Stochastic Processes (Stochastik II) Outline of the course in winter semester 2009/10

Markus Reiß Humboldt-Universität zu Berlin

Preliminary version, 9. Februar 2010

Inhaltsverzeichnis

1	Some important processes				
	1.1	The Poisson process	1		
	1.2	Markov chains	1		
2	General theory of stochastic processes				
	2.1	Basic notions	2		
	2.2	Polish spaces and Kolmogorov's consistency theorem	3		
3	The conditional expectation				
	3.1	Orthogonal projections	4		
	3.2	Construction and properties	4		
4	Martingale theory				
	4.1	Martingales, sub- and supermartingales	6		
	4.2	Stopping times	7		
	4.3	Martingale inequalities and convergence	7		
	4.4	The Radon-Nikodym theorem	9		
5	Ma	rkov chains: recurrence and transience 1	0		
6	\mathbf{Erg}	odic theory 1	1		
	6.1	Stationary and ergodic processes	1		
	6.2	Ergodic theorems	1		
	6.3	The structure of the invariant measures	2		
	6.4	Application to Markov chains	2		
7	Weak convergence 1				
	7.1	Fundamental properties	3		
	7.2	Tightness	4		
	7.3	Weak convergence on $C([0,T]), C(\mathbb{R}^+) \dots \dots$	4		

8	Inva	ariance principle and the empirical process	15
	8.1	Invariance principle and Brownian motion	15
	8.2	Empirical process and Brownian bridge	16

1 Some important processes

1.1 The Poisson process

1.1 Definition. Let $(S_k)_{k \ge 1}$ be random variables on $(\Omega, \mathscr{F}, \mathbb{P})$ with $0 \le S_1(\omega) \le S_2(\omega) \le \cdots$ for all $k \ge 1$, $\omega \in \Omega$. Then $N = (N_t, t \ge 0)$ with

$$N_t := \sum_{k \ge 1} \mathbf{1}_{\{S_k \leqslant t\}}, \quad t \ge 0,$$

is called counting process (Zählprozess) with jump times (Sprungzeiten) (S_k) .

1.2 Definition. A counting process N is called Poisson process of intensity $\lambda > 0$ if

- (a) $\mathbb{P}(N_{t+h} N_t = 1) = \lambda h + o(h)$ for $h \downarrow 0$;
- (b) $\mathbb{P}(N_{t+h} N_t = 0) = 1 \lambda h + o(h)$ for $h \downarrow 0$;
- (c) (independent increments) $(N_{t_i} N_{t_{i-1}})_{1 \leq i \leq n}$ are independent for $0 = t_0 < t_1 < \cdots < t_n$;
- (d) (stationary increments) $N_t N_s \stackrel{d}{=} N_{t-s}$ for all $t \ge s \ge 0$.

1.3 Theorem. For a counting process N with jump times (S_k) the following are equivalent:

- (a) N is a Poisson process;
- (b) N satisfies conditions (c),(d) of a Poisson process and $N_t \sim \text{Poiss}(\lambda t)$ holds for all t > 0;
- (c) $T_1 := S_1, T_k := S_k S_{k-1}, k \ge 2$, are *i.i.d.* $Exp(\lambda)$ -distributed random variables;
- (d) $N_t \sim \text{Poiss}(\lambda t)$ holds for all t > 0 and the law of (S_1, \ldots, S_n) given $\{N_t = n\}$ has the density

$$f(x_1,\ldots,x_n) = \frac{n!}{t^n} \mathbf{1}_{\{0 \leqslant x_1 \leqslant \cdots \leqslant x_n \leqslant t\}}.$$
(1.1)

(e) N satisfies condition (c) of a Poisson process, $\mathbb{E}[N_1] = \lambda$ and (1.1) is the density of (S_1, \ldots, S_n) given $\{N_t = n\}$.

1.2 Markov chains

1.4 Definition. Let $T = \mathbb{N}_0$ (discrete time) or $T = [0, \infty)$ (continuous time) and S be a countable set (state space). Then random variables $(X_t)_{t \in T}$ with values in $(S, \mathcal{P}(S))$ form a <u>Markov chain</u> if for all $n \in \mathbb{N}$, $t_1 < t_2 < \cdots < t_{n+1}$, $s_1, \ldots, s_{n+1} \in S$ with $\mathbb{P}(X_{t_1} = s_1, \ldots, X_{t_n} = s_n) > 0$ the <u>Markov property</u> is satisfied:

$$\mathbb{P}(X_{t_{n+1}} = s_{n+1} \mid X_{t_1} = s_1, \dots, X_{t_n} = s_n) = \mathbb{P}(X_{t_{n+1}} = s_{n+1} \mid X_{t_n} = s_n).$$

1.5 Definition. For a Markov chain X and $t_1 \leq t_2, i, j \in S$

 $p_{ij}(t_1, t_2) := \mathbb{P}(X_{t_2} = j \mid X_{t_1} = i)$ (or arbitrary if not well-defined)

defines the <u>transition probability</u> to reach state j at time t_2 from state i at time t_1 . The transition matrix is given by

$$P(t_1, t_2) := (p_{ij}(t_1, t_2))_{i,j \in S}.$$

The transition matrix and the Markov chain are called <u>time-homogeneous</u> if $P(t_1, t_2) = P(0, t_2 - t_1) =: P(t_2 - t_1)$ holds for all $t_1 \leq t_2$.

1.6 Proposition. The transition matrices satisfy the <u>Chapman-Kolmogorov</u> equation

 $\forall t_1 \leq t_2 \leq t_3 : P(t_1, t_3) = P(t_1, t_2)P(t_2, t_3)$ (matrix multiplikation).

In the time-homogeneous case this gives the semigroup property

$$\forall t, s \in T : P(t+s) = P(t)P(s),$$

in particular $P(n) = P(1)^n$ for $n \in \mathbb{N}$.

2 General theory of stochastic processes

2.1 Basic notions

2.1 Definition. A family $X = (X_t, t \in T)$ of random variables on a common probability space $(\Omega, \mathscr{F}, \mathbb{P})$ is called <u>stochastic process</u>. We call X <u>time-discrete</u> if $T = \mathbb{N}_0$ and <u>time-continuous</u> if $T = \mathbb{R}_0^+ = [0, \infty)$. If all X_t take values in (S, \mathscr{S}) , then (S, \mathscr{S}) is the <u>state space</u> (Zustandsraum) of X. For each fixed $\omega \in$ Ω the mapping $t \mapsto X_t(\omega)$ is called <u>sample path</u> (Pfad), <u>trajectory</u> (Trajektorie) or Realisation (Realisierung) of X.

2.2 Lemma. For a stochastic process $(X_t, t \in T)$ with state space (S, \mathscr{S}) the mapping $\bar{X} : \Omega \to S^T$ with $\bar{X}(\omega)(t) := X_t(\omega)$ is a $(S^T, \mathscr{S}^{\otimes T})$ -valued random variable.

2.3 Definition. Given a stochastic process $(X_t, t \in T)$, the laws of the random vectors $(X_{t_1}, \ldots, X_{t_n})$ with $n \ge 1, t_1, \ldots, t_n \in T$ are called <u>finite-dimensional</u> distributions of X. We write $P_{t_1,\ldots,t_n} := \mathbb{P}^{(X_{t_1},\ldots,X_{t_n})}$.

