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1 Some important processes

1.1 The Poisson process
1.1 Definition. Let (Sj)r>1 be random variables on (£2,.%#,P) with 0 <
Si(w) < Sa(w) <--- forall k > 1, w e Q. Then N = (Ny, t > 0) with

Nt 5221{Sk<t}7 t>07
k>1

is called counting process (Zahlprozess) with jump times (Sprungzeiten) (Sy).

1.2 Definition. A counting process N is called Poisson process of intensity
A>0if

(a) P(Ngyp, — Ny = 1) = Ah + o(h) for h | 0;

(b) P(Npsp — Ny = 0) = 1 — M+ o(h) for & | 0;

(c) (independent increments) (N, — Ny, |, )1<i<n are independent for 0 = ¢y <
] < - <ty

(d) (stationary increments) Ny — N LN, forallt>s>0.

1.3 Theorem. For a counting process N with jump times (Sg) the following
are equivalent:

(a) N is a Poisson process;

(b) N satisfies conditions (c),(d) of a Poisson process and Ny ~ Poiss(At)
holds for all t > 0;

(c) Ty := S, Ty, :== Sk — Sk—1, k = 2, are i.i.d. Exp(\)-distributed random
variables;

(d) Ny ~ Poiss(At) holds for all t > 0 and the law of (Si,...,Sn) given
{N¢y =n} has the density

flxy,. . 2n) = %1{0<x1<---<xn<t}' (1.1)

(e) N satisfies condition (c) of a Poisson process, E[Ni| = X and (1.1) is the
density of (S1,...,Sn) given {Ny = n}.

1.2 Markov chains

1.4 Definition. Let T' = Ny (discrete time) or T' = [0, 00) (continuous time)
and S be a countable set (state space). Then random variables (X;)ier with
values in (S, P(S)) form a Markov chain if for all n € N, t1 < to < -+ < tyy1,
Sly-+y8ny1 € S with P(Xy, = s1,..., Xy, = s,) > 0 the Markov property is
satisfied:

]P)<th+1 = spt1 | Xey = 51, Xy, = 8p) = P(Xtrﬂ»l = Sn+1 | X, = sn)-

n



1.5 Definition. For a Markov chain X and t; <9, 4,j € 5
pij(t1,t2) :==P(Xy, = j| Xy, = 1) (or arbitrary if not well-defined)

defines the transition probability to reach state j at time to from state ¢ at time
t1. The transition matrix is given by

P(ty,t2) == (pij(t1,t2))ijes-

The transition matrix and the Markov chain are called time-homogeneous if
P(tl,tg) = P(O,tg — tl) =: P(tQ — tl) holds for all t; < ta.

1.6 Proposition. The transition matrices satisfy the Chapman-Kolmogorov
equation

Vi1 < ta <tg: P(ti,t3) = P(t1,t2) P(ta, t3) (matriz multiplikation).
In the time-homogeneous case this gives the semigroup property
Vt,s € T : P(t+s) = P(t)P(s),

in particular P(n) = P(1)" for n € N.

2 General theory of stochastic processes

2.1 Basic notions

2.1 Definition. A family X = (X;, ¢t € T) of random variables on a common
probability space (€2,.%,P) is called stochastic process. We call X time-discrete
if T = Ny and time-continuous if 7 = RJ = [0,00). If all X; take values in
(S,.7), then (S, .7) is the state space (Zustandsraum) of X. For each fixed w €
2 the mapping ¢t — X;(w) is called sample path (Pfad), trajectory (Trajektorie)
or Realisation (Realisierung) of X.

2.2 Lemma. For a stochastic process (X, t € T') with state space (S,.7) the
mapping X : Q@ — ST with X(w)(t) := X¢(w) is a (ST,.7%T)-valued random
variable.

2.3 Definition. Given a stochastic process (X¢, t € T'), the laws of the random
vectors (X¢,,...,Xy,) with n > 1, t1,...,t, € T are called finite-dimensional
distributions of X. We write P, . ¢, = Pty Xen)

2.4 Lemma. Let (X, t € T) be a stochastic process with state space (S,.7)
and denote by my : S7 — ST for I C J the coordinate projection. Then the
finite-dimensional distributions satisfy the following consistency condition:

VICJCT withI,J finiteVA € %" . Py(n;1(A)) = Pr(A). (2.1)
2.5 Definition. Two processes (X, t € T), (Y, t € T) on (2,.%,P) are called

(a) indistinguishable (ununterscheidbar) if PVt € T: Xy, =Y;) = 1;




(b) versions or modifications (Versionen, Modifikationen) of each other if we
haveVteT: P(X;=Y;) = 1.

