u−

)
is not the only way of making a four component spinor out of two

two-component spinor. Another way is

ψ =

(
u+ + u−
u+ − u−

)
1√
2

If we had done that, the ~α’s and β would have come out differently! In fact this second
way is the way Dirac originally did it.
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To summarize, in the first basis, called the
WEYL BASIS 30

~α =

(
~σ 0
0 −~σ

)
β =

(
0 1
1 0

)
ψ

(
u+

u−

)
~M =

i~α

2
[Mi,Mj] = −iεijkLk =⇒ ~L =

1

2

(
~σ 0
0 ~σ

)
DIRAC (OR STANDARD) BASIS

~α =

(
0 ~σ
~σ 0

)
β =

(
1 0
0 −1

)
ψ =

1√
2

(
u+ + u−
u+ − u−

)
~M =

i~α

2
~L =

1

2

(
~σ 0
0 ~σ

)
In either basis, the Dirac Lagrangian is

L = ±
[
iψ†( ∂0︸︷︷︸

4×4 identity
matrix suppressed

+~α · ~∇)ψ −mψ†βψ
]

The Dirac basis is the standard basis because the solutions of the Dirac equation become
especially simple in the nonrelativistic limit in this basis.

PLANE WAVE SOLUTIONS OF THE DIRAC EQUATION

We are going to look for solutions31 of the form

ψ = u~p e
−ip·x or ψ = v~p e

ip·x

where u~p and v~p are space-time independent four component spinor. Of course, to have
a chance of satisfying the Dirac equation a proposed solution must satisfy the Klein-Gordon
equation, so p2 = m2, or

p0 ≡
√
~p2 +m2

p is a forward pointing vector on the mass shell.

30usually called the Weyl representation, but the terminology is incorrect
31There are extensive discussions of the solutions of the Dirac equation in the literature. All you have to

do is ignore all references to holes and negative solutions. Just because something was understood in a poor
way 50 years ago, doesn’t mean you have to learn it that way today.
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(The other solution, p0 = −
√
~p2 +m2, is taken care of in the way we have busted up the

problem into two cases: one with e−ip·x dependence and one with e+ip·x dependence.)

If you plug the first type of solution,

ψ = u~p e
−ip·x

(called “positive frequency”, a convention that goes all the way back to Hψ = i~∂ψ
dt
−→

ψn = e−iωnt) into the Dirac equation,

i(∂0 + ~α · ~∇)ψ = βmψ

you get (p0 − ~α · ~p)u~p = βmu~p.

Let’s look at a special case: ~p = 0, p0 = m.

Then the equation says
u~0 = βu~0

In the standard basis, β =

(
1 0
0 −1

)
(each entry represent a 2× 2 block), and there are

two solutions linearly independent to this equation, they are of the form

u~0 =


a
b
0
0
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22 December 11

I can choose the direction my two standard linearly independent solutions point in the
subspace they are allowed in, as well as their total normalization, any way I like. A convenient
choice is

u
(1)
~0

=
√

2m


1
0
0
0



u
(2)
~0

=
√

2m


0
1
0
0


Whatever basis you choose, make it satisfy

u
(r)†
~0

+ u
(s)
~0

= 2mδrs

and
u

(r)†
~0

~αu
(s)
~0

= 0

The second condition follows fairly easily from the form of ~α. In the standard basis it
connects the upper two components with the lower two.

By arguments like those used for the solutions of the Weyl equation, we expect that in
the expansion of the quantum field ψ, an annihilation operator that annihilates Jz = +1

2

electrons with momentum p will multiply

u
(1)
~p e−ip·x

and an annihilation operator that annihilates electrons with Jz = −1
2

will multiply

u
(2)
~p e−ip·x

The 2m in the normalization of the u’s is there to agree with conventional normalization
for relativistic states:

〈p′|p〉 = (2π)32 ω~p︸︷︷︸
reduces to 2m

when ~p=0

δ(3)(~p− ~p′)

In many equations it will allow us to take a smooth m → 0 limit. (Good for neutrinos
or extremely high energy physics).
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The Dirac Lagrangian was constructed to be a Lorentz scalar, so you expect that the
equations of motion derived from it are Lorentz invariant in the sense that given one solution
of the Dirac equation, I ought to get another solution by Lorentz transforming it. So while
we could just go ahead and solve the Dirac equation for arbitrary ~p (it’s just the problem of
finding the eigenvalues and eigenspinors of some ~p dependent 4× 4 matrix). We will flaunt
Lorentz invariance by getting solutions with momentum ~p by boosting those with momentum
~0.

u
(r)
~p = e~α·~eφ/2u

(r)
~0

where ~e = ~p
|~p| and sinhφ = |~p|

m
(coshφ = E

m
)

You can mechanically verify that the conditions

u
(r)†
~p u

(s)
~p = 2p0δrs u

(r)†
~p ~αu

(s)
~p = 2~pδrs

are satisfied, but it is actually not necessary.

(u
(r)†
~p u

(s)
~p , u

(r)†
~p ~αu

(s)
~p ) is a four vector, and you know it is (2mδrs,~0) when ~p = 0: that de-

termines it completely for arbitrary ~p. (This proof is sweet because it is basis independent).

Using (~α · ~e)2 = 1, you can rewrite

u
(r)
~p =

[
cosh

φ

2︸ ︷︷ ︸
4×4 identity suppressed

+~α · ~e sinh
φ

2

]
u

(r)
~0

Using cosh φ
2

=
√

1+coshφ
2

and sinh φ
2

=
√

coshφ−1
2

and coshφ = E
m

, you can rewrite

u
(r)
~p =

[√E +m

2m
+

√
E −m

2m
~α · ~e

]
u

(r)
~0

In the standard basis, with ~p (hence ~e) pointing in the z direction, this is

u
(1)
~p =


√
E +m

0√
E −m

0

 u
(2)
~p =


0√

E +m
0

−
√
E −m


(The normalization is already proving useful. Thanks to that factor of

√
2m, this doesn’t

blow up when m→ 0.)
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A similar set of relations holds for the v
(r)
~p

v
(1)
~0

=
√

2m


0
0
1
0

 v
(2)
~0

=
√

2m


0
0
0
1


v

(r)
~p = e~α·~eφ/2v

(r)
~0

(v
(r)†
~p v

(s)
~p , v

(r)†
~p ~αv

(s)
~p ) = (2p0δrs, 2~pδrs)

In the standard basis, with ~p in the z direction.

v
(1)
~p =


√
E −m

0√
E +m

0

 v
(2)
~p =


0

−
√
E −m
0√

E +m


The ~α’s and β satisfy a simple algebra.

α2
i = 1

{
αi, αj

}
= 0 i 6= j

β2 = 1
{
β, αi

}
= 0

Every ~α and β squares to 1 and anticommutes with all three others.

A famous theorem due to Pauli

Any set of 4 4× 4 matrices obeying these equation is equivalent to any other set.

The theorem says “everything is in here.” Anything we get by manipulating a set of 4×4
matrices satisfying this algebra can be obtained by manipulating the algebra.

“Anything” means any equation that is unaffected by a similarity transformation, or
any result that is basis independent, like a cross section summed over final spin states and
averaged over initial ones.

An example of a statement that is not basis independent is

β† = β
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This is true in the Weyl or standard basis but in general, just because β is hermitian, it
does not follow that

S−1βS is hermitian

It is true though if S is unitary. Sometimes we’ll restrict ourselves to bases that are
related a unitary S. They are called “unitarily equivalent”.

Coleman’s proof uses something we already believe (but in fact takes some effort to
prove): That up to equivalence we have found all the finite dimensional reps of the Lorentz
group.

Start by constructing a representation of the Lorentz group from the ~α’s and β.

Let Mi ≡ iαi
2

Define Lk by [
Mi,Mj

]
= −iεijkLk (Lk =

i

2
εijk

[
Mi,Mj

]
)

Using the algebra the α’s are supposed to obey, it is easy to show that[
Li,Mj

]
= iεijkMk and

[
Li, Lj

]
= iεijkLk

Thus we have defined a representation of the Lorentz group. Furthermore, it is a four
dimensional representation, and the rotation generators square to 1

4
. L2

i = 1
4
. Thus it must

be made of just spin 1
2

reps when you restrict this four dimensional rep of the Lorentz group
to the rotation subgroup. What we have made must be equivalent to

D(1/2,0) ⊕D(0,1/2), D(0,1/2) ⊕D(0,1/2) or D(1/2,0) ⊕D(1/2,0)

But now the existence of β can be used to rule out the second two possibilities. Note
that β2 = 1⇐⇒ β = β−1 so using the algebra

β−1~αβ = β~αβ = −~α

For our generators this implies

β−1 ~Mβ = − ~M and β−1~Lβ = ~L (22.1)

Recall the stuff about parity: Given a representation of the Lorentz group, D, I can
define a new rep DP by

DP (Λ) = D(ΛP )

The generators of the rotations in this new rep were the same. The generators of boosts
in DP were minus the generators of boosts in D. In general the representation obtained from

D(n/2,m/2) was D(m/2,n/2)
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There are equivalent only if m = n. The parity transform of

D(1/2,0) ⊕D(1/2,0) is D(0,1/2) ⊕D(0,1/2)

and vice versa. These (reducible) reps are not equivalent to their parity transformed
reps. But β, by Eq. (22.1) is such an equivalence. These reps cannot be candidates for what
we have constructed.

We must have constructed the rep D(1/2,0) ⊕D(0,1/2) (it is equivalent to its parity trans-
form), and there is only one such rep up to equivalence transformation.

A jargony way of saying what we have found is:

There is only one rep of SO(3, 1) plus parity that is four-dimensional and only contains
spin 1

2
particles.

A little bit of the proof remains to be done. We have shown the ~α’s are always equivalent,
but it remains to be shown that β is equivalent by the same transformation.

So suppose I have found a similarity transformation that puts the ~α’s into standard form

~α =

(
~σ 0
0 −~σ

)
Can I find a further similarity transformation that leaves the ~α’s unchanged, but brings

β into standard form? If I could, this would show that any set of ~α’s and β is equivalent to

any other, since they are all equivalent to a standard form. With ~α =

(
~σ 0
0 −~σ

)
, the algebra

{
~α, β

}
= 0 =⇒ β =

(
0 λ2

λ1 0

)
where the λ1, λ2 are blocks proportional to a 2× 2 identity.

(This is fairly easy to show. Write β =

(
A B
C D

)
and find out what the conditions are

on each of the 2× 2 matrices A,B,C and D. No matrix anticommutes with all three Pauli
matrices, and the only matrix that commutes with all three of them is the identity.)

The other condition on the β from the algebra is β2 = 1, which implies

λ1λ2 = 1 or λ = λ1 = λ−1
2
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So ~α =

(
~σ 0
0 −~σ

)
and β =

(
0 λ−1

λ 0

)
and we need to find a similarity transformation

that leaves the ~α’s unaffected but puts β into the standard form

β =

(
0 1
1 0

)

The similarity transformation is S =

(
λ−1 0
0 1

)

S−1βS =

(
λ 0
0 1

)(
0 λ−1

λ 0

)(
λ−1 0
0 1

)
=

(
λ 0
0 1

)(
0 λ−1

1 0

)
=

(
0 1
1 0

)
A lot of people including some Nobel laureates did lengthy calculation using explicit rep-

resentations of the Dirac algebra in the 1930’s. This must have been unnecessary since the
whole thing is tied up in the commutation relations.

From now on, we are going to assume we are in a basis where

~α = ~α† and β = β†

A basis which is obtained from this basis by a unitary transformation will also satisfy
these relations. All popular representations satisfy these relations.

DIRAC32 ADJOINT, PAULI-FEYNMAN NOTATION

Since ψ†βψ is a Lorentz invariant (−mψ†βψ appears in the Lagrangians), that is since
under

Λ : ψ −→ D(Λ)ψ ψ†βψ −→ ψ†βψ

We are going to define a new adjoint

ψ = ψ†β

This new adjoint has every property you’d like an adjoint to have except that ψψ is not
always greater than zero.

32due to Pauli
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Then we can write, oh so slickly

Λ : ψψ −→ ψψ

(or Λ : χψ −→ χψ for two Dirac spinors )

[ The situation is a lot like SO(3, 1). The usual inner product between two four vectors

yTx =
∑
µ

yµxµ

is not a Lorentz invariant. The combination that is is

yTgx g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


So we define a “new transpose” yTg and call it a covariant vector, and put its indices

down. Then we can write, oh so slickly,

Λ :
∑
µ

yµx
µ −→

∑
µ

yµx
µ.

As a statement about the 4× 4 matrices Λ this is

ΛTgΛ = g or gΛTgΛ = 1]

The definition of the adjoint of an operator is obtained from the definition of the adjoint
of a vector by

φ†A†ψ ≡ (ψ†Aφ)∗

That tells you an arbitrary matrix element of A†. Similarly, the Dirac adjoint of an
operator is obtained by

φAψ ≡ (ψAφ)∗

It is the work of a moment to show that

A = βA†β

All your favorite equations for the adjoint of an operator follow for the Dirac adjoint,
and the proofs are the same since it all comes from the definition of the adjoint.

αA+ βB = α∗A+ β∗B
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AB = BA

Aψ = ψA

This last relation implies that

Λ : ψψ −→ ψD(Λ)D(Λ)ψ

but this equals ψψ so D(Λ)D(Λ) = 1 is the statement about the 4 × 4 matrices D(Λ).
They aren’t unitary, but they are “Dirac unitary”.

Remember that
V µ = (χ†ψ, χ†~αψ)

transforms like a four-vector. Here comes some more notation to make this look slick
too. We can rewrite V µ as

V µ = (χβψ, χβ~αψ) = χγµψ

where
γµ = (β, β~α)

These are the famous Dirac γ matrices.

With a slight abuse of language, we can say that the γ matrices transform like a vector.
Of course, they don’t transform at all. What is meant by this, no more, no less, is that

D(Λ)γµD(Λ) = Λµ
νγ

ν (22.2)

We can also say that the product γµγν transforms like a tensor. The proof is:

D(Λ)γµγνD(Λ) = D(Λ)γµ D(Λ)D(Λ)︸ ︷︷ ︸
fancy way of inserting 1

γνD(Λ)

= Λµ
σγ

σΛν
τγ

τ

= Λµ
σΛν

τγ
σγτ

(22.3)

This is the transformation law for a two index tensor.

The anti-commutation relations for the γ matrices follow from those for the ~α’s and β.
They can all be summed up in {

γµ, γν
}

= 2gµν

which you should check.33

33If in some math book you start reading about Clifford algebras, it is a special case of them we are
studying. More generally, µ, ν = 1, . . . , N and any # of diagonal components of gµν can be −1.
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Also, in the special class of bases we have restricted ourselves to

γ0† = γ0 γi† = −γi

An elegant way of summarizing these four relations is

γµ = γµ

Which you could check, but here is a high-powered proof instead:

In the same sense as in Eqs. (22.2) and (22.3), both sides of this equation transform like
a four-vector. (The RHS we have already accepted this for;

D(Λ)γµD(Λ) = Λµ
νγ

ν .

The LHS transforms the same way as you can see by taking the bar of this equation to
get

D(Λ) γµD(Λ) = Λµ
νγν)

(Λµ
ν : This matrix is unaffected. It is real, and it is not transposed because we are trans-

posing only in the spinor indices. Maybe I should first say, for any given µ, this is just a set
of 4 real coefficients.)

So γµ = γµ is a Lorentz covariant equation. To see if it is correct we only have to check
one of its components, say µ = 0. For µ = 0 it reduces to γ0γ0†γ0 = γ0, XX.

Now that we have these Dirac γ matrices, we can rewrite the Dirac Lagrangian as

L = ±
[
iψγµ∂µψ −mψψ

]
The equation of motion is iγµ∂µψ −mψ = 0 (from varying ψ).

We can make this look even more sophisticated and obscure by introducing a super
compact notation due to Feynman. Let

�a ≡ aµγ
µ (= aµγµ = a · γ)

The algebra of the γ matrices can be summarized in this notation as{
�a, ��b
}

= 2a · b (�a
2 = a2)

The Dirac Lagrangian and equation of motion are

L = ±ψ(i��∂ −m)ψ (i��∂ −m)ψ = 0
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The proof that each component of every solution of the Dirac equation satisfies the
Klein-Gordon equation is

(i��∂ −m)ψ = 0 =⇒ (−i��∂ −m)(i��∂ −m)ψ = 0

=⇒ (2 +m2)ψ = 0

Parity and γ5

P : ψ(~x, t) −→ β︸︷︷︸
could also be

written γ0

ψ(−~x, t)

ψ(~x, t) −→ βψ(−~x, t) = ψ(−~x, t)β = ψ(−~x, t)β
So

P : ψψ(~x, t) −→ ψψ(−~x, t)
Not only is ψψ a scalar under the Lorentz transformations connected to the identity, it

is a scalar under parity.

P : ψγµψ −→ ψβγµβψ

=

{
ψγ0ψ µ = 0

−ψγiψ µ = i

This is how you expect a vector to transform under parity.