2.4 Lemma. Let $(X_t, t \in T)$ be a stochastic process with state space (S, \mathscr{S}) and denote by $\pi_{J,I} : S^J \to S^I$ for $I \subseteq J$ the coordinate projection. Then the finite-dimensional distributions satisfy the following consistency condition:

$$\forall I \subseteq J \subseteq T \text{ with } I, J \text{ finite } \forall A \in \mathscr{S}^{\otimes I} : P_J(\pi_{JJ}^{-1}(A)) = P_I(A).$$
(2.1)

2.5 Definition. Two processes $(X_t, t \in T), (Y_t, t \in T)$ on $(\Omega, \mathscr{F}, \mathbb{P})$ are called

(a) indistinguishable (ununterscheidbar) if $\mathbb{P}(\forall t \in T : X_t = Y_t) = 1;$

(b) versions or modifications (Versionen, Modifikationen) of each other if we have $\forall t \in T : \mathbb{P}(X_t = Y_t) = 1$.

2.6 Definition. A process $(X_t, t \ge 0)$ is called <u>continuous</u> if all sample paths are continuous. It is called <u>stochastically continuous</u>, if $t_n \to t$ always implies $X_{t_n} \xrightarrow{\mathbb{P}} X_t$ (convergence in probability).

2.2 Polish spaces and Kolmogorov's consistency theorem

2.7 Definition. A metric space (S, d) is called <u>Polish space</u> if it is separable and complete. More generally, a separable topological space which is metrizable with a complete metric is called <u>Polish</u>. Canonically, it is equipped with its Borel σ -algebra \mathfrak{B}_S , generated by the open sets.

2.8 Lemma. Let S_1, \ldots, S_n be Polish spaces, then the Borel σ -algebra of the product satisfies $\mathfrak{B}_{S_1 \times \cdots \times S_n} = \mathfrak{B}_{S_1} \otimes \cdots \otimes \mathfrak{B}_{S_n}$.

2.9 Definition. A probability measure \mathbb{P} on a metric space (S, \mathfrak{B}_S) is called

- (a) tight (straff) if $\forall \varepsilon > 0 \exists K \subseteq S$ compact : $P(K) \ge 1 \varepsilon$,
- (b) regular (regular) if $\forall \varepsilon > 0, B \in \mathfrak{B}_S \exists K \subseteq B \text{ compact} : P(B \setminus K) \leq \varepsilon$ and $\forall \varepsilon > 0, B \in \mathfrak{B}_S \exists O \supseteq B \text{ open} : P(O \setminus B) \leq \varepsilon$.

2.10 Proposition. Every probability measure on a Polish space is tight.

2.11 Theorem (Ulam, 1939). Every probability measure on a Polish space is regular.

2.12 Definition. Let $I \neq \emptyset$ be an index set and (S, \mathscr{S}) be a measurable set. Let for each finite subset $J \subseteq I$ a probability measure \mathbb{P}_J on the product space $(S^J, \mathscr{S}^{\otimes J})$ be given. Then $(\mathbb{P}_J)_{J \subseteq I}$ finite is called projective family if the following consistency condition is satisfied:

$$\forall J \subseteq J' \subseteq I \text{ finite, } B \in \mathscr{S}^{\otimes J} : \mathbb{P}_J(B) = \mathbb{P}_{J'}(\pi_{J',J}^{-1}(B)),$$

where $\pi_{J',J}: S^{J'} \to S^J$ denotes the coordinate projection.

2.13 Theorem (Kolmogorov's consistency theorem). Let (S, \mathfrak{B}_S) be a Polish space, I an index set and let (\mathbb{P}_J) be a projective family for S and I. Then there exists a unique probability measure \mathbb{P} on the product space $(S^I, \mathscr{S}^{\otimes I})$ satisfying

$$\forall J \subseteq I \text{ finite, } B \in \mathscr{S}^{\otimes J} : \mathbb{P}_J(B) = \mathbb{P}(\pi_{I,J}^{-1}(B)).$$

2.14 Corollary. For any Polish state space (S, \mathfrak{B}_S) and index set $T \neq \emptyset$ there exists to a prescribed projective family (\mathbb{P}_J) a stochastic process $(X_t, t \in T)$ whose finite-dimensional distributions are given by (\mathbb{P}_J) .

2.15 Corollary. For any family $(\mathbb{P}_i)_{i \in I}$ of probability measures on (S, \mathscr{S}) there exists the product measure $\bigotimes_{i \in I} \mathbb{P}_i$ on $(S^I, \mathscr{S}^{\otimes I})$. In particular, a family $(X_i)_{i \in I}$ of independent random variables with prescribed laws \mathbb{P}^{X_i} exists. [Proof only for S Polish]

3 The conditional expectation

3.1 Orthogonal projections

3.1 Proposition. Let L be a closed linear subspace of the Hilbert space H. Then for each $x \in H$ there is a unique $y_x \in L$ with $||x - y_x|| = \text{dist}_L(x) := \inf_{y \in L} ||x - y||$.

3.2 Definition. For a closed linear subspace L of the Hilbert space H the orthogonal projection $P_L : H \to L$ onto L is defined by $P_L(x) = y_x$ with y_x from the previous proposition.

3.3 Lemma. We have:

- (a) $P_L \circ P_L = P_L$ (projection property);
- (b) $\forall x \in H : (x P_L x) \in L^{\perp}$ (orthogonality).

3.4 Corollary. We have:

- (a) Each $x \in H$ can be decomposed uniquely as $x = P_L x + (x P_L x)$ in the sum of an element of L and an element of L^{\perp} ;
- (b) P_L is selfadjoint: $\langle P_L x, y \rangle = \langle x, P_L y \rangle$;
- (c) P_L is linear.

3.2 Construction and properties

3.5 Definition. For a random variable X on $(\Omega, \mathscr{F}, \mathbb{P})$ with values in (S, \mathscr{S}) we introduce the σ -algebra (!) $\sigma(X) := \{X^{-1}(A) \mid A \in \mathscr{S}\} \subseteq \mathscr{F}$. For a given probability space $(\Omega, \mathscr{F}, \mathbb{P})$ we set

$$\begin{split} \mathcal{M} &:= \mathcal{M}(\Omega, \mathscr{F}) := \{ X : \Omega \to \mathbb{R} \text{ measurable} \}; \\ \mathcal{M}^+ &:= \mathcal{M}^+(\Omega, \mathscr{F}) := \{ X : \Omega \to [0, \infty] \text{ measurable} \}; \\ \mathcal{L}^p &:= \mathcal{L}^p(\Omega, \mathscr{F}, \mathbb{P}) := \{ X \in \mathcal{M}(\Omega, \mathscr{F}) \mid \mathbb{E}[|X|^p] < \infty \}; \\ L^p &:= L^p(\Omega, \mathscr{F}, \mathbb{P}) := \{ [X] \mid X \in \mathcal{L}^p(\Omega, \mathscr{F}, \mathbb{P}) \} \\ & \text{where } [X] := \{ Y \in \mathcal{M}(\Omega, \mathscr{F}) \mid \mathbb{P}(X = Y) = 1 \}. \end{split}$$

3.6 Proposition. Let X be a (S, \mathscr{S}) -valued and Y a real-valued random variable. Then Y is $\sigma(X)$ -measurable if and only if there is a $(\mathscr{S}, \mathfrak{B}_{\mathbb{R}})$ -measurable function $\varphi: S \to \mathbb{R}$ such that $Y = \varphi(X)$.