2.6 Definition. A process (X;,t > 0) is called continuous if all sample paths
are continuous. It is called stochastically continuous, if ¢, — t always implies

Xy, 5 x, (convergence in probability).

2.2 Polish spaces and Kolmogorov’s consistency theorem

2.7 Definition. A metric space (5,d) is called Polish space if it is separable
and complete. More generally, a separable topological space which is metrizable
with a complete metric is called Polish. Canonically, it is equipped with its Borel
o-algebra Bg, generated by the open sets.

2.8 Lemma. Let S1,...,S, be Polish spaces, then the Borel o-algebra of the
product satisfies Bg, x..xs, = Bg, @--- @ Bg,, .

2.9 Definition. A probability measure P on a metric space (5,Bg) is called
(a) tight (straff) if Ve > 03K C S compact : P(K) > 1 —¢,

(b) regular (regulédr) if Ve > 0, B € Bg3K C B compact : P(B\ K) < ¢
and Ve >0, B€ B3O D Bopen: P(O\B) <e.

2.10 Proposition. Fvery probability measure on a Polish space is tight.

2.11 Theorem (Ulam, 1939). Every probability measure on a Polish space is
regular.

2.12 Definition. Let I # & be an index set and (5,.7) be a measurable
set. Let for each finite subset J C I a probability measure P; on the product
space (S7,.7%7) be given. Then (P;) cr finite is called projective family if the
following consistency condition is satisfied:

VJ C J' C I finite, B € %7 Py(B) =Py(r;',(B)),

where my ;7 : S 7" _ 87 denotes the coordinate projection.

2.13 Theorem (Kolmogorov’s consistency theorem). Let (S,Bg) be a Polish
space, I an index set and let (P ;) be a projective family for S and I. Then there
exists a unique probability measure P on the product space (ST, #®1) satisfying

V.J C 1 finite, B € %7 : P;(B) = P(n} }(B)).

2.14 Corollary. For any Polish state space (S,Bg) and index set T # & there
exists to a prescribed projective family (Py) a stochastic process (Xt € T)
whose finite-dimensional distributions are given by (Py).

2.15 Corollary. For any family (P;);er of probability measures on (S,.7) there
exists the product measure &), P; on (ST, 7%1). In particular, a family (X;)icr
of independent random variables with prescribed laws PXi exists. [Proof only for
S Polish]



3 The conditional expectation

3.1 Orthogonal projections

3.1 Proposition. Let L be a closed linear subspace of the Hilbert space H.
Then for each x € H there is a unique y; € L with ||x — yz|| = disty(z) :=
infyepllz -yl

3.2 Definition. For a closed linear subspace L of the Hilbert space H the
orthogonal projection Py, : H — L onto L is defined by Pr(z) = y, with y,

from the previous proposition.
3.3 Lemma. We have:

(a) Pr o Pp, = Pp, (projection property);

(b) Vo € H: (x— Prx) € L+ (orthogonality).
3.4 Corollary. We have:

(a) Each x € H can be decomposed uniquely as x = Prx + (x — Prx) in the
sum of an element of L and an element of L*;

(b) Py is selfadjoint: (Ppz,y) = (x, PLy);

(c) Pp is linear.

3.2 Construction and properties

3.5 Definition. For a random variable X on (2, .#,P) with values in (5,.)
we introduce the o-algebra (!) o(X) := {X 1 (A)|A € ¥} C .Z. For a given
probability space (§2,.%,P) we set
M :=M(Q, F) :={X : Q — R measurable};

MT:=MT(Q,.F) :={X : Q — [0,00] measurable};

LP .= LP(Q, 7,P) :={X e M(Q, F) | E[|X|P] < o0};

LP :=LP(Q,7,P) = {[X]| X € LP(2, #,P)}

where [X]:={Y e M(Q2,.7)| P(X =Y) = 1}.

~— — —

3.6 Proposition. Let X be a (S,.7)-valued and Y a real-valued random varia-
ble. Then'Y is o(X)-measurable if and only if there is a (7, BRr)-measurable
function ¢ : S — R such that Y = p(X).

3.7 Lemma. Let 9 be a sub-o-algebra of .F. Then L*(Q,9,P) is embedded as
closed linear subspace in the Hilbert space L*(Q, %, P).

