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1 Some important processes

1.1 The Poisson process

1.1 Definition. Let (Sk)k>1 be random variables on (Ω,F ,P) with 0 6
S1(ω) 6 S2(ω) 6 · · · for all k > 1, ω ∈ Ω. Then N = (Nt, t > 0) with

Nt :=
∑
k>1

1{Sk6t}, t > 0,

is called counting process (Zählprozess) with jump times (Sprungzeiten) (Sk).

1.2 Definition. A counting process N is called Poisson process of intensity
λ > 0 if

(a) P(Nt+h −Nt = 1) = λh+ o(h) for h ↓ 0;

(b) P(Nt+h −Nt = 0) = 1− λh+ o(h) for h ↓ 0;

(c) (independent increments) (Nti−Nti−1)16i6n are independent for 0 = t0 <
t1 < · · · < tn;

(d) (stationary increments) Nt −Ns
d= Nt−s for all t > s > 0.

1.3 Theorem. For a counting process N with jump times (Sk) the following
are equivalent:

(a) N is a Poisson process;

(b) N satisfies conditions (c),(d) of a Poisson process and Nt ∼ Poiss(λt)
holds for all t > 0;

(c) T1 := S1, Tk := Sk − Sk−1, k > 2, are i.i.d. Exp(λ)-distributed random
variables;

(d) Nt ∼ Poiss(λt) holds for all t > 0 and the law of (S1, . . . , Sn) given
{Nt = n} has the density

f(x1, . . . , xn) = n!
tn1{06x16···6xn6t}. (1.1)

(e) N satisfies condition (c) of a Poisson process, E[N1] = λ and (1.1) is the
density of (S1, . . . , Sn) given {Nt = n}.

1.2 Markov chains

1.4 Definition. Let T = N0 (discrete time) or T = [0,∞) (continuous time)
and S be a countable set (state space). Then random variables (Xt)t∈T with
values in (S,P(S)) form a Markov chain if for all n ∈ N, t1 < t2 < · · · < tn+1,
s1, . . . , sn+1 ∈ S with P(Xt1 = s1, . . . , Xtn = sn) > 0 the Markov property is
satisfied:

P(Xtn+1 = sn+1 |Xt1 = s1, . . . , Xtn = sn) = P(Xtn+1 = sn+1 |Xtn = sn).
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1.5 Definition. For a Markov chain X and t1 6 t2, i, j ∈ S

pij(t1, t2) := P(Xt2 = j |Xt1 = i) (or arbitrary if not well-defined)

defines the transition probability to reach state j at time t2 from state i at time
t1. The transition matrix is given by

P (t1, t2) := (pij(t1, t2))i,j∈S .

The transition matrix and the Markov chain are called time-homogeneous if
P (t1, t2) = P (0, t2 − t1) =: P (t2 − t1) holds for all t1 6 t2.

1.6 Proposition. The transition matrices satisfy the Chapman-Kolmogorov
equation

∀t1 6 t2 6 t3 : P (t1, t3) = P (t1, t2)P (t2, t3) (matrix multiplikation).

In the time-homogeneous case this gives the semigroup property

∀t, s ∈ T : P (t+ s) = P (t)P (s),

in particular P (n) = P (1)n for n ∈ N.

2 General theory of stochastic processes

2.1 Basic notions

2.1 Definition. A family X = (Xt, t ∈ T ) of random variables on a common
probability space (Ω,F ,P) is called stochastic process. We call X time-discrete
if T = N0 and time-continuous if T = R+

0 = [0,∞). If all Xt take values in
(S,S ), then (S,S ) is the state space (Zustandsraum) of X. For each fixed ω ∈
Ω the mapping t 7→ Xt(ω) is called sample path (Pfad), trajectory (Trajektorie)
or Realisation (Realisierung) of X.

2.2 Lemma. For a stochastic process (Xt, t ∈ T ) with state space (S,S ) the
mapping X̄ : Ω → ST with X̄(ω)(t) := Xt(ω) is a (ST ,S ⊗T )-valued random
variable.

2.3 Definition. Given a stochastic process (Xt, t ∈ T ), the laws of the random
vectors (Xt1 , . . . , Xtn) with n > 1, t1, . . . , tn ∈ T are called finite-dimensional
distributions of X. We write Pt1,...,tn := P(Xt1 ,...,Xtn ).

2.4 Lemma. Let (Xt, t ∈ T ) be a stochastic process with state space (S,S )
and denote by πJ,I : SJ → SI for I ⊆ J the coordinate projection. Then the
finite-dimensional distributions satisfy the following consistency condition:

∀ I ⊆ J ⊆ T with I, J finite ∀A ∈ S ⊗I : PJ(π−1
J,I(A)) = PI(A). (2.1)

2.5 Definition. Two processes (Xt, t ∈ T ), (Yt, t ∈ T ) on (Ω,F ,P) are called

(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;
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(b) versions or modifications (Versionen, Modifikationen) of each other if we
have ∀ t ∈ T : P(Xt = Yt) = 1.