What about ψγµγνψ. It’s clear that the 00 component will be unaffected by parity, as
will the ii components, while the 0i components will go into minus themselves. This is a
tensor under L.T. and parity. Actually we have obtained nothing new from the 00 and ii
components because γµ 2 = 1. The only new quantities we have are the antisymmetric parts.
Define

σµν =
1

2i

[
γµ, γν

]
σµν = σµν

ψσµνψ is an antisymmetric tensor under L.T. and parity.

We can’t proceed on building tensors of higher and higher rank. In the product of two
four component objects there are only 16 possible bilinears. So far we have found

1︸︷︷︸
scalar

+ 4︸︷︷︸
vector

+ 6︸︷︷︸
antisymmetric tensor

= 11 of them
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Let’s jump up to tensors of the fourth rank and see what we can make

ψγµγνγαγβψ

is a fourth rank tensor, but if any two of the indices are the same, this reduces to
something we have already found. There is only one possibility if all four indices have to be
different, it is

γ0γ1γ2γ3

It is conventional to define

γ5 ≡ iγ0γ1γ2γ3 (≡ γ5)

=
i

4!
εµναβγ

µγνγαγβ (ε0123 = +1)

Unfortunately, because of the i, γ5 = −γ5, but γ†5 = γ5 and γ2
5 = γ5γ

†
5 = +1.

Except for γ5 = −γ5, γ5 is a lot like a fifth γ matrix, that is{
γ5, γ

µ
}

= 0

We’ll write iγ5, because iγ5 = iγ5.
Now εµναβγ

µγνγαγβ transforms like a scalar under L.T. but goes into minus itself under
parity, that is

P : ψiγ5ψ −→ −ψiγ5ψ is a pseudoscalar

ψiγ5ψ is hermitian, it can appear in a Lagrangian with a real coefficient.

ψγµγ5ψ is also hermitian and

P : ψγµγ5ψ −→

{
−ψγ0γ5ψ µ = 0

ψγiγ5ψ µ = i
an axial vector

So now we have found a total of 16 bilinears transforming in distinct ways under parity
and L.T.

S 1 scalar

P 1 pseudoscalar

V 4 vector

A 4 axial vector

T 6 antisymmetric tensor
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(Any other bilinear we might construct must be expressible in terms of these.)

We could start building Lagrangian with interactions (but we are going to proceed with
canonical quantization) like

• gφψiγ5ψ (to conserve parity φ must be a pseudoscalar)

• or gφψψ or g∂µφψγ
µψ (under parity φ would be a scalar)

• or gφψiγ5ψ + hφψψ (parity violating, no choice of parity is possible).

Some things that are very useful when deriving any basis independent result are orthogonality
and completeness conditions for the u(r) and v(r)

The u
(r)
~p and v

(r)
~p satisfy

(�p−m)u
(r)
~p = 0 (�p+m)v

(r)
~p = 0

Taking the bar of these equations we also have

u
(r)
~p (�p−m) = 0 v

(r)
~p (�p+m) = 0

ORTHOGONALITY CONDITIONS

We have already derived

u
(r)
~p γµu

(s)
~p = 2pµδrs and v

(r)
~p γµv

(s)
~p = 2pµδrs

Now v
(r)
~p γµu

(s)
~p is also a four vector, and we can find what it is by looking at

v
(r)
~0
γ0u

(s)
~0

= v
(r)†
~0

u
(s)
~0

= 0

so

v
(r)
~p γµu

(s)
~p = u

(r)
~p γµv

(s)
~p = 0
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There are also the scalars

u
(r)
~p u

(s)
~p v

(r)
~p u

(s)
~p and v

(r)
~p v

(s)
~p

Evaluating them for ~p = 0 is easy, and since they are scalar, that gives their value for
general ~p (u’s are β = +1 eigenstates, v’s are β = −1 eigenstates).

u
(r)
~p u

(s)
~p = 2mδrs v

(r)
~p v

(s)
~p = −2mδrs

u
(r)
~p v

(s)
~p = v

(r)
~p u

(s)
~p = 0

COMPLETENESS RELATIONS

Suppose I have a orthogonal normalized basis for Rn,

~e(r) r = 1, · · · , n

Then
∑

n ~e
(r)~e(r)T is the identity matrix. We are going to get the analog of this for our

4 solutions of the Dirac equation for any p. Define

A =
∑
r

u
(r)
~p u

(r)
~p

Let’s see what A is by seeing what it does to a basis for our 4-dim spinor space.

Au
(s)
~p =

∑
r

u
(r)
~p 2mδrs = 2mu

(s)
~p

Av
(s)
~p =

∑
r

u
(r)
~p · 0 = 0

But we already know a matrix that has this effect on the basis �p+m, so∑
r

u
(r)
~p u

(r)
~p = �p+m

Similarly, ∑
r

v
(r)
~p v

(r)
~p = �p−m
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What Every 253a Students Needs to Know about The Dirac Equation

I have heard that some of you have had trouble keeping the Dirac equation in view
through a cloud of SO(3, 1) representation theory. This sheet has been prepared to help you.
It contains all all results we have derived to date that we will need in the remainder of the
course, without proofs.

(1). Dirac Lagrangian, Dirac Equation, Dirac Matrices

The theory is defined by the Lagrange density,

L = ψ†[i∂0 + i~α · ~σ − βm]ψ.

Here ψ is a set of four complex fields, arranged in a column vector (a Dirac bispinor),
and the α’s and β are a set of four 4× 4 hermitian matrices (the Dirac matrices). The
equation of motion (the Dirac equation) is

(i∂0 + i~α · ~σ − βm)ψ = 0.

The Dirac matrices obey the Dirac algebra,{
αi, αj

}
= 2δij,

{
αi, β

}
= 0, β2 = 1.

Any set of 4× 4 matrices obeying this algebra is equivalent to any other set. Two rep-
resentations of the Dirac algebra that will be useful to us are the Weyl representation,

~α =

(
~σ 0
0 −~σ

)
, β =

(
0 1
1 0

)
,

and the standard representation,

~α =

(
0 ~σ
~σ 0

)
, β =

(
1 0
0 −1

)
.

(2.) Space-Time Symmetries

The Dirac equation is invariant under both Lorentz transformation and parity.
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Under a Lorentz transformation characterized by a 4× 4 Lorentz matrix, Λ,

Λ : ψ(x) −→ D(Λ)ψ(Λ−1x),

where the matrix D is defined from the α’s by the following rules:

For an acceleration by rapidity φ in a direction ~e,34

D
(
A(~eφ)

)
= e~α·~eφ/2.

For a rotation by angle θ about an axis ~e

D
(
R(~e θ)

)
= e−i

~L·~eθ,

where ~L is defined by35 [
αi, αj

]
= 4iεijkLk.

In both the Weyl and standard representations

~L =
1

2

(
~σ 0
0 ~σ

)
.

Under parity,
P : ψ(~x, t) −→ βψ(−~x, t).

(3.) Dirac Adjoint, γ Matrices

The Dirac adjoint of a Dirac bispinor is defined by

ψ = ψ†β,

of a 4× 4 matrix by
A = βA†β.

34αi = γ0γi, follows from γ0 = β, γi = βαi and β2 = 1
35Lk = i

4εkijγ
iγj
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These obey the usual rules for adjoints, e.g.,

(ψAφ)∗ = φAψ,

The γ matrices are defined by

γ0 = β, γi = βαi,

These are not all hermitian,
γµ† = γµ ≡ gµνγ

ν ,

but they are self-Dirac adjoint (“self-bar”),

γµ = γµ.

The γ matrices obey the γ algebra,{
γµ, γν

}
= 2gµν .

They also obey
D(Λ)γµD(Λ) = Λµ

νγ
ν .

For any vector, a, we define

�a = aµγ
µ.

It follows from the γ algebra that

�a��b+ ��b�a = 2a · b.

In this notation, the Dirac Lagrange density is

ψ(i��∂ −m)ψ,

and the Dirac equation is
(i��∂ −m)ψ = 0.
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(4). Bilinear Forms

There are sixteen linearly independent bilinear forms we can make from a Dirac bispinor
and its adjoint. We can choose these sixteen to form the components of objects that
transform in simple ways under the Lorentz group and parity.

The scalar is
S = ψψ.

The vector is
V µ = ψγµψ.

The tensor is
T µν = ψσµνψ,

where

σµν =
1

2i

[
γµ, γν

]
.

The pseudoscalar is
P = ψiγ5ψ,

where
γ5 = iγ0γ1γ2γ3 ≡ γ5.

The axial vector is
Aµ = ψγµγ5ψ.

γ5 is in many ways “the fifth γ matrix”. It obeys

(γ5)2 = 1, γ5 = γ†5 = −γ5,
{
γ5, γ

µ
}

= 0.

(5). Plane-wave Solutions

The positive-frequency solutions of the Dirac equation are of the form

ψ = ue−ip·x,

where p2 = m2 and p0 is positive. The negative-frequency solutions are of the form

ψ = veip·x.
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There are two positive-frequency and two negative-frequency solutions for each p. The
Dirac equation implies that

(�p−m)u = 0 = (�p+m)v.

For a particle at rest, p = (m,~0), we can choose the two independent u’s in the standard
representation to be,

u
(1)
~0

=


√

2m
0
0
0

 , u
(2)
~0

=


0√
2m
0
0

 ,

and the two independent v’s to be

v
(1)
~0

=


0
0√
2m
0

 , v
(2)
~0

=


0
0
0√
2m

 .

We can construct the solutions for a moving particle, u
(r)
~p and v

(r)
~p , by applying a

Lorentz acceleration (see (2)).

These solutions are normalized such that

u
(r)
~p u

(s)
~p = 2mδrs = −v(r)

~p v
(s)
~p , u

(r)
~p v

(s)
~p = 0.

They obey the completeness relations

2∑
r=1

u
(r)
~p u

(r)
~p = �p+m,

2∑
r=1

v
(r)
~p v

(r)
~p = �p−m.

Another way of expressing the normalization condition is

u
(r)
~p γµu

(s)
~p = 2δrspµ = v

(r)
~p γµv

(s)
~p .

This form has a smooth limit as m goes to zero.
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23 December 16

CANONICAL QUANTIZATION OF DIRAC LAGRANGIAN

L = ±
[
ψ+(i∂0 + i~α · ~∇− βm)ψ

]
πψ ≡

∂L
∂(∂0ψ)

= ±iψ† ψ, ψ† completely characterize system

(more generally πA =
∂L

∂∂0ψA
= ±iψ†A)

H = ±iψ†∂0ψ − L = ±
[
ψ†(−i~α · ~∇+ βm)ψ

]
= ±iψ†∂0ψ using E-L Eq

±i
[
ψα(~x, t), ψ†β(~y, t)

]
= iδ(3)(~x− ~y)δαβ α, β = 1, 2, 3, 4

suppress α, β indices
[
ψ(~x, t), ψ†(~y, t)

]
= ±1δ(3)(~x− ~y)[

ψ(~x, t), ψ(~y, t)
]

= 0 =
[
ψ†(~x, t), ψ†(~y, t)

]
[
ψ(~x, t), ψ(~y, t)

]
= ±γ0δ(3)(~x− ~y) easily show by reinserting indices

ψ(x) =
2∑
r=1

∫
d3~p

1

(2π)3/2

1√
2E~p

[
b

(r)
~p u

(r)
~p e−ip·x + c

(r)†
~p v

(r)
~p eip·x

]

ψ†(x) =
2∑
r=1

∫
d3~p

1

(2π)3/2

1√
2E~p

[
b

(r)†
~p u

(r)†
~p eip·x + c

(r)
~p v

(r)†
~p e−ip·x

]

ψ(x) =
2∑
r=1

∫
d3~p

1

(2π)3/2

1√
2E~p

[
b

(r)†
~p u

(r)
~p eip·x + c

(r)
~p v

(r)
~p e−ip·x

]
Ansatz: (To avoid doing Fourier inversion):[

b
(r)
~p , b

(s)†
~p′

]
= δrsδ(3)(~p− ~p′) B[

c
(r)†
~p , c

(s)†
~p′

]
= δrsδ(3)(~p− ~p′) C
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[
b, b
]

=
[
c, c
]

=
[
b, c
]

= 0 =⇒
[
ψ, ψ

]
=
[
ψ†, ψ†

]
=
[
ψ, ψ

]
= 0

[
ψ(~x, t), ψ†(~y, t)

]
︸ ︷︷ ︸

Formula also true
with ψ† replaced by ψ

and u†, v† replaced by u, v

=
∑
r

∫
d3~p

1

(2π)32E~p

[
Be−i~p(~x−~y)u

(r)
~p u

(r)†
~p + Ce+i~p·(~x−~y)v

(r)
~p v

(r)†
~p

]

∑
r

u
(r)
~p u

(r)†
~p =

∑
r

u
(r)
~p u

(r)
~p β = (�p+m)β

= (E~pβ − ~p · β~α +m)β = E~p + ~p · ~α + βm

Similarly, ∑
r

v
(r)
~p v

(r)
~p = (�p−m)β = E~p + ~p · ~α− βm

If B = C, terms ∝ ~α, β vanish, so that we may have integral proportional to 1, choose
B = C = ±1, and we have canonical quantization relations:[

ψ(x, t), ψ†(y, t)
]

= ±
∫

d3~p

(2π)3
e−ip·(x−y)

However, our expression for ψ has two annihilation or creation operators leading to
problems with H:

H =

∫
d3x H = ±

∑
rs

∫
d3~p

2E~p
(b

(r)†
~p b

(s)
~p

δrs2E~p︷ ︸︸ ︷
u

(r)†
~p u

(s)
~p E~p − c(r)

~p c
(s)†
~p

δrs2E~p︷ ︸︸ ︷
v

(r)†
~p v

(s)
~p E~p

H = ±
∑
r

∫
d3~p E~p

(
b

(r)†
~p b

(r)
~p − c

(r)
~p c

(r)†
~p

)
which is an unbounded below energy. For (+) sign c-type quanta carry negative energy.

5 TOPICS FOR THE REST OF THIS LECTURE

1. Canonical Anticommutation

2. Solves energy crisis

3. Fermi-Dirac statistics
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4. Fields as observables

5. Classical Limit ...

(1)

{
Fermi
Bose

}
p’s and q’s have

{
1
2
odd int.

int.

}
spin.

At equal times

– Bose-Bose [pa, pb] = [qa, qb] = 0, [qa, pb] = iδab.

– B-F everything commutes.

– Fermi-Fermi {pa, pb} = {qa, qb} = 0, {qa, pb} = iδab.

Hence we make the changes
{
b

(r)
~p , b

(s)†
~p

}
= δrsδ(3)(~p− ~p′)B etc.{

ψ(~x, t), ψ†(~y, t)
}

= ±
∑
r

∫
dtp

1

(2π)3
· · ·

IF WE ARE NOT CAREFUL WE WILL LOSE POSITIVE DEFINITENESS IN THE
HILBERT SPACE

A ≡
∫
d3~p

∑
r

fr(~p) b
(r)
~p {A,A

†} = ±
∫ ∑

|fr(~p)|2

LOOK AT QUANTITY OF THE FORM

〈φ|
{
A,A†

}
|φ〉 = 〈φ|AA†|φ〉+ 〈φ|A†A|φ〉 ≥

!
0

Hence we must choose + sign

(2) L = ψ(i��∂ −m)ψ {
b

(r)
~p , b

(s)†
~p′

}
=
{
c

(r)
~p , c

(s)†
~p′

}
= δrsδ(3)(~p− ~p′)

all others zero



23. December 16 Notes from Sidney Coleman’s Physics 253a 270

H =
∑∫

d3~p E~p

[
b

(r)†
~p b

(r)
~p + c

(r)†
~p c

(r)
~p

]
−��

��δ(3)(0)︸ ︷︷ ︸
from anticommutation

of C and C†

Which is bounded below.

(3) Consider pedagogical simplification of Hamiltonian for a moment.

H =
∑
~p

E~p b
†
~p b~p

{
b†~p, b~p

}
= δ~p,~p′ ,

{
b, b
}

=
{
b†, b†

}
= 0

[
AB,C

]
= A

{
B,C

}
−
{
A,C

}
B[

H, b~p

]
= −E~p b~p︸ ︷︷ ︸

energy lowering[
H, b†~p

]
= +E~p b

†
~p︸ ︷︷ ︸

energy raising

Define b~p|0〉 = 0 all ~p, 〈0|0〉 = 1 H|0〉 = 0

b†~p|0〉 = |~p〉 H|~p〉 = E~p|~p〉

〈p′|p〉 = 〈0|b~p′b†~p|o〉 = −〈0|b†~pb~p|0〉+ δ~p,~p′ = δ~p′.~p

|~p1, ~p2〉 = b†~p1
b†~p2
|0〉 = −|~p2, ~p1〉

H|~p1, ~p2〉 = (E~p1 + E~p2)|~p1, ~p2〉

Pauli Exclusion principle
b†~p|~p〉 = (b†~p)

2|0〉 = 0
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(4) Observable made out of Fermi fields.

Recall Bose Fields [
φ(x), φ(y)

]
E.T.