3.8 Definition. Let X be a random variable on (92,.%#,P). Then for ¥ €
L?(Q),.#,P) the conditional expectation (bedingte Erwartung) of Y given X
is defined as the L?(§2,.%,P)-orthogonal projection of Y onto L?(2,o(X),P):
E[Y | X]:= Pr2(q.(x)pY - If ¢ is the measurable function such that E[Y | X] =
©(X) a.s., we write E[Y | X = z]| := ¢(z) (conditional expected value, bedingter
Erwartungswert).

More generally, for a sub-o-algebra ¢ the conditional expectation of Y &€
L*(Q,.7,P) given ¢ is defined as E[Y |¥] = Pr2 (g9 p)Y.
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3.9 Lemma. E[Y |¥] is as element of L* uniquely determined by the following
properties:

(a) E[Y | 9] is 4-measurable (modulo null sets);
(b) VG € 9 : E[E[Y |¥4]1¢] = E[Y1g].

3.10 Theorem. Let Y € MT(Q,.%) or Y € LY(Q,.#,P) and let 9 be a sub-o-
algebra of F. Then there is a P-a.s. unique element E[Y | 4] in Mt (Q,¥9) and
LY(Q,%,P), respectively, such that

VG e¥: EE[Y |9)1¢] = E[Y1g].

3.11 Definition. For Y € M*(Q, %) or Y € LY(Q,.#,P) and a sub-o-algebra
& of .F the general conditional expectation of Y given ¢ is defined as E[Y | ¥]
from the preceding theorem. We put E[Y | (X;)icr] := E[Y |o(X;, i € I)] for
random variables X;, ¢ € I.

3.12 Proposition. Let Y € LY(Q,.%,P) and let 4 be a sub-c-algebra of F.
Then:

(o) EE)Y |9]] = E[Y];

(b) Y 4-measurable = E[Y |9] =Y a.s.;

(c) a€R, Z e LY (Q,Z,P): ElaY + Z|¥9] = aE[Y |9] + E[Z | 9] a.s.;
(d) Y 20 as. = EY |9 >0 as.;

(e) Yo e MT(QF), Y, 1Y as. = E[Y,|¥9] T E[Y |¥] a.s. (monotone con-
vergence);

(f) Y, € MT(Q,#) = Elliminf, Y, |¥4] < liminf, E[Y,,|¥] a.s. (Fatou’s
Lemma);

(9) Yo € M(Q,.F), Yo — Y, |Ya| < Z with Z € L\Q, Z,P): E[Y, |¥] —
E[Y |¥] a.s. (dominated convergence);

(h) # C94 = E[E]Y |¥9]| ]| =E[Y | H] a.s. (projection/tower property);
(i) Z 4-measurable, ZY € L': E[ZY |9] = ZE[Y |¥9] a.s.;
(j) Y independent of 4: E[Y |¥] = E[Y] a.s.

3.13 Proposition (Jensen’s Inequality). If ¢ : R — R is convex and Y, o(Y')
are in L, then p(E[Y |¥9]) < E[p(Y) |¥4] holds for any sub-o-algebra 4 of F.



4 Martingale theory

4.1 Martingales, sub- and supermartingales

4.1 Definition. A sequence (%), )n>0 of sub-o-algebras of .7 is called filtration
if #, C Zp+1,n >0, holds. (2, #,P, (£#,)) is called filtered probability space.

4.2 Definition. A sequence (M,,)n>0 of random variables on a filtered probabi-
lity space (2, .#,P,(.%,)) forms a martingale (submartingale, supermartingale)

if:

(a) M, € L', n>0;
(b) M, is %,-measurable, n > 0 (adapted);

(c¢) E[Myy1| %0 = My, (vesp. E[Myy1|.%n] > M, for submartingale, resp.
E[My+1| %] < M, for supermartingale).

If #, = o(Mo, ..., M,) holds, then (.%,) is the natural filtration of M, notation
(7).

4.3 Definition. A martingale (M,) is closable (abschliefbar), if there exists
an X € L! with M,, = E[X | %,], n > 0.

4.4 Definition. A process (X,)n>1 is predictable (vorhersehbar) (w.r.t. (%))
if each X, is %, _1-measurable. For a predictable process (X,) and a mar-
tingale (or more general: adapted process) (M,) the martingale transform
(or discrete stochastic integral) ((XeM),)n>o is defined by (XeM)y := 0,
(XoM)n = ZZ:l Xk(Mk - Mk,1>.

4.5 Lemma. For a bounded predictable (X,,) and a martingale (M,,) (or just
predictable (X,,) and X, My, € L? for all n) ((XeM),)n>0 is again a martin-
gale.

4.6 Lemma. Let (M,) be a martingale and ¢ : R — R convex with p(M,) €
L', n > 0. Then ¢(M,) is a submartingale. In particular, (M2) is a submar-
tingale for an L%-martingale (M,,).