2.6 Definition. A process (Xt, t > 0) is called continuous if all sample paths
are continuous. It is called stochastically continuous, if tn → t always implies

Xtn
P−→ Xt (convergence in probability).

2.2 Polish spaces and Kolmogorov’s consistency theorem

2.7 Definition. A metric space (S, d) is called Polish space if it is separable
and complete. More generally, a separable topological space which is metrizable
with a complete metric is called Polish. Canonically, it is equipped with its Borel
σ-algebra BS , generated by the open sets.

2.8 Lemma. Let S1, . . . , Sn be Polish spaces, then the Borel σ-algebra of the
product satisfies BS1×···×Sn = BS1 ⊗ · · · ⊗BSn.

2.9 Definition. A probability measure P on a metric space (S,BS) is called

(a) tight (straff) if ∀ε > 0 ∃K ⊆ S compact : P (K) > 1− ε,

(b) regular (regulär) if ∀ε > 0, B ∈ BS ∃K ⊆ B compact : P (B \ K) 6 ε
and ∀ε > 0, B ∈ BS ∃O ⊇ B open : P (O \B) 6 ε.

2.10 Proposition. Every probability measure on a Polish space is tight.

2.11 Theorem (Ulam, 1939). Every probability measure on a Polish space is
regular.

2.12 Definition. Let I 6= ∅ be an index set and (S,S ) be a measurable
set. Let for each finite subset J ⊆ I a probability measure PJ on the product
space (SJ ,S ⊗J) be given. Then (PJ)J⊆I finite is called projective family if the
following consistency condition is satisfied:

∀J ⊆ J ′ ⊆ I finite, B ∈ S ⊗J : PJ(B) = PJ ′(π−1
J ′,J(B)),

where πJ ′,J : SJ
′ → SJ denotes the coordinate projection.

2.13 Theorem (Kolmogorov’s consistency theorem). Let (S,BS) be a Polish
space, I an index set and let (PJ) be a projective family for S and I. Then there
exists a unique probability measure P on the product space (SI ,S ⊗I) satisfying

∀J ⊆ I finite, B ∈ S ⊗J : PJ(B) = P(π−1
I,J(B)).

2.14 Corollary. For any Polish state space (S,BS) and index set T 6= ∅ there
exists to a prescribed projective family (PJ) a stochastic process (Xt, t ∈ T )
whose finite-dimensional distributions are given by (PJ).

2.15 Corollary. For any family (Pi)i∈I of probability measures on (S,S ) there
exists the product measure

⊗
i∈I Pi on (SI ,S ⊗I). In particular, a family (Xi)i∈I

of independent random variables with prescribed laws PXi exists. [Proof only for
S Polish]

3



3 The conditional expectation

3.1 Orthogonal projections

3.1 Proposition. Let L be a closed linear subspace of the Hilbert space H.
Then for each x ∈ H there is a unique yx ∈ L with ‖x − yx‖ = distL(x) :=
infy∈L‖x− y‖.
3.2 Definition. For a closed linear subspace L of the Hilbert space H the
orthogonal projection PL : H → L onto L is defined by PL(x) = yx with yx
from the previous proposition.

3.3 Lemma. We have:

(a) PL ◦ PL = PL (projection property);

(b) ∀x ∈ H : (x− PLx) ∈ L⊥ (orthogonality).

3.4 Corollary. We have:

(a) Each x ∈ H can be decomposed uniquely as x = PLx + (x − PLx) in the
sum of an element of L and an element of L⊥;

(b) PL is selfadjoint: 〈PLx, y〉 = 〈x, PLy〉;

(c) PL is linear.

3.2 Construction and properties

3.5 Definition. For a random variable X on (Ω,F ,P) with values in (S,S )
we introduce the σ-algebra (!) σ(X) := {X−1(A) |A ∈ S } ⊆ F . For a given
probability space (Ω,F ,P) we set

M := M(Ω,F ) := {X : Ω→ R measurable};
M+ := M+(Ω,F ) := {X : Ω→ [0,∞] measurable};
Lp := Lp(Ω,F ,P) := {X ∈M(Ω,F ) | E[|X|p] <∞};
Lp := Lp(Ω,F ,P) := {[X] |X ∈ Lp(Ω,F ,P)}

where [X] := {Y ∈M(Ω,F ) | P(X = Y ) = 1}.

3.6 Proposition. Let X be a (S,S )-valued and Y a real-valued random varia-
ble. Then Y is σ(X)-measurable if and only if there is a (S ,BR)-measurable
function ϕ : S → R such that Y = ϕ(X).

3.7 Lemma. Let G be a sub-σ-algebra of F . Then L2(Ω,G ,P) is embedded as
closed linear subspace in the Hilbert space L2(Ω,F ,P).

3.8 Definition. Let X be a random variable on (Ω,F ,P). Then for Y ∈
L2(Ω,F ,P) the conditional expectation (bedingte Erwartung) of Y given X
is defined as the L2(Ω,F ,P)-orthogonal projection of Y onto L2(Ω, σ(X),P):
E[Y |X] := PL2(Ω,σ(X),P)Y . If ϕ is the measurable function such that E[Y |X] =
ϕ(X) a.s., we write E[Y |X = x] := ϕ(x) (conditional expected value, bedingter
Erwartungswert).

