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1. Introduction

Dynamic Contrast Enhanced Imaging (DCE-imaging) is beginning to be
widely used in medical imaging of brain or cancer [1][2][3][4][5][6]. Following
the evolution of a bolus of contrast agent injected during a sequential imaging
acquisition with Computed Tomography, Magnetic Resonance Imaging or Ultra-
sound imaging (DCE-CT, DCE-MRI or DCE-US) allows the assessment of such
microcirculation parameters as tissue-blood perfusion, permeability, blood and
interstitial volume in vivo [4][7][8][9]. Taking into account the Arterial Input
Function (AIF), such estimations explain the local tissue characteristics [10][11].
Thus DCE-imaging has great potential for cancer detection and characteriza-
tion, as well as for following and monitoring in vivo the effects of treatments
[12][13][14][15]. Clinicians are now expecting such information to be given at a
high resolution up to pixel-level and to be displayed as parametric maps [16].
This is of main interest in cancerous tumors as they are known to be heteroge-
neous with areas going from non-perfused and necrotic to hypervascular ”hot
spots” [17].

Recently, Cao et al. [18] showed the ability of DCE-CT to assess intra-tumor
physiological heterogeneity in tumors. This offers an in vivo tool for the eval-
uation and optimization of new therapeutic strategies. At pixel-level, however,
high-frequency acquisition is achieved with a poor signal to noise ratio. Con-
sequently, to improve the signal to noise ratio either large Regions Of Interests
(ROI) are used or the sequences are denoised by spatial averaging or filtering
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techniques [19]. Both procedures have the disadvantage of mixing dynamics
which may not be homogeneous, leading to inaccurate parameter estimation.
Using parametric modeling (usually derived from pharmacokinetic models) or
smoothing techniques, it is possible to regularize dynamic enhancements [20][21].
Unfortunately, such time-regularization techniques lead to information loss due
either to smoothing out the dynamics or to the inaccuracies of a specific model
[22]. This is an important concern in DCE-CT where, in order to obtain a dy-
namic sequence, the unitary X-ray dose per image should be as low as possible,
which leads to a very poor signal to noise ratio.

Thanks to the linear relationship between the concentration of the contrast
agent and the attenuation, using DCE-CT instead of DCE-MRI for example,
one can access the contrast agent concentration directly [31]. Let us stress
that even if an improvement of the acquisition techniques in CT may be ex-
pected, the need to control X-ray doses will remain for ethical reasons. In the
last decade, many techniques have been introduced to address the problem of
the tomographic Radon reconstruction of one (2D- or 3D-) image when under-
sampled measurements (potentially noisy), which strongly violate the Nyquist
theorem, are used. We can distinguish between techniques A/ based on iterative
reconstruction which rely on the accurate modeling of the distribution of noise
in the acquired data [23]; B/ using sparsity inside the tomographic image and
related to compressed sensing [24, 25] such as Prior Image Constrained Com-
pressed Sensing (PICCS) [26] or Vastly undersampled imaging with projections
(VIPR); C/ which benefit from the correlation between voxels in time-dependant
images like Highly Constrained Back Projection (HYPR), see the review [27]
and references within; D/ aimed at smoothing, estimating or interpolating the
sinogram before reconstruction [28, 29]. Allowing undersampled measurements
in 2D or 3D tomographic acquisitions, all these techniques offer the possibil-
ity to reduce the X-ray dose in CT and have generalized the use of so-called
”low dose” CT. Unfortunately, these techniques, which are for the practitioner
implemented inside the scanner by the constructors as black-boxes, produce as
output one image (2D-slice or 3D-volume) by acquisition time and do not take
advantage of the long total acquisition time used in DCE-imaging which is of
order 100 seconds. Even multi-band filtration [30], which uses multiple acqui-
sitions from the same image in order to increase the signal to noise ratio by
using a Maximum A Posteriori (MAP) approach, relies on the assumption that
images do not change during acquisition. A hypothesis which is clearly violated
in DCE-CT due to the variations of the contrast agent concentrations.

We aim to improve the signal to noise ratio of DCE-CT after the Radon
reconstruction of each slice obtained at each time acquisition. Because the DCE-
CT sequences, we focus on, are made from about 100 CT-slices, a grail would
be to reduce the X-ray dose of each slice by the same 100 factor. It should be
clear that our aim is not to replace the technics used to achieved ”low dose” CT
but to complete such technics by taking advantage of the dynamical acquisition
in order to go further in the reduction of the X-ray dose. Here, the increase of
signal to noise ratio is achieved in two steps using a global procedure, based on
statistical multiple testing to compare the dynamics observed at each voxel of
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the image. Using a test of zero mean for the difference between enhancements
or estimated enhancements, no specific modeling assumption of the dynamics is
either used or made. Being adaptive to the unknown smoothness of the curves,
multiple tests have enough power to properly differentiate between dynamics.

The first step is a voxel-wise denoising step : at each voxel, the dynamic is
compared to those from the voxels around the selected location. Homogeneous
dynamics are aggregated iteratively in order to build a denoised version of the
dynamic coming from the selected voxel. At each iteration, using multiple
tests, the dynamics from the next closest voxels around the selected voxel, are
compared to each previous denoised versions in order to check for homogeneity.
As a result, around the selected voxel, a neighborhood of locations is build which
is aimed to satisfy the bias-variance paradigm of non-parametric statistics : 1/
being large enough, to reduce the variance and improve the signal to noise ratio;
2/ being not too large to ensure a good homogeneity in between the selected
voxels. This step provides high resolution information with an improvement in
signal to noise ratio which allows, for example, to build parametric maps.

The second step automatically builds a clusterization of all the dynamics,
preserving dynamic homogeneity in each cluster. The clustering procedure is
built from the result of the denoising step: it uses as input the neighborhoods
grown in the denoising procedure and their associated denoised enhancements.
This clusterization depends neither on an a priori knowledge of the number of
classes like k-means [38] nor on any assumption of behavior inside a class such
as a Gaussian mixture classification with EM algorithm [39]. It is based on the
same multiple tests as those previously used in the denoising step. The cluster-
ing procedure constructs classes made from a set of voxels with enhancements
statistically close to an estimated enhancement (built as a class centroid).

The clusters can be viewed as an automatic ROI-partition selection with
respect to the typical behavior of the dynamics. This automatic ROI-partition
provides a summary of the full dynamic sequence into few typical denoised
dynamics which preserve the heterogeneity of the tissues in general and of the
tumor in particular. It can be compared to a piecewise constant representation
of a function having functional values.