4.7 Theorem (Doob decomposition). Given a submartingale (X,,), there ezists
a martingale (M) and a predictable increasing process (Ay) such that

X,=Xo+M,+A,, n=>1; My = Ag = 0.
This decomposition is a.s. unique and Ay, =Y p_ E[ X — X1 | Fr_1].

4.8 Definition. The predictable process (A;) in the Doob decomposition of
(X,,) is called compensator of (X,,). For an L?-martingale (M,,) the compensator
of (M?) is called quadratic variation of (M,), denoted by (M),

4.9 Lemma. We have (M), = >3 E[(My — My—1)?| Fr_1], n > 1.



4.2 Stopping times

4.10 Definition. A map 7 : Q@ — {0,1,...,+00} is called stopping time
(Stoppzeit) with respect to a filtration (%,) if {r = n} € %, holds for all
n > 0.

4.11 Lemma. FEvery deterministic time T = ng s stopping time. For stopping
times o and T also o AT, oV T and o + T are stopping times.

4.12 Theorem (Optional Stopping). Let (M,) be a (sub/super-)martingale
and T a stopping time. Then the stopped process (M) = (Mnnr) is again a
(sub/super- )martingale.

4.13 Definition. For a stopping time 7 the o-algebra of 7-history (7-
Vergangenheit) is defined by .7, :={A € .Z |Vn>0: An{r <n}e.Z,}.

4.14 Lemma. 7. is a o-Algebra and 7 is % -measurable.
4.15 Lemma. For stopping times o and 7 with o < 7 we have %, C F,.

4.16 Lemma. For an adapted process (X,) and a finite stopping time T the
random variable X, is F.-measurable.

4.17 Theorem (Optional Sampling). Let (M,) be a martingale (submartinga-
le) and o, T bounded stopping times with o < 7. Then E[M, | #;] = M, (resp.
E[M; | %,] = M,) holds.

4.18 Corollary. Let (M,) be a martingale and T a finite stopping time. Then
E[M;] = E[My] holds under one of the following conditions:

(a) T is bounded;
(b) (Mrpn)n>o is uniformly bounded;
(¢) E[t] < 00 and (E[|Mp4+1 — My|| Fn])n>0 is uniformly bounded.

4.19 Corollary (Wald’s Identity). Let (Xj)r>1 be (Fk)-adapted random va-
riables such that supy, E[|X|] < oo, E[Xk] = p € R and Xy, is independent of
Fr—1, k = 1. Then for Sy, := > }_ Xk, So = 0 and every (Fy)-stopping time
T with E[T] < co we have E[S;] = pE[7].

4.3 Martingale inequalities and convergence

4.20 Proposition (Maximal inequality). Any martingale (M,,) satisfies

Va>0: P( sup |[My| > a) <LE[M,], n>0.
0<k<n

4.21 Theorem (Doob’s LP-inequality). An LP-martingale (M) (i.e. M,, € LP
for all n) with p > 1 satisfies

‘ max ]Mk]’
1<k<n

p
< ||MnHLP‘
p p—l



4.22 Definition. The number of upcrossings (aufsteigende Uberquerungen)
on an interval [a,b] by a process (Xj) until time n is defined by Ut =
sup{k > 1|7; < n}, where inductively 79 := 0, opy1 = inf{l > 7| Xy < a},
Ti41 = inf{l > o1 | Xy > b}.

4.23 Proposition (Upcrossing Inequality). The upcrossings of a submartingale
(X,) satisfy E[US"] < 52 E[(My — a) v 0].

4.24 Theorem (First martingale convergence theorem). Let (M) be a (sub-
/super-)martingale with sup,, E[|M,|] < co. Then My = limy,_.oc M, ezists
a.s. and M~ is in L1.

4.25 Corollary. Each non-negative supermartingale converges a.s.

4.26 Proposition. Let (M,) be an L?>-martingale. Then lim,, o, M, (w) exists
for P-almost all w, for which lim,_ (M), (w) < co holds.

4.27 Corollary (Strong law of large numbers for L?-martingales). An L2-
martingale (M) satisfies for any o > 1/2

: My(w)
o (@)

for P-almost all w, for which lim, (M), (w) is infinite.

4.28 Definition. A family (X;);er of random variables is uniformly integrable
(gleichgradig integrierbar) if

li E[|X:|1x. =0.
i, sup [1X:1gx, >Ry

4.29 Lemma.

(a) If (Xi)ier is wuniformly integrable, then (X;)ier 14s L'-bounded:
sup;e E[| Xi|] < oo.