= 0

and by Lorentz invariance this is true for all spacelike separated x and y. With Fermi
fields {

ψα(x), ψβ(y)
}

= 0

If ψ(x) were an observable, we would have observables that did not commute at space-
like separation. Observables can only be made of products with an even number of
Fermi Fields.

This is also necessary for just rotational properties. Under a rotation by 2π,

ψ(x) −→ −ψ(x)

No meter on any experimental apparatus ever gives a different reading when the ex-
periment is rotated by 2π.

All observables are in single valued representations of the Lorentz group.

(4) Classical Limit (~ −→ 0)

(a) Two classical limits physically. Take some physical situation. N particles in a
box all in the same energy and momentum eigenstate.

E = N~ω

(i) ~ −→ 0 N,E and ~p fixed

ω,~k −→∞ wavelength −→ 0

No diffraction. This is the classical particle limit.

(ii) ~ −→ 0 E,ω and ~p,~k fixed. N −→ ∞ Lots of wavy behavior, but lose
quantum granularity.

For fermions we can only do the first limit because of the Pauli exclusion principle.
There is no analog of the wave limit. There will never be a competing theory as
there was for light with the corpuscular and wave theories.
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(b) Classical limits formally.

~ −→ 0 in canonical algebras

Bose fields −→ commuting quantities (numbers)

Fermi fields −→ anticommuting quantities (Grassmann variables)

Working with classical Fermi Fields or Grassmann variables

Never exchange the order of two terms in the classical field equations without a compen-
sating minus sign or you would have no hope of the classical limit of the quantum theory
agreeing with the classical theory even at order ~0.

Derivation of the Euler-Lagrange equations:

dL =
∂L

∂q̇a︸︷︷︸
≡pa

dq̇a +
∂L

∂qa
dqa

If both the derivatives are kept to the same side of the differentials then I can integrate
by parts in the action and get the usual E-L equations.

ṗa =
∂L

∂qq

rather than something else. Define

H = paq̇
a − L

Not H = q̇apa − L, for example, which would give something different.

dH = dpaq̇
a − ṗadqa − dL

∂H

∂pa
= q̇a

∂H

∂qa
= −ṗa

Try using the quantum relations ṗa = −i
[
pa, H

]
, q̇a = −i

[
qa, H

]
with the canonical

anticommutation relation, and see if you can reproduce the Heisenberg equation of motion
in the Dirac theory.
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24 December 18

Perturbation theory for spinors

Because scalar fields commute at spacelike separations, the idea of time ordering is Lorentz
invariant. That is

x

If x2 < 0,
T (φ(0)φ(x)) = φ(x)φ(0)

In the situation pictured, but in another frame, whose axes are represented by dotted
lines x0 is less than 0 and

x

T (φ(0)φ(x)) = φ(0)φ(x)

This ambiguity is not a problem for scalar fields since [φ(0), φ(x)] = 0 when x2 < 0.
When x2 > 0, there is no ambiguity.

For spinor fields, this definition of time ordering is a failure. In one frame

T (ψα(x)ψ̄β(0)) = ψα(x)ψ̄β(0)
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and if x2 < 0, in another frame it may be that

T (ψα(x)ψ̄β(0)) = ψ̄β(0)ψα(x) = −ψα(x)ψ̄β(0) OH OH!

The way to patch this up is to put an extra minus sign into the definition of the time
ordered product whenever the number of permutations of Fermi fields required to turn a
product into a time ordered product is odd.

Assertion: Most of the derivations we did, expressing S matrix elements in terms of
physical vacuum expectation values of time ordered products of renormalized Heisenberg
picture fields, and showing that

p〈0|T (φ′H(x1) · · ·φ′H(xn))|0〉p =
〈0|T

[
φ′I(x1) · · ·φ′I(xn)e−i

∫∞
∞ d4xHI

]
|0〉

〈0|Te−i
∫∞
∞ d4xHI |0〉︸︷︷︸

bare vacuum

are unaffected by the fact that the fields may now be spinors and the time ordered prod-
uct now has a (−1)p in it.

A way of seeing that this is probably true is to think about how we obtained S =
UI(∞,−∞) in the formalism with the turning on and off function. About the only place we
could have problem is in obtaining the expression

UI(∞,−∞) = Te−i
∫∞
∞ d4xHI

But you expect no problem there because the Hamiltonian is quadratic in spinor fields,
so you always move spinor fields around in pairs, and the permutation is thus always even.
The new minus sign in the time ordered product doesn’t matter.

Once we have that big messy expression on the RHS above, we used Wick’s theorem to
turn the time ordered products into normal ordered products, and then wrote down Wick
diagrams to represent operations in the Wick expansion, and Feynman diagrams to represent
S matrix elements.

Assertion: Wick’s theorem can be proven for spinor fields and with the extra minus
sign in the time ordered product provided you also put an extra minus sign in the normal
ordered product.

For example if A1 and A2 are Fermi fields

: A1A2 := A
(+)
1 A

(+)
2 + A

(−)
1 A

(+)
2 + A

(−)
1 A

(−)
2 − A(−)

2 A
(+)
1
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Note that
: A1A2 = − : A2A1 :

also
T (A1A2) = −T (A2A1)

(FERMI FIELDS ANTICOMMUTE INSIDE THE TIME ORDERED AND NORMAL
ORDERED PRODUCTS).

The contraction A1A2 is defined as usual to be the time ordered product minus the normal
ordered product

A1A2 = T (A1A2)− : A1A2 :

The contraction is a c-number. Here is a proof by cases. Take x0
1 > x0

2, then

T (A1A2) = A1A2 = A
(+)
1 A

(+)
2 + A

(+)
1 A

(−)
2 + A

(−)
1 A

(+)
2 + A

(+)
1 A

(−)
2

and

A1A2 = A
(+)
1 A

(−)
2 + A

(−)
2 A

(+)
1

= {A(+)
1 , A

(−)
2 }

NOTATION:

: A1A2A3A4 :≡ −A1A3 : A2A4 :

− sign for odd permutations is needed to prove Wick’s theorem.

If we hadn’t stuck that extra − sign into the definition of the ordered product we would
have gotten

A1A2 = [A
(+)
1 , A

(−)
2 ]

For x0
1 > x0

2, which is not a c#. Things are looking good though, {A(+)
1 , A

(−)
2 } is a c#.

The case x0
2 > x0

1 clearly goes through too.

Calculation of the contraction (propagator)

Since the contraction of two Fermi fields is a c-number, we can use the same trick for
evaluating it as we did when we calculated the contraction of two scalar fields, i.e. take
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vacuum expectation value.

ψ(x) =
∑
r

∫
d3p

(2π)3/2
√

2E~p

[
b

(r)
~p u

(r)
~p e−ip·x + c

(r)†
~p v

(r)
~p eip·x

]
ψ(y) =

∑
r′

∫
d3p′

(2π)3/2
√

2E~p′

[
b

(r′)†
~p′ u

(r′)
~p′ e

ip′·y + c
(r′)
~p′ v

(r′)
~p′ e

−ip′·y
]

For x0 > y0,

ψ(x)ψ(y) = 〈0|ψ(x)ψ(y) |0〉

= 〈0|
[
T
(
ψ(x)ψ(y)

)
−����

���
: ψ(x)ψ(y) :︸ ︷︷ ︸

0

]
|0〉

= 〈0|ψ(x)ψ(y)|0〉

=
∑
rr′

∫
d3p

(2π)3/2
√

2E~p

d3p′

(2π)3/2
√

2E~p′
〈0|b(r)

~p b
(r′)†
~p′ |0〉︸ ︷︷ ︸

δrr′δ
(3)(~p−~p′)

e−ip·xeip
′·yu

(r)
~p u

(r′)
~p′

=

∫
d3p

(2π)32E~p
e−ip·(x−y)

∑
r

u
(r)
~p u

(r)
~p︸ ︷︷ ︸

�p+m

= (i��∂x +m)

∫
d3p

(2π)32E~p
e−ip·(x−y)

For y0 > x0, you get

ψ(x)ψ(y) =

(∗)︷︸︸︷
−
∫

d3p

(2π)32E~p
eip·(x−y)(�p−m)

= (i��∂x +m)

∫
d3p

(2π)32E~p
eip·(x−y)

(*): CRITICAL MINUS SIGN OUT FRONT IS THE ONE WE PUT INTO OUR TIME
ORDERED PRODUCT FOR FERMI FIELDS

The nice thing about this is that it is the same for x0 less than or greater than y0 (the
sign of p in the exponential no longer matters once �p is turned into a derivative and pulled
out). In either case

ψ(x)ψ(y) = (i��∂x +m) φ(x)φ(y)︸ ︷︷ ︸
contraction of a

scalar field
of mass m
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We’ve already massaged φ(x)φ(y):

φ(x)φ(y) =

∫
d4p

(2π)4
e−ip·(x−y) i

p2 −m2 + iε

So without further ado we can rewrite

ψ(x)ψ(y) = (i��∂x +m)

∫
d4p

(2π)4
e−ip·(x−y) i

p2 −m2 + iε

=

∫
d4p

(2π)4

i(�p+m)

p2 −m2 + iε
e−ip·(x−y)

(24.1)

Both sides of this equation are 4× 4 matrices. If you prefer,

ψα(x)ψβ(y) =

∫
d4p

(2π)4

i(�pαβ +mIdαβ)

p2 −m2 + iε
e−ip·(x−y)

3 Comments on the Propagator

(1). The propagator
i(�p+m)

p2 −m2 + iε
is going to play the same role in the perturbation the-

ory for Dirac fields as
i

p2 −m2 + iε
played in the perturbation theory for scalar fields.

Recall though that when you wrote down

charged scalar

←p� which stands for
i

p2 −m2 + iε

it did not matter whether p was routed in the same direction or the opposite direction
as charge flow, simply because

i

(−p)2 −m2 + iε
=

i

p2 −m2 + iε

Now however the propagator is not even in p.

charged fermion

←p� will stand for
i(�p+m)

p2 −m2 + iε

while
charged fermion

→p� will stand for
i(−�p+m)

p2 −m2 + iε

The propagator is a kind of projection operator.
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(2). There is more common way of writing the fermion propagator, more common because
it is shorter. Rewrite

p2 −m2 + iε = (�p−m+ iε)(�p+m− iε)

(this still gives the right prescription for the location of poles as ε→ 0, m > 0). Then

i(�p+m)

p2 −m2 + iε
=

adding this here does
nothing to location of pole︷ ︸︸ ︷

i(�p+m− iε)
(�p−m+ iε)(�p+m− iε)

=
i

�p−m+ iε

There is no danger that these hokey looking matrix manipulations are wrong because

�p−m+ iε commutes with �p+m− iε.

(3). For bosons the action is

S =

∫
d4x (∂µψ

∗∂µψ −m2ψ∗ψ)

parts integration =

∫
d4x ψ∗(−2−m2)ψ

In momentum space, i.e. when acting on e−ip·x, −2−m2 becomes p2 −m2.

For fermions, the action is

S =

∫
d4x ψ(i��∂ −m)ψ

In momentum space i��∂−m becomes �p−m. The fact that the charged boson propagator
came out to be i

p2−m2 while the charged fermion propagator came out to be i

�p−m
is at

least an interesting coincidence.

Feynman diagrams in L = ψ(i��∂ −m)ψ + 1
2
(∂µφ)2 − µ2

2
φ2 − gψΓψφ

(Γ = 1 (meson is a scalar) or iγ5 (meson is a pseudoscalar).)
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We’ll “derive” the Feynman rules by looking at a couple of processes and hoping that
the general process at general orders has an obvious generalization. Let’s look at the order
g term in Te−i

∫
d4xHI , i.e.

(−ig)2

2!

∫
d4x1d

4x2 T
(
ψΓψφ(x1)ψΓψφ(x2)

)
This can contribute to many processes, let’s look at how it contributes to N+φ −→ N+φ.

The relevant terms in the Wick expansion of the time ordered product are

(−ig)2

2!

∫
d4x1d

4x2

(
: ψΓψφ(x1)ψ Γψφ(x2) : + : ψΓψφ(x1)ψΓψ φ(x2) :

)
The Feynman diagrams for these two terms are

1 2 and 12

respectively.

The picture for the second term looks identical to the first picture (they are of the same
pattern) except for an exchange of the dummy variable 1←→ 2. Is the second operator the
same as the first? Well,

: ψΓψφ(x1)ψΓψ φ(x2) :=: ψΓψφ(x2)ψ Γψφ(x1) :

because interaction Hamiltonians are made out of fermion bilinears which commute in-
side the normal ordered product, and this expression clearly differs from the one in the first
term by an exchange of dummy indices 1←→ 2.

I’ll just look at how the first term contributes to N + φ −→ N + φ (N : an electron or
“nucleon”) since the second one is identical and serves only to cancel the 2!. We’ll look at
the matrix element of the operator between relativistically normalized states.

〈p′, r′; q′|(−ig)2

∫
d4x1d

4x2 : ψΓψφ(x1)ψ Γψφ(x2) : |p, r; q〉

Notice that the incoming and outgoing electrons have to have their spin specified as well
as their momentum; that is what the r does. [Alternatively, you could just give an arbitrary
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spinor for the incoming and outgoing electrons, say u and u′.] There is only one field in the
normal ordered product that has an annihilation operator that can annihilate the incoming
electron, ψ(x2).

〈0|ψ(x2)|p, r〉 = 〈0|
∑
s

∫
d3l

(2π)32ω~l
b(s)(l)u

(s)
~l
e−il·x2|p, r〉

=
∑
s

∫
d3l

(2π)32ω~l
u

(s)
~l
e−il·x2 〈0|b(s)(l)|p, r〉︸ ︷︷ ︸

(2π)32ω~pδ(3)(~p−~l)δsr

= u
(r)
~p e−ip·x2

Similarly when ψ(x1) is used to create the outgoing electron it becomes

u
(r′)
~p′ e

+ip′·x1

because that is the coefficient of b(r′)(p′)† in the expansion of ψ(x1). We also have derived
an expression for ψ(x1)ψ(x2), which I’ll use and our matrix element simplifies to

(−ig)2

∫
d4x1d

4x2

∫
d4l

(2π)4
eip
′·x1e−ip·x2e−il·(x1−x2)u

(r′)
~p′ Γ

i

��l −m+ iε
Γu

(r)
~p 〈q

′| : φ(x1)φ(x2) : |q〉

There are two terms in 〈q′| : φ(x1)φ(x2) : |q〉,

eiq
′·x1e−iq·x2 + x1 ↔ x2

Let’s just consider the first one for a second. The integral is

(−ig)2

∫
d4x1d

4x2

∫
d4l

(2π)4
ei(p

′−l+q′)·x1ei(−p+l−q)·x2u
(r′)
~p′ Γ

i

��l −m+ iε
Γu

(r)
~p

The exponentials go along with an interpretation. At x1 an electron with momentum
p′ and a meson with momentum q′ are created and a virtual electron with momentum l is
absorbed (+ signs go with creation, − with absorption). At x2 an electron with momentum
p is absorbed and a meson with momentum q is absorbed, while a virtual electron with
momentum l is created. This can happen at any space-time points x1 and x2, so they are
integrated over, and in fact the integrals are trivial to do.

(−ig)2

∫
d4l

(2π)4
(2π)4δ(4)(p′ − l + q′)(2π)4(−p+ l − q)u(r′)

~p′ Γ
i

��l −m+ iε
Γu

(r)
~p

The l integration can be done because the energy momentum of the internal electron is
fixed by the δ function. We get

(−ig)2(2π)4δ(4)(p′ + q′ − (p+ q))u
(r′)
~p′ Γ

i

�p+ �q −m+ iε
Γu

(r)
~p
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The Feynman diagram for this contribution to N + φ −→ N + φ is

What about the second term in 〈q′| : φ(x1)φ(x2) : |q〉? It contributes to the same process,
but the diagram is different:

The contribution is

(−ig)2(2π)4δ(4)(p′ + q′ − (p+ q))u
(r′)
~p′ Γ

i

�p− �q′ −m+ iε
Γu

(r)
~p

Let’s look at another process N +φ −→ N +φ that the exact same operator in the Wick
expansion can contribute to.

〈p′, r′; q′|︸ ︷︷ ︸
outgoing positron and meson

(−ig2)

∫
d4x1d

4x2 : ψΓψφ(x1)ψ Γψφ(x2) : |p, r; q〉︸ ︷︷ ︸
incoming positron and meson

The field ψ(x2) has to create the outgoing positron. But, it has to be anticommuted past

three (actually 1: two have been contracted) fermionic fields to do it. The coefficient of c
(r′)†
~p′

in ψ(x2) is eip·x2v
(r′)
~p′ , so we get

−〈q′|(−ig)2

∫
d4x1d

4x2 : ψΓψφ(x1)ψ Γv
(r′)
~p′ e

ip′·x2φ(x2) : |p, r; q〉

The ψ field then only has to get by two (0) Fermi fields to annihilate the positron on the

right. The coefficient of c
(r)
~p in ψ(x1) is e−ip·x1b

(r)
~p so I get

−(−ig)2

∫
d4x1d

4x2

∫
d4l

(2π)4
e−ip·x1eip

′·x2e−il·(x1−x2)v
(r)
~p Γ

i

��l −m+ iε
Γv

(r′)
~p′ 〈q

′| : φ(x1)φ(x2) : |q〉
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The main difference to notice for this process is the overall minus sign, and the change
from u’s to v’s. There are still going to be two Feynman diagrams from the two terms in
〈q′| : φ(x1)φ(x2) : |q〉. I’ll just write down the result of doing the x1, x2 and l integrals.