More generally, for a sub-σ-algebra G the conditional expectation of Y ∈
L2(Ω,F ,P) given G is defined as E[Y |G ] = PL2(Ω,G ,P)Y .
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3.9 Lemma. E[Y |G ] is as element of L2 uniquely determined by the following
properties:

(a) E[Y |G ] is G -measurable (modulo null sets);

(b) ∀G ∈ G : E[E[Y |G ]1G] = E[Y 1G].

3.10 Theorem. Let Y ∈M+(Ω,F ) or Y ∈ L1(Ω,F ,P) and let G be a sub-σ-
algebra of F . Then there is a P-a.s. unique element E[Y |G ] in M+(Ω,G ) and
L1(Ω,G ,P), respectively, such that

∀G ∈ G : E[E[Y |G ]1G] = E[Y 1G].

3.11 Definition. For Y ∈M+(Ω,F ) or Y ∈ L1(Ω,F ,P) and a sub-σ-algebra
G of F the general conditional expectation of Y given G is defined as E[Y |G ]
from the preceding theorem. We put E[Y | (Xi)i∈I ] := E[Y |σ(Xi, i ∈ I)] for
random variables Xi, i ∈ I.

3.12 Proposition. Let Y ∈ L1(Ω,F ,P) and let G be a sub-σ-algebra of F .
Then:

(a) E[E[Y |G ]] = E[Y ];

(b) Y G -measurable ⇒ E[Y |G ] = Y a.s.;

(c) α ∈ R, Z ∈ L1(Ω,F ,P): E[αY + Z |G ] = αE[Y |G ] + E[Z |G ] a.s.;

(d) Y > 0 a.s.⇒ E[Y |G ] > 0 a.s.;

(e) Yn ∈ M+(Ω,F ), Yn ↑ Y a.s. ⇒ E[Yn |G ] ↑ E[Y |G ] a.s. (monotone con-
vergence);

(f) Yn ∈ M+(Ω,F ) ⇒ E[lim infn Yn |G ] 6 lim infn E[Yn |G ] a.s. (Fatou’s
Lemma);

(g) Yn ∈ M(Ω,F ), Yn → Y , |Yn| 6 Z with Z ∈ L1(Ω,F ,P): E[Yn |G ] →
E[Y |G ] a.s. (dominated convergence);

(h) H ⊆ G ⇒ E[E[Y |G ] |H ] = E[Y |H ] a.s. (projection/tower property);

(i) Z G -measurable, ZY ∈ L1: E[ZY |G ] = Z E[Y |G ] a.s.;

(j) Y independent of G : E[Y |G ] = E[Y ] a.s.

3.13 Proposition (Jensen’s Inequality). If ϕ : R→ R is convex and Y, ϕ(Y )
are in L1, then ϕ(E[Y |G ]) 6 E[ϕ(Y ) |G ] holds for any sub-σ-algebra G of F .

5



4 Martingale theory

4.1 Martingales, sub- and supermartingales

4.1 Definition. A sequence (Fn)n>0 of sub-σ-algebras of F is called filtration
if Fn ⊆ Fn+1, n > 0, holds. (Ω,F ,P, (Fn)) is called filtered probability space.

4.2 Definition. A sequence (Mn)n>0 of random variables on a filtered probabi-
lity space (Ω,F ,P, (Fn)) forms a martingale (submartingale, supermartingale)
if:

(a) Mn ∈ L1, n > 0;

(b) Mn is Fn-measurable, n > 0 (adapted);

(c) E[Mn+1 |Fn] = Mn (resp. E[Mn+1 |Fn] > Mn for submartingale, resp.
E[Mn+1 |Fn] 6 Mn for supermartingale).

If Fn = σ(M0, . . . ,Mn) holds, then (Fn) is the natural filtration of M , notation
(FM

n ).

4.3 Definition. A martingale (Mn) is closable (abschließbar), if there exists
an X ∈ L1 with Mn = E[X |Fn], n > 0.

4.4 Definition. A process (Xn)n>1 is predictable (vorhersehbar) (w.r.t. (Fn))
if each Xn is Fn−1-measurable. For a predictable process (Xn) and a mar-
tingale (or more general: adapted process) (Mn) the martingale transform
(or discrete stochastic integral) ((X•M)n)n>0 is defined by (X•M)0 := 0,
(X•M)n :=

∑n
k=1Xk(Mk −Mk−1).

4.5 Lemma. For a bounded predictable (Xn) and a martingale (Mn) (or just
predictable (Xn) and Xn,Mn ∈ L2 for all n) ((X•M)n)n>0 is again a martin-
gale.

4.6 Lemma. Let (Mn) be a martingale and ϕ : R → R convex with ϕ(Mn) ∈
L1, n > 0. Then ϕ(Mn) is a submartingale. In particular, (M2

n) is a submar-
tingale for an L2-martingale (Mn).

4.7 Theorem (Doob decomposition). Given a submartingale (Xn), there exists
a martingale (Mn) and a predictable increasing process (An) such that

Xn = X0 +Mn +An, n > 1; M0 = A0 = 0.