(b) If (Xi)ier is LP-bounded (sup;c;E[|X;P] < oo) for some p > 1, then
(Xi)ier is uniformly integrable.

(c) If | X;| <Y holds for alli € I and someY € L', then (X;)icr is uniformly
integrable.

4.30 Theorem (Vitali). Let (X,,)n>0 be random variables with X, B x (in
probability). Then the following statements are equivalent:

(a) (Xn)n>o is uniformly integrable;
(b) X, — X in L';
(¢) E[[Xn]] — E[|X]] < oco.

4.31 Theorem (Second martingale convergence theorem).



(a) If (M) is a uniformly integrable martingale, then (M,) converges a.s.
and in L' to some My, € L*. (M) is closable with M, = E[My | .%,].

(b) If (M,) is a closable martingale, with M, = E[M | %#,] say, then (M,) is
uniformly integrable and (a) holds with My, = E[M | Foo] where Foo =
o(Fp,n>1).

4.32 Corollary. Let p > 1. Every LP-bounded martingale (M) (i.e.
sup,, E[|M,|P] < oo) converges for n — oo a.s. and in LP, hence also in L.

4.33 Definition. A process (M_p)p>0 is called backward martingale
(Riickwértsmartingal) with respect to (F_,)n>0 with .#_,_1 C .Z_, if M_,, €
L', M_,, #_,-measurable and E[M_,, |.%_,,_1] = M_,,_1 hold for all n > 0.

4.34 Theorem. Every backward martingale (M_p)n>0 converges for n — oo
a.s. and in L'.

4.35 Corollary. (Kolmogorov’s strong law of large numbers) For i.i.d. random
variables (Xg)g>1 in L' we have
1 = a.s. and L'
=3 X L BIX]
k=1

4.4 The Radon-Nikodym theorem

4.36 Definition. Let x4 and v be measures on the measurable space (£2,.%).
Then p is absolutely continuous (absolutstetig) with respect to v, notation
w<Lv, ifVAe # :v(A) =0= u(A) =0. u and v are equivalent (dquivalent),
notation p ~ v, if p < v and v < p. If there is an A € % with v(A) = 0 and
w(AY) =0, then p and v are singular (singulir), notation u L v.

4.37 Theorem (Radon-Nikodym). Let v be a o-finite measure and i a finite
measure with < v, then there is an f € L'(Q,.%,v) such that

M(A):/Afdufor all A e 7.

4.38 Definition. The function f in the Radon-Nikodym theorem is called

Radon-Nikodym derivative, density or likelihood function of p with respect to

du
dv*

v, notation f =

4.39 Theorem (Kakutani). Let (Xj)r>1 be independent random variables with
X >0 and E[Xy] = 1. Then M, :=[[;_y Xi, Mo =1 is a non-negative mar-
tingale converging a.s. to some Mo. The following statements are equivalent:

(a) E[MOO] =1

(b) M, — My, in L';

(c) (M) is uniformly integrable;

(d) T1ie, ar > 0, where aj, := E[X;m] € (0,1];



(¢) 2221 (1—ax) < oo.
If one (then all) statement fails to hold, then Mo, = 0 holds a.s. (Kakutani’s

dichotomy).

5 Markov chains: recurrence and transience

In this section (X,, n > 0) always denotes a time-homogeneous Markov chain
with state space (S,8), realized as coordinate process on Q = SN0 with o-
algebra .7 = 8§¥MNo_ filtration .7, = ZX and measure P, where u denotes the
initial distribution. We write short P := Pj_.

5.1 Definition. For n > 0 the shift operator ¥, : Q@ —  is given by
Un((8k)k>0) = (Sktn)ko0-

5.2 Theorem. Let Y € MT(Q,.%) and T be a finite (F,)-stopping time. Then
the strong Markov property holds:

E,[Y 00, | 7] =Ex. [Y] P,-as.

5.3 Definition. For y € S, k € N introduce the k' time of return to y
recursively by T?f = inf{n > T;:_l | X, = y} and Tz? = 0. Put T, := qu and
Pay = Py(T, < 00) for z € S.

5.4 Proposition. For k € N and x,y € S we have PI(T;c <o) = pwyp’;;l.

5.5 Definition. A state y € S is called recurrent (rekurrent) if py, = 1 and
transient (transient) if p,, < 1.

5.6 Definition. By N, := Zn>1 1¢x,=,} we denote the number of visits to
state y.

5.7 Proposition.

(a) If a state y is transient, then E,[Ny] = % < 00 holds for all x € S.