From a clinical point of view, this denoising and clustering procedure is a
necessary step to allow a relevant evaluation of the microcirculation in vivo by
using pharmacokinetic models on a pixel by pixel basis.

Only one hyper-parameter is used in these two stages, namely the level of
the multiple test. In the denoising step, it controls how easily the dynamics
are aggregated. In the clustering procedure, it plays a role equivalent to a
penalization ensuring an adaptive control on the number of classes.

The article is organized as follows: we first introduce the statistical frame-
work and comment on the assumptions in Section 2. In Section 3 we outline our
denoising method for DCE-CT. The automatic and unsupervised classification
of tissues is tackled in Section 4. Finally in Section 5, we show an application
to DCE-CT data on liver metastases and some simulations in order to validate
our methods. The two main statistical tools used to construct our denoising
procedure are described in the Appendix : multiple testing in 7.1 and neighbor-

3



HU

0.01

Figure 1: Histogram of the noise in DCE-CT baseline images with fitted Laplace distribution
with parameter λ = 29 (σ = 41HU)

hood/ring growth in 7.2.

2. Statistical framework for DCE-CT

In the rest of this paper, we consider a DCE-CT sequence as a finite sequence
of noisy images indexed by both time and space:

I = {Ix(t), x ∈ X , t ∈ {t1, t2, . . . , tK}} ,

where Ix(t) denotes the noisy enhancement at time t and voxel location x. We
will denote by Ix the vector

(Ix(t1), . . . , Ix(tK)),

of the discretely observed dynamics at location x at all observation times t1,. . . ,
tK . Here X denotes the finite voxel grid and the tj are the acquisition times.

We assume that the observable gray level Ix(t) may be written as

Ix(t) = ix(t) + σεx(t), (1)

where ix(t) denotes an unobservable true gray level, εx(t) denotes a standardized
noise and σ the noise level. We assume that the noises εx(tj) are independent
with respect to both space location x and time location tj . While time inde-
pendence may be easily justifiable, the assumption of independence between
locations is known not to hold in CT. Especially, it is well known that CT cre-
ates radial artifacts. We use this assumption as a simplified model. A more
complete modeling should certainly be written as:

Ix(t) = ix(t) + ηx(t) + σεx(t), (2)

where η is a time-independent, but space-correlated noise which explains spatial
artifacts.

Even if these spatial artifacts are clearly visible by the human eye, it seems
that the noise η may be considered as negligible from a statistical point of view.
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In the framework of DCE-CT where, because of low X-ray dose, σ is clearly
large, our results (see Section 5) indicate that this simplified model (1) may be
applied.

To help the presentation, we will assume in the following that the parameter
σ is known even if this is not necessary. The knowledge of σ may be ensured
by either a proper calibration of the scanner or an independent estimation. We
have assumed for the presentation that the distribution of the errors εx(t) is
Gaussian and used estimates based on the mean of enhancement vectors. A
simple histogram of the DCE-CT noise, see Figure 1, shows that this noise
distribution is certainly closer to a Laplace distribution. In this Laplace setting,
median based estimates are more advisable (see [36]) and we have used this
setting in practice (see Section 5.2). From an industrial point of view, it is
possible to avoid extra calibration or noise level estimation, using the result in
[34]. In such case the only assumption needed is that, for any couple of locations
x and y, the distribution of εx(t) − εy(t) is symmetrical without mass in 0 for
all time t.

3. Denoising DCE-CT

We outline here the statistical procedure used to denoise DCE-CT which is
summarized by the flowchart in Figure 2 and the Algorithm 1 in Appendix 7.3.
It is based on two statistical tools introduced in Appendix 7.1 and 7.2.

Our method is based on the statistical comparison between two observed
enhancement vectors Ix and Iy at spatial locations x and y as presented in
Appendix 7.1. Two enhancement vectors are considered indistinguishable if
their difference does not deviate significantly from the zero vector. This is
controlled by a statistical multiple test on whether the difference vector Ix− Iy
has mean zero vector or not. In the positive, we will call Ix and Iy to be
statistically close or time homogeneous and we write Iy ≡ασ2 Ix where α refers
to the test level and σ2 to the noise variance.

Such comparisons of vectors using multiple test procedures have been de-
veloped in the Gaussian framework by [32, 33] and for heterogenous symmetric
noise by [34]. The power of these test procedures are known to be adaptive
to the regularity of the underlying signal. Hence, we do not need to specify
the behavior of the enhancements in order to be able to deal adaptively and
automatically with the particularities of the enhancements. We only need the
enhancements not to be too wild in the sense that their differences should have
a certain minimal (Hölder ) regularity [37]. The latter being clearly satisfied in
the context of contrast enhancements in DCE-CT.

The use of differences ensures that noise can be assumed symmetrically dis-
tributed, thus avoiding typical problems that spring from existing structures in
tomographic sequences as described in [35].

At each spatial location x ∈ X , we aim to construct a spatial x-neighborhood
Vx made of voxels y ∈ X such that Iy is statistically close to Ix and such that
the statistical error may be controlled. The estimated enhancement vector at
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Figure 2: Flowchart of the spatially pointwise denoising procedure. See Appendix 7.1 for
precisions on the test denoted ≡α

σ2 and Appendix 7.2 for precisions on ρ. Here, the centroids

Îi and Ĵ are the means of the enhancements in their corresponding neighborhoods; other
possibilities such as generalized medians are discussed in Apendix 7.2.

location x is then derived from this neighborhood as a centroid given for example
by the empirical mean or by the generalized median (see Eq. (3) and (4) in
Appendix 7.2).

Controlling the statistical error means that we aim at including as many
voxels as possible in Vx to reduce the variance while the bias due to over-
smoothing is kept small.

To that end, as presented in detail in Appendix 7.2, at each spatial location
(called center), an increasing sequence of ”time homogeneous” neighborhoods
of voxels is grown according to the following steps: (i) using the difference be-
tween their enhancements, compare the center to the voxels which are spatially
close and select the voxels with statistically close enhancement; (ii) construct
a sequence of estimates – each built on one neighborhood – having decreasing

6



Figure 3: Axial CT images of the abdomen centered on a liver metastasis. These images belong
to a dynamic series, they have been acquired 25 seconds (left column) after the beginning of
the acquisition, during the arterial phase and respectively 45 seconds (right colum) after the
beginning of the acquisition, after the arterial phase. For each (column) time : Original (top)
- Denoised (middle) - Residuals (bottom).

variance; (iii) from this sequence select the largest statistically acceptable neigh-
borhood which is expected to realize the statistical paradigm of the bias-variance
tradeoff.