3.7 Lemma. Let \mathscr{G} be a sub- σ -algebra of \mathscr{F} . Then $L^2(\Omega, \mathscr{G}, \mathbb{P})$ is embedded as closed linear subspace in the Hilbert space $L^2(\Omega, \mathscr{F}, \mathbb{P})$.

3.8 Definition. Let X be a random variable on $(\Omega, \mathscr{F}, \mathbb{P})$. Then for $Y \in L^2(\Omega, \mathscr{F}, \mathbb{P})$ the conditional expectation (bedingte Erwartung) of Y given X is defined as the $L^2(\Omega, \mathscr{F}, \mathbb{P})$ -orthogonal projection of Y onto $L^2(\Omega, \sigma(X), \mathbb{P})$: $\mathbb{E}[Y \mid X] := P_{L^2(\Omega, \sigma(X), \mathbb{P})} Y$. If φ is the measurable function such that $\mathbb{E}[Y \mid X] = \varphi(X)$ a.s., we write $\mathbb{E}[Y \mid X = x] := \varphi(x)$ (conditional expected value, bedingter Erwartungswert).

More generally, for a sub- σ -algebra \mathscr{G} the conditional expectation of $Y \in L^2(\Omega, \mathscr{F}, \mathbb{P})$ given \mathscr{G} is defined as $\mathbb{E}[Y | \mathscr{G}] = P_{L^2(\Omega, \mathscr{G}, \mathbb{P})}Y$.

3.9 Lemma. $\mathbb{E}[Y | \mathscr{G}]$ is as element of L^2 uniquely determined by the following properties:

- (a) $\mathbb{E}[Y | \mathcal{G}]$ is \mathcal{G} -measurable (modulo null sets);
- (b) $\forall G \in \mathscr{G} : \mathbb{E}[\mathbb{E}[Y | \mathscr{G}]\mathbf{1}_G] = \mathbb{E}[Y\mathbf{1}_G].$

3.10 Theorem. Let $Y \in \mathcal{M}^+(\Omega, \mathscr{F})$ or $Y \in L^1(\Omega, \mathscr{F}, \mathbb{P})$ and let \mathscr{G} be a sub- σ -algebra of \mathscr{F} . Then there is a \mathbb{P} -a.s. unique element $\mathbb{E}[Y | \mathscr{G}]$ in $\mathcal{M}^+(\Omega, \mathscr{G})$ and $L^1(\Omega, \mathscr{G}, \mathbb{P})$, respectively, such that

$$\forall G \in \mathscr{G} : \mathbb{E}[\mathbb{E}[Y | \mathscr{G}]\mathbf{1}_G] = \mathbb{E}[Y\mathbf{1}_G].$$

3.11 Definition. For $Y \in \mathcal{M}^+(\Omega, \mathscr{F})$ or $Y \in L^1(\Omega, \mathscr{F}, \mathbb{P})$ and a sub- σ -algebra \mathscr{G} of \mathscr{F} the general conditional expectation of Y given \mathscr{G} is defined as $\mathbb{E}[Y | \mathscr{G}]$ from the preceding theorem. We put $\mathbb{E}[Y | (X_i)_{i \in I}] := \mathbb{E}[Y | \sigma(X_i, i \in I)]$ for random variables $X_i, i \in I$.

3.12 Proposition. Let $Y \in L^1(\Omega, \mathscr{F}, \mathbb{P})$ and let \mathscr{G} be a sub- σ -algebra of \mathscr{F} . Then:

- (a) $\mathbb{E}[\mathbb{E}[Y | \mathscr{G}]] = \mathbb{E}[Y];$
- (b) $Y \mathscr{G}$ -measurable $\Rightarrow \mathbb{E}[Y | \mathscr{G}] = Y$ a.s.;
- $(c) \ \alpha \in \mathbb{R}, \ Z \in L^1(\Omega, \mathscr{F}, \mathbb{P}) \colon \mathbb{E}[\alpha Y + Z \,|\, \mathscr{G}] = \alpha \,\mathbb{E}[Y \,|\, \mathscr{G}] + \mathbb{E}[Z \,|\, \mathscr{G}] \ a.s.;$
- (d) $Y \ge 0$ a.s. $\Rightarrow \mathbb{E}[Y | \mathscr{G}] \ge 0$ a.s.;
- (e) $Y_n \in \mathcal{M}^+(\Omega, \mathscr{F}), Y_n \uparrow Y \ a.s. \Rightarrow \mathbb{E}[Y_n | \mathscr{G}] \uparrow \mathbb{E}[Y | \mathscr{G}] \ a.s. \ (monotone \ convergence);$
- (f) $Y_n \in \mathcal{M}^+(\Omega, \mathscr{F}) \Rightarrow \mathbb{E}[\liminf_n Y_n | \mathscr{G}] \leq \liminf_n \mathbb{E}[Y_n | \mathscr{G}] \ a.s. \ (Fatou's Lemma);$
- (g) $Y_n \in \mathcal{M}(\Omega, \mathscr{F}), Y_n \to Y, |Y_n| \leq Z \text{ with } Z \in L^1(\Omega, \mathscr{F}, \mathbb{P}): \mathbb{E}[Y_n | \mathscr{G}] \to \mathbb{E}[Y | \mathscr{G}] \text{ a.s. (dominated convergence)};$
- (h) $\mathscr{H} \subseteq \mathscr{G} \Rightarrow \mathbb{E}[\mathbb{E}[Y | \mathscr{G}] | \mathscr{H}] = \mathbb{E}[Y | \mathscr{H}] \ a.s. \ (projection/tower \ property);$
- (i) $Z \mathscr{G}$ -measurable, $ZY \in L^1$: $\mathbb{E}[ZY | \mathscr{G}] = Z \mathbb{E}[Y | \mathscr{G}]$ a.s.;
- (j) Y independent of \mathscr{G} : $\mathbb{E}[Y | \mathscr{G}] = \mathbb{E}[Y]$ a.s.

3.13 Proposition (Jensen's Inequality). If $\varphi : \mathbb{R} \to \mathbb{R}$ is convex and $Y, \varphi(Y)$ are in L^1 , then $\varphi(\mathbb{E}[Y | \mathscr{G}]) \leq \mathbb{E}[\varphi(Y) | \mathscr{G}]$ holds for any sub- σ -algebra \mathscr{G} of \mathscr{F} .

4 Martingale theory

4.1 Martingales, sub- and supermartingales

4.1 Definition. A sequence $(\mathscr{F}_n)_{n\geq 0}$ of sub- σ -algebras of \mathscr{F} is called <u>filtration</u> if $\mathscr{F}_n \subseteq \mathscr{F}_{n+1}, n \geq 0$, holds. $(\Omega, \mathscr{F}, \mathbb{P}, (\mathscr{F}_n))$ is called filtered probability space.

4.2 Definition. A sequence $(M_n)_{n \ge 0}$ of random variables on a filtered probability space $(\Omega, \mathscr{F}, \mathbb{P}, (\mathscr{F}_n))$ forms a <u>martingale (submartingale, supermartingale)</u> if:

- (a) $M_n \in L^1, n \ge 0;$
- (b) M_n is \mathscr{F}_n -measurable, $n \ge 0$ (adapted);
- (c) $\mathbb{E}[M_{n+1} | \mathscr{F}_n] = M_n$ (resp. $\mathbb{E}[M_{n+1} | \mathscr{F}_n] \ge M_n$ for submartingale, resp. $\mathbb{E}[M_{n+1} | \mathscr{F}_n] \le M_n$ for supermartingale).