−(−ig2)(2π)4δ(4)(p+ q − (p′ + q′))v
(r)
~p Γ
( i

−�p− �q −m+ iε
+

i

−�p+ �q
′ −m+ iε

)
Γv

(r′)
~p′

The initial antinucleon state gave us a v
(r)
~p . If the initial state had been specified simply

by some spinor v (rather than a type r, one of our basis spinors), the amplitude is antilinear
in v, that is linear in v. (Why do we expect this?)

Feynman Rules - Factors

qf internal meson
i

q2 − µ2 + iε

→pF internal nucleon i

�p−m+iε
oriented along arrow (along charged flow for positively

charged particles).

p′↖� ←qf
↗pE −igΓ(2π)4δ(4)(p+ q − p′)

Integrate over internal momenta

• For every incoming nucleon (annihilated by a ψ) get a u

• For every incoming antinucleon (annihilated by a ψ) get a v

• For every outgoing nucleon (created by a ψ) get a u

• For every outgoing antinucleon (created by a ψ) get a v
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Because fermions always appear bilinearly (we’ll soon see quadrilinears are ruled out) in
a Lagrangian, a fermion line either goes all the way through a graph or in a loop. Since we
haven’t done any examples with a fermion loop yet, we’ll just do the matrix multiplication
rules for a line going all the way through a graph first.

Feynman Rules - Matrix multiplication

Go to the head of any fermion line that goes all the way through a graph. You will either
be at an incoming antinucleon, in which case you write down a v, or at an outgoing nucleon
in which case you write down a u. (I start at the head of the line because I habitually write
from left to right, so I start with the row vector then go through the matrices and finish
with a column vector.)

Working against the arrows, the next thing you get is a vertex. Write down the matrix
for the vertex. Then you’ll get an internal line followed by another vertex some number of
times. Write down the propagator matrix, then the interaction matrix each time.

When you get to the tail end of the line, you’ll either be at an incoming nucleon, in which
case write down a u, or at an outgoing antinucleon, in which case write down a v.

EXAMPLE

u'

l1

l2
l2 u

(2)

(1)

(3)
(4)

(5)

(6)

(7)

(8)

(9)

(6): mass renormalization; comes from −Bψψ term in LCT .

u′
(1)

Γ
(2)

i

��l1 −m+ iε
(3)

Γ
(4)

i

�21 −m+ iε
(5)

Id
(6)

i

�21 −m+ iε
(7)

Γ
(8)

u
(9)

What you finally obtain is a number. You get another product like this for each Fermi
line that goes through a graph.
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What about Fermi lines that go in loops? Here is a graph:

f@O�@f
Another is

d e�
� BFe d

This is an order g4 diagram for 2 meson −→ 2 meson scattering. The factor of interest
in this contribution to the process is

ψΓψ(x1)ψΓψ(x2)ψΓψ(x3)ψΓψ(x4)

I’ll rewrite this as

−Tr ψ(x4)ψΓψ(x1)ψΓψ(x2)ψΓψ(x3)ψ(x4)Γ

Notice the minus sign. To put this in standard form for replacing ψψ by our integral

over
i

�p−m
, I not only had to move ψ(x4) all the way to the left and write the sum on α

in Γβαψα(x4) as a trace, I had to anticommute ψ(x4) by an odd number of Fermi fields to
get it there. First ψ(x4), then a bunch of bilinears. This is why there is a minus sign out front.

To conclude the matrix multiplication rules the rule is thus: If a Fermi line goes in a
loop, start anywhere in the loop, and working against the arrows write down vertex and
propagator matrices until you get back to where you started. Then take the trace to get a
number. You get a factor like this for each Fermi loop. There are no u’s or v’s in the factor
coming from a Fermi loop.

Feynman Rules + Fermi minus signs

One thing is for sure, each Fermi loop gives you a minus sign.

To get the rest of the minus signs, I’ll do an example. Back on Oct. 28, we did “nucleon”-
“nucleon” scattering at O(g2). We’ll do the analogous calculation for nucleon-nucleon scat-
tering (no quotes). Eq. (11.1) is the expression whose spinor analog is going to give us some
troublesome minus signs. We need to simplify:

1

2!
〈p′, r′; q′, s′| : ψΓψ(x1)ψΓψ(x2) : |p, r; q, s〉
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It is slightly ambiguous to write |p, r; q, s〉 and 〈p′, r′; q′, s′|. The two possibilities for the
ket are

|p, r; q, s〉 =

relativistically normalized︷︸︸︷
b(p)† bs(q)†|0〉 and {br(p), bs(p)†} = (2π)3δrsδ(3)(~p− ~p′)E~p

|p, r; q, s〉 = bs(q)†br(p)†|0〉 = −br(p)†bs(q)†|0〉

It doesn’t matter which choice you take - I’ll take the second - as long as you choose
〈p′, r′; q′, s′| to be the corresponding bra.

〈p′, r′; q′, s′| = (|p′, r′; q′, s′〉)† = 〈0|br′(p′)bs′(q′)

That way the forward scattering amplitude when there is no interaction (or at zeroth
order when there is) is positive, not negative. So what we have to simplify is

1

2!
〈0|br′(p′)bs′(q′) : ψΓψ(x1)ψΓψ(x2) : bs(q)†br(p)†|0〉

ψ(x1) and ψ(x2) both contain operators which could annihilate either of the incoming
nucleons. Let’s say ψ(x2) annihilates the nucleon with momentum q. If ψ(x1) annihilates
the nucleon with momentum q, we can rewrite what follows, and the only difference will
be x1 ←→ x2. Since these are dummy variables in an otherwise symmetric integration, I’ll

ignore this second case and cancel the 1
2!

. The coefficient of bs(q) in ψ(x2) is usq
e−iq·x2

(2π)32E~q
, so

what I have is
〈0|br′(p′)bs′(q′) : ψΓψ(x1)ψ(x2)Γusq : br(p)†|0〉e−iq·x2

Move the bilinear past ψ(x2) and let ψ(x1) annihilate the remaining incoming nucleon:

〈0|br′(p′)bs′(q′) : ψ(x2)Γusqψ(x1)Γurp : |0〉e−iq·x2e−ip·x1

Now either ψ(x2) or ψ(x1) can take care of the outgoing nucleon with momentum p′, but
this does not just give us another factor of 2. These two possibilities are different because
a distinction between x1 and x2 has now been made by the way we annihilate the incoming
nucleon.

Suppose ψ(x2) takes care of the outgoing nucleon with momentum q′. The coefficient of

bs
′
(q′)† in ψ(x2) is

us
′
q′e

+iq′·x2

(2π)32E~q
, so what I have is

〈0| br′(p′)us′q′ Γu
s
q ψ(x1) Γurp |0〉e−iq·x2e−ip·x1eiq

′·x2
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The final simplification gives

us
′
q′ Γu

s
q u

r′
p′ Γu

r
p e
−iq·x2e−ip·x1eiq

′·x2eip
′·x1

There are other factors, but the graph these factors are from is

p,r

q,s

p',r'

q',s'

p is absorbed at the same spacetime point as p′ is created; q is absorbed at the same
spacetime point as q′ is created.

What about the contribution where ψ(x) takes care of the outgoing nucleon with mo-
mentum q? First I’ll anticommute the two ψ fields to get:

−〈0||br′(p′)bs′(q′) : ψ(x1)Γurpψ(x2)Γusq|0〉e−iq·x2e−ip·x1

Now the coefficient of bs
′
(q′)† in ψ(x1) is

us
′
q′e

iq′·x1

(2π)32E~q′
. So I get

The final simplification gives

−us′q′Γu
r
pu

r′
p′Γu

s
qe
−iq·x2−ip·x1+iq′·x1+ip·x2

The differences with the previous expression worth noting are the minus sign and the
different spinor structure. The exponential factors are different in the expected way. The
graph is

p,r

q,s

p',r'

q',s'

Having obtained the spinor factor and the minus sign, you can continue on by doing the
x integrations in the fashion leading up to Eq. (11.6) for the “nucleon”-“nucleon” scattering.

This was how reordering Fermi operators gives minus signs. I don’t have a tidy little rule
to summarize the sign of the general case, but of course you won’t have to be so detailed
when you are just checking how many reorderings of Fermi fields it takes to get a given
contribution to a matrix element.
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EXAMPLE: COMPLETE EXPRESSION FOR N +N −→ N +N Γ = iγ5

p up'u'

p'u' p u

1 1 1 1

2 2 2 2

+ crossed graph

iA = (−ig)2

[
u′1iγ

5u1u′2iγ
5u2

i

(p1 − p′1)2 − µ2
(+1) + u′1iγ

5u2u′2iγ
5u1

i

(p1 − p′2)2 − µ2
(−1)

]

EXAMPLE: COMPLETE CALCULATION OF N + φ −→ N + φ Γ = iγ5

p',u' p+q p,u

qq'

p',u' p-q p,u

q

q'
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iA = (−ig)2

[
u′iγ5 i

�p+ �q −m+ iε
iγ5u+ u′iγ5 i

�p
′ − �q −m+ iε

iγ5u

]

A = g2u′γ5

[
�p+ �q +m

(p+ q)2 −m2
+ �p

′ − �q +m

(p′ − q)2 −m2

]
γ5u USING (γ5)2 = 1 AND {γ5, �p} = 0

A = g2u′

[
−�p− �q +m

(p+ q)2 −m2
+
−�p′ + �q +m

(p′ − q)2 −m2

]
u USING �pu = mu AND u′�p

′ = u′m

= g2u′�qu

[
1

(p′ − q)2 −m2
− 1

(p+ q)2 −m2

]
SPIN AVERAGING AND SPIN SUMMING
INITIAL (RESP. FINAL) SPINS IN EXPT. UNKNOWN, AVERAGE (RESP. SUM)

TRANS. PROB OVER THEM36

M = u1

MATRIX︷︸︸︷
OI u2

KINEMATIC
FACTORS︷ ︸︸ ︷

( )I i.e. A = u1γ
µu2qµ, I : collective indices

|M |2 = u2 γ

[
γ0O†γ0u1u1O

]
γδ
u2 δ

[ ]
using

∑
spin 1

u1αu1β = (�p1 +m)αβ

=
[
γ0O†γ0 �p1 +m

2m
O
]
γδ
u2 δu2 δ [ ] using

∑
spin 2

u2αu2β = (�p2 +m)αβ

= Tr

[
γ0O

†γ0 �p1 +m

2m
O �
p2 +m

2m

]
In other calculations you will need∑

spins

v3v3 = �p3 −m

1

2

∑
r︸ ︷︷ ︸

initial av.

∑
s︸︷︷︸

final sum

|ars|2 =
1

2
|F |2

∑
r,s

Tr
[
u~p′�qu

(s)
~p u

(s)
~p �qu

(r)
~p′

]

=
1

2
|F |2Tr �q(�p+m)�q(�p

′ +m)

=
1

2
|F |2(4m2µ2 + 8p · qp′ · q − 4p · p′µ2)

36Do not sum or average the Feynman amplitude. Average or sum probability.
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25 January 6

P , C, and PT for spinor fields

We know what P does to a Dirac’s field

P : ψ(~x, t) −→ βψ(−~x, t)

We expect (general QM theorem coming from uniqueness of canonical commutation re-
lations) that in the quantum theory there is a unitary operator effecting this change

P : ψ(~x, t) −→ U †Pψ(~x, t)UP = βψ(−~x, t)

UP is a unitary operator in Hilbert space. It has no spinor indices. (A Dirac field has a
spinor index; each entry in the Dirac field is itself an operator in Hilbert space.)

From the effect of UP on ψ and the expansion of ψ in terms of creation and annihilation
operators, we get the effect of UP on the creation and annihilation operators.

ψ(~x, t) =
∑
r

∫
d3p

(2π)3/22E~p

[
b

(r)
~p u

(r)
~p e−ip·x︸ ︷︷ ︸

positive frequency
solution of

Dirac equation

+ c
(r)†
~p v

(r)
~p eip·x︸ ︷︷ ︸

negative frequency

]

We need an expression for βψ(~x, t). The first step is to evaluate βu
(r)
~p and the first step

to evaluating that is to find βu
(r)
~0

. But that’s easy, βu
(r)
~0

= u
(r)
~0

comes right from (�p−m) = 0

for p = (m,~0). To get the effect of β on u
(r)
~p we now use u

(r)
~p = e~α·~e φ/2u

(r)
~0

.

βu
(r)
~p = βe~α·~e φ/2u

(r)
~0

~e =
~p

|~p|
sinhφ =

|~p|
m

= e−~α·~e φ/2βu
(r)
~0

(because {β, αi} = 0)

= e−α·~e φ/2u
(r)
~0

= u
(r)
−~p

We have shown that parity does to positive frequency solutions of the Dirac equation
what you would expect it to; it reverses the direction of motion but doesn’t do anything to
the spin.

So the effect of UP on b
(r)
~p must be

U †P b
(r)
~p UP = b

(r)
−~p
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(and the h.c. equation U †P b
(r)†
~p UP = b

(r)†
−~p )

A very similar argument goes through for the c
(r)†
~p which are multiplied by v

(r)
~p except for

one thing
βv

(r)
~0

= −v(r)
~0

Because of that minus sign the effect of UP on c
(r)†
~p is U †P c

(r)†
~p UP = −C(r)†

−~p (and the

h.c. eqn), U †P c
(r)
~p UP = −C(r)

−~p .

The b’s have positive intrinsic parity, but the c’s have negative intrinsic parity. UP acting
on a state with n elections does nothing. UP acting on a state with n positrons gives (−1)n.
Fermion and antifermion have opposite intrinsic parity. This is unlike the charged scalar,
where both particle and antiparticle were scalar or pseudoscalar.

Is this just an artifact of some unfortunate convention37, or does this counterintuitive
result have observable consequences.

Consider the process N + N̄ −→ 2π. The nucleon and antinucleon are taken to be at
rest, because this implies (no momentum −→ no angular momentum) that they are in an
l = 0 state. There are two possible l = 0 states, either s = 0 or s = 1.

l = 0 s = 0 J = 0 P = −1

l = 0 s = 1 J = 1 P = −1

The total angular momentum J is absolutely conserved, and the parity is −1 because of
what we have just found.

The two pseudoscalar pions either have

l = 0 J = 0 P = +1

l = 1 J = 1 P = −1

(l = 0 is an even function of relative momentum so it is positive parity, and l = 1 is an
odd function of relative momentum so it has negative parity; in general you get (−1)l.) The
fact that the pion is pseudoscalar doesn’t affect the outcome because there are two (an even
number) of them.

Looking at the possibilities, in particular at the J and P , you see that this process is
forbidden. (Except by the P violating weak interaction, but the strong interactions which

37i.e. could I redefine P to be Px some internal symmetry which would not have this relative minus sign.
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are P conserving and which would make this process occur very quickly compared to the
weak interaction aren’t allowed to do it).

This is a convention independent consequence of the opposite intrinsic parity of N and
N̄ .

C Charge conjugation

Recall how charge conjugation acted on a charged scalar:

C : ψ(x) −→ ψ∗(x) (ψ∗(x) −→ ψ(x))

was a symmetry of the action; Alternatively, you could see that ψ∗(x) was a solution of
the equation of motion whenever ψ was. In the free case:

(2 +m2)ψ = 0⇐⇒ (2 +m2)ψ∗ = 0

This follows because 2 +m2 is real.

(The free case is worth looking at because in general, when you add interactions you
break symmetries, not create them.)

In the Dirac theory
(i��∂ −m)ψ = 0���⇐⇒(i��∂ −m)ψ∗ = 0

Unless we are in a representation in which all of the γµ are purely imaginary. [This
doesn’t mean that a symmetry worth calling charge conjugation does not exist in a general
basis; it just means it takes a more complicated form.]

I’ll show that a representation in which all of the γµ are purely imaginary exists by
constructing one. Any real change of coordinates preserves this property, so there are lots of
possibilities. You already know four matrices with square one that anticommute with each
other: (

1 0
0 −1

)
and

(
0 ~σ
~σ 0

)
Of these four, one is pure imaginary

(
0 σy
σy 0

)
, and the others are pure real. So

γ0 =

(
0 σy
σy 0

)
γ1 = i

(
1 0
0 −1

)
γ2 = i

(
0 σx
σx 0

)
γ3 =

(
0 σz
σz 0

)
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satisfies
{
γµ, γν

}
= 2gµν and γµ ∗ = −γµ, the “Majorana” condition.

In this basis C : ψ(x) −→ ψ∗(x) is a symmetry of the free equation of motion and the
free Dirac action (provided the classical field is thought of as anticommuting).