This decomposition is a.s. unique and An =
∑n

k=1 E[Xk −Xk−1 |Fk−1].

4.8 Definition. The predictable process (An) in the Doob decomposition of
(Xn) is called compensator of (Xn). For an L2-martingale (Mn) the compensator
of (M2

n) is called quadratic variation of (Mn), denoted by 〈M〉n.

4.9 Lemma. We have 〈M〉n =
∑n

k=1 E[(Mk −Mk−1)2 |Fk−1], n > 1.
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4.2 Stopping times

4.10 Definition. A map τ : Ω → {0, 1, . . . ,+∞} is called stopping time
(Stoppzeit) with respect to a filtration (Fn) if {τ = n} ∈ Fn holds for all
n > 0.

4.11 Lemma. Every deterministic time τ = n0 is stopping time. For stopping
times σ and τ also σ ∧ τ , σ ∨ τ and σ + τ are stopping times.

4.12 Theorem (Optional Stopping). Let (Mn) be a (sub/super-)martingale
and τ a stopping time. Then the stopped process (M τ

n) = (Mn∧τ ) is again a
(sub/super-)martingale.

4.13 Definition. For a stopping time τ the σ-algebra of τ -history (τ -
Vergangenheit) is defined by Fτ := {A ∈ F | ∀n > 0 : A ∩ {τ 6 n} ∈ Fn}.

4.14 Lemma. Fτ is a σ-Algebra and τ is Fτ -measurable.

4.15 Lemma. For stopping times σ and τ with σ 6 τ we have Fσ ⊆ Fτ .

4.16 Lemma. For an adapted process (Xn) and a finite stopping time τ the
random variable Xτ is Fτ -measurable.

4.17 Theorem (Optional Sampling). Let (Mn) be a martingale (submartinga-
le) and σ, τ bounded stopping times with σ 6 τ . Then E[Mτ |Fσ] = Mσ (resp.
E[Mτ |Fσ] > Mσ) holds.

4.18 Corollary. Let (Mn) be a martingale and τ a finite stopping time. Then
E[Mτ ] = E[M0] holds under one of the following conditions:

(a) τ is bounded;

(b) (Mτ∧n)n>0 is uniformly bounded;

(c) E[τ ] <∞ and (E[|Mn+1 −Mn| |Fn])n>0 is uniformly bounded.

4.19 Corollary (Wald’s Identity). Let (Xk)k>1 be (Fk)-adapted random va-
riables such that supk E[|Xk|] < ∞, E[Xk] = µ ∈ R and Xk is independent of
Fk−1, k > 1. Then for Sn :=

∑n
k=1Xk, S0 = 0 and every (Fk)-stopping time

τ with E[τ ] <∞ we have E[Sτ ] = µE[τ ].

4.3 Martingale inequalities and convergence

4.20 Proposition (Maximal inequality). Any martingale (Mn) satisfies

∀α > 0 : P
(

sup
06k6n

|Mk| > α
)

6 1
α E[|Mn|], n > 0.

4.21 Theorem (Doob’s Lp-inequality). An Lp-martingale (Mn) (i.e. Mn ∈ Lp
for all n) with p > 1 satisfies∥∥∥ max

16k6n
|Mk|

∥∥∥
Lp

6
p

p− 1
‖Mn‖Lp .

7



4.22 Definition. The number of upcrossings (aufsteigende Überquerungen)
on an interval [a, b] by a process (Xk) until time n is defined by U

[a,b]
n :=

sup{k > 1 | τk 6 n}, where inductively τ0 := 0, σk+1 := inf{` > τk |X` 6 a},
τk+1 := inf{` > σk |X` > b}.

4.23 Proposition (Upcrossing Inequality). The upcrossings of a submartingale
(Xn) satisfy E[U [a,b]

n ] 6 1
b−a E[(Mn − a) ∨ 0].

4.24 Theorem (First martingale convergence theorem). Let (Mn) be a (sub-
/super-)martingale with supn E[|Mn|] < ∞. Then M∞ := limn→∞Mn exists
a.s. and M∞ is in L1.

4.25 Corollary. Each non-negative supermartingale converges a.s.

4.26 Proposition. Let (Mn) be an L2-martingale. Then limn→∞Mn(ω) exists
for P-almost all ω, for which limn→∞〈M〉n(ω) <∞ holds.

4.27 Corollary (Strong law of large numbers for L2-martingales). An L2-
martingale (Mn) satisfies for any α > 1/2

lim
n→∞

Mn(ω)
(〈M〉n(ω))α

= 0

for P-almost all ω, for which limn→∞〈M〉n(ω) is infinite.

4.28 Definition. A family (Xi)i∈I of random variables is uniformly integrable
(gleichgradig integrierbar) if

lim
R→∞

sup
i∈I

E[|Xi|1{|Xi|>R}] = 0.

4.29 Lemma.

(a) If (Xi)i∈I is uniformly integrable, then (Xi)i∈I is L1-bounded:
supi∈I E[|Xi|] <∞.