If $\mathscr{F}_n = \sigma(M_0, \ldots, M_n)$ holds, then (\mathscr{F}_n) is the <u>natural filtration</u> of M, notation (\mathscr{F}_n^M) .

4.3 Definition. A martingale (M_n) is closable (abschließbar), if there exists an $X \in L^1$ with $M_n = \mathbb{E}[X | \mathscr{F}_n], n \ge 0$.

4.4 Definition. A process $(X_n)_{n \ge 1}$ is <u>predictable</u> (vorhersehbar) (w.r.t. (\mathscr{F}_n)) if each X_n is \mathscr{F}_{n-1} -measurable. For a predictable process (X_n) and a martingale (or more general: adapted process) (M_n) the <u>martingale transform</u> (or discrete stochastic integral) $((X \bullet M)_n)_{n \ge 0}$ is defined by $(X \bullet M)_0 := 0$, $(X \bullet M)_n := \sum_{k=1}^n X_k (M_k - M_{k-1}).$

4.5 Lemma. For a bounded predictable (X_n) and a martingale (M_n) (or just predictable (X_n) and $X_n, M_n \in L^2$ for all n) $((X \bullet M)_n)_{n \ge 0}$ is again a martingale.

4.6 Lemma. Let (M_n) be a martingale and $\varphi : \mathbb{R} \to \mathbb{R}$ convex with $\varphi(M_n) \in L^1$, $n \ge 0$. Then $\varphi(M_n)$ is a submartingale. In particular, (M_n^2) is a submartingale for an L^2 -martingale (M_n) .

4.7 Theorem (Doob decomposition). Given a submartingale (X_n) , there exists a martingale (M_n) and a predictable increasing process (A_n) such that

 $X_n = X_0 + M_n + A_n, \quad n \ge 1; \qquad M_0 = A_0 = 0.$

This decomposition is a.s. unique and $A_n = \sum_{k=1}^n \mathbb{E}[X_k - X_{k-1} | \mathscr{F}_{k-1}].$

4.8 Definition. The predictable process (A_n) in the Doob decomposition of (X_n) is called <u>compensator</u> of (X_n) . For an L^2 -martingale (M_n) the compensator of (M_n^2) is called quadratic variation of (M_n) , denoted by $\langle M \rangle_n$.

4.9 Lemma. We have $\langle M \rangle_n = \sum_{k=1}^n \mathbb{E}[(M_k - M_{k-1})^2 | \mathscr{F}_{k-1}], n \ge 1.$

4.2 Stopping times

4.10 Definition. A map $\tau : \Omega \to \{0, 1, ..., +\infty\}$ is called <u>stopping time</u> (Stoppzeit) with respect to a filtration (\mathscr{F}_n) if $\{\tau = n\} \in \mathscr{F}_n$ holds for all $n \ge 0$.

4.11 Lemma. Every deterministic time $\tau = n_0$ is stopping time. For stopping times σ and τ also $\sigma \land \tau$, $\sigma \lor \tau$ and $\sigma + \tau$ are stopping times.

4.12 Theorem (Optional Stopping). Let (M_n) be a (sub/super-)martingale and τ a stopping time. Then the stopped process $(M_n^{\tau}) = (M_{n \wedge \tau})$ is again a (sub/super-)martingale.

4.13 Definition. For a stopping time τ the $\underline{\sigma}$ -algebra of τ -history (τ -Vergangenheit) is defined by $\mathscr{F}_{\tau} := \{A \in \mathscr{F} \mid \forall n \geq 0 : A \cap \{\tau \leq n\} \in \mathscr{F}_n\}.$

4.14 Lemma. \mathscr{F}_{τ} is a σ -Algebra and τ is \mathscr{F}_{τ} -measurable.

4.15 Lemma. For stopping times σ and τ with $\sigma \leq \tau$ we have $\mathscr{F}_{\sigma} \subseteq \mathscr{F}_{\tau}$.

4.16 Lemma. For an adapted process (X_n) and a finite stopping time τ the random variable X_{τ} is \mathscr{F}_{τ} -measurable.

4.17 Theorem (Optional Sampling). Let (M_n) be a martingale (submartingale) and σ , τ bounded stopping times with $\sigma \leq \tau$. Then $\mathbb{E}[M_{\tau} | \mathscr{F}_{\sigma}] = M_{\sigma}$ (resp. $\mathbb{E}[M_{\tau} | \mathscr{F}_{\sigma}] \geq M_{\sigma}$) holds.

4.18 Corollary. Let (M_n) be a martingale and τ a finite stopping time. Then $\mathbb{E}[M_{\tau}] = \mathbb{E}[M_0]$ holds under one of the following conditions:

- (a) τ is bounded;
- (b) $(M_{\tau \wedge n})_{n \geq 0}$ is uniformly bounded;

(c) $\mathbb{E}[\tau] < \infty$ and $(\mathbb{E}[|M_{n+1} - M_n| | \mathscr{F}_n])_{n \ge 0}$ is uniformly bounded.

4.19 Corollary (Wald's Identity). Let $(X_k)_{k \ge 1}$ be (\mathscr{F}_k) -adapted random variables such that $\sup_k \mathbb{E}[|X_k|] < \infty$, $\mathbb{E}[X_k] = \mu \in \mathbb{R}$ and X_k is independent of \mathscr{F}_{k-1} , $k \ge 1$. Then for $S_n := \sum_{k=1}^n X_k$, $S_0 = 0$ and every (\mathscr{F}_k) -stopping time τ with $\mathbb{E}[\tau] < \infty$ we have $\mathbb{E}[S_{\tau}] = \mu \mathbb{E}[\tau]$.

4.3 Martingale inequalities and convergence

4.20 Proposition (Maximal inequality). Any martingale (M_n) satisfies

$$\forall \alpha > 0 : \mathbb{P}\left(\sup_{0 \le k \le n} |M_k| \ge \alpha\right) \le \frac{1}{\alpha} \mathbb{E}[|M_n|], \quad n \ge 0$$

4.21 Theorem (Doob's L^p -inequality). An L^p -martingale (M_n) (i.e. $M_n \in L^p$ for all n) with p > 1 satisfies

$$\left\|\max_{1\leqslant k\leqslant n}|M_k|\right\|_{L^p}\leqslant \frac{p}{p-1}\|M_n\|_{L^p}.$$

4.22 Definition. The number of <u>upcrossings</u> (aufsteigende Überquerungen) on an interval [a, b] by a process (X_k) until time n is defined by $U_n^{[a,b]} := \sup\{k \ge 1 \mid \tau_k \le n\}$, where inductively $\tau_0 := 0$, $\sigma_{k+1} := \inf\{\ell \ge \tau_k \mid X_\ell \le a\}$, $\tau_{k+1} := \inf\{\ell \ge \sigma_k \mid X_\ell \ge b\}$.

4.23 Proposition (Upcrossing Inequality). The upcrossings of a submartingale (X_n) satisfy $\mathbb{E}[U_n^{[a,b]}] \leq \frac{1}{b-a} \mathbb{E}[(M_n - a) \vee 0].$

4.24 Theorem (First martingale convergence theorem). Let (M_n) be a (sub-/super-)martingale with $\sup_n \mathbb{E}[|M_n|] < \infty$. Then $M_{\infty} := \lim_{n \to \infty} M_n$ exists a.s. and M_{∞} is in L^1 .