(b) A state y is recurrent if and only if E,[N,] = oo holds.

5.8 Proposition. Let x € S be recurrent and pgyy > 0 for somey € S. Then y
is recurrent and py, = 1.

5.9 Definition. A set C' C S of states is closed (abgeschlossen) if p,, = 0 holds
forallz € C,y € S\C. Aset D C S is irreducible (irreduzibel) if p,, > 0 holds
for all x,y € D. If S is irreducible, then the Markov chain is called irreducible.

5.10 Proposition. For an irreducible Markov chain on a finite state space S
all states are recurrent.

10



6 Ergodic theory

6.1 Stationary and ergodic processes

6.1 Definition. A stochastic process (X;, t € T) with T € {Np,Z,R" R} is

stationary (stationar) if (Xy,, ..., X1,) % (Xy,4s ..., Xy, +s) holds for all n > 1,
t1, - ,tph €T and s € T.

6.2 Definition. For a time-homogeneous Markov chain (X,,, n > 0) an initial
distribution y is invariant if P, (X, = i) = P,(Xo = i) = p({i}) holds for all
i€S.

6.3 Lemma. A time-homogeneous Markov chain with invariant initial distri-
bution is stationary.

6.4 Definition. A measurable map 7' : 2 — 2 on a probability space ({2, .7, P)
is called measure-preserving (maferhaltend) if P(7~1(A4)) = P(A) holds for all
Ae 7.

6.5 Lemma.

(a) Every S-valued stationary process (X,,n > 0) induces a measure-
preserving transformation T on (SN0, §8No PX) yiq

T((xo,x1,z2,...)) = (x1,22,--+) (left shift).

(b) For a random variable Y and a measure-preserving map T on (Q,.7,P)
the process X, (w) := Y (T™(w)), n >0, (T° :=1d) is stationary.

6.6 Definition. A event A is (almost) invariant with respect to a measure-
preserving map T on (Q,.%,P) if P(T~'(A)AA) = 0 holds. The o-algebra (!)
of all (almost) invariant events is denoted by .#p. T is ergodic if #p is trivial,
i.e. P(A) € {0,1} holds for all A € #p.

6.7 Lemma. Let 91 be the invariant o-algebra with respect to some measure-
preserving transformation T on (Q, %, P). Then:

(a) A (real-valued) random variable Y is Fp-measurable if and only if it is
P-a.s. invariant, i.e. P(Y o T =Y) = 1. In particular, T is ergodic if
and only if each P-a.s. invariant and bounded random variable is P-a.s.
constant.

(b) For each invariant event A € S there exists a strictly invariant event B
(i.e. with T~Y(B) = B exactly) such that P(AAB) = 0.
6.2 Ergodic theorems

6.8 Lemma (Maximal ergodic lemma). Let X € L' and T be measure-
preserving on (,.%,P). Denoting S, := Z?;(}X oT% Sy := 0 and M, =
max{So, ..., Sn}, we have E[ X117 <01] > 0.

11



6.9 Theorem (Birkhoff’s ergodic theorem). Let X € L' and T be measure-
preserving on (2, .%#,P). Then:

n—1

1 .
lim — Z XoT' =E[X | 77] P-a.s. and in L'.
1=0

n—oo N 4

If T is even ergodic, then

n—1

1 )
li 72 XoT!=E[X P-a.s. and in L.
”Egonizo o [X] a.s. and in

6.10 Theorem (von Neumann’s ergodic theorem). For X € LP, p > 1, and
measure-preserving T on (Q, %, P)we have

1 n—1 ‘
lim — ZX oT" =E[X | 7] P-a.s. and in LP.
nee 1=0

6.11 Corollary. Let (X,,, n > 0) be an ergodic process in L* (i.e. X, € Lt
and the associated left shift on (SN0, 8No PX) is ergodic). Then

n—1

1
lim — " X; = E[X)] P-a.s. and in L*.
nmeen =0

In particular, Kolmogorov’s strong law of large number for (X,) in L' follows.

6.3 The structure of the invariant measures

6.12 Definition. Let T : 2 — Q be measurable on (2,.%#). Each probability
measure 4 on .# with u(T~1(A)) = u(A) for all A € .7 is called invariant with
respect to T. If T' is even ergodic on (€2, .#, i), then also u is called ergodic.
The set of all invariant probability measures with respect to 17" is denoted by

M.

6.13 Lemma. .#r is convez.
6.14 Proposition. Any two distinct ergodic measures are singular.

6.15 Theorem. The ergodic measures are exactly the extremal points of the
conver set M.

6.16 Corollary. IfT possesses exactly one invariant probability measure, then
this measure is ergodic.
6.4 Application to Markov chains

6.17 Definition. A recurrent state x € S is called positive-recurrent if
E,[Ty] < oo, otherwise it is called null-recurrent.