(b) If (Xi)i∈I is Lp-bounded (supi∈I E[|Xi|p] < ∞) for some p > 1, then
(Xi)i∈I is uniformly integrable.

(c) If |Xi| 6 Y holds for all i ∈ I and some Y ∈ L1, then (Xi)i∈I is uniformly
integrable.

4.30 Theorem (Vitali). Let (Xn)n>0 be random variables with Xn
P−→ X (in

probability). Then the following statements are equivalent:

(a) (Xn)n>0 is uniformly integrable;

(b) Xn → X in L1;

(c) E[|Xn|]→ E[|X|] <∞.

4.31 Theorem (Second martingale convergence theorem).
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(a) If (Mn) is a uniformly integrable martingale, then (Mn) converges a.s.
and in L1 to some M∞ ∈ L1. (Mn) is closable with Mn = E[M∞ |Fn].

(b) If (Mn) is a closable martingale, with Mn = E[M |Fn] say, then (Mn) is
uniformly integrable and (a) holds with M∞ = E[M |F∞] where F∞ =
σ(Fn, n > 1).

4.32 Corollary. Let p > 1. Every Lp-bounded martingale (Mn) (i.e.
supn E[|Mn|p] <∞) converges for n→∞ a.s. and in Lp, hence also in L1.

4.33 Definition. A process (M−n)n>0 is called backward martingale
(Rückwärtsmartingal) with respect to (F−n)n>0 with F−n−1 ⊆ F−n if M−n ∈
L1, M−n F−n-measurable and E[M−n |F−n−1] = M−n−1 hold for all n > 0.

4.34 Theorem. Every backward martingale (M−n)n>0 converges for n → ∞
a.s. and in L1.

4.35 Corollary. (Kolmogorov’s strong law of large numbers) For i.i.d. random
variables (Xk)k>1 in L1 we have

1
n

n∑
k=1

Xk
a.s. and L1

−−−−−−−→ E[X1].

4.4 The Radon-Nikodym theorem

4.36 Definition. Let µ and ν be measures on the measurable space (Ω,F ).
Then µ is absolutely continuous (absolutstetig) with respect to ν, notation
µ� ν, if ∀A ∈ F : ν(A) = 0⇒ µ(A) = 0. µ and ν are equivalent (äquivalent),
notation µ ∼ ν, if µ � ν and ν � µ. If there is an A ∈ F with ν(A) = 0 and
µ(AC) = 0, then µ and ν are singular (singulär), notation µ ⊥ ν.

4.37 Theorem (Radon-Nikodym). Let ν be a σ-finite measure and µ a finite
measure with µ� ν, then there is an f ∈ L1(Ω,F , ν) such that

µ(A) =
∫
A
f dν for all A ∈ F .

4.38 Definition. The function f in the Radon-Nikodym theorem is called
Radon-Nikodym derivative, density or likelihood function of µ with respect to
ν, notation f = dµ

dν .

4.39 Theorem (Kakutani). Let (Xk)k>1 be independent random variables with
Xk > 0 and E[Xk] = 1. Then Mn :=

∏n
k=1Xk, M0 = 1 is a non-negative mar-

tingale converging a.s. to some M∞. The following statements are equivalent:

(a) E[M∞] = 1;

(b) Mn →M∞ in L1;

(c) (Mn) is uniformly integrable;

(d)
∏∞
k=1 ak > 0, where ak := E[X1/2

k ] ∈ (0, 1];
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(e)
∑∞

k=1(1− ak) <∞.

If one (then all) statement fails to hold, then M∞ = 0 holds a.s. (Kakutani’s
dichotomy).

5 Markov chains: recurrence and transience

In this section (Xn, n > 0) always denotes a time-homogeneous Markov chain
with state space (S, S), realized as coordinate process on Ω = SN0 with σ-
algebra F = S⊗N0 , filtration Fn = FX

n and measure Pµ, where µ denotes the
initial distribution. We write short Px := Pδx .

5.1 Definition. For n > 0 the shift operator ϑn : Ω → Ω is given by
ϑn((sk)k>0) = (sk+n)k>0.

5.2 Theorem. Let Y ∈M+(Ω,F ) and τ be a finite (Fn)-stopping time. Then
the strong Markov property holds:

Eµ[Y ◦ ϑτ |Fτ ] = EXτ [Y ] Pµ -a.s.

5.3 Definition. For y ∈ S, k ∈ N introduce the kth time of return to y
recursively by T ky := inf{n > T k−1

y |Xn = y} and T 0
y := 0. Put Ty := T 1

y and
ρxy := Px(Ty <∞) for x ∈ S.

5.4 Proposition. For k ∈ N and x, y ∈ S we have Px(T ky <∞) = ρxyρ
k−1
yy .

5.5 Definition. A state y ∈ S is called recurrent (rekurrent) if ρyy = 1 and
transient (transient) if ρyy < 1.

5.6 Definition. By Ny :=
∑

n>1 1{Xn=y} we denote the number of visits to
state y.

5.7 Proposition.

(a) If a state y is transient, then Ex[Ny] = ρxy
1−ρyy <∞ holds for all x ∈ S.