Thinking quantum mechanically, we expect a unitary operator, UC , will exist such that

U †Cψ(x)UC = ψ∗(x)

Why write ψ∗(x) and not ψ†(x)? Because we have been thinking of ψ† as a row vector,
not only have we been using † to mean complex conjugation of numbers and hermitian conju-
gation of operators, but transpose in spinor indices. We don’t always want to do a transpose
when we hermitian conjugate a spinor, so we’ll use ψ∗(x) to mean hermitian conjugation
without transposition in spinor indices. If you like, ψ∗(x) = ψ†T (x).

[There is always a similarity transformation between any two sets of γµ (that’s Pauli’s
theorem), and so as not to completely jettison the approach that most books take to charge
conjugation, I’ll show what charge conjugation looks like in a general basis. Let

ψs = Sψm C : ψm −→ ψ∗m

ψm : Dirac spinor in Majorana basis, ψs : some other basis like the standard one.

What does C do to ψs?

C : ψs −→ Sψ∗m = SS∗−1S∗ψ∗m
= SS∗−1(Sψm)∗

= SS∗−1ψ∗s

The matrix SS∗−1 is usually denoted C. The representation dependent computations
that we’ll do are so much simpler, that this is all we’ll have to say about C.]

LORENTZ TRANSFORMATION IN A MAJORANA BASIS

Mi =
iαi
2

=
iγ0γi

2
so Mi = −M∗

i

Lk = −iεijkMiMj so Lk = −L∗k
D(A(~eφ))− e−i ~M ·~eφ = D(A)∗
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D(R(~e θ)) = e−i
~L·~eθ = D(R)∗

i.e. D(Λ) = D(Λ)∗ real

Charge conjugation commutes with Lorentz transformations. (The utility of this simple
little result will become clear in the following.)

We want to find the effect of UC on creation and annihilation operators. You get that
from the expansion of ψ in terms of creation and annihilation operators and the assumed
effect of UC on ψ; U †Cψ(x)UC = ψ∗(x). We need to get the expansion of ψ∗(x) in terms of

creation and annihilation operators explicitly. Thus we need to know what u
(r)∗
~p and v

(r)∗
~p

are. From the eqn.
(�p−m)u

(r)
~p = 0,

complex conjugated in a Majorana basis, we have

(−�p−m)u
(r)∗
~p = 0 i.e. (�p+m)u

(r)∗
~p = 0.

This says that the complex conjugate of a solution of the Dirac equation that has positive
frequency is a solution of the Dirac equation with negative frequency.

We are free to choose the u
(r)
~p and v

(r)
~p any way we want. So to make the action of charge

conjugation simple, choose
v

(r)
~p = u

(r)∗
~p

This is consistent with

u
(r)
~p = D(A(~eφ))u

(r)
~0

v
(r)
~p = D(A(~eφ))v

(r)
~0

because charge conjugation commutes with Lorentz transformation (in a Majorana basis).

Let’s see what this implies about the effect of charge conjugation on spins. From the
complex conjugate of

Lzu
(1)
~0

=
1

2
u

(1)
~0

we have −Lzu(1)∗
~0

= 1
2
u

(1)∗
~0

, i.e.

Lzv
(1)
~0

= −1

2
v

(1)
~0

Since u multiplies an annihilation operator and v multiples a creation operator, this is
exactly what we expect for charge conjugation. It shouldn’t have any effect on spin.

ψ(x) =
∑
r

∫
d3p

(2π)3/2
√

2E~p

[
b

(r)
~p u

(r)
~p e−ip·x + c

(r)†
~p v

(r)
~p eip·x

]
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So,

ψ∗(x) =
∑
r

∫
d3p

(2π)3/2
√

2E~p

[
b

(r)†
~p u

(r)∗
~p eip·x + c

(r)
~p v

(r)∗
~p e−ip·x

]
=
∑
r

∫
d3p

(2π)3/2
√

2E~p

[
b

(r)†
~p v

(r)
~p eip·x + c

(r)
~p u

(r)
~p e−ip·x

]
We equate this with

U †Cψ(x)UC =
∑
r

∫
d3p

(2π)3/2
√

2E~p
[U †Cb

(r)
~p UCu

(r)
~p e−ip·x + U †Cc

(r)†
~p UCv

(r)
~p eip·x

]
Matching coefficients gives (U∗Cψ(x)U †C = ψ∗(x))

U †Cb
(r)
~p UC = c

(r)
~p and U †Cc

(r)†
~p UC = b

(r)†
~p

The h.c. equations are

U †Cb
(r)†
~p UC = c

(r)†
~p and U †Cc

(r)
~p UC = b

(r)
~p

This couldn’t be simpler. Thanks to the way we set up the correspondence, complex
conjugation does not mix up the spin ups and spin downs. Spin ups transform into spin ups
and spin downs transform into spin downs, exactly as if the spin up electron was a boson
whose antiparticle is a spin up positron.

Construction of nucleon-antinucleon state

Scalar case (“nucleon” -“antinucleon” state for warm up and comparison)

c†~p′︸︷︷︸
adds an “anti-nucleon”

creates “nucleon”︷︸︸︷
b†~p |0〉

UCc
†
~p′b
†
~p|0〉 = b†~p′c

†
~p|0〉

|ψ〉 ≡
∫
d3p d3p′ F (~p, ~p′)c†~p′b

†
~p|0〉

Then UC |ψ〉 = ±|ψ〉 if F (~p′~p) = ±F (~p, ~p′)
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Fermionic case

|ψ〉 =
∑
rs

∫
d3p d3p′ Frs(~p, ~p

′)c
(s)†
~p′ b

(r)†
~p |0〉

UC |ψ〉 = ∓|ψ〉 if Fsr(~p, ~p
′) = ±Frs(~p′, ~p)

An antisymmetric state of fermion and antifermion is charge conjugation even! Came
from (anti-)commutation relations.

Charge conjugation properties of fermion bilinears

Consider AMB. So we can anticommute A and B without worrying about the anticom-
mutator, either consider the Fermi fields A and B to be classical Fermi fields, or consider
the normal ordered product, : AMB :. M is just some matrix in spinor space, like iγ5.

Under charge conjugation

U †CAUC = A∗ U †CBUC = B∗

From this
U †CA

∗UC = A U †CB
∗UC = B

(or
U †CA

†UC = AT U †CB
†UC = BT

same statement as a row vector.)

Now A = A†γ0 so

U †CAUC = U †CA
†UCγ

0 = ATγ0

= A†∗(−γ0∗) = −(A†γ0)∗

= −A∗

also,
U †CBUC = −B∗

B̄M ∗ A:
ψγµψ −→ −ψγµψ ψiγ5ψ −→ ψiγ5ψ

ψσµνψ −→ −ψσµνψ ψγµγ5 −→ ψγµγ5ψ
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Exercise In quantum mechanics you frequently use (θ1θ2)† = θ†2θ
†
1. Prove this from the

definition of the adjoint (φ, θ†ψ) = (ψ, θφ)∗. Is this formula changed if θ1 and θ2 are Fermi?
No.

U †C : AMB : UC =: U †CAMBUC :
This step is allowed
because UC does not
mix up creation and

annihilation operators

=: U †CAUCMU †CBUC :

= − : A
∗
MB∗ :

To do the next step, I am going to explicitly display the spinor matrix multiplications so
I don’t have to worry about keeping matrices and spinors in a given order. The idea of the
next step is to write this as the complex conjugate of something. We have

− : A
∗
MB∗ : = − : A

∗
αMαβB

∗
β :

= − : BβM
∗
αβAα :∗

remember ∗ means
adjoint without
transverse and

adjoint reverses order

= + : AαM
∗
αβBβ :∗ Fermi fields anticommute

inside normal ordered product

This last anticommutation puts things back in the right order to use the conventions of
spinor matrix multiplication. What I have shown is

U †C : AMB : UC =: AM∗B :∗

=: BM∗A
look bac

when we introduced
the bar of a matrix

:

So all you have to do to calculate the effect of C on our 16 bilinears is to calculate things
like

1
∗

= 1

γµ
∗

= −γµ in a Majorana basis

iγ5
∗

= iγ5 in a Majorana basis

γ5γµ
∗

= (γ5γ
µ)∗ = γ5γµ

σµν
∗

= −σµν

(You can be sloppy and not distinguish between M
∗

and M∗ in a Majorana basis.)

So ψψ is charge conjugation invariant. That’s good; it would be bad to find out that our
mass term breaks C.
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g1φψψ + g2φψγ5ψ is charge conjugation invariant

−e Aµ︸︷︷︸
vector mesons

ψγµψ is charge conjugation invariant only if Aµ is charge conjugation odd,

U †CAµUC = −Aµ.

a Wµ︸︷︷︸
vector mesons

ψγµγ5ψ + vWµψγ
µψ is parity violating and C violating, but it preserves CP .

: ψσµνψ :−→ − : ψσµνψ :

10 odd fermion bilinears from symmetric combinations and 6 even ones from antisym-
metric combination

D(1/2,1/2) ⊗D(1/2,1/2) = D(1,1) ⊕D(0,0) +D(0,1) ⊕D(1,0)

Bosons:

|ψ〉 =

∫
d3p d3p′ f(~p, ~p′)b†~pc

†
~p′ |0〉

UCψ = ±|ψ〉 if f(~p, ~p′) = ±f(~p′, ~p)

Fermions:
UC |ψ〉 = ±|ψ〉 if f(~p, ~p′) = ∓f(~p′, ~p)

Example of Charge Conjugation in QED

The QED Lagrangian contains AµJ
µ where

Jµ = eψγµψ

and Aµ is the photon field. If Jµ is charge conjugation odd and if the Lagrangian is to
preserve charge conjugation, then Aµ must be charge conjugation odd and a state with N
photons satisfies:

UC |Nγ〉 = (−1)N |Nγ〉
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We’ll use this to evaluate the relative decay rates of ortho and para positronium, the two
lowest nearly degenerate hydrogen like bound states of an electron and a positron

l = 0

{
ortho : s = 1 J = 1 C = −1
para : s = 0 J = 0 C = +1

(“para” means opposite to)

The charge conjugation properties are deduced: a state of one electron and one positron
stands a chance of being a charge conjugation eigenstate. The orbital wave function when
l is even is symmetric. When two spin 1

2
are put together in a symmetric combination, you

get a spin 1 state. When they are put together antisymmetrically, you get a spin 0 state.
These facts, and the crucial Fermi minus sign from anticommuting particle and antiparticle
creation operators gives the charge conjugation eigenvalue. Now what are the possible decay
products? Electron and positron are the lightest charged particle antiparticle pairs so the
decay must be into n photons. By kinematics alone, one photon is not allowed. Two or more
photons are kinematically allowed, but each additional photon comes with a factor of e in
the amplitude, or e2 in the probability. Assuming there are no numerical surprises (without
doing some calculations there is no way to rule out factors like (2π)4 in relative amplitudes),
the partial decay rate into n+1 photons should be down by a factor of e2 ≈ 1

137
compared to

the partial decay rate into n photons, assuming they are both allowed. The decay that goes
fastest will be the one that goes into the lowest number of photons. The lowest possibilities
are

2 photons c = +1

3 photons c = −1

para −→ 2γ allowed

ortho −→ 2γ not allowed

ortho −→ 3γ allowed

For another explanation along these lines, see I+Z p.154, where the experimental values
are also given.

UCUP = UPUC(−1)NF = UPUCU(R(2π~e))

Show: UCUP = UPUCU(R(~e2π))
U(R(~e2π)) is a fancy way of writing the operator (−1)NF (NF = # of fermions)
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Write (−1)NF this way because it reminds you that it is a symmetry of the theory.

One way to show this is to show it is true when acting on an arbitrary state, or at least
a basis. Consider

b†~p1
· · · b†~pnd

†
~p1
d†~pn|0〉

States of this form are a basis and states of this form it is easy to convince yourself the
identity is true.

PT

Just as in a scalar theory, Lorentz invariance makes it easier to consider PT than T .
Recall PT in the classical scalar theory

(2 +m2)φ(x) = 0 =⇒ (2 +m2)φ(−~x,−t) = 0

so we expect there to be an antiunitary operator having the effect

Ω−1
PTφ(x)ΩPT = φ(−x)

In the Dirac theory

(i��∂ −m)ψ(x) = 0���=⇒(i��∂ −m)φ(−x) = 0

Now an operation worth calling PT can have a more general form.

PT : ψ(x) −→Mψ(−x)

where M is some four-by-four matrix in spinor space. What we need is

(i��∂ −m)ψ(x) =⇒ (i��∂ −m)Mψ(−x) = 0

i.e. M must anticommute with γµ. We’ll take M = iγ5. Up to a factor this choice is
unique.

[ Proof: Suppose there is a second M anticommuting with the γµ, call it M ′. Then MM ′

commute with every one of the 16 Γ matrices, MM ′ must be proportional to the identity
and M ′ must be proportional to γ−1

5 = γ5 ]

PT : ψ(x) −→ iγ5ψ(−x) = Ω−1
PTψ(x)ΩPT
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Consider applying PT twice

Ω−2
PTψ(x)Ω2

PT = Ω−1
PT iγ5ψ(−x)ΩPT

= iγ5Ω−1
PTψ(−x)ΩPT

iγ5 is real so
it goes through

2ΩPT

= iγ5iγ5ψ(x) = −ψ(x) γ2
5 = 1

= U(R(~e2π))ψ(x)

PT is a rotation half way around the rotation group. This proof is unaffected by giving
M an arbitrary phase

(Ω2
PT = U(R(~e2π))

Using (Ω−1AΩ)† = Ω−1A†Ω

[ Proof:

(b, (Ω−1AΩ)†a) = (a,Ω−1AΩb)∗ definition of adjoint of Ω−1AΩ

= (Ωa,ΩΩ−1AΩb) antiunitary of Ω

= (Ωa,AΩb)

= (Ωb, A†Ωa)∗ definition of adjoint of A

= (Ω−1Ωb,Ω−1A†Ωa) antiunitarity of Ω−1

= (b,Ω−1A†Ωa) ]

Ω−1
PTψ

†(x)ΩPT = (iγ5ψ(−x))†

= −ψ†(−x)iγ5

This tells how ψ = ψ†β transforms

Ω−1
PTψΩPT = Ω−1

PTψ
†ΩPT

−β︷︸︸︷
β∗

= −ψ†(−x)iγ5(−β)

= ψ(−x)iγ5

So
PT : ψ(x)ψ(x) −→ ψ(−x)ψ(−x)
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26 January 8

PT (cont’d)

(PT commutes with Lorentz transformations)

ΩPT on states.

We expect PT to do nothing to momenta

~k −→
P
−~k −→

T

~k

Reflection turns the momenta around but summing the movie backward does it again.

The spin of a particle is affected though.

~S −→
P

~S −→
T
−~S

Thus we can’t expect to find a basis where single particle states are left unchanged. I.e.

Ω−1
PT

{
b

(r)
~p

c
(r)
~p

}
ΩPT =

{
b

(r)′

~p

c
(r)′

~p

}
where

b
(1)′

~p = some phase × b(2)
~p

b
(2)′

~p = some other phase × b(1)
~p

(some other phase = - some phase∗)

So that ΩPT applied twice gives −

{
b

(r)
~p

c
(r)
~p

}
.

Tricky choice of spinor basis

If b
(r)
~p is associated with the solution of the Dirac equation u

(r)
~p , let b

(r)′

~p be associated

with u
(r)′

~p ≡ −iγ5u
(r)∗
~p .

If c
(r)
~p is associated with v

(r)
~p , let c

(r)′

~p be associated with v
(r)′

~p .
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What’s good about this choice? It makes the action of ΩPT on creation and annihilation
operator simple. Furthermore it agrees with the expectations of the previous page.

If (�p−m)u = 0, then (taking c.c.), (−�p−m)u∗ = 0 and (�p−m)(−iγ5u
∗) = 0.

Given Lzu
(1)
~0

= +1
2
u

(1)
~0

, then (taking c.c.), Lzu
(1)∗
~0

= −1
2
u

(1)∗
~0

and

Lz
(
− iγ5u

(1)∗
~0

)
= −1

2

(
− iγ5u

(1)∗
~0

)
Because Lorentz transformations are real in a Majorana basis, this generalizes to moving

states.