12



6.18 Theorem. Suppose x € S is positive-recurrent and set

Ty—1 o B N
ity = s o] BanBaln 20 Te2 ) e

Then p is an invariant initial distribution.

6.19 Corollary. If (X,, n > 0) is an irreducible Markov chain with some
positive-recurrent state x, then it is an ergodic process under the preceding in-
variant initial distribution p.

6.20 Theorem. If an irreducible Markov chain (X, n > 0) has an invariant

initial distribution u, then all its states are positive-recurrent and p({y}) =
1/Ey[T], y € S, holds.

7 Weak convergence

7.1 Fundamental properties

Throughout (S,%Bg) denotes a metric space with Borel o-algebra. The space of
all bounded continuous and real-valued functions on S is denoted by Cy(5).

7.1 Definition. Probability measures P,, converge weakly (schwach) to a pro-
bability measure P on (S, Bg) if

Ve Cy(S) : lim/deP)n:/deP’

holds, notation P, =2 P (S,Bs)-valued random variables X,, converge in

distribution (or in law, in Verteilung) to some random variable X if PX» 2 pX
holds, i.e.

VfeCy(S): lim E[f(Xy)] = E[f(X)].
Notation X,, % X or X,, % PX.

7.2 Proposition. For (S,Bg)-valued random variables d( Xy, X) Lo (in pro-
bability) implies Xy, 4 x.

7.3 Theorem (Portmanteau). For probability measures (Pp)nen, P on (S,Bg)
the following are equivalent:

(a) P, % P;

(b) YU C 8 open: liminf,_.o Bo(U) = P(U);

(¢) VF C S closed: limsup, . Pn(F) < P(F);

(d) VA € Bg with P(OA) =0: lim, o Pp(A) = P(A).

7.4 Theorem (Continuous mapping). If g : S — T is continuous, T another

metric space, then: X, Lx= 9(Xn) <, 9(X).
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7.5 Proposition. P, = P is already valid if [ fdP, — [ fdP holds for all
bounded, Lipschitz-continuous functions f.

7.6 Lemma. (Slutsky) We have for (S,Bs)-valued random variables (Xy,), (Yn)

X, %X, d(X, Y S 0=Y, S X

7.7 Corollary. If real-valued random wvariables satisfy Yy, LA a, a € R, and
Xn LN X, then (X,,Yn) LN (X, a), in particular X,)Yy, 4, aX, Xn+Y, 4, X+a.

7.2 Tightness

7.8 Definition. A family (P;);c; of probability measures on (S,%Bg) is called
(weakly) relatively compact if each sequence (P;, )x>1 has a weakly convergent

subsequence. The family (IP;);c; is (uniformly) tight (straff) if for any ¢ > 0
there is a compact set K. C S such that Pj(K;) > 1 —¢ forall i € I.

7.9 Theorem. Any relatively compact family of probability measures on a se-
parable metric space is tight.

7.10 Theorem (Prohorov). Any tight family of probability measures on a Po-
lish space is relatively compact.

7.11 Corollary (Prohorov). On a Polish space a family of probability measures
is relatively compact if and only if it is tight.

7.3 Weak convergence on C([0,7]), C(R")

In the sequel C stands for C([0,7]) or C(R™), equipped with the supremum
norm and the uniform convergence on compact sets, respectively.

7.12 Theorem. A sequence (P,) of probability measures on B¢ converges
weakly to P if and only if all finite-dimensional distributions Pn(w{fti y }(.))

converge weakly to IP’(WQ tm}(°)) and (Py,) is tight.

7.13 Definition. For f € C([0,7]) and § > 0 the modulus of continuity
(Stetigkeitsmodul) is defined as

ws(f) = max{[f(s) = f(O)|[s,1 € [0,T], [s — 1] < I}

7.14 Theorem (Arzela-Ascoli). A subset A C C([0,T)) is relatively compact
if

(a) supseal £(0)] < o0 and

(b) lims_osup e 4 ws(f) = 0 (uniform integrability).

7.15 Corollary. A sequence (P)n>1 of probability measures on Bo(o,r)) 45
tight if and only if

(a) limp_,o0 sup, P, ({|f(0)| > R}) =0 and
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(b) lims_olimsup,,_, . Prn({ws(f) = €}) =0 for all e > 0.