Step (i), see Eq. (5), is a pre-selection step which allows the denoising
construction to obtain ”neighborhoods” built from different objects of the same
type over long distances. This is useful in medical images where the same kind
of tissue (e.g. small arteries, see Figure 5-a) may reappear in different areas. At
step (ii), taking a centroid (mean or median) of the enhancements associated
to the voxels included in the spatial neighborhood provides an enhancement
estimate. The last step (iii) involves a generalization of the above multiple test
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in order to decide whether or not two estimated enhancements ÎV and ÎW ,
constructed on two disjoint sets V and W , are statistically indistinguishable.

Classically, because of the increasing property of the neighborhoods, the
known variances of these estimates decrease and can be used in order to select
an estimate that realizes a good statistical trade-off between bias and variance in
step (iii) [36]. The precise description of the neighborhood growth is described
in Appendix 7.2.

4. Clustering

Using the test procedure introduced in Appendix 7.1 and denoted by ≡ασ2 ,
we develop an automatic clustering procedure. It does not rely on the knowledge
of the number of classes like in the k-means algorithms [46, 38]. It also does
not need any Gaussian assumption, often made to describe the behavior inside
a class. The classes are built in order to keep statistical homogeneity. Let
us denote by C the clusterization i.e. the set of all classes. The estimated
enhancement associated to a class c ∈ C, called center of c, will be denoted Îc.
The clustering algorithm is a recursive algorithm with a main loop which can be
decomposed in three main steps : a/ define a class from a single voxel ; b/ test if
a new class center is statistically close or not from any existing class center ; c/
gather the classes with statistically close centers. The algorithm stops when all
single voxels have been assigned to a class and when classes cannot be merged
anymore.

Using the construction described in Appendix 7.2, Step a/ can be done in an
efficient way, leading to a feasible algorithm. Suppose that, using the denoising
procedure described in Section 3, we have grown at each voxel location x of X a
neighborhood Vx. Given a list L ⊂ X of voxels of interest (a Region Of Interest
(ROI) or the full image), we define the child/ancestor relation � by ”z � y if
z ∈ Vy” and call ”children of x in L” the set

NLx = {z ∈ L,∃y1, ..., yk ∈ X s.t.
z � yk � . . . � y1 � x}.

The list NLx of all children of x is constructed in the function Children, see
Algorithm 3 in the Appendix.

While the list L is non empty, the following four steps are processed
:

Step 0 - Next : Consider one voxel x in the list L with the largest neigh-
borhood size |Vx|. Compute its child list NLx and set c = NLx .

Step a - Class construction : From c build a robust center Ĵ (see hereafter
for the construction of this robust center). A new (possible) class cĴ is defined
by its center Ĵ and the list cĴ of voxels y in c such that Îy ≡ασ2ρ(1,min(|Vy|,|c|)) Ĵ
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is accepted. Set L := (L ∪ c) \ cĴ to remove selected points from the list.

Step b - Class checking : The new class cĴ with center Ĵ made at the
previous step is checked for closeness with all previously constructed classes. If
a class c is found to satisfy Îc ≡ασ2ρ(1,min(|c|,|cĴ|))

Ĵ, then cĴ and c are merged to-
gether to form a new class c and the algorithm returns to Step a/ with this new c.

Step c - Update Cluster List : The class cĴ is added as a new class to
the cluster list.

The clustering procedure is synthetically described in Algorithm 2 in the Ap-
pendix.

We now give the details of the robust center construction. Given a set c
of voxels, we iteratively define Ĵ = Îc and update c as the set of the y in NLx
such that the test Îy ≡ασ2ρ(1,min(|Vy|,|c|)) Ĵ is ”strongly” accepted. This proce-
dure, which can be viewed as a robust k-means procedure with k = 1, converges
quickly and will stop after a few iterations.

Remark 1: In this setting, the larger class attracts the smaller class in its statis-
tical surrounding defined by a ”noise level radius” of order σ2 around its center.
Moreover the center of the smaller class is located up to a statistical distance
of order σ2/min(|c|, |c′|). Hence, the two classes are merged if the ”statistical
distance” between their centers is less than ρ(1,min(|Vy|, |c|)) (see Appendix
7.2).
Remark 2: Thanks to the decreasing order in the neighborhood sizes, the last
unclusterized voxels are mainly due to exceptional behaviors like body move-
ments and are far from all previously constructed centers. Because of this
observation one can stop the clustering algorithm when the neighborhood size
is less than a prescribed v0. The remaining voxels then define an extra class of
unselected voxels. This extra class of movements can be used as a prior input
for a registration algorithm.

5. Results

5.1. Data material
We use a DCE-CT sequence of 53 images obtained, in 90 seconds, at the

same level of the upper abdomen on a patient who wass asked to hold his
breath. Acquisition parameters were fixed at 80 Kv and 50 mAs. These images
were obtained with an in-plane resolution of 512×512 pixels. The sequence is
split into three periods of 30-second breath-hold separated by 8-second pauses
to allow for free breathing. Each period is characterized by the time delay
between two images: one second between images for the first 30 images; two
seconds for the next 15 images and three seconds for the last 8 images. After
the beginning of the acquisition, at time 3 seconds, an intravenous bolus of
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Figure 4: Enhancement curves obtained from manually drawn ROI containing more than 100
voxels within the Aorta (top) and the tumor (bottom). For each sub-figure, the mean curve
inside the ROI is the thick plain line, the 5% and 95% quantiles of the curves of the selected
points are in thick dotted lines and finally the curves of 5 randomly selected points inside the
ROI are drawn in fine lines.

80 ml of Iobitridol (Xenetix, Guerbet, France), an iodinated contrast medium,
is injected at the rate of 4-5 ml/s and followed inside the tissues through their
enhancements. At time t, the contrast agent concentration is proportional to the
difference of gray levels between time t and time 0. On CT images, gray-level
ranges of the different tissues, which are measured in Hounsfied Units (HU),
are related to their chemical composition (fat, air, bone, water,...) and their
content in contrast media. On the images, the liver, the spleen, the aorta, the
stomach, a vertebra and some blood vessels are visible. However, the images
suffer from a poor signal to noise ratio, due to the limited irradiation dose used
for the sequential acquisition. Figure 4 shows typical enhancements obtained
from voxels in manually selected ROI (of size larger than 100 voxels) within the
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Figure 5-a: Left column : Voxel within the aorta - Right column : Voxel within a small dorsal
artery on the right side of the spine. For each column, (Top) the arrow points to the selected
voxel x on one axial slice of the sequence; the pink dots show the constructed neighborhood
Vx. (Bottom) the thick dotted black line shows the tissue enhancement at voxel x; the thick
black line is the denoised dynamic, centroid of the Vx dynamics. In addition, individual curves
of 5 randomly selected voxels in Vx are shown in the background in fine pink line.