4.25 Corollary. Each non-negative supermartingale converges a.s.

4.26 Proposition. Let (M_n) be an L^2 -martingale. Then $\lim_{n\to\infty} M_n(\omega)$ exists for \mathbb{P} -almost all ω , for which $\lim_{n\to\infty} \langle M \rangle_n(\omega) < \infty$ holds.

4.27 Corollary (Strong law of large numbers for L^2 -martingales). An L^2 -martingale (M_n) satisfies for any $\alpha > 1/2$

$$\lim_{n \to \infty} \frac{M_n(\omega)}{(\langle M \rangle_n(\omega))^{\alpha}} = 0$$

for \mathbb{P} -almost all ω , for which $\lim_{n\to\infty} \langle M \rangle_n(\omega)$ is infinite.

4.28 Definition. A family $(X_i)_{i \in I}$ of random variables is <u>uniformly integrable</u> (gleichgradig integrierbar) if

$$\lim_{R \to \infty} \sup_{i \in I} \mathbb{E}[|X_i| \mathbf{1}_{\{|X_i| > R\}}] = 0.$$

4.29 Lemma.

- (a) If $(X_i)_{i \in I}$ is uniformly integrable, then $(X_i)_{i \in I}$ is L^1 -bounded: $\sup_{i \in I} \mathbb{E}[|X_i|] < \infty.$
- (b) If $(X_i)_{i \in I}$ is L^p -bounded $(\sup_{i \in I} \mathbb{E}[|X_i|^p] < \infty)$ for some p > 1, then $(X_i)_{i \in I}$ is uniformly integrable.
- (c) If $|X_i| \leq Y$ holds for all $i \in I$ and some $Y \in L^1$, then $(X_i)_{i \in I}$ is uniformly integrable.

4.30 Theorem (Vitali). Let $(X_n)_{n \ge 0}$ be random variables with $X_n \xrightarrow{\mathbb{F}} X$ (in probability). Then the following statements are equivalent:

- (a) $(X_n)_{n \ge 0}$ is uniformly integrable;
- (b) $X_n \to X$ in L^1 ;
- (c) $\mathbb{E}[|X_n|] \to \mathbb{E}[|X|] < \infty$.
- **4.31 Theorem** (Second martingale convergence theorem).

- (a) If (M_n) is a uniformly integrable martingale, then (M_n) converges a.s. and in L^1 to some $M_{\infty} \in L^1$. (M_n) is closable with $M_n = \mathbb{E}[M_{\infty} | \mathscr{F}_n]$.
- (b) If (M_n) is a closable martingale, with $M_n = \mathbb{E}[M | \mathscr{F}_n]$ say, then (M_n) is uniformly integrable and (a) holds with $M_{\infty} = \mathbb{E}[M | \mathscr{F}_{\infty}]$ where $\mathscr{F}_{\infty} = \sigma(\mathscr{F}_n, n \ge 1)$.

4.32 Corollary. Let p > 1. Every L^p -bounded martingale (M_n) (i.e. $\sup_n \mathbb{E}[|M_n|^p] < \infty$) converges for $n \to \infty$ a.s. and in L^p , hence also in L^1 .

4.33 Definition. A process $(M_{-n})_{n \ge 0}$ is called <u>backward martingale</u> (Rückwärtsmartingal) with respect to $(\mathscr{F}_{-n})_{n \ge 0}$ with $\mathscr{F}_{-n-1} \subseteq \mathscr{F}_{-n}$ if $M_{-n} \in L^1$, $M_{-n} \mathscr{F}_{-n}$ -measurable and $\mathbb{E}[M_{-n} | \mathscr{F}_{-n-1}] = M_{-n-1}$ hold for all $n \ge 0$.

4.34 Theorem. Every backward martingale $(M_{-n})_{n \ge 0}$ converges for $n \to \infty$ a.s. and in L^1 .

4.35 Corollary. (Kolmogorov's strong law of large numbers) For *i.i.d.* random variables $(X_k)_{k \ge 1}$ in L^1 we have

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{a.s. and L^1} \mathbb{E}[X_1].$$

4.4 The Radon-Nikodym theorem

4.36 Definition. Let μ and ν be measures on the measurable space (Ω, \mathscr{F}) . Then μ is <u>absolutely continuous</u> (absolutstetig) with respect to ν , notation $\mu \ll \nu$, if $\forall A \in \mathscr{F} : \nu(A) = 0 \Rightarrow \mu(A) = 0$. μ and ν are <u>equivalent</u> (äquivalent), notation $\mu \sim \nu$, if $\mu \ll \nu$ and $\nu \ll \mu$. If there is an $A \in \mathscr{F}$ with $\nu(A) = 0$ and $\mu(A^C) = 0$, then μ and ν are singular (singulär), notation $\mu \perp \nu$.

4.37 Theorem (Radon-Nikodym). Let ν be a σ -finite measure and μ a finite measure with $\mu \ll \nu$, then there is an $f \in L^1(\Omega, \mathscr{F}, \nu)$ such that

$$\mu(A) = \int_A f \, d\nu \text{ for all } A \in \mathscr{F}.$$

4.38 Definition. The function f in the Radon-Nikodym theorem is called Radon-Nikodym derivative, density or likelihood function of μ with respect to ν , notation $f = \frac{d\mu}{d\nu}$.

4.39 Theorem (Kakutani). Let $(X_k)_{k\geq 1}$ be independent random variables with $X_k \geq 0$ and $\mathbb{E}[X_k] = 1$. Then $M_n := \prod_{k=1}^n X_k$, $M_0 = 1$ is a non-negative martingale converging a.s. to some M_{∞} . The following statements are equivalent:

- (a) $\mathbb{E}[M_{\infty}] = 1;$
- (b) $M_n \to M_\infty$ in L^1 ;
- (c) (M_n) is uniformly integrable;
- (d) $\prod_{k=1}^{\infty} a_k > 0$, where $a_k := \mathbb{E}[X_k^{1/2}] \in (0,1];$

(e)
$$\sum_{k=1}^{\infty} (1-a_k) < \infty$$
.

If one (then all) statement fails to hold, then $M_{\infty} = 0$ holds a.s. (<u>Kakutani's</u> dichotomy).

5 Markov chains: recurrence and transience

In this section $(X_n, n \ge 0)$ always denotes a time-homogeneous Markov chain with state space (S, \mathbb{S}) , realized as coordinate process on $\Omega = S^{\mathbb{N}_0}$ with σ algebra $\mathscr{F} = \mathbb{S}^{\otimes \mathbb{N}_0}$, filtration $\mathscr{F}_n = \mathscr{F}_n^X$ and measure \mathbb{P}_{μ} , where μ denotes the initial distribution. We write short $\mathbb{P}_x := \mathbb{P}_{\delta_x}$.

5.1 Definition. For $n \ge 0$ the <u>shift operator</u> $\vartheta_n : \Omega \to \Omega$ is given by $\vartheta_n((s_k)_{k\ge 0}) = (s_{k+n})_{k\ge 0}$.