The action of ΩPT on creation and annihilation operators is derived from the action of
ΩPT on the field, and the expansion of the field

(v
(r)′

~p ≡ −iγ5v
(r)∗
~p )

So now we’ll see that the definitions of b
(r)′

~p and c
(r)′

~p and

Ω−1
PT

{
b

(r)
~p

c
(r)
~p

}
ΩPT =

{
b

(r)′

~p

c
(r)′

~p

}

are consistent with
Ω−1
PTψ(x)ΩPT = iγ5ψ(−x)

which is equivalent to
−iγ5Ω−1

PTψ(−x)ΩPT = ψ(x)

We can write the expansion of ψ(x) two ways

ψ(x) =
∑∫

(· · · )︸ ︷︷ ︸
kinematic factors

unimportant to the argument

[
b~p u~p e

−ip·x + c
(r)†
~p v~p e

ip·x
]

or

ψ(x) =
∑∫

(· · · )
[
b

(r)′

~p u
(r)′

~p e−ip·x + c
(r)′†
~p v

(r)′

~p eip·x
]

Use the first way in the LHS and the second way in the right. Writing out the LHS, we
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have

LHS = −iγ5Ω−1
PT

∫
(· · · )

[
b

(r)
~p u

(r)
~p eip·x + c

(r)†
~p v

(r)
~p e−ip·x

]
ΩPT

= −iγ5

∫
(· · · )

[
Ω−1
PT b

(r)
~p ΩPTu

(r)∗
~p e−ip·x + Ω−1

PT c
(r)†
~p ΩPTv

(r)∗
~p eip·x

]
=

∫
(· · · )

[
b

(r)′

~p u
(r)′

~p e−ip·x + c
(r)′†
~p v

(r)′

~p eip·x
]

= RHS

Proof of PCT within perturbation theory

For scalars TCP invariance of the S matrix was equivalent to

a(p1, · · · , pn) = a(−p1, · · · ,−pn)

This says that the amplitude with all incoming particles turned into outgoing antiparticles
with the same 3-momentum is the same. What is the corresponding statement when there
are Dirac particles in the theory. We’ll simplify by looking only at

1 fermion + any number of mesons −→ 1 fermion + any other number of mesons

u’ u

a is of the form

a = u′M(p1, · · · , pn)u

Instead of having an outgoing fermion characterized by u′, the CPT reversed process
has an incoming antifermion with the opposite spin characterized by −iu′γ5. Instead of an
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incoming fermion characterized by u the CPT reversed process has an outgoing antifermion
characterized by −iγ5u. If you want to understand this in two steps

u︸︷︷︸
describes

an incoming
fermion with

some spin

−→
PT

−iγ5u
∗︸ ︷︷ ︸

describes
an outgoing

fermion of the
opposite spin

−→
C

−iγ5u︸ ︷︷ ︸
describes

an outgoing
antifermion

of the opposite spin

(This is a definite choice for the transformed spin, a choice of another phase would screw
up the CPT theorem.)

There is also an additional minus sign in the amplitude. Because an operator has to have
an odd number of reordering of Fermi fields to contribute to this CPT reversed process.

Equality of the amplitude for this process and the CPT transformed process is thus

u′M(p1, · · · , pn)u = −︸︷︷︸
switching the operators

(−i)2u′γ5M(−p1, · · · ,−pn)γ5u

The proof that these two are equal only uses L.I. of the Feynman rules. Whatever the
Feynman rules are, L.I. tells us that

u′M(p1, · · · , pn)u = u′D(Λ)M(Λp1, · · · ,Λpn)D(Λ)u

Consider the case when Λ is a boost in any direction by an angle φ. Is the RHS an
analytic function of φ? D(Λ) contains complex conjugation, so we’re off to a bad start.
However, D(Λ) = D(Λ)−1. In this form, and using that

D(A(~eφ)) = e~α·~eφ/2

We see that both D(Λ) and D(Λ) are analytic; they are just exponentials.

What about M(Λp1, · · · ,Λpn). M is of the form

M =

∫
d4k1 · · · d4kn

N(p1, · · · , pn; k1, · · · , km)

D(p1, · · · , pn; k1, · · · , km)

The denominator is Lorentz invariant. The numerator may be an unbelievably complex
matrix, but at any finite order in perturbation theory, it is still a polynomial. So the whole
RHS is an analytic function of φ, and we can use the equation for complex φ.

[ If LHS(φ) = RHS(φ) for real φ, and if both sides are analytic functions of φ in some
domain of the complex plane containing a segment of the real line, then both sides are equal
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in that domain.]

Consider the Lorentz transformation

Λ = R(~ezπ)A(~eziπ)

A(~ezφ) : p0 −→ p0 coshφ+ p3 sinhφ

p1 −→ p1

p2 −→ p2

p3 −→ p3 coshφ+ p3 sinhφ

so

A(~eziπ) : p0 −→ −p0

p1 −→ p1

p2 −→ p2

p3 −→ −p3

while

R(~ezπ) : −p0 −→ −p0

p1 −→ −p1

p2 −→ −p2

−p3 −→ −p3

so Λ : pµ −→ −pµ.

A rotation by π in the z, it plane and a rotation by π in the x, y plane.

What is D(Λ)?

Lz =
i

4
ε3ijγ

iγj =
i

4
(γ1γ2 − γ2γ1) =

i

2
γ1γ2

D(R(~ezπ)) = e−iLZπ

= e
π
2
γ1γ2

= cos
π

2
+ γ1γ2 sin

π

2
= γ1γ2
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D(A(~eziπ)) = eαziπ/2

= ei
π
2
γ0γ3

= cos
π

2
+ iγ0γ3 sin

π

2
= iγ0γ3

So
D(Λ) = D(R(~ezπ))D(A(~eziπ)) = γ1γ2iγ0γ3 = γ5

(PCT is the analytic continuation of the Lorentz-transformation)

Since γ2
5 = 1 D(Λ)−1 = γ5 also

Lorentz invariance says

u′M(p1, · · · , pn)u = u′D(Λ)−1M(Λp1, · · · ,Λpn)D(Λ)u

= u′γ5M(−p1, · · · ,−pn)γ5u

and this exactly the statement of equality between an amplitude and the CPT trans-
formed amplitude.

Only analyticity of Feynman amplitude was used in the proof of this theorem. This
suggests that the theorem has very little to do with perturbation theory.

When we talked about parity invariance we had to hunt for the correct transformation of
the field. Depending on the interactions that transformation may have to be chosen in vari-
ous ways. A scalar meson may be forced to be scalar or pseudoscalar. For CPT invariance,
you don’t have to hunt for the right transformation. You just compute D(Λ) for the funny
Lorentz transformation with complex rapidity. It will be a symmetry of the Lagrangian as
long as the Lagrangian is Lorentz invariant and hermitian.

This proof easily generalizes to higher spin: You just compute D(Λ) for the higher spin
field.

(The restriction to one incoming and one outgoing fermion was totally inessential.)

NEXT: renormalization of spinor fields.
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Renormalization of spinor theories

To have a simple example in mind

L =
1

2
(∂µφ)2 − 1

2
µ2

0φ
2 + ψ(i��∂ −m0)ψ − λ0φ

4 − g0ψiγ5ψφ

The meson is pseudoscalar. This ensures 〈0|φ(x)|0〉 = 0. Not so if the meson nucleon
interaction is g0ψψφ.

m0 and µ0 have no necessary connection with physical masses. g0 and λ0 have no nec-
essary connection with the couplings measured in the standard scattering process. φ and ψ
are not necessarily good fields from the standpoint of the LSZ reduction formula.

Define Z3 by
〈0|φ(0)|k〉︸︷︷︸

one meson

≡ Z
1/2
3

φ′ ≡ Z
−1/2
3 φ

〈0|φ′(0)|k〉 = 1

φ′ is a good field from the standpoint of the LSZ reduction formula (but of course it does
not have conventionally normalized equal time commutation relations).

〈0|ψ(x)|0〉 = 0 by Lorentz invariance. So it also only needs rescaling to get a good field
for LSZ. However, the various components of this field may need different rescalings.

Let |r, p〉 (relativistically normalized so as to make L.T. properties simple) be a one
fermion state with momentum p and spin labelled by r. We’ll just study 〈0|ψ(0)|r, p〉 in the
rest frame of p. Anything else can be obtained by a Lorentz transform

physical vacuum︷︸︸︷
〈0| ψ(x) |p, s〉︸︷︷︸

physical nucleon

(Matrix elements of ψ are related to matrix elements of ψ by CPT or just by C if the
theory had that invariance.)

For definiteness, label the Jz = +1
2

state by r = 1 and Jz = −1
2

by r = 2. Let

u0 ≡ 〈0|ψ(0)|1, p〉
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We can obtain some restrictions on the form of u0 by using Lz conservation

u0 ≡ 〈0|ψ(0)|1, p〉
= 〈0|e−iJzθ︸ ︷︷ ︸

|0〉

eiJzθψ(0)e−iJzθ︸ ︷︷ ︸
e−iLzθψ(0)

eiJzθ|1, p〉︸ ︷︷ ︸
eiθ/2|1,p〉

= e−iLzθeiθ/2〈0|ψ(0)|1, p〉
= e−iLzθeiθ/2u0

In the standard basis Lz = 1
2

(
σz 0
0 σz

)
so in the standard basis this restricts u0 to be of

the form

u0 =


a
0
b
0


A less formal way of getting what we have just shown is to say that of the four compo-

nents of ψ, in the standard basis these two (marked with x)


x
.
x
.

 lower Jz by 1
2

and the

other two raise Jz by 1
2

so only the first two can have a nonzero Jz = 1
2

to zero matrix element.

To simplify life, let’s also assume the theory has parity invariance

U †pψ(0)Up = βψ(0)

Up|1, p〉 = |1, p〉 remember we are in
the rest frame of p

Now this is an assumption38 about the parity transformation properties of a physical
nucleon, but in perturbation theory, the transformation properties of the physical nucleon
should be the same as those of the bare nucleon for whatever symmetries are not broken by
the interaction.

38ASIDE: Strong coupling scenarios could violate the assumption that the parity transformation property
of the physical nucleon are the same as that of the bare nucleon. Starting with weak coupling, as you turn
up the coupling a nucleon meson bound state may form. Turn up the coupling and it may become lighter
than the nucleon. What you had called the nucleon is now unstable. If the meson is a pseudoscalar, the s
wave bound state will not have the same parity the perturbation theory nucleon did.
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This assumption simplifies the possible form of u0

u0 = 〈0|ψ(0)|1, p〉
= 〈0|Up︸ ︷︷ ︸

〈0|

U †pψ(0)Up︸ ︷︷ ︸
βψ(0)

U †p |1, p〉︸ ︷︷ ︸
|1,p〉

= β〈0|ψ(0)|1, p〉
= βu0

In the standard basis β =

(
1 0
0 −1

)
, so in the standard basis is now restricted to be

u0 =


a
0
0
0


Define Z

1/2
2 by a = z

1/2
2

√
2m and ψ′ by ψ′ = z

1/2
2 ψ then

〈0|ψ′(0)|1, p〉 =


√

2m
0
0
0


For general p, r = 1, 2, and any x we then have

〈0|ψ′(x)|r, p〉 = e−ip·xu
(r)
~p

which has been arranged to be exactly like the free theory. The LSZ reduction formula
goes through as before. The Lagrangian you proceed from to do renormalized perturbation
theory is

L =
1

2
(∂µφ

′)2 − µ2

2
φ′2 + ψ

′
(i��∂ −m)ψ′

− λφ′4 − gψ′iγ5ψ
′φ′

+
1

2
A(∂µφ

′)2 − 1

2
Bφ′2 + Cψ

′
i��∂ψ′ −Dψ

′
ψ

− Eψ′iγ5ψ
′φ′ − Fφ′4



26. January 8 Notes from Sidney Coleman’s Physics 253a 310

Digression on spinor renormalization in parity nonconserving theories.

γ5 commutes with Lorentz transformation, so γ5ψ(x) transforms in the same way as ψ(x)

under Lorentz transformations. In the standard rep γ5 =

(
0 1
1 0

)
so

〈0|γ5ψ(0)|1,p︸︷︷︸
at rest

〉 =


b
0
a
0


(ψ and γ5ψ have opposite parity transformation properties.)

The field ψ′(x) =
aψ(x)− bγ5ψ(x)

a2 − b2
is the one satisfying

〈0|ψ′(x)|r, p〉 = e−ip·xu
(r)
~p

In parallel with the method for determining A and B order by order in perturbation
theory done on November 18 and 20, we’ll show how C and D are determined order by order
in perturbation theory.

Define

←p′
�p ←p� =

∫
d4xd4y eip

′·xe−ip·y〈0|T (ψ′(x)ψ
′
(y)|0〉

≡ (2π)4δ(4)(p′ − p)S ′(p)

where S ′(p) is some 4 × 4 matrix function of p (this form is dictated by translational

invariance; 〈0|T (ψ′(x)ψ
′
(y)|0〉 is a function of x− y alone)

Let’s check that the conventions are right by comparing with the free field theory result.
On December 18, we calculated (Eq. (24.1))

ψ(x)ψ(y) = 〈0|T (ψ(x)ψ(y))|0〉

= (i��∂x +m)

∫
d4q

(2π)4
e−iq·(x−y) i

q2 −m2 + iε

=

∫
d4q

(2π)4
e−iq·(x−y) i(�q +m)

q2 −m2 + iε

=

∫
d4q

(2π)4
e−iq·(x−y) i

�q −m+ iε
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in free field theory. Putting this in above we have

=

∫
d4q

(2π)4

i

�q −m+ iε

∫
d4xd4y e−iq·(x−y)eip

′·xe−ip·y

=

∫
d4q

(2π)4

i

�q −m+ iε
(2π)4δ(4)(p′ − q)(2π)4δ(4)(p− q)

= (2π)4δ(4)(p′ − p) i

�p−m+ iε

The conventions are right; this is what we write down upon seeing
←p′ ←p
�

Lorentz invariance restricts the form of

S ′(p) =

∫
d4x eip·x〈0|T

(
ψ′(x)ψ

′
(0)
)
|0〉

=

∫
d4x eip·x 〈0|U(Λ)︸ ︷︷ ︸

〈0|

U(Λ)†T
(
ψ′(x)ψ

′
(0)
)
U(Λ)U(Λ)†|0〉︸ ︷︷ ︸

|0〉

=

∫
d4x eip·x〈0|T

(
U(Λ)†ψ′(x)U(Λ)U(Λ)†ψ

′
(0)U(Λ)

)
|0〉

=

∫
d4x eip·xD(Λ)〈0|T

(
ψ′(Λ−1x)ψ

′
(0)
)
|0〉D(Λ)

= D(Λ)

∫
d4x eip·Λx〈0|T

(
ψ′(x)ψ

′
(0)
)
|0〉D(Λ)

= D(Λ)

∫
d4x eiΛ

−1p·x〈0|T
(
ψ′(x)ψ

′
(0)
)
|0〉D(Λ)

= D(Λ)S ′(Λ−1p)D(Λ)

You can use this and the Lorentz transformation properties of the 16 Γ matrices (which
are a complete set of 4× 4 matrices) to get

S ′(p) = a(p2) +

Ruled out if we
assume parity

invariance︷ ︸︸ ︷
���

�b(p2)γ5 + c(p2)γµpµ +

Ruled out if we
assume parity

invariance︷ ︸︸ ︷
���

���
�

d(p2)γ5γ
µpµ + ��

���
��

e(p2)σµνp
µpν︸ ︷︷ ︸

0 by antisymmetry

= a(p2) + c(p2)�p

Define a new function S ′(z) = a(z2) + zc(z2), a function of a single complex variable.
Then because �p

2 = p2

S ′(p) = S ′(�p)
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The propagator is characterized by a single function of �p, a function of one variable!
(There is a one-to-one correspondence between functions of one variable and functions of 1
matrix. A function of two matrices is far more complicated than a function of two numbers
unless the two matrices commute)
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27 January 13

So far we have found

←p′
�p ←p� = (2π)4δ(4)(p′ − p)S ′(�p)

Now we define a one particle irreducible Green’s function (defined to not include (2π)4δ(4)(p′−
p) or external propagators) �1PIp ←p� = −iΣ′(�p)

For example, if a term in the Lagrangian is

−δmψψ

There is a contribution to −iΣ′(�p) of

�x ←p�− iδm i.e. to Σ′(�p) of δm

The nice thing about the 1PI function is that it gives us an expression for the full Green’s
function (without the (2π)4δ(4)(p′ − p)), i.e. it gives us S ′(�p).

�p� =�+�1PIp�+�1PIp�1PIp�+ · · ·

=�
 1

1−�1PIp�


Mathematically,

S ′(�p) =
i

�p−m+ iε
+

i

�p−m+ iε
(−iΣ′(�p))

i

�p−m+ iε

+
i

�p−m+ iε
(−iΣ′(�p))

i

�p−m+ iε
(−iΣ′(�p)) + · · ·

which sums to

S ′(�p) =
i

�p−m+ iε

[
1 +

Σ′(�p)

�p−m+ iε
+

(
Σ′(�p)

�p−m+ iε

)2

+ · · ·

]
=

i

�p−m+ iε

1

1− Σ′(�p)

�p−m+iε

=
i

�p−m− Σ′(�p) + iε
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(Remember �p is the only matrix in the problem so it commutes with “every other matrix”
and manipulations in which �p is treated like a number are correct. This simplification does
not persist in the spin 3

2
problem.)

To get a spectral representation for S ′(�p) we insert a complete set into 〈0|ψ′(x)ψ
′
(y)|0〉.∫∑

complete set |n〉
of momentum

eigenstates

〈0|ψ′(x)|n〉〈n|ψ′(y)|0〉 =

∫∑
|n〉

e−iPn·(x−y)〈0|ψ′(0)|n〉〈n|ψ′(0)|0〉

Now we break the |n〉 up into physical vacuum, physical one electron, one positron and

all other states. One positron does not contribute because 〈one positron|ψ′|0〉 = 0 (fermion
# conservation). As on November 18, (Eq. (16.1), we use the renormalization conditions to
eliminate the physical vacuum contribution and to simplify the one electron contribution.