Aorta (top), known to be homogeneous, and within the tumor (bottom), where
heterogeneity is expected. In order to provide a visual idea of the noise level and
the variability inside a manual ROI, for each selected ROI, we have constructed
a mean curve, and the 5% and 95% quantile curves by considering each time
separately and we have drawn 5 curves of randomly selected individual voxels.

Using the first four images without enhancement (baseline images), we have
derived a sample of the noise distribution as follows: 1/ compute a (voxel-
by-voxel) baseline median image from the first four images; 2/ compute the
residual images of the differences between each baseline image and the baseline
median image; 3/ use the values inside the residual images as a sample (of size
4×512×512) of the noise distribution. We expect in step 1/, if there are only
a few movements, that, in each image, most of the voxels represent the same
tissue and the variation in their gray levels are just due to noise. The histogram
of the noise distribution obtained from this sample is represented in Figure 1
together with the fitted Laplace distribution.

5.2. Results for the denoising procedure
In Appendix 7.2, we fix the increasing sizes ni of the neighborhoods to be

successively 1, 5, 15, 38, 91, 211, 476. As our procedure involves several multi-
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Figure 5-b: Left column : Voxel within the tumor - Right column : Voxel within a tumor ”hot
spot” : The estimated curve shows a quicker and larger enhancement providing a stronger
initial slope that shows a perfusion and a more important blood volume than for the voxel
within the tumor itself (left column). See Figure 5-a for more information.

tests, we use a False Discovery Rate (FDR) approach [40] calibrated to take into
account the multiplicity due to time (see Appendix 7.1) and due to neighborhood
growth (see Appendix 7.2). We apply our algorithm using three different values
for σ : 41, 50 and 60HU . These values have been calibrated for this specific
sequence as follows: using the noise distribution sample made from the baseline
images (see Section 5.1), fit a Laplace distribution as shown on Figure 1; the
parameter of this Laplace distribution is 1/29, which corresponds to a 29

√
2 ≈

41HU standard deviation. An estimation of the standard deviation on the
same sample leads to a 60HU value. The difference between these values may
be explained by the heavy tails due to tomographic artifacts and movements.
The value 50HU has been tuned manually as a mean value between these two
estimations. Due to the maximal size of the neighborhood, we may expect for
the minimal residual noise to be of level σ/

√
476 ≈ 2.75. Hence, in the worst

case considering that σ = 60HU , our maximal gain in the signal to noise ratio
is about 60/2.75 ≈ 22.

Because our procedures rely on tests, a good trade-off between the choice
of σ and those of α should be made. The value σ = 41HU , which ideally
fits our model, does not denoise sufficiently for any α as it leads to too small
neighborhoods for which growth has been stopped artificially by tomographic
artifacts. For the value σ = 50HU , this phenomenon remains at least in the
lower left corner of the sequence. With σ = 60HU and values of α in a range
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0.2 to 0.001 our algorithm has a stable behavior, leading to similar denoised
sequences and similar clusterizations showing more details as α gets larger.
With σ = 60HU the sequence is properly denoised and most of the tomographic
artifacts are removed.

The clustering procedure using σ = 50HU or σ = 60HU with the corre-
sponding α value for the tests involved in the clustering procedure leads to
similar and stable segmentations. Parameter α is a good tuning parameter
which may be used by doctors to tune the clusterization to let, or not, some de-
tails appear. It is remarkable that, when using this statistical tuning parameter
α, the geometry of the clusters is stable and varies slowly while preserving the
morphological details.

In what follows, we use the setting σ = 60HU and α = 0.05 to illustrate
both the denoising and the clustering procedures.

First in Figures 3 and 3, we present the result of our method on two images
of our DCE-CT sequence at time 25s and 45s, respectively : (top) the origi-
nal image; (middle) the denoised image and (bottom) the residuals, difference
between original and denoised images. At time 25s, the image shows a clear
enhancement in the aorta and in the tumor. At time 45s, the details of the
return to the veinous system are visible. On both images, the same quality of
details can be found. Morphological information such as shapes and borders of
the organs are clearly visible on the denoised image (middle), while most of the
noise has been removed. One can notice two types of structures on the residual
image. The first structure comes from movements (see for example on the ribs
in upper-left corner or around the stomach) as we apply our method on the
sequence without using any kind of (pre-) registration or motion correction al-
gorithm. Our algorithm suffers from these movements on the borders of moving
tissues and should be associated with a registration procedure in case of strong
movements. The second structure comes from CT radial artifacts. In the model
given by Eq. (2), the noise η is also removed when using our procedure with
σ = 60HU . Again this is a surprise as nothing, from a theoretical point of view,
has been used to catch this noise known to have spatial structures. Tomographic
artifacts are organized in one image along directions which are not necessarily
the same at different time instances. Thanks to the use of the whole temporal
structure in the testing, the directions are mixed and the tomographic artifacts
do not have a significant effect on the denoising result. The benefit of using an
approach which compares not only voxels in one image locally but directly the
dynamics of these voxels in the full sequence is clear : one can apply a stronger
denoising procedure without losing any details in the 2D structure.

Figures 5-a to 5-b present the result of our method applied to four voxels x
in (respectively): (a) the aorta; (b) a small dorsal artery that is located near
the spine and crosses our CT-plan on only one or two voxels; (c) the tumor; (d)
a tumor hot-spot.

Figures 5-a to 5-b each show the result of our procedure within a voxel
and are divided into two sub-figures. Top: the slice at a specific time, with
the selected voxel x (yellow circle pointed to by an arrow) and the voxels from
its neighborhood Vx (pink dots). Bottom: the original enhancement vector
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Ix (black thick dotted curve) ; five randomly selected associated enhancement
vectors Iy for y ∈ Vx (pink background curves) and the estimated enhance-
ment (black thick curve) using a generalized median as centroid of the selected
neighborhood (see Appendix 7.2).