5.2 Theorem. Let $Y \in \mathcal{M}^+(\Omega, \mathscr{F})$ and τ be a finite (\mathscr{F}_n) -stopping time. Then the strong Markov property holds:

$$\mathbb{E}_{\mu}[Y \circ \vartheta_{\tau} \,|\, \mathscr{F}_{\tau}] = \mathbb{E}_{X_{\tau}}[Y] \quad \mathbb{P}_{\mu} \text{ -}a.s.$$

5.3 Definition. For $y \in S$, $k \in \mathbb{N}$ introduce the $\frac{k^{th}}{time}$ of return to y recursively by $T_y^k := \inf\{n > T_y^{k-1} \mid X_n = y\}$ and $T_y^0 := 0$. Put $T_y := T_y^1$ and $\rho_{xy} := \mathbb{P}_x(T_y < \infty)$ for $x \in S$.

5.4 Proposition. For $k \in \mathbb{N}$ and $x, y \in S$ we have $P_x(T_y^k < \infty) = \rho_{xy}\rho_{yy}^{k-1}$.

5.5 Definition. A state $y \in S$ is called <u>recurrent</u> (rekurrent) if $\rho_{yy} = 1$ and transient (transient) if $\rho_{yy} < 1$.

5.6 Definition. By $N_y := \sum_{n \ge 1} \mathbf{1}_{\{X_n = y\}}$ we denote the <u>number of visits</u> to state y.

5.7 Proposition.

- (a) If a state y is transient, then $\mathbb{E}_x[N_y] = \frac{\rho_{xy}}{1 \rho_{yy}} < \infty$ holds for all $x \in S$.
- (b) A state y is recurrent if and only if $\mathbb{E}_y[N_y] = \infty$ holds.

5.8 Proposition. Let $x \in S$ be recurrent and $\rho_{xy} > 0$ for some $y \in S$. Then y is recurrent and $\rho_{yx} = 1$.

5.9 Definition. A set $C \subseteq S$ of states is closed (abgeschlossen) if $\rho_{xy} = 0$ holds for all $x \in C$, $y \in S \setminus C$. A set $D \subseteq S$ is <u>irreducible</u> (irreducible) if $\rho_{xy} > 0$ holds for all $x, y \in D$. If S is irreducible, then the Markov chain is called irreducible.

5.10 Proposition. For an irreducible Markov chain on a finite state space S all states are recurrent.

6 Ergodic theory

6.1 Stationary and ergodic processes

6.1 Definition. A stochastic process $(X_t, t \in T)$ with $T \in \{\mathbb{N}_0, \mathbb{Z}, \mathbb{R}^+, \mathbb{R}\}$ is <u>stationary</u> (stationär) if $(X_{t_1}, \ldots, X_{t_n}) \stackrel{d}{=} (X_{t_1+s}, \ldots, X_{t_n+s})$ holds for all $n \ge 1$, $t_1, \cdots, t_n \in T$ and $s \in T$.

6.2 Definition. For a time-homogeneous Markov chain $(X_n, n \ge 0)$ an initial distribution μ is <u>invariant</u> if $\mathbb{P}_{\mu}(X_1 = i) = \mathbb{P}_{\mu}(X_0 = i) = \mu(\{i\})$ holds for all $i \in S$.

6.3 Lemma. A time-homogeneous Markov chain with invariant initial distribution is stationary.

6.4 Definition. A measurable map $T : \Omega \to \Omega$ on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ is called <u>measure-preserving</u> (maßerhaltend) if $\mathbb{P}(T^{-1}(A)) = \mathbb{P}(A)$ holds for all $A \in \mathscr{F}$.

6.5 Lemma.

(a) Every S-valued stationary process $(X_n, n \ge 0)$ induces a measurepreserving transformation T on $(S^{\mathbb{N}_0}, S^{\otimes \mathbb{N}_0}, \mathbb{P}^X)$ via

 $T((x_0, x_1, x_2, \ldots)) = (x_1, x_2, \cdots)$ (left shift).

(b) For a random variable Y and a measure-preserving map T on $(\Omega, \mathscr{F}, \mathbb{P})$ the process $X_n(\omega) := Y(T^n(\omega)), n \ge 0, (T^0 := \mathrm{Id})$ is stationary.

6.6 Definition. A event A is (almost) invariant with respect to a measurepreserving map T on $(\Omega, \mathscr{F}, \mathbb{P})$ if $\mathbb{P}(T^{-1}(A)\Delta A) = 0$ holds. The σ -algebra (!) of all (almost) invariant events is denoted by \mathscr{I}_T . T is <u>ergodic</u> if \mathscr{I}_T is trivial, i.e. $\mathbb{P}(A) \in \{0, 1\}$ holds for all $A \in \mathscr{I}_T$.

6.7 Lemma. Let \mathscr{I}_T be the invariant σ -algebra with respect to some measurepreserving transformation T on $(\Omega, \mathscr{F}, \mathbb{P})$. Then:

- (a) A (real-valued) random variable Y is \mathscr{I}_T -measurable if and only if it is \mathbb{P} -a.s. invariant, i.e. $\mathbb{P}(Y \circ T = Y) = 1$. In particular, T is ergodic if and only if each \mathbb{P} -a.s. invariant and bounded random variable is \mathbb{P} -a.s. constant.
- (b) For each invariant event $A \in \mathscr{I}_T$ there exists a strictly invariant event B(i.e. with $T^{-1}(B) = B$ exactly) such that $\mathbb{P}(A\Delta B) = 0$.

6.2 Ergodic theorems

6.8 Lemma (Maximal ergodic lemma). Let $X \in L^1$ and T be measurepreserving on $(\Omega, \mathscr{F}, \mathbb{P})$. Denoting $S_n := \sum_{i=0}^{n-1} X \circ T^i$, $S_0 := 0$ and $M_n := \max\{S_0, \ldots, S_n\}$, we have $\mathbb{E}[X\mathbf{1}_{\{M_n > 0\}}] \ge 0$. **6.9 Theorem** (Birkhoff's ergodic theorem). Let $X \in L^1$ and T be measurepreserving on $(\Omega, \mathscr{F}, \mathbb{P})$. Then:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} X \circ T^i = \mathbb{E}[X \mid \mathscr{I}_T] \qquad \mathbb{P}\text{-a.s. and in } L^1.$$

If T is even ergodic, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} X \circ T^i = \mathbb{E}[X] \qquad \mathbb{P}\text{-}a.s. and in L^1.$$

6.10 Theorem (von Neumann's ergodic theorem). For $X \in L^p$, $p \ge 1$, and measure-preserving T on $(\Omega, \mathscr{F}, \mathbb{P})$ we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} X \circ T^i = \mathbb{E}[X \mid \mathscr{I}_T] \qquad \mathbb{P}\text{-}a.s. and in L^p.$$

6.11 Corollary. Let $(X_n, n \ge 0)$ be an ergodic process in L^1 (i.e. $X_n \in L^1$ and the associated left shift on $(S^{\mathbb{N}_0}, S^{\mathbb{N}_0}, \mathbb{P}^X)$ is ergodic). Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} X_i = \mathbb{E}[X_1] \qquad \mathbb{P}\text{-}a.s. and in L^1.$$

In particular, Kolmogorov's strong law of large number for (X_n) in L^1 follows.