(b) A state y is recurrent if and only if Ey[Ny] =∞ holds.

5.8 Proposition. Let x ∈ S be recurrent and ρxy > 0 for some y ∈ S. Then y
is recurrent and ρyx = 1.

5.9 Definition. A set C ⊆ S of states is closed (abgeschlossen) if ρxy = 0 holds
for all x ∈ C, y ∈ S \C. A set D ⊆ S is irreducible (irreduzibel) if ρxy > 0 holds
for all x, y ∈ D. If S is irreducible, then the Markov chain is called irreducible.

5.10 Proposition. For an irreducible Markov chain on a finite state space S
all states are recurrent.
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6 Ergodic theory

6.1 Stationary and ergodic processes

6.1 Definition. A stochastic process (Xt, t ∈ T ) with T ∈ {N0,Z,R+,R} is
stationary (stationär) if (Xt1 , . . . , Xtn) d= (Xt1+s, . . . , Xtn+s) holds for all n > 1,
t1, · · · , tn ∈ T and s ∈ T .

6.2 Definition. For a time-homogeneous Markov chain (Xn, n > 0) an initial
distribution µ is invariant if Pµ(X1 = i) = Pµ(X0 = i) = µ({i}) holds for all
i ∈ S.

6.3 Lemma. A time-homogeneous Markov chain with invariant initial distri-
bution is stationary.

6.4 Definition. A measurable map T : Ω→ Ω on a probability space (Ω,F ,P)
is called measure-preserving (maßerhaltend) if P(T−1(A)) = P(A) holds for all
A ∈ F .

6.5 Lemma.

(a) Every S-valued stationary process (Xn, n > 0) induces a measure-
preserving transformation T on (SN0 , S⊗N0 ,PX) via

T ((x0, x1, x2, . . .)) = (x1, x2, · · · ) (left shift).

(b) For a random variable Y and a measure-preserving map T on (Ω,F ,P)
the process Xn(ω) := Y (Tn(ω)), n > 0, (T 0 := Id) is stationary.

6.6 Definition. A event A is (almost) invariant with respect to a measure-
preserving map T on (Ω,F ,P) if P(T−1(A)∆A) = 0 holds. The σ-algebra (!)
of all (almost) invariant events is denoted by IT . T is ergodic if IT is trivial,
i.e. P(A) ∈ {0, 1} holds for all A ∈ IT .

6.7 Lemma. Let IT be the invariant σ-algebra with respect to some measure-
preserving transformation T on (Ω,F ,P). Then:

(a) A (real-valued) random variable Y is IT -measurable if and only if it is
P-a.s. invariant, i.e. P(Y ◦ T = Y ) = 1. In particular, T is ergodic if
and only if each P-a.s. invariant and bounded random variable is P-a.s.
constant.

(b) For each invariant event A ∈ IT there exists a strictly invariant event B
(i.e. with T−1(B) = B exactly) such that P(A∆B) = 0.

6.2 Ergodic theorems

6.8 Lemma (Maximal ergodic lemma). Let X ∈ L1 and T be measure-
preserving on (Ω,F ,P). Denoting Sn :=

∑n−1
i=0 X ◦ T i, S0 := 0 and Mn :=

max{S0, . . . , Sn}, we have E[X1{Mn>0}] > 0.
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6.9 Theorem (Birkhoff’s ergodic theorem). Let X ∈ L1 and T be measure-
preserving on (Ω,F ,P). Then:

lim
n→∞

1
n

n−1∑
i=0

X ◦ T i = E[X |IT ] P-a.s. and in L1.

If T is even ergodic, then

lim
n→∞

1
n

n−1∑
i=0

X ◦ T i = E[X] P-a.s. and in L1.

6.10 Theorem (von Neumann’s ergodic theorem). For X ∈ Lp, p > 1, and
measure-preserving T on (Ω,F ,P)we have

lim
n→∞

1
n

n−1∑
i=0

X ◦ T i = E[X |IT ] P-a.s. and in Lp.

6.11 Corollary. Let (Xn, n > 0) be an ergodic process in L1 (i.e. Xn ∈ L1

and the associated left shift on (SN0 , SN0 ,PX) is ergodic). Then

lim
n→∞

1
n

n−1∑
i=0

Xi = E[X1] P-a.s. and in L1.

In particular, Kolmogorov’s strong law of large number for (Xn) in L1 follows.

6.3 The structure of the invariant measures

6.12 Definition. Let T : Ω → Ω be measurable on (Ω,F ). Each probability
measure µ on F with µ(T−1(A)) = µ(A) for all A ∈ F is called invariant with
respect to T . If T is even ergodic on (Ω,F , µ), then also µ is called ergodic.
The set of all invariant probability measures with respect to T is denoted by
MT .