In Figure 5-a, the neighborhood Vx of the voxel x is not connected. This
voxel x has been selected in a small artery covering only a few voxels and most
of its neighborhood is included in the aorta and made from voxels disconnected
with the original location. This is not a surprise, as physiologically, the flow
in the artery system is such that, at our time resolution, the enhancements in
different arteries cannot be distinguished.

These figures show the second benefit of our approach : the sequence is not
denoised in a ”slice-by-slice ” approach as a movie but as a single image showing
dynamics. Hence, it is not the gray levels of images which are denoised but the
full dynamics, over time, at each voxel. This approach clearly improves the
signal to noise ratio by reducing the noise without changing the signal and one
can then proceed to a proper inspection of kinetic enhancement curves to derive
the characteristics of the underlying physiological processes.

Let us emphasize that the maximum of the estimated enhancements in the
hot-spot inside the tumor (Figure 5-b) is larger than those associated to the
surroundings of the tumor (Figure 5-b). This is in accordance with clinical
knowledge as the flow in such voxels is larger.

5.3. Results for the clusterization procedure
We present here the classifications obtained by our automatic clusterization

procedure described in Section 4 applied to the denoised sequence obtained with
the setting σ = 60HU and α = 0.05. See Section 5.2 for discussion about this
choice. Like in Section 4, the voxels with neighborhoods of size smaller than
60 voxels, which correspond to movements, are not classified. They appear in
Figures 6 and 7 in dark blue. The final clusterization of this series contains
more than 600 clusters. Most of these clusters are small and correspond to
movements.

Figure 6-(top) shows (with artificial colors) the result of our procedure ap-
plied to the enhancements in order to focus on functional phenomena. The
enhancements are obtained after removing, at each voxel, a baseline intensity
estimated on the first 5 times prior to the contrast agent injection. Only 30
clusters have a size larger than 60 voxels. In this figure, the 30 clusters are
shown and nine typical clusters are localized. Air and tissues without enhance-
ment are localized in Cluster 4. Cluster 1 mainly consists of the liver. The
aorta is well distinguished (Cluster 3). Hepatic veins correspond to Cluster 5
and smaller vessels to Cluster 6. The tumor is split into four types of behavior
(7, 2, 8 and 9) extending from tissues at the periphery, which are compressed
by the tumor, to hot spots. Due to similar enhancement patterns in reaction
to the specific contrast agent used to obtain the DCE-CT sequence, the tissues
of the spleen and the stomach are not properly distinguished. While Cluster
5 corresponds to the center of hepatic veins, Cluster 6, which contains smaller
vessels, also contains the borders of the same hepatic veins. This may be due
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Figure 6: Clusterization result based on the enhancement curves (variation from the baseline)
- (top) clusters in artificial colors ; (bottom) estimated enhancements, ”centroids” of the
clusters. The numbers link the estimated enhancements to the clusters.

to a partial volume effect or due to surface tension in large vessels: the flow on
their borders being not as fast as in their centers.

The centers (estimated enhancement) of these nine relevant clusters are pre-
sented in Figure 6-(bottom) with their associated label number. These curves
show very high signal to noise ratio without time regularization. These curves
appear as a proper summary of the dynamic information that exists in the se-
quence. From this summary, one can easily derive the characteristics of the
underlying physiological processes.

Figure 7 shows (with artificial colors) the result of our procedure directly
applied to the original image, without baseline removal. This strategy leads
to a differentiation of tissues with a different baseline even if they have same
enhancement. For tissues showing enough enhancement, the clusterization is
similar to what is obtained in Fig.6 (see tumor tissues (2,7,8,9) for example).
The other tissues (4) are here distinguished through their baseline offering a
different information to the physiologist. In this clusterization, 45 clusters have
more than 60 voxels. Only these 45 clusters are displayed.
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5.4. Simulation results
In order to offer a validation for evaluating our method, we have run artificial

experiments on simulated data in the ideal case when no movements occur
during the sequence. We have built a synthetic dynamical image (120×60×64)
without baseline with 64 observation times using the synthetic enhancements
shown at the bottom of Figure 8-a. We have chosen time 30 to present our
synthetic dynamical image and to illustrate our simulation results. At the top of
Figure 8-a, the homogenous regions are surrounded by artificial fine white lines
in order to help the visualization of the pattern. These homogenous regions
aim to represent air (0), normal tissue (1), two types of veinous systems (2, 3)
and the aorta (8). The large ball in the upper-right corner of the Figure 8-a
represents a tumor with behaviors that vary continuously in a piecewise linear
way from the center to the border. Inside this synthetic tumor, enhancements
may be computed from the radius using the profile given by the thick line in
Figure 9 and enhancements 4 to 7 in Figure 8-a. At radius 0.7 for example, the
profile yields the value 5.2 which corresponds to a mixture of enhancements 5
and 6 in proportion 20% and 80%, respectively.

From this synthetic dynamical sequence, we have constructed a simulated
noisy version by adding (time and space) independent Laplace noise with stan-
dard deviation 41HU as shown, at time 30, in Figure 8-b.

Our denoising algorithm (see Section 3) has been applied to this sequence
with σ = 60HU and α = 0.05 using the same values as in Section 5.2. The
result of this denoising step is presented (at time 30) with the same gray-scale
as the observations in Figures 8-c and (to show the gain in contrast) with its
full gray-scale range in Figure 8-d. To help the comparison, this last gray-scale
is also used in the top Figure 8-a which shows the original data.

Considering the amount of noise in Figure 8-b, any slice-by-slice denoising
procedure will fail to show the weak enhancements in the synthetic venous

Figure 7: Clusterization result using the entire signal temporal dynamics including the specific
baseline level of each tissue – colors are artificial. For tissues showing enough enhancement, the
clusterization is similar to what is obtained in Fig.6 (see tumor tissues (2,7,8,9) for example).
The other tissues (4) are here distinguished through their baseline.
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systems (2 and 3) already visible in Figure 8-c and even clearer in Figure 8-d.
Using the same gray-scale, the result of our clusterization algorithm (see

Section 4) applied to this sequence is presented at the top of Figure 8-e with
the associated estimated enhancements inside each cluster shown at the bottom
of the same figure. The estimated clusters and their associated estimated en-
hancements (centroids of each cluster) are shown and linked by capital letters.
The enhancements are well recovered as shown by the comparison of the bottom
part of Figures 8-a and 8-e. The clusterization of the synthetic tumor respects
the circular geometry used to build the synthetic tumor in this sequence. This
clusterization has to be understood as the construction of an adaptive piecewise
constant map with unknown number of steps. The selected number of steps
depends on the underlying enhancement, on the standard deviation of the noise
and on the choice of α, the level of the test procedure, and on the unknown
localizations. In Figure 9, the fine dotted line, shows a possible stepwise pro-
file which could be associated to this clusterization: each step represents the 4
estimated enhancements D to G along a diameter of the synthetic tumor.