6.3 The structure of the invariant measures

6.12 Definition. Let $T: \Omega \to \Omega$ be measurable on (Ω, \mathscr{F}) . Each probability measure μ on \mathscr{F} with $\mu(T^{-1}(A)) = \mu(A)$ for all $A \in \mathscr{F}$ is called <u>invariant</u> with respect to T. If T is even ergodic on $(\Omega, \mathscr{F}, \mu)$, then also μ is called <u>ergodic</u>. The set of all invariant probability measures with respect to T is denoted by \mathscr{M}_T .

6.13 Lemma. \mathcal{M}_T is convex.

6.14 Proposition. Any two distinct ergodic measures are singular.

6.15 Theorem. The ergodic measures are exactly the extremal points of the convex set \mathcal{M}_T .

6.16 Corollary. If T possesses exactly one invariant probability measure, then this measure is ergodic.

6.4 Application to Markov chains

6.17 Definition. A recurrent state $x \in S$ is called <u>positive-recurrent</u> if $\mathbb{E}_x[T_x] < \infty$, otherwise it is called null-recurrent.

6.18 Theorem. Suppose $x \in S$ is positive-recurrent and set

$$\mu(\{y\}) := \frac{\mathbb{E}_x[\sum_{n=0}^{T_x-1} \mathbf{1}_{\{X_n=y\}}]}{\mathbb{E}_x[T_x]} = \frac{\sum_{n=0}^{\infty} \mathbb{P}_x(X_n = y, T_x > n)}{\mathbb{E}_x[T_x]}, \quad y \in S.$$

Then μ is an invariant initial distribution.

6.19 Corollary. If $(X_n, n \ge 0)$ is an irreducible Markov chain with some positive-recurrent state x, then it is an ergodic process under the preceding invariant initial distribution μ .

6.20 Theorem. If an irreducible Markov chain $(X_n, n \ge 0)$ has an invariant initial distribution μ , then all its states are positive-recurrent and $\mu(\{y\}) = 1/\mathbb{E}_y[T_y], y \in S$, holds.

7 Weak convergence

7.1 Fundamental properties

Throughout (S, \mathfrak{B}_S) denotes a metric space with Borel σ -algebra. The space of all bounded continuous and real-valued functions on S is denoted by $C_b(S)$.

7.1 Definition. Probability measures \mathbb{P}_n <u>converge weakly</u> (schwach) to a probability measure \mathbb{P} on (S, \mathfrak{B}_S) if

$$\forall f \in C_b(S) : \lim_{n \to \infty} \int_S f \, d \, \mathbb{P}_n = \int_S f \, d \, \mathbb{P}$$

holds, notation $\mathbb{P}_n \xrightarrow{w} \mathbb{P}$. (S, \mathfrak{B}_S) -valued random variables X_n converge in distribution (or in law, in Verteilung) to some random variable X if $\mathbb{P}^{X_n} \xrightarrow{w} \mathbb{P}^X$ holds, i.e.

$$\forall f \in C_b(S) : \lim_{n \to \infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(X)].$$

Notation $X_n \xrightarrow{d} X$ or $X_n \xrightarrow{d} \mathbb{P}^X$.

7.2 Proposition. For (S, \mathfrak{B}_S) -valued random variables $d(X_n, X) \xrightarrow{\mathbb{P}} 0$ (in probability) implies $X_n \xrightarrow{d} X$.

7.3 Theorem (Portmanteau). For probability measures $(\mathbb{P}_n)_{n \in \mathbb{N}}$, \mathbb{P} on (S, \mathfrak{B}_S) the following are equivalent:

- (a) $\mathbb{P}_n \xrightarrow{w} \mathbb{P};$
- (b) $\forall U \subseteq S \text{ open}$: $\liminf_{n \to \infty} \mathbb{P}_n(U) \ge \mathbb{P}(U);$
- (c) $\forall F \subseteq S \ closed$: $\limsup_{n \to \infty} \mathbb{P}_n(F) \leq \mathbb{P}(F);$
- (d) $\forall A \in \mathfrak{B}_S \text{ with } \mathbb{P}(\partial A) = 0 : \lim_{n \to \infty} \mathbb{P}_n(A) = \mathbb{P}(A).$

7.4 Theorem (Continuous mapping). If $g: S \to T$ is continuous, T another metric space, then: $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$.

7.5 Proposition. $\mathbb{P}_n \xrightarrow{w} \mathbb{P}$ is already valid if $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$ holds for all bounded, Lipschitz-continuous functions f.

7.6 Lemma. (Slutsky) We have for (S, \mathfrak{B}_s) -valued random variables $(X_n), (Y_n)$

$$X_n \xrightarrow{d} X, \ d(X_n, Y_n) \xrightarrow{\mathbb{P}} 0 \Rightarrow Y_n \xrightarrow{d} X.$$

7.7 Corollary. If real-valued random variables satisfy $Y_n \xrightarrow{d} a$, $a \in \mathbb{R}$, and $X_n \xrightarrow{d} X$, then $(X_n, Y_n) \xrightarrow{d} (X, a)$, in particular $X_n Y_n \xrightarrow{d} aX$, $X_n + Y_n \xrightarrow{d} X + a$.

7.2 Tightness

7.8 Definition. A family $(\mathbb{P}_i)_{i\in I}$ of probability measures on (S, \mathfrak{B}_S) is called (weakly) relatively compact if each sequence $(\mathbb{P}_{i_k})_{k\geq 1}$ has a weakly convergent subsequence. The family $(\mathbb{P}_i)_{i\in I}$ is (uniformly) tight (straff) if for any $\varepsilon > 0$ there is a compact set $K_{\varepsilon} \subseteq S$ such that $\mathbb{P}_i(K_{\varepsilon}) \geq 1 - \varepsilon$ for all $i \in I$.

7.9 Theorem. Any relatively compact family of probability measures on a separable metric space is tight.

7.10 Theorem (Prohorov). Any tight family of probability measures on a Polish space is relatively compact.

7.11 Corollary (Prohorov). On a Polish space a family of probability measures is relatively compact if and only if it is tight.

7.3 Weak convergence on $C([0,T]), C(\mathbb{R}^+)$

In the sequel C stands for C([0,T]) or $C(\mathbb{R}^+)$, equipped with the supremum norm and the uniform convergence on compact sets, respectively.

7.12 Theorem. A sequence (\mathbb{P}_n) of probability measures on \mathfrak{B}_C converges weakly to \mathbb{P} if and only if all finite-dimensional distributions $\mathbb{P}_n(\pi_{\{t_1,\ldots,t_m\}}^{-1}(\bullet))$ converge weakly to $\mathbb{P}(\pi_{\{t_1,\ldots,t_m\}}^{-1}(\bullet))$ and (\mathbb{P}_n) is tight.

7.13 Definition. For $f \in C([0,T])$ and $\delta > 0$ the modulus of continuity (Stetigkeitsmodul) is defined as

$$\omega_{\delta}(f) := \max\{|f(s) - f(t)| \mid s, t \in [0, T], |s - t| \leq \delta\}.$$

7.14 Theorem (Arzelà-Ascoli). A subset $A \subseteq C([0,T])$ is relatively compact if

- (a) $\sup_{f \in A} |f(0)| < \infty$ and
- (b) $\lim_{\delta \to 0} \sup_{f \in A} \omega_{\delta}(f) = 0$ (uniform integrability).