6.13 Lemma. MT is convex.

6.14 Proposition. Any two distinct ergodic measures are singular.

6.15 Theorem. The ergodic measures are exactly the extremal points of the
convex set MT .

6.16 Corollary. If T possesses exactly one invariant probability measure, then
this measure is ergodic.

6.4 Application to Markov chains

6.17 Definition. A recurrent state x ∈ S is called positive-recurrent if
Ex[Tx] <∞, otherwise it is called null-recurrent.
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6.18 Theorem. Suppose x ∈ S is positive-recurrent and set

µ({y}) :=
Ex[
∑Tx−1

n=0 1{Xn=y}]
Ex[Tx]

=
∑∞

n=0 Px(Xn = y, Tx > n)
Ex[Tx]

, y ∈ S.

Then µ is an invariant initial distribution.

6.19 Corollary. If (Xn, n > 0) is an irreducible Markov chain with some
positive-recurrent state x, then it is an ergodic process under the preceding in-
variant initial distribution µ.

6.20 Theorem. If an irreducible Markov chain (Xn, n > 0) has an invariant
initial distribution µ, then all its states are positive-recurrent and µ({y}) =
1/Ey[Ty], y ∈ S, holds.

7 Weak convergence

7.1 Fundamental properties

Throughout (S,BS) denotes a metric space with Borel σ-algebra. The space of
all bounded continuous and real-valued functions on S is denoted by Cb(S).

7.1 Definition. Probability measures Pn converge weakly (schwach) to a pro-
bability measure P on (S,BS) if

∀f ∈ Cb(S) : lim
n→∞

∫
S
f dPn =

∫
S
f dP

holds, notation Pn
w−→ P. (S,BS)-valued random variables Xn converge in

distribution (or in law, in Verteilung) to some random variable X if PXn w−→ PX
holds, i.e.

∀f ∈ Cb(S) : lim
n→∞

E[f(Xn)] = E[f(X)].

Notation Xn
d−→ X or Xn

d−→ PX .

7.2 Proposition. For (S,BS)-valued random variables d(Xn, X) P−→ 0 (in pro-
bability) implies Xn

d−→ X.

7.3 Theorem (Portmanteau). For probability measures (Pn)n∈N, P on (S,BS)
the following are equivalent:

(a) Pn
w−→ P;

(b) ∀U ⊆ S open : lim infn→∞ Pn(U) > P(U);

(c) ∀F ⊆ S closed : lim supn→∞ Pn(F ) 6 P(F );

(d) ∀A ∈ BS with P(∂A) = 0 : limn→∞ Pn(A) = P(A).

7.4 Theorem (Continuous mapping). If g : S → T is continuous, T another
metric space, then: Xn

d−→ X ⇒ g(Xn) d−→ g(X).
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7.5 Proposition. Pn
w−→ P is already valid if

∫
f dPn →

∫
f dP holds for all

bounded, Lipschitz-continuous functions f .

7.6 Lemma. (Slutsky) We have for (S,Bs)-valued random variables (Xn), (Yn)

Xn
d−→ X, d(Xn, Yn) P−→ 0⇒ Yn

d−→ X.

7.7 Corollary. If real-valued random variables satisfy Yn
d−→ a, a ∈ R, and

Xn
d−→ X, then (Xn, Yn) d−→ (X, a), in particular XnYn

d−→ aX, Xn+Yn
d−→ X+a.

7.2 Tightness

7.8 Definition. A family (Pi)i∈I of probability measures on (S,BS) is called
(weakly) relatively compact if each sequence (Pik)k>1 has a weakly convergent
subsequence. The family (Pi)i∈I is (uniformly) tight (straff) if for any ε > 0
there is a compact set Kε ⊆ S such that Pi(Kε) > 1− ε for all i ∈ I.

7.9 Theorem. Any relatively compact family of probability measures on a se-
parable metric space is tight.

7.10 Theorem (Prohorov). Any tight family of probability measures on a Po-
lish space is relatively compact.

7.11 Corollary (Prohorov). On a Polish space a family of probability measures
is relatively compact if and only if it is tight.

7.3 Weak convergence on C([0, T ]), C(R+)

In the sequel C stands for C([0, T ]) or C(R+), equipped with the supremum
norm and the uniform convergence on compact sets, respectively.

7.12 Theorem. A sequence (Pn) of probability measures on BC converges
weakly to P if and only if all finite-dimensional distributions Pn(π−1

{t1,...,tm}(•))

converge weakly to P(π−1
{t1,...,tm}(•)) and (Pn) is tight.

7.13 Definition. For f ∈ C([0, T ]) and δ > 0 the modulus of continuity
(Stetigkeitsmodul) is defined as

ωδ(f) := max{|f(s)− f(t)| | s, t ∈ [0, T ], |s− t| 6 δ}.

7.14 Theorem (Arzelà-Ascoli). A subset A ⊆ C([0, T ]) is relatively compact
if

(a) supf∈A|f(0)| <∞ and

(b) limδ→0 supf∈A ωδ(f) = 0 (uniform integrability).

7.15 Corollary. A sequence (Pn)n>1 of probability measures on BC([0,T ]) is
tight if and only if

(a) limR→∞ supn Pn({|f(0)| > R}) = 0 and
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(b) limδ→0 lim supn→∞ Pn({ωδ(f) > ε}) = 0 for all ε > 0.