The choice of a continuous synthetic tumor may seem surprising but it is
driven by two ideas: on one hand continuous changes exist inside tumors, and
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Figure 8-a: Artificial Simulated Dynamical Image : (bottom) The nine artificial enhancements
used in our simulations. The dotted vertical line shows time 30: used for the presentation
of the results of denoising and clusterization on these artificial data. The numbers link the
used enhancements with their locations. (top) The dynamical image shown at time-slice 30.
In the upper-right of the sub-figure, the large ball simulates a tumor with behaviors changing
continuously from behavior 7 (in the middle) to 4 (on the border). The exact profile along a
diameter of this tumor is given in Figure 9. The dark homogenous areas are surrounded by a
fine white line to emphasize the borders. The gray scale comes from Figure 8-c
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Figure 8-b: Simulated noisy dynamical image obtained by adding Laplace noise with standard
deviation 41HU to the Artificial Dynamical Image see Figure 8-a. Dynamical image shown at
time-slice 30

Figure 8-c: Denoised version of the artificial data using the same grayscale as the observed
noisy data. Dynamical image shown at time-slice 30

Figure 8-d: Denoised version of the artificial data using its full grayscale. Dynamical image
shown at time-slice 30
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Figure 9: Representation of the profile inside the simulated tumor (thick line). The abscissa is
the radius and the ordinate defines the enhancement mixture: a value 5.2 obtained at radius
0.7 represents a mixture of 20% of enhancement 5 combined with 80% of enhancement 6. The
fine dotted line represents a feasible piecewise constant representation of this profile.
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on the other hand this condition is more challenging for the algorithm. In
addition, we have performed simulations (not presented here) with a synthetic
tumor showing a piecewise constant profile or split into one continuous part and
one piecewise constant part. In each case, the estimation and the clusterization
showed the same quality of behavior. The estimation of each enhancement
clearly improved as soon as the synthetic tumor exhibited some constant part
in its profile.

6. Discussion

The goal of DCE-imaging is to create functional images (pictures) at voxel-
level and not to deal with ROI which can mix several functional behaviors
resulting in loss of localized information. For example, the heterogeneity of
tumors is believed to provide important information which may be properly
evaluated using DCE-CT. Let us point out that for ethical reasons, even if
acquisition techniques in CT are expected to improve, it will remain necessary
to control X-ray doses. Therefore images with poor signal to noise ratio, hardly
usable to properly evaluate micro-circulation parameters, will still be produced.
This is why we propose a two step procedure, based on the same multiple tests
to compare random vectors, in order to improve the signal to noise ratio of the
DCE-CT sequences. The first step enables to denoise the dynamical sequence
voxel-by-voxel. The second step builds a spatial segmentation of the tissues
based on the differentiation of the full dynamics.

The denoising procedure constructs around each voxel a neighborhood of
(dynamically) homogeneous voxels with a size related to 1/ the size of the
homogenous tissue it belongs to; 2/ the maximal gain in signal to noise ratio
provided by the user. Through this step, at each voxel location, an individual
denoised enhancement is obtained providing complete denoised information on
the heterogeneity of the dynamics. The size of each neighborhood, which plays
the role of a window or bandwidth, is chosen adaptively thus preventing under-
or over-smoothing.

In addition to this local approach, the clustering step pulls together the ho-
mogeneous voxels (dynamics) in order to create a synthetic map (segmentation)
of dynamical behaviors that sums up in a few dynamics all the information con-
tained in the DCE-CT sequence. Although an over-reduction of the information
in this clustering step could be feared, the amount of details found in the shape
of the organs and the good level of heterogeneity in the tumor show the proper
behavior of this technique. The clusterization provides an adaptive piecewise
constant representation of the dynamical behaviors for which clear steps at the
border of the organs and more continuous changes inside the tumor may be
imagined. This is illustrated by the dynamics 2, 7, 8 and 9 of Figure 6, which
sum up in a piecewise way the vascularity of the tumor from low vascularization
to hot-spot.

In an image-by-image approach, an adaptive ”bandwidth” selection aims at
choosing the largest subset of pixels with statistically similar intensities in or-
der to improve the signal to noise ratio. For DCE-CT, since each individual
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voxel is too noisy, such a time-by-time pulling approach fails. Given a voxel
x, we propose to find voxels with statistically similar enhancements: pulling
those enhancements together provides a complete estimated enhancement at
voxel x. Clearly, we avoid a (time-by-time) maximal approach and build poten-
tially smaller (at some observation time) dynamical homogenous neighborhoods.
Hence, around a voxel x, the selected voxels form a large subset with respect to
the size of the homogenous tissue they belong to, and not necessarily large with
respect to the gray-level obtained at a specific time.

Going further, it would be of interest to take advantage of the dynamical
homogeneity of the tissues before the Radon reconstructions (of all acquisi-
tion times) by, for example, either comparing statistically partial sinograms or
by looking for a sparse representation of the full dynamics. We do not have
addressed this issue because usually scanners automatically provide one recon-
structed image per acquisition time without giving access to the Radon recon-
struction which works as a black-box inside. Our expectation is that the (black-
box) Radon reconstruction has already benefited from larger local homogeneity
inside each image. Applying a dynamical approach like ours directly during the
Radon reconstruction in order to benefit from dynamical homogeneity remains
a challenge.

During a long acquisition period as needed in DCE imaging, it is hard to
avoid patient’s movements. In Figures 6 and 7, we clearly see navy bands at
the periphery of the organs (interface regions). They are characteristic, easy to
identify and remarkably fine. Most movements should be removed by prospec-
tive or retrospective techniques like respiratory gating or registration. These
different techniques are not conflicting and can even benefit one from the other:
Registration techniques can be improved by the knowledge of these navy bands
and a denoised dynamics, or part of it, could be the target of a registration
algorithm. Denoising and clustering based on the comparison of entire dynam-
ics are not strongly affected by small movements. This is promising for further
developments using such a dynamical approach combined with techniques that
deal with movements.