7.15 Corollary. A sequence $(\mathbb{P}_n)_{n \ge 1}$ of probability measures on $\mathfrak{B}_{C([0,T])}$ is tight if and only if

(a) $\lim_{R\to\infty} \sup_n \mathbb{P}_n(\{|f(0)| > R\}) = 0$ and

(b) $\lim_{\delta \to 0} \limsup_{n \to \infty} \mathbb{P}_n(\{\omega_{\delta}(f) \ge \varepsilon\}) = 0 \text{ for all } \varepsilon > 0.$

7.16 Lemma. A sequence $(\mathbb{P}_n)_{n \ge 1}$ of probability measures on $\mathfrak{B}_{C([0,T])}$ is already tight if

- (a) $\lim_{R\to\infty} \sup_n \mathbb{P}_n(\{|f(0)| > R\}) = 0$ and
- (b') $\lim_{\delta \to 0} \limsup_{n \to \infty} \sup_{t \in [0, T-\delta]} \delta^{-1} \mathbb{P}_n(\{\max_{s \in [t, t+\delta]} | f(s) f(t)| \ge \varepsilon\}) = 0$ for all $\varepsilon > 0$.

Tightness on $\mathfrak{B}_{C(\mathbb{R}^+)}$ follows if conditions (a), (b') are satisfied for all T > 0.

7.17 Theorem. Let $(X_n(t), 0 \leq t \leq T)$, $n \geq 1$, be continuous processes. Then their laws \mathbb{P}^{X_n} are tight on C([0,T]) if

(a)
$$\lim_{R\to\infty} \sup_n \mathbb{P}(\{|X_n(0)| > R\}) = 0$$
 and

 $(b") \ \exists \alpha, \ \beta > 0, \ K > 0 \ \forall \ n \geqslant 1, \ s, t \in [0,T]: \ \mathbb{E}[|X_s^{(n)} - X_t^{(n)}|^{\alpha}] \leqslant K|s - t|^{1+\beta}.$

8 Invariance principle and the empirical process

8.1 Invariance principle and Brownian motion

8.1 Definition. A process $(B_t, t \ge 0)$ is called <u>Brownian motion</u> (Brownsche Bewegung) if

- (a) $B_0 = 0$ and $B_t \sim N(0, t), t > 0$, holds;
- (b) the increments are stationary and independent: for $0 \le t_0 < t_1 < \cdots < t_m$ we have $(B_{t_1} - B_{t_0}, \dots, B_{t_m} - B_{t_{m-1}}) \sim N(0, \operatorname{diag}(t_1 - t_0, \dots, t_m - t_{m-1}));$
- (c) B has continuous sample paths.

8.2 Lemma. Suppose $(X_k)_{k \ge 1}$ are *i.i.d.*, $X_k \in L^2$, $\mathbb{E}[X_k] = 0$, $\operatorname{Var}(X_k) = 1$. Consider $S_n := \sum_{k=1}^n X_k$, $S_0 = 0$ and the rescaled, linearly interpolated random walk

$$Y_n(t) := \frac{1}{\sqrt{n}} S_{\lfloor nt \rfloor} + \frac{nt - \lfloor nt \rfloor}{\sqrt{n}} X_{\lfloor nt \rfloor + 1}, \quad t \in [0, 1].$$

Then the finite-dimensional distributions of Y_n converge to those of a Brownian motion.

8.3 Lemma. In the setting of the preceding lemma we have for any $\lambda \ge \sqrt{2}$ $N \in \mathbb{N}$

$$\mathbb{P}\left(\max_{1\leqslant n\leqslant N}|S_n|\geqslant \lambda\sqrt{N}\right)\leqslant \mathbb{P}\left(|S_N|\geqslant (\lambda-\sqrt{2})\sqrt{N}\right).$$

8.4 Theorem (Donsker, functional CLT). In the setting of the preceding lemmata we have $Y^{(n)} \xrightarrow{d} B$ with a Brownian motion $(B_t, 0 \leq t \leq 1)$ and convergence in distribution on $(C([0,1]), \mathfrak{B}_{C([0,1])})$.

8.5 Corollary. Brownian motion exists.

8.6 Proposition (Reflection principle). Let $(X_k)_{k \ge 1}$ be a sequence of i.i.d. random variables in L^2 with $\mathbb{E}[X_k] = 0$, $\mathbb{E}[X_k^2] = 1$. Set $S_n := \sum_{k=1}^n X_k$, $M_n := \frac{1}{\sqrt{n}} \max_{1 \le i \le n} S_i$. Then $M_n \xrightarrow{d} |B_1|$ follows with $B_1 \sim N(0,1)$. Also for the Brownian motion B we have: $\max_{0 \le t \le 1} B_t \stackrel{d}{=} |B_1|$.

8.2 Empirical process and Brownian bridge

8.7 Definition. For i.i.d. real-valued random variables X_1, \ldots, X_n with distribution function F the (random) function

$$F_n(x) := \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{X_k \leqslant x\}}, \quad x \in \mathbb{R},$$

is called <u>empirical distribution function</u> (empirische Verteilungsfunktion). The associated empirical process (empirischer Prozess) is given by

$$G_n(x) := \sqrt{n}(F_n(x) - F(x)), \quad x \in \mathbb{R}$$

8.8 Lemma. For each $x \in \mathbb{R}$ we have $G_n(x) \xrightarrow{d} N(0, F(x)(1 - F(x)))$ as $n \to \infty$.

8.9 Definition. The Brownian bridge $(X_t, t \in [0, 1])$ is the (!) centered and continuous Gaussian process with $Cov(X_s, X_t) = s(1 - t)$ for $0 \le s \le t \le 1$.

8.10 Theorem (Donsker). Let X_1, \ldots, X_n be independent U([0,1])-distributed random variables. Consider the linear interpolation $\tilde{F}_n : [0,1] \to [0,1]$ of F_n satisfying $\tilde{F}_n(X_i) = F_n(X_i)$, $i = 1, \ldots, n$, $\tilde{F}_n(0) = 0$, $\tilde{F}_n(1) = 1$ and the associated empirical process $\tilde{G}_n = \sqrt{n}(\tilde{F}_n - F)$. Then we have convergence of \tilde{G}_n to a Brownian bridge B in distribution on $C([0,1]): \tilde{G}_n \xrightarrow{d} B$.

8.11 Corollary (Kolmogorov-Smirnov). Let X_1, \ldots, X_n be i.i.d. random variables with continuous distribution function F_0 and $T_n := \sqrt{n} \sup_{x \in \mathbb{R}} |F_n(x) - F_0(x)|$. Then $T_n \xrightarrow{d} \max_{0 \leq t \leq 1} |B(t)|$ holds with a Brownian bridge B. (The latter has a so-called Kolomogorov distribution: $\mathbb{P}(\max_{0 \leq t \leq 1} |B(t)| \leq x) = \sum_{j \in \mathbb{Z}} (-1)^j e^{-2j^2x^2}, x > 0.$)

8.12 Corollary. Let $\alpha \in (0,1)$ and let X_1, \ldots, X_n be i.i.d. random variables with continuous distribution function F which is continuously differentiable in a neighbourhood of $q_{\alpha} := F^{-1}(\alpha)$ with $f(q_{\alpha}) := F'(q_{\alpha}) > 0$. Then the empirical quantile $\hat{q}_{\alpha}^n := \tilde{F}_n^{-1}(\alpha)$ satisfies $\sqrt{n}(\hat{q}_{\alpha}^n - q_{\alpha}) \xrightarrow{d} N(0, \frac{\alpha(1-\alpha)}{f^2(q_{\alpha})})$.