7.16 Lemma. A sequence (Pn)n>1 of probability measures on BC([0,T ]) is al-
ready tight if

(a) limR→∞ supn Pn({|f(0)| > R}) = 0 and

(b’) limδ→0 lim supn→∞ supt∈[0,T−δ] δ
−1 Pn({maxs∈[t,t+δ]|f(s)−f(t)| > ε}) = 0

for all ε > 0.

Tightness on BC(R+) follows if conditions (a), (b’) are satisfied for all T > 0.

7.17 Theorem. Let (Xn(t), 0 6 t 6 T ), n > 1, be continuous processes. Then
their laws PXn are tight on C([0, T ]) if

(a) limR→∞ supn P({|Xn(0)| > R}) = 0 and

(b”) ∃α, β > 0, K > 0 ∀n > 1, s, t ∈ [0, T ] : E[|X(n)
s −X(n)

t |α] 6 K|s− t|1+β.

8 Invariance principle and the empirical process

8.1 Invariance principle and Brownian motion

8.1 Definition. A process (Bt, t > 0) is called Brownian motion (Brownsche
Bewegung) if

(a) B0 = 0 and Bt ∼ N(0, t), t > 0, holds;

(b) the increments are stationary and independent: for 0 6 t0 < t1 < · · · < tm
we have (Bt1−Bt0 , . . . , Btm−Btm−1) ∼ N(0,diag(t1− t0, . . . , tm− tm−1));

(c) B has continuous sample paths.

8.2 Lemma. Suppose (Xk)k>1 are i.i.d., Xk ∈ L2, E[Xk] = 0, Var(Xk) = 1.
Consider Sn :=

∑n
k=1Xk, S0 = 0 and the rescaled, linearly interpolated random

walk
Yn(t) :=

1√
n
Sbntc +

nt− bntc√
n

Xbntc+1, t ∈ [0, 1].

Then the finite-dimensional distributions of Yn converge to those of a Brownian
motion.

8.3 Lemma. In the setting of the preceding lemma we have for any λ >
√

2
N ∈ N

P
(

max
16n6N

|Sn| > λ
√
N
)

6 P
(
|SN | > (λ−

√
2)
√
N
)
.

8.4 Theorem (Donsker, functional CLT). In the setting of the preceding lem-
mata we have Y (n) d−→ B with a Brownian motion (Bt, 0 6 t 6 1) and conver-
gence in distribution on (C([0, 1]),BC([0,1])).

8.5 Corollary. Brownian motion exists.

8.6 Proposition (Reflection principle). Let (Xk)k>1 be a sequence of i.i.d.
random variables in L2 with E[Xk] = 0, E[X2

k ] = 1. Set Sn :=
∑n

k=1Xk,

Mn := 1√
n

max16i6n Si. Then Mn
d−→ |B1| follows with B1 ∼ N(0, 1). Also for

the Brownian motion B we have: max06t61Bt
d= |B1|.
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8.2 Empirical process and Brownian bridge

8.7 Definition. For i.i.d. real-valued random variables X1, . . . , Xn with distri-
bution function F the (random) function

Fn(x) :=
1
n

n∑
k=1

1{Xk6x}, x ∈ R,

is called empirical distribution function (empirische Verteilungsfunktion). The
associated empirical process (empirischer Prozess) is given by

Gn(x) :=
√
n(Fn(x)− F (x)), x ∈ R .

8.8 Lemma. For each x ∈ R we have Gn(x) d−→ N(0, F (x)(1 − F (x))) as
n→∞.

8.9 Definition. The Brownian bridge (Xt, t ∈ [0, 1]) is the(!) centered and
continuous Gaussian process with Cov(Xs, Xt) = s(1− t) for 0 6 s 6 t 6 1.

8.10 Theorem (Donsker). Let X1, . . . , Xn be independent U([0, 1])-distributed
random variables. Consider the linear interpolation F̃n : [0, 1] → [0, 1] of Fn
satisfying F̃n(Xi) = Fn(Xi), i = 1, . . . , n, F̃n(0) = 0, F̃n(1) = 1 and the asso-
ciated empirical process G̃n =

√
n(F̃n − F ). Then we have convergence of G̃n

to a Brownian bridge B in distribution on C([0, 1]): G̃n
d−→ B.

8.11 Corollary (Kolmogorov-Smirnov). Let X1, . . . , Xn be i.i.d. random va-
riables with continuous distribution function F0 and Tn :=

√
n supx∈R|Fn(x)−

F0(x)|. Then Tn
d−→ max06t61|B(t)| holds with a Brownian bridge B.

(The latter has a so-called Kolomogorov distribution: P(max06t61|B(t)| 6 x) =∑
j∈Z(−1)je−2j2x2

, x > 0.)

8.12 Corollary. Let α ∈ (0, 1) and let X1, . . . , Xn be i.i.d. random variables
with continuous distribution function F which is continuously differentiable in
a neighbourhood of qα := F−1(α) with f(qα) := F ′(qα) > 0. Then the empirical
quantile q̂nα := F̃−1

n (α) satisfies
√
n(q̂nα − qα) d−→ N(0, α(1−α)

f2(qα)
).
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