In order to make things clearer, we have used a homoscedastic setting with
a known constant noise level σ assuming independence in time and in space.
This modelization is certainly not perfect: 1/ the noise level may depend on
the intensity which varies not only among the tissues but also with time as
the contrast agent goes through the tissue leading to contrast beam hardening
artifacts; 2/ CT-artifacts are spatially not independent. Surprisingly, although
our construction ignores CT-artifacts, they are properly removed without af-
fecting the overall quality, when using a larger σ than those prescribed directly
by the estimation. This is an advantage of our approach that combines spatial
locations, preserving time structures thanks to the use of statistically powerful
multiple tests. The first issue is addressed by [34] which proposes a test of zero
mean in random vector even when noise distribution presents strong departures
from the simpler Gaussian homoscedastic case: noise distribution needs only to
be symmetric with an unknown noise level which may even vary in time. As
our construction is based on differences, this symmetric assumption is fulfilled
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and ensures that the hardening artifacts will be taken into account. Even if the
results we obtain are already satisfying, an industrial application will benefit
from such an implementation.

In the simplified setting we have used, α and σ play the role of tuning
parameters. Using the baseline image, parameter σ could be evaluated as we
did or by taking a ROI outside the patient. Hence, the true remaining tuning
parameter of our algorithm is α. In the denoising step, at each voxel, it controls
the level of the test used to choose the proper neighborhood and controls how
smooth spacially the denoised dynamical image (meaning the full sequence) is.
In the clustering step, it controls the number of clusters used to describe all
the tissues. It plays a similar role as a penalty in the description of a function
by a piecewise constant function. Decreasing α will produce fewer clusters
preserving the easiest locations where the behaviors of the tissues are constant or
slowly varying. In the case of DCE-CT, it will preserve large organs and strong
details like the veinous system, aorta, bones, etc. Inside a heterogenous area like
the tumor where the profile can vary slowly, the clusterization will show fewer
behaviors slowly when α decreases but will keep a realistic piecewise constant
description of the profile and hence of the tumor (see Figure 9). Changing the
value of α in the clusterization will mostly affect only the description of the
navy bands.

Our clustering procedure does not require the knowledge of the number of
classes and a proper initialization like the k-means algorithms does [46, 38]. It
also does not rely on assumptions to describe the behavior inside the classes
like the Expectation Maximization algorithms does [39]. Neither does it create
a synthetical representation of the enhancements based on linear combinations
of a few artificial enhancements, eigenvectors of a functional PCA [47]. In our
clusterization, the classes are built in order to and only to achieve a statisti-
cal homogeneity that offers a good and exhaustive description involving a few
realistic enhancements.

We have implemented the denoising algorithm (see Section 3) in Matlab c©.
The processing of a 512×512×53 dynamical image as presented in Section 5
takes three hours on a bi-3 Ghz Quad-core Intel Xeon PowerMac as it uses a
loop on the 512×512 voxels. As the processing at one location does not involve
processing at other locations, this loop may be highly distributed with a cheap
parallelized implementation in open-CL on a Graphic Processing Unit (GPU):
after a transfer in the shared memory of the GPU of the global information of
the DCE-CT (here the 512×512×53 numbers encoded on 8 bits), an industrial
implementation will send to each chip a number of the 512×512 voxels inversely
proportional to the number of chips on the GPU.

It is worth noting that even if we have presented our technic on 2D DCE-
CT, it could be straightforwardly generalized to 3D DCE-CT sequences using
3D neighborhoods instead of 2D neighborhoods. In such case, the result will
be a clusterization of the dynamical behaviors existing in the tissues of the
3-dimensionnal image.
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7. Conclusion

Using a two step procedure, each step based on a statistical multiple hypoth-
esis testing, we introduce a novel algorithm to denoise dynamical images, where
each point of the picture is coding a complete time series. Based on the compar-
ison of the dynamics, this algorithm preserves their full structure. It does not
rely on any a priori knowledge of the features in the image and runs unsuper-
vised up to one tuning parameter, which has a clear statistical interpretation as
a significance level. The efficiency of our algorithm is shown on DCE-CT data
used to follow the vascular and tissular distribution of a contrast agent. The
quality of the denoised dynamical image is shown by the details which can be
found by clinicians especially in small structures and allows a clear recognition
of the tumor heterogeneity. As a byproduct, the tomographic artifacts are re-
moved. Based on the denoising procedure, an efficient clustering algorithm is
proposed: it relies neither on the knowledge of the number of classes nor on
the distribution inside a class nor on the modelization of typical enhancements.
The clustering algorithm runs with a statistical tuning parameter which acts
like a penalization of the number of clusters. The result of the clusterization
provides Regions Of Interest that are meaningful at a physiological level. They
automatically sum up the typical dynamics of the tissue behavior for further
analysis of the microcirculation. Artificial experiments validate these results on
simulated data.

Appendix

7.1. ”Multiple testing for the comparison of random vectors”
Given two spatial locations x and y, we present the statistical test used to

compare to the zero vector the enhancement difference vector with components

Zk = Iy(tk)− Ix(tk), k = 1 . . .K.

For the sake of simplicity, we write Z = f + σε and we introduce these tests
in their simplified version namely the Gaussian case with σ known. Such a test
of comparison to a zero vector is derived from the theoretical work of [32, 33]
and [34] who consider general frameworks where σ can be unknown and where
ε need not necessarily be Gaussian but at least symmetrical, which is ensured
by the use of differences. We aim to test whether the mean vector f is zero or
not and hence consider the hypotheses

H0 : ”f = 0” against H1 : ”f 6= 0”.

Let us emphasize that for a prescribed level, due to their good properties of
adaptation, these tests allow a good control of the second kind error which is
important in our setting.

To simplify the presentation, let us suppose that K, the time number of
the DCE-CT sequence, is of the form K = 2d. We consider the regular dyadic
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decomposition of the observation times t1. . . t2d . For j = 0 . . . d− 1, we denote
by T j1 . . .T j2j the 2j intervals with 2d−j time indices

T jl = {tk, k = 2d−j(l − 1) . . . 2d−j l}, l = 1, . . . , 2j .

Given j in 0 . . . d−1, let us denote the projection of Z onto the space generated
by the vectors with same components on each time index T jl :

ΠjZ = (mj
1, . . . ,m

j
1︸ ︷︷ ︸

2d−j times

, . . . ,mj
2j , . . . ,m

j
2j︸ ︷︷ ︸

2d−j times

),

where
mj
l =

1
2d−j

∑
t∈T j

l

Zt.