7.16 Lemma. A sequence (Py)n>1 of probability measures on Beo)) s al-
ready tight if

(a) imp_ o sup,, P, ({|f(0)| > R}) =0 and
(b°) lims_o limsup,, o supeor—g) 0 ' Pu({maxse(siig)|f(5) = f(t)] > e}) =0
for all e > 0.
Tightness on B g+) follows if conditions (a), (b’) are satisfied for all T > 0.

7.17 Theorem. Let (X, (t),0<t<T), n> 1, be continuous processes. Then
their laws PX* are tight on C([0,T]) if

(a) limp_,o sup, P({| X,(0)| > R}) =0 and

b”) 3a, B3>0, K >0¥n>1,s,tc0,T]: E[X™ — Xx™0] < K|s — t[145.
t

8 Invariance principle and the empirical process

8.1 Invariance principle and Brownian motion

8.1 Definition. A process (B, t > 0) is called Brownian motion (Brownsche
Bewegung) if

(a) By =0and B; ~ N(0,t), t > 0, holds;

(b) the increments are stationary and independent: for 0 < tg <1 < -+ < t,p
we have (B, — By, ..., By,, = B,,,) ~ N(0,diag(t1 —to, ..., tm —tm—1));

(¢) B has continuous sample paths.

8.2 Lemma. Suppose (Xi)i>1 are i.i.d., Xy € L%, E[X}] = 0, Var(Xy) = 1.
Consider Sy, := > p_; X, So = 0 and the rescaled, linearly interpolated random
walk

1 nt — |[nt
Yo(t) = %SLntJ + \/%JXLMJ-H’

Then the finite-dimensional distributions of Y, converge to those of a Brownian
motion.

t €[0,1].

8.3 Lemma. In the setting of the preceding lemma we have for any \ > /2

N eN
P (lglagN|sn| > A\/N) <P <\SN| > () - ﬁ)\/ﬁ).

\n\
8.4 Theorem (Donsker, functional CLT). In the setting of the preceding lem-
mata we have Y™ 4, B with a Brownian motion (B, 0 <t < 1) and conver-
gence in distribution on (C([0,1]), Be((o,1)))-
8.5 Corollary. Brownian motion exists.

8.6 Proposition (Reflection principle). Let (Xy)r>1 be a sequence of i.i.d.
random variables in L? with E[Xg;] = 0, E[X?] = 1. Set S, := > p_, Xk,

M, = ﬁmaxlgign S;. Then M, 4, |B1| follows with By ~ N(0,1). Also for

. . d
the Brownian motion B we have: maxogi<i By = | B1].
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8.2 Empirical process and Brownian bridge

8.7 Definition. For i.i.d. real-valued random variables Xy, ..., X,, with distri-
bution function F' the (random) function

1 n
Fp(z) = - Z lix,<a}r TER,
k=1

is called empirical distribution function (empirische Verteilungsfunktion). The
associated empirical process (empirischer Prozess) is given by

Gn(z) := vn(F,(z) — F(z)), xeR.

8.8 Lemma. For each x € R we have Gp(z) 4 N(0,F(z)(1 — F(x))) as
n — oo.

8.9 Definition. The Brownian bridge (X:,t € [0,1]) is the(!) centered and
continuous Gaussian process with Cov(Xg, X;) =s(1 —t) for 0 < s <t < 1.

8.10 Theorem (Donsker). Let Xi,..., X, be independent U([0, 1])-distributed
random variables. Consider the linear interpolation Fy, : [0,1] — [0,1] of F),
satisfying F(Xi) = Fn(X;), i = 1,...,n, Fp(0) = 0, F,,(1) = 1 and the asso-
ciated empirical process G, = \/n(F, — F). Then we have convergence of Gy,
to a Brownian bridge B in distribution on C([0,1]): Gy 4 B.

8.11 Corollary (Kolmogorov-Smirnov). Let Xi,..., X, be i.i.d. random va-
riables with continuous distribution function Fy and T, := \/nsup,cp|Fn(z) —

Fo(z)|. Then T, LA maxo<t<1|B(t)| holds with a Brownian bridge B.
(The latter has a so-called Kolomogorov distribution: P(maxogi<i|B(t)| < x) =

Zjez(_l)jedj%a z>0.)

8.12 Corollary. Let a € (0,1) and let X1,..., X, be i.i.d. random variables
with continuous distribution function F' which is continuously differentiable in
a neighbourhood of qo == F~'(a) with f(qa) := F'(qa) > 0. Then the empirical

quantile 7 := Fn_l(a) satisfies \/ﬁ(cjg — qa) <, N (0, 0}(21(;;1)))'
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