〈0|ψ′(x)ψ
′
(y)|0〉 =

∑
r

∫
d3q

(2π)32ω~q
e−iq·(x−y)〈0|ψ′(0)

one electron︷︸︸︷
|q, r〉 〈q, r|ψ′(0)|0〉

+

∫∑
all other
states |n〉

e−iPn·(x−y)〈0|ψ′(0)|n〉〈n|ψ′(0)|0〉

=
∑
r

∫
d3q

(2π)32ω~q
e−iq·(x−y)u

(r)
~q u

(r)
~q

+

∫
d4p

(2π)4
e−ip·(x−y)

∫∑
all other |n〉

δ(4)(p− Pn)〈0|ψ′(0)|n〉〈n|ψ′(0)|0〉

The sum on |n〉 only contributes when the state |n〉 has spin 1
2

in its rest frame. In a

parity invariant theory, we can split these states into Jp = 1
2

+
, like a nucleon and meson in

a p wave, and Jp = 1
2

−
, like a nucleon and meson in an s wave.

The parity + states only give nonzero contributions to the upper two components 〈0|ψ′(0)|n〉
(in a standard basis which is easiest for states at rest to work with). The parity − state only
give nonzero components to the lower two components of ψ. Furthermore the contribution
of a Jz = +1

2
state to the top component is the same as a contribution to the second com-

ponent of the same state hit with the lowering operator Jx − iJy, a matrix which reduces to

2
√
p2

 1 0
0︸︷︷︸

2×2 blocks

0

 (in the standard basis) when p is at rest and is covariant in �p +
√
p2,
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so ∫∑
all other |n〉

with Jp = 1
2

+

δ(4)(p− Pn)〈0|ψ′(0)|n〉〈n|ψ′(0)|0〉 =
θ(p0)

(2π)3
σ+(
√
p2)(�p+

√
p2)

Similarly 39∫∑
all other |n〉
with Jp= 1

2

−

δ(4)(p− pn)〈0|ψ′(0)|n〉〈n|ψ′(0)|0〉 =
θ(p0)

(2π)3
σ−(
√
p2)(�p−m)

σ+ and σ−, which are defined by these equations are both positive semidefinite by the
positivity of the norm on Hilbert space. You might worry that �p−m is negative in the rest
frame of p, but it should be because 〈0|ψ′(0)|n〉〈n|ψ′(0)|0〉 differs from 〈0|ψ′(0)|n〉〈n|ψ′†(0)|0〉
by the matrix γ0 which is negative in its lower two components. In perturbation theory,
σ+ = σ− = 0, when p2 < (m+ µ)2.

Putting this together, we have

〈0|ψ′(x)ψ
′
(y)|0〉 =

∫
d3q

(2π)32ω~q
e−iq·(x−y)(�q +m)

+

∫
d4p

(2π)3
e−ip·(x−y)

[
θ(p0)σ+(

√
p2)(�p+

√
p2) + θ(p0)σ−(

√
p2)(�p−

√
p2)
]

= (i��∂x +m)∆(x− y)

+

∫ ∞
0

da σ+(a)

∫
d4p

(2π)3
θ(p0)δ(p2 − a2)(�p+ a)e−ip·(x−y)

+

∫ ∞
0

da σ−(a)

∫
d4p

(2π)3
θ(p0)δ(p2 − a2)(�p− a)e−ip·(x−y)

= (i��∂x +m)∆(x− y) +

∫ ∞
0

da σ+(a)(i��∂x + a)∆(x− y; a2)

+

∫ ∞
0

da σ−(a)(i��∂x − a)∆(x− y; a2)

=

∫ ∞
0

da [ρ+(a)(i��∂x + a)∆(x− y) + ρ−(a)(i��∂x − a)∆(x− y)]

For compactness in the last step I have introduced

ρ+(a) = σ+(a) + δ(a−m)

39Can shortcut some work by noticing that ψ̃′ = γ5ψ
′ has the same matrix elements with a 1

2

+
state as

ψ′ has with a 1
2

−
state. “As the 1

2

+
states are to ψ, the 1

2

−
states are to γ5ψ.”
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ρ−(a) = σ−(a) and dropped the ; a2 in ∆

Rather than redoing a lot of steps, I can get

〈0|ψ′β(y)ψ′α(x)|0〉

from what we’ve just calculated using ΩCPT (= Ω). (In a theory with C invariance, it
would be easier to just use Uc, but I’ll be more general.) Then we’ll be set to write down
the time ordered product

〈0|T (ψ′α(x)ψ
′
β(y))|0〉 =θ(x0 − y0)〈0|ψ′α(x)ψ

′
β(y)|0〉

− θ(y0 − x0)〈0|ψ′β(y)ψ′α(x)|0〉

I’ll do the calculation in a Majorana basis

〈0|ψ′β(y)ψ′α(x)|0〉 = 〈0|ΩΩ−1ψ
′
β(y)ΩΩ−1ψ′α(x)ΩΩ−1|0〉

= (〈0| Ω−1ψ
′
β(y)Ω︸ ︷︷ ︸

−i(γ5γ0ψ′(−y))β

Ω−1ψ′α(x)Ω︸ ︷︷ ︸
−i(ψ′(−x)γ0γ5)α

|0〉)∗
In this step when 〈0|Ω is simplified to 〈0|

the resulting matrix element must be
complex conjugation because Ω is antiunitary

=
(
−i(γ5γ

0)βσ〈0|ψ′σ(−y)ψ
′
τ (−x)|0〉(γ0γ5)τα

)
Notice the indices β, α come out in the wrong order, so to think of 〈0|T (ψ′(x)ψ

′
(y))|0〉

as a matrix, we actually need this thing transposed.

〈0|T (ψ′(x)ψ
′
(y))|0〉 = θ(x0−y0)

∫ ∞
0

da [ρ+(a)(i��∂x + a)∆(x− y) + ρ−(a)(i��∂x − a)∆(x− y)]

+θ(y0−x0)

∫ ∞
0

da
[
ρ+(a)γ5γ

0(i��∂x + a)∆(x− y)γ0γ5 + ρ−(a)γ5γ
0(i��∂x − a)∆(x− y)γ0γ5

]∗T
Now

(iγ5γ
0γµγ0γ5)∗T = iγµ

and
(γ5γ

01γ0γ5)∗T = 1

so (in this case we can pull the time derivative through the time ordered product)

〈0|T (ψ′(x)ψ
′
(y)|0〉 =

∫ ∞
0

da (ρ+(a)(i��∂x + a) + ρ−(a)(i��∂x − a)) acting on[
θ(x0 − y0)∆(x− y) + θ(y0 − x0)∆(y − x)

]
(Using that ρ+(a) and ρ−(a) are real and that ∆(x− y)∗ = ∆(y − x))
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The object in brackets is ∫
d4p

(2π)4

i

p2 − a2 + iε
e−ip·(x−y)

i��∂x hitting this gives �p. So the result is

〈0|T (ψ′(x)ψ
′
(y))|0〉 =

∫
d4p

(2π)4
e−ip·(x−y)

∫ ∞
0

da

(
ρ+(a)

i(�p+ a)

p2 − a2 + iε
+ ρ−(a)

i(�p− a)

p2 − a2 + iε

)
Or in a more suggestive form

〈0|T (ψ′(x)ψ
′
(y))|0〉 =

∫
d4p

(2π)4
e−ip·(x−y)

∫ ∞
0

da

(
ρ+(a)

i

�p− a+ iε
+ ρ−(a)

i

�p+ a+ iε

)
=

∫
d4p

(2π)4
e−ip·(x−y)S ′(�p)

where

S ′(z) =

∫ ∞
0

da

(
ρ+(a)

i

z − a+ iε
+ ρ−(a)

i

z + a+ iε

)
This result for S ′(z) has the renormalization conditions built in. They say S ′ has a pole

at z = m with residue i.

m m+u-(m+u)

z

Figure 1: Analytic structure of S ′ in perturbation theory

Compare this with our other expression for S ′

S ′(z) =
i

z −m− Σ′(z) + iε

In terms of Σ′, we see the renormalization conditions are

Σ′(m) = 0 pole is at m

dΣ′

dz

∣∣∣∣
z=m

= 0 residue is i (often written
dΣ′

d�p

∣∣∣∣
�p=m

= 0)
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In the model with C and

L′ = −gψiγ5ψφ+ Cψi��∂ψ −Dψψ C,D : ∞ power series in C(n) ∝ gn

Get Σ′(�p) to order g2

�@o�@� + �(2)x�
−iΣ′(�p) = −iΣ+(�p) + iC(2)

�p− iD
(2)

Σ′(�p) = Σ+(�p)− Σ+(m)− dΣ+

d�p

∣∣∣∣
m

(�p−m) Only knocks off 1 power of p

L′ = −gψiγ5ψφ

p�@k→o
p+k

�@ p� ←− a 4× 4 matrix, this is a propagator without external
propagators included.

−iΣ+ = −(−ig)2

∫
d4k

(2π)4

i

k2 − µ2 + iε
iγ5i

�p+��k −m
(p+ k)2 −m2 + iε

iγ5

=
−ig2

(2π)4

∫
d4k

1

k2 − µ2 + iε

−�p−��k +m

(p2 + 2kp+ k2 −m2 + iε)

=
−ig2

(2π)4

∫
d4k

∫ 1

0

dx �p−��k −m
[k2 + 2kpx+ p2x−m2x− µ2(1− x) + iε]2

k′ = k + px =
−ig2

(2π)4

∫
d4k′

∫ 1

0

dx
−�p(1− x) +m−

ODD︷︸︸︷
k′

[k′2 + p2x(1− x)−m2x− µ2(1− x) + iε]2
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Σ′ =
−ig2

(2π)4

∫
d4k′

∫ 1

0

dx

{
−�p(1− x) +m

[k′2 + p2x(1− x)−m2x− µ2(1− x) + iε]2

− −m(1− x) +m

[k′2 +m2x(1− x)−m2x− µ2(1− x) + iε]2

− −m(1− x) +m

[ ]2
+ 2

2mx(1− x) +m(1− x) +m

[ ]2

}
DIVERGENT

PART ∝
∫
d4k′

k′4
[−�p(1− x) +m+m(1− x)−m− (�p−m)(1− x)]

= 0

A quicker way of seeing if the result is finite is to compute
d2Σ′

d�p
2

. Σ′ is completely deter-

mined by this second derivative.

Note that one derivative is not enough to give a finite integral. Two does the job =⇒
Need two subtractions to remove ∞’s, unlike scalar case where diagram was only log diver-
gent.

Coupling constant renormalization in spinor theory (parallels scalar case)

p↘D1PIp
q=p′−p
f

↙p′�
= −i Γ︸︷︷︸

some awful
4×4 matrix

(p′, p)

Contributions up to order g3 are

Df� + + D(3)xf�
You might give your renormalization condition as

Γ′ = igγ5
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at some astutely chosen value of p′ and p. However, Γ may not be proportional to γ5

It may have �pγ5 or pµpνσ
µνγ5. We can remedy this by cutting down the 4 × 4 matrix by

sandwiching it between projectors. We’ll show

(�p+m)Γ(p′, p)(�p+m)|p2=p′2=m2

must be ∝ to (�p
′+m)γ5(�p+m). �p+m

2m
projects onto incoming nucleons or outgoing antin-

ucleon.

Consider this graph as contributing to

φ(off shell) −→ N +N

and look at the process in the COM frame where

q = (q0,~0)

The initial state is Jp = 0− .

The two spin 1
2
’s in the final state can make S = 1 or S = 0. To get J = 0 the only

possible final states are

l = 0 S = 0 which has P = −1

l = 1 S = 1 which has P = +1

Only the first final state is allowed. There is only one amplitude. (It may vary with q0)

(�p
′ +m)γ5(�p+m)

is nonzero when sandwiched between a ū and a v (remember p0 < 0 for this process with

the momentum conserving conditions
p′↖�pf
↗pE

)

So
(�p
′ +m)Γ(p, p′2)(�p+m)

∣∣
p2=p′2=m2 = (�p

′ +m)iγ5(�p+m)G(q2)

We’ll take
G(q2 = µ2) ≡ g
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as our renormalization conditions.

Utility of this choice

p'u' p u

qq'

=
p

q

p

q

1PI 1PI

+ + graphs with no pole at (p+ q)2 = s = µ2

Pole piece in ia

− u′Γ(p′, p+ q)S ′(p+ q)Γ(p+ q, p)u

= −u′ p′ +m

2m︸ ︷︷ ︸
insert it is the
identity on u′

Γ(p′, p+ q) S ′(p+ q)︸ ︷︷ ︸
near s = µ2 this is

i(�p+�q+m)

(p+q)2−m2+iε

+analytic

Γ(p+ q, p) �
p+m

2m︸ ︷︷ ︸
insert

u

So near s = µ2, we have Γ sandwiched between projection operators and we can use the
renormalization condition to get that the pole piece in ia is

−u′iγ5g
i(�p+ �q +m)

(p+ q)2 −m2
iγ5gu

This simplification allows for unambiguous comparison with experiment to set g.

Is renormalization necessary and sufficient to get rid of ∞’s ?

Let’s look at the contributions to Γ at O(g3).

+ D(3)xf�
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at high k, the integral for the first Feynman graph goes like∫
d4k

1

k2
γ5

1

��k
γ5

1

��k
γ5 ∼ γ5

∫
d4k

1

k4

This is divergent, but only logarithmically divergent, and it multiplies γ5. So the second
graph cancels the divergent part.

So far our slovenliness has been good enough.

Regularization and renormalization

Throwing around ill-defined quantities, and discovering they always end up in convergent
combinations isn’t good enough.

The infinities came because the theory has an infinite # of degrees of freedom, both from
the ∞ extent of spacetime (which gives IR ∞’s) and from the fact that in any given volume
there is an ∞ # of degrees of freedom (which gives UV ∞’s). Next lecture we’ll talk about
ways to cut down the # degree of freedom in a given volume.
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28 January 15

This lecture

I. Regularization

A. Regulator fields (Feynman)

B. Dimensional Regularization (’t Hooft-Veltman)

II. BPHZ renormalization

I. Regularization

No one knows of a quantum field theory that is nontrivial and finite.

In all theories worth studying, so as not to be making ad hoc cancellations of infinities
with infinities, you have to hack up the theory in some way to make it finite. For example,
you could throw away all Fourier components in the Feynman integrals with momentum
greater than some cutoff value Λ. Then you would renormalize as usual. Instead of making
subtractions of∞’s from∞’s to satisfy the renormalization conditions, you will be subtract-
ing finite (but big; proportional to Λ, Λ2 or ln Λ) things from other finite things to satisfy
the renormalization conditions. Then you try to undo your hatchet job by sending Λ to ∞.
The big job is to prove that the properties you expect of the theory (Lorentz invariance,
gauge invariance, positivity of the Hilbert space inner product) are recovered as Λ −→ ∞,
and that nothing depends on Λ in this limit. A scattering amplitude should not depend on
the method some theorist used to make an infinity large but finite.

Regulator fields or Propagator Modification

A good regularization method should

(1) be analytically tractable

(2) ruin as few properties of the theory as possible. (The less you ruin the less you have
to laboriously prove you recover in the Λ −→∞ limit.)
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Regulator fields (or at least a variant we’ll discuss March 3 called Pauli-Villars) only
wreck positivity of the Hilbert space metric in QED with massive charged particles, and
the only kinds of integrals that have to be evaluated are of the same type we have already
studied. The idea is to replace propagators in the Feynman integrals by propagators that
fall off faster at high momentum so that loop integrals will be finite. To do this we’ll let

i

k2 −m2
become a combination of propagator. For example

i

k2 −m2
−→ i

k2 −m2
− i

k2 −M2
(28.1)

M plays the role of the cutoff. For k2 �M2 this combination falls off like

1

k4
instead of

1

k2

Similarly
i

�p−m
−→ i

�p−m
− i

�p−M
∝ 1

p2
at high p

After modifying the propagators enough to make the diagrams convergent, you adjust
the counterterms to satisfy the renormalization conditions, and then send M −→∞

Making a propagator go like
1

k4
may not be enough to make diagrams convergent. Here’s

how to make them go like
1

k2n
for as big as you need. Let

i

k2 −m2
−→ i

k2 −m2
+

n∑
r=1

iC2
r

k2 −M2
r

(I write the coefficient as C2
r , but don’t let me mislead you into thinking C2

r > 0)

We can look at the behavior of this for high k2 by expanding

1

k2 −m2
=

1

k2

( 1

1− m2

k2

)
=

1

k2

(
1 +

m2

k2
+
(m2

k2

)2

+ · · ·
)
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By choosing

1 +
n∑
r=1

C2
r = 0 makes propagator ∼ 1

k4

and m2 +
n∑
r=1

M2
rC

2
r = 0 makes propagator ∼ 1

k6

and m4 +
n∑
r=1

M4
rC

2
r = 0 makes propagator ∼ 1

k8

and m6 +
n∑
r=1

M6
rC

2
r = 0 makes propagator ∼ 1

k10

etc...

(n = 1, c1 = i, M1 = M creates the simplest example in Eq. (28.1).)

By making n large enough, you can clearly make the propagator fall off as fast as you like,
and still have freedom to send all the Mr −→ ∞. (The Cr must remain finite.) Of course
some of the C2

r are going to have to be less than zero, or you are just going to have i times a
sum of things with the same sign at large k2. There is no way this can happen in any realistic
theory of the world. C2

r > 0 is a consequence of the Lehmann-Källén spectral representation.

We can construct an operator theory that is unrealistic that has these sicko propagators
though.

Suppose the original theory had

L =
1

2
(∂µφ)2 − µ2

2
φ2 + L′(φ′)

The unrealistic theory that has these propagators is

L =
1

2
(∂µφ)2 − m2

2
φ2

+
n∑
r=1

1

2
(∂µφr)

2 − M2
r

2
φ2
r

+ L′(Φ) Φ =
n∑
r=1

Crφr

I talk about why this gives the right propagator combination on March 3.
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About this point you may be wondering why we are trying to construct a Lagrangian that
reproduces our hatchet job. Answer: It helps you ascertain what properties of the theory
you have or haven’t ruined.

Because some of the C2
r are less than zero, some of the Cr are imaginary, and the Hamil-

tonian is not Hermitian.

We can gain some insight into what is going on by defining a new inner product.

In the theory that embodies the simplest propagator modification,

L =
1

2
(∂µφ)2 − m2

2
φ2 +

1

2
(∂µφ1)2 − M2

2
φ2

1 + L′(Φ) Φ = φ+ iφ1

define a new inner product

〈a|b〉new = 〈a|(−1)N1|b〉

N1 counts the number of mesons of the sicko type. This metric is not positive definite.

〈a|a〉new < 0 if |a〉 has an odd number of φ1 mesons in it

The great thing about this metric is that in it Φ is hermitian.

(φ1)†new = −φ1

because φ1 anticommutes with (−1)N1 . So

(Φ)†new = (φ+ iφ1)†new = Φ

To summarize. In the old metric, which was positive definite, the Hamiltonian wasn’t
hermitian and thus didn’t conserve probability. In the new metric, we have a new definition
of probability, and although it is not always greater than zero, the Hamiltonian is hermitian,
and the new probability is conserved.

Here is why you might hope that a sensible theory will be recovered when the M −→∞
limit is taken. We won’t be interested in amplitudes that have those phony particles in the
initial states, and when M −→ ∞, it will be impossible to produce them in the final state,
just for lack of energy.

The only initial and final states possible with thus be the ones with sensible particles in
them, and for them, the inner product is normal.
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The good things about regulator fields are that they preserve Lorentz invariance, inter-
nal symmetries in theories with massive particles (they spoil symmetries that depend on
masslessness), conserve probability at energies low compared to the cutoff, with some mod-
ification, will be seen to preserve gauge invariance in QED, and they are computationally
easy to introduce.

A note on computation: In practice you don’t try to combine the various propagators
to make the integrals manifestly convergent. You just work along with each propagator
separately, and use the integral tables that are valid when you work with a convergent com-
bination.

Dimensional Regularization

Begin with an example. Let’s evaluate

I =

∫
ddk

(k2 + a2)n
which is convergent if n >

d

2

in an arbitrary number of Euclidean space dimensions d.

Here is a trick to turn a denominator into an exponential. Start with

Γ(n) =

∫ ∞
0

tn−1e−t dt

(which is sometimes taken as the definition of the Γ function).

Change variables in the integrand to λ given by αλ = t; α real > 0.

Γ(n) =

∫ ∞
0

(αλ)n−1e−αλ d(αλ)

or
1

αn
=

1

Γ(n)

∫ ∞
0

λn−1e−αλ dλ
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Our (Euclidean space) integral becomes

I =
1

Γ(n)

∫ ∞
0

λn−1 dλ

∫
ddk e−λ(k2+a2)︸ ︷︷ ︸
e−λa2 (π

λ
)d/2

=
πd/2

Γ(n)

∫ ∞
0

λn−
d
2
−1e−λa

2

dλ

=
πd/2

Γ(n)

Γ(n− d
2
)

a2n−d

Here is ’t Hooft and Veltman’s whammy: adopt this formula for arbitrary complex d. If
you stay away from even integer d ≥ 2n, this expression is well defined. As you head toward
d = 4, you approach poles in the Γ function. You do your renormalization in arbitrary d
and only after you have your expressions for the graphs plus counterterms in convergent
combinations (that is with poles in d− 4 cancelling) you send d −→ 4.

You have to be careful formulating a theory in an arbitrary # of dimensions.

You can’t just maintain
e

4π
=

1

137
in an arbitrary number of dimensions because only in

four dimensions is e dimensionless. There are simpler examples than QED to demonstrate
the effect of this. Take

L =
1

2
(∂µφ

′)2 − m2

2
φ′2 − λφ′4 + Lc.t.

[φ′] = d−2
2

, so m is a mass as it appears.

But to keep the Lagrangian having dimension d, we must have

d = [λ] + 4[φ′] [λ] = d− 2(d− 2) = −d+ 4

Only in four dimensions is λ dimensionless. It cannot remain constant as we change d.
It has to acquire dimension. So we rewrite the interaction:

λ︸︷︷︸
Now dimensionless

for any d

µ4−dφ
′4

4!

where µ is a parameter that has appeared uninvited into the theory.

You might think that after renormalizing, when we set d = 4, all µ dependence will go
away.
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We’ll look at a contribution to the four point function. An O(λ2) diagram

It leads to an integral like

(λµ4−d)2

∫
ddk

(2π)d
1

(k2 + a2)2

where a contains masses, external momenta and Feynman parameters, and I have sup-
pressed the Feynman parameter integral and a lot of factors.

Our result for this integral is

(λµ4−d)2 π
d/2

Γ(2)
Γ
(

2− d

2

)
ad−4

Γ has a pole piece near d = 4. For integer n

Γ(−n+ ε) =
(−1)n

n!

[1

ε
+ ψ(n+ 1)︸ ︷︷ ︸
some number like π

except more complicated

+O(ε)
]

see Ramond, [Field Theory: A Modern Primer (1st edition, 1981)] p. 152.

You can’t just set d = 4 in the rest of the expression. That would give you the right
coefficient of the pole, but the wrong finite part.

Let’s see what the finite part is. In our example n = 0 and ε = 2− d

2
.

We’ll pull out the a factor of µ4−d since that is the dimension of this Green’s function
(the lowest order contribution is proportional to λµ4−d). We expand the dimensionless thing
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that is left

λ2µ4−dπ
d/2

1!
Γ
(

2− d

2

)
ad−4 = λ2π2Γ

(
2− d

2

)(µ
a

)4−d
π
d
2
−2

= λ2π2Γ
(

2− d

2

)( µ2

πa2

) 4−d
2

= λ2π2

[
(−1)0

0!

( 1

2− d
2

+ ψ(1) +O(d− 4)
)]

e
4−d

2 ln
µ2

πa2︸ ︷︷ ︸
1+ 4−d

2
ln µ2

πa2

= λ2π2

[
1

2− d
2

+ ψ(1) + ln
µ2

πa2
+O(d− 4)

]

You would have lost the ln
µ2

πa2
piece of you prematurely set d = 4.

Now you can renormalize as usual although you need an extension of the renormalization
conditions for arbitrary dimension.

Minimal Subtraction (or MS)

MS is another renormalization prescription, that is, a way of determining counterterms.
It makes no reference to the physical mass and coupling so it is not good for comparison
with experiment. It is a companion to dimensional regularization. Theorists like it because
they no longer make comparison with experiment and the minimal subtraction renormaliza-
tion prescription is easy. It amounts to just chucking the pole terms in the dimensionally
regularized integrals. I’ll do it in our example.

Again suppressing the Feynman parameter integral and whatever else, we have found

= µ4−dλ2π2

[
1

2− d
2

+ finite as d→ 4

]
The coefficient of the pole is unambiguous. Minimal subtraction says introduce a coun-

terterm to exactly cancel it. In this example we need a term in Lc.t.

µ4−dλ2π2 1

2− d
2

φ4

4!
(up to is and minus signs)
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In what follows, another renormalization prescription is heavily used. It also makes no
reference to physical masses and coupling either. It’s called BPH. It is useful for proving
that renormalization removes the ∞’s .

Renormalization and symmetry:
a review for non-specialists (1971)40

Discussion
Chairman: Prof. S. Coleman

Scientific Secretary: B.W. Keck41

~ = c = 1

[ML] = 1

[S] = [~] = 1

[L] = M4

[φ] = M [ψ] = M3/2 [∂µ] = M

dim L (in mass units) = bi + 3
2
fi + di = δi + 4

Given a set of bosons + fermions the most general interaction of renormalizable type
defines a renormalizable theory.

The same is true if we restrict the theory to be invariant under parity and internal sym-
metry.

The same is true if we allow symmetry breaking interaction if we allow all sym-breaking
interaction with dim ≤ n (n = 3, 2, 1)

40[BGC: Annotated photocopies of Coleman’s lecture from Aspects of Symmetry were attached here]
41[BGC: included in the notes was a photocopy of the discussion from the original publication of the lecture

“Renormalization and symmetry” in Properties of the Fundamental Interactions (Editrice Compositori,
Bologna, 1973)]
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As an example of a matrix element of a composite operator, let’s calculate the matrix
element of 1

2
φ2 between single nucleon states in our meson nucleon theory. As equation (9)

in “Renormalization and Symmetry” suggests we add

1

2
J (x)φ2(x)

to L. This gives us a new Feynman rule

p+k
k

⇐⇒ iJ̃ (p)

To O(g2), 〈l′, u′|1
2
φ2(x)|l, u〉, is calculated by evaluating

kl'u' l,u

k-lk-l'

= iJ̃ (l − l′)(−ig)2

∫
d4k

(2π)4
u′

i

��k −m
u

i

(k − l′)2 − µ2

i

(k − l)2 − µ2

= −J̃ (l − l′)g2

∫
d4k

(2π)4

u′(��k +m)u

k2 −m2

1

(k − l′)2 − µ2

1

(k − l)2 − µ2

= −2g2J̃ (l − l′)∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k

(2π)4

u′(��k +m)u

{(1− x− y)(k2 −m2) + x[(k − l′)2 − µ2] + y[(k − l)2 − µ2]}3

= −2g2J̃ (l − l′)∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k

(2π)4

u′(��k +m)u

[k2 − (1− x− y)m2 − 2xk · l′ − 2yk · l − (x+ y)µ2 + xl′2 + yl′2]3

(k′ = k − xl′ − yl)
= −2g2J̃ (l − l′)∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k′

(2π)4

u′(��k′ + x��l′ + y ��l −m)u

[k′2 + x(1− x)l′2 + y(1− y)l2 − 2xyl · l′ − (1− x− y)m2 − (x+ y)µ2]3
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The ��k′ term in the numerator is seen to be odd. Also l2 = l′2 = m2, ��lu = mu and
u′ ��l′ = mu′ are simplifications. We have (dropping prime on k)

−2g2J̃ (l − l′)
∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k

(2π)4

(x+ y − 1)mu′u

[k2 −M2(x, y)]3

where

M2(x, y) = [−x(1− x)− y(1− y) + 1− x− y]m2 + (x+ y)µ2 + 2xyl · l′

The k integration is in our tables.

2ig2J̃ (l − l′)mu′u 1

32π2

∫ 1

0

dx

∫ 1−x

0

dy
1

M2(x, y)

Let’s just call the result of the Feynman parameter integrations

F (m2, µ2, (l − l′)2)

so what we have is

g2

16π2
iJ̃ (l − l′)mu′uF (m2, µ2, (~l −~l′)2)

To get 〈l′, u′|1
2
φ2(x)|l, u〉 from this we have to write J̃ (l − l′) in terms of J (x) divide by

i and then take
δ

δJ (x)

〈l′, u′|1
2
φ2(x)|l, u〉 =

δ

δJ (x)

[ g2

16π2

∫
d4x e−i(l−l

′)·xJ (x)mu′uF
]

=
g2

16π2
e−i(l−l

′)·xmu′uF (m2, µ2, (~l −~l′)2)

Renormalization of composite operators

Unfortunately even in a theory that was finite to some order in perturbation theory, the
matrix elements of composite operators will not necessarily be finite to that order.

Redefinitions of the composite operator are necessary and additional renormalization
conditions to make these redefinitions definite are needed.
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In the method of getting Feynman rules for composite operators by adding a source
coupled to the operator to L the redefinitions come as further additions multiplied by the
same source. For example we will see that at order λ in a theory with a φ4 interaction it is
necessary to add to L in addition to

J (x)
1

2
φ2(x)

further terms

J (x)(
A

2
φ2(x) +B)

The total coefficient of J (x)

1

2
φ2(x)(1 + A) +B ≡ 1

2
φ2
R

We’ll have cutoff independent matrix elements in the limit of large cutoff. The finite
parts of A and B will be determined by renormalization conditions42

Rather than calculate a matrix element of 1
2
φ2
R, let’s calculate

〈0|T (φ2
R(x)φ′(y1)φ′(y1)φ′(y2) · · ·φ′(yn))|0〉

at least for n = 0 and n = 2, to order λ. We’ll just calculate the Fourier transform

G̃(p; q1, · · · , qn) =
qn q

3

q
3

p

=

∫
d4x d4y1 · · · d4yn e

−ip·xe−i(q1·y1+···+qn·yn)〈0|T (φ2
R(x)φ′(y1) · · ·φ′(yn))|0〉 (28.2)

For n = 2 the contributions to O(λ) are

42

L −→ L+ J(x)
(
O(x)−

∑
︸︷︷︸

all ops with
right sym prop
of lower dim

O
)
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q1 q2

p

+

p
q2

q1

+

p

q2q1
p

q2
q1

+

+ more graphs that aren't 
   connected graphs

I’ll discuss these contribution in reverse order. The disconnected graphs will be disposed
of by only computing the connected part of G̃, denoted

G̃c(p; q1, · · · , qn)

The second and fourth graphs will be exactly cancelled by the O(λ) mass renormalization
counterterm graphs

p q2q1

and

p

q2q1

(1) (1)

The third graph is moderately interesting. It is

i

q2
1 − µ2

i

q2
2 − µ2

(2π)4δ(4)(q1 + q2 − p) ·
(−iλ)

2

∫
d4k

(2π)4

i

(k − p
2
)2 − µ2

i

(k + p
2
)2 − µ2

This integral is logarithmically divergent which is why we need the O(λ) graph coming
from the O(λ) part of

Aφ2

in φ2
R. I’ll denote that A(1)φ2 and we get one more graph

p

q2q1 (1)

This graph and the first graph give

(1 + A(1))
i

q2
1 − µ2

i

q2
2 − µ2

(2π)4δ(4)(q1 + q2 − p)
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A(1) is a divergent constant chosen to cancel the logarithmically divergent part of the
second graph. It is sufficient to do that. A superficially log divergent graph only needs one
subtraction (in any order of perturbation theory) according to BPHZ.

We need a renormalization condition to determine the finite part of A. A logical one is
that G̃c at zero momentum be given exactly by its lowest order contribution. This means

A(1) +
(−iλ)

2

∫
d4k

(2π)4

1

(k2 − µ2)2
= 0

So finally to O(λ)

G̃(c)(p; q1, q2) =(2π)4δ(4)(p+ q1 + q2)
i

q2
1 − µ2

i

q2
2 − µ2

·

{
1− iλ

2

∫
d4k

(2π)4

[
i

(k − p
2
)2 − µ2

i

(k + p
2
)2 − µ2

− i

(k2 − µ2)2

]}

B(1) could be chosen so that

〈0|1
2
φ2
R(x)|0〉 = 0

It is surprising to me that there is so much arbitrariness in the definition of Green’s
function with a composite operator that has to be fixed by renormalization conditions.

If someone hands you T µν = ∂µφ∂νφ − gµνL (the energy-momentum tensor obtained
through Noether’s theorem), you’d think something like

〈0|T µν |0〉

being such a physical thing would not be susceptible to redefinition. Apparently the
counterterms for a conserved current can usually be pinned down by calling upon cherished
properties such as

T µν = −T νµ and ∂µT
µν = 0

A stupid example to make sure I have my F.T. conventions right. Let’s compute

〈0|T (ψ(x)ψ(y))|0〉 in free Dirac theory
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According to the equation after Eq. (28.2) this should be∫
d4q1

(2π)4

d4q2

(2π)4
eiq1·x+iq2·y q2

q
1

=

∫
d4q1

(2π)4

d4q2

(2π)4
e−iq1·x+iq2·y(2π)4δ(4)(q1 + q2) · i

�q2 −m+ iε

=

∫
d4q

(2π)4
e−iq·(x−y) · 1

�q −m+ iε

In agreement with Dec. 18, Eq. (24.1) and following “3 comments”.
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