The test is based on the comparison to zero of the squared Euclidean norm
‖ΠjZ‖2K equal to

2d−j
2j∑
l=1

(
mj
l

)2

=
1

2d−j

2j∑
l=1

∑
t∈T j

l

Zt

2

.

Under H0, the difference vector Z = Iy − Ix is a centered Gaussian vector with
covariance matrix 2σ2IdK where IdK denotes the identity matrix in RK . Hence,
underH0, ‖ΠjZ‖2K/σ2 follows a χ2-distribution with 2j degrees of freedom. Our
test procedure works as follows:

Reject H0 at level α if for any j = 0 . . . d− 1,

‖ΠjZ‖2K/2σ2 > Ψ−1
2j (α/d),

where Ψ−1
D denotes the quantile function of a χ2(D)-distribution.

To simplify the presentation, we have used a Bonferroni correction to ensure
that this multiple testing procedure is of level α. Some cleverer corrections could
be applied as proposed in [33] and [34] or, as we do in practice (see Section 5),
by using an FDR approach [40].

From a clinical point of view, it is clear that the unobservable true en-
hancements ix and iy are functions of time. So does the function F defined by
F (t) := ix(t)− iy(t). Moreover, from a clinical point of view, F is smooth (reg-
ular). We have fk = F (tk) and in this setting, these multi-tests are adaptive
with respect to the unknown Hölder regularity s (see [37]) of the function F
and, for a given fixed power, this test automatically achieves the best rate of
testing ρs(K) for all regularities s > 1/4 (see [33, Thm 1], [34, Thm 4 and 5]
and [41]).

We now have the tool to compare enhancement sequences at two voxel lo-
cations x and y with respect to the known noise level σ.

We write ”Iy ≡ασ2 Ix” when the enhancement difference average vector ix−iy
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is accepted to be the zero vector at level α with respect to a noise level σ2 fol-
lowing the above construction. This defines precisely the ”statistical closeness”
involved in Section 3.

7.2. Growing Time Homogeneous Neighborhood
We now present the construction of the neighborhood Vx for a fixed spatial

location x.
Given an estimation (or denoising) procedure of the enhancement using a

set of locations V , for example the empirical mean defined by

ÎV =
1
|V |

∑
y∈V

Iy (3)

or a generalized median defined, for example, by

ÎV = arg min
J∈RK

∑
y∈V

K∑
i=1

|Iy(ti)− J(ti)|. (4)

Given a maximal number of iterations K and a increasing sequence of integers
n1, . . . , nK with a geometrical growth.

We consider in a first step the set

Wx = {y ∈ X such that y 6= x and Iy ≡ασ2 Ix} (5)

of the spatial locations for which enhancements are statistically similar to those
of x with respect to the multi-test introduced in Appendix 7.1 and we set V0 = ∅
and i = 0.

Then, setting i = i + 1, we sequentially grow rings, denoted Wi, around x
and set the neighborhood Vi = Vi−1∪Wi. The ring Wi is made of the ni closest
points in Wx not in Vi−1. At each step, Wi is tested for statistical coherence,
defined below, with previously built neighborhoods Vj , j < i. When the statisti-
cal coherence of Wi+1 is refused or when i = K, the algorithm stops and returns
Vx = Vi as the selected neighborhood and Îx = ÎVi

as the denoised enhancement.

The skeleton of our construction is given by the flowchart in Figure 2 and
Algorithm 1 in Appendix 7.3.

This method is illustrated in Figure 10. It shows a zoom on the axial upper
abdominal section focused on the right posterior part of the sequence presented
in Section 5: a vertebra (1), the aorta (2), the liver (3) and a tumor (4). This
figure shows for a specific voxel x (white dot designed by the white arrow) inside
the tumor the first four rings Wi, i = 1 . . . 4 (in order : red, yellow, green and
blue). Due to the pre-selection of voxels inWx, the rings are neither convex nor
connected and follow the heterogeneity of the tumor.

25



1

23

4

Figure 10: First four rings Wi (in order : red, yellow, green and blue) selected around the
selected voxel x specified by the white dot and the white arrow.

During the iterations, the statistical coherence between Wi and the previ-
ously build neighborhood Vj , j < i, is ensured by the test defined by

Ĵi ≡α/iσ2ρ(|Vj |,|Wi|) Îj , j = 1 . . . i− 1,

where Ĵi = ÎWi and Îj = ÎVj . This is a generalization of the multi-test intro-
duced in Appendix 7.1 which compares Ĵi, the estimate on the ring Wi, with all
estimates Î1, . . . ,Îi built on the previous nested neighborhoods V1, ..., Vi. This
multiple testing procedure compares the statistical hypothesis

H0 : ”E(Ĵi − Îj) = 0, for all j = 1 . . . i”,

against

H1 : ”E(Ĵi − Îj) 6= 0, for at least one j”,

where EZ denotes the expectation of a vector Z.
The use of α/i is a classical Bonferroni correction to ensure that the level of

this test is α. Cleverer corrections are possible, see Appendix 7.1. The correction
in the noise level, defined by ρ(|Vj |, |Wi|), aims at taking into account the fact
that the estimates come from independent samples with respective sizes |Vj |
and |Wi|. This correction depends on the choice of the estimates: for example,
if the estimate on a set of locations derives from an empirical mean defined in
(3) we set

ρ(|Vj |, |Wi|) = |Vj |−1 + |Wi|−1,

which derives from the mean equality test for two Gaussian samples with same
known variance (see Wald test or Likelihood test in [42]). The sizes ni of the
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rings Wi are chosen to ensure that the sizes of the Vi grow at least geometrically
and that the number of tests is of logarithmic order.

Remark 1: The pre-selection step specified by the set Wx, which is neither
necessarily convex nor connected, allows the denoising construction to obtain
”neighborhoods” built from different objects of the same type over long dis-
tances. This is useful in medical images where the same kind of tissue may
reappear in different areas.
Remark 2: This method is closely related to Lepski’s method (see e.g. [43] and
[44]). This method relies on comparing directly Îi+1 with the previously built
estimates Î0. . . Îi. Because they are built on nested subsets, these estimates are
not independent. This lack of independence is the drawback of this method from
a practical point of view : the growth of neighborhoods often stops too late,
leading to over-smoothing [36] and in the DCE-CT case to mixing dynamics.
This drawback is corrected by the use of rings.
Remark 3: The neighborhood comparison protects from extra bias which could
appear in a one step procedure using a subset of Wx without more control (see
[36]). The sizes grow geometrically to ensure that the number of tests remains
logarithmic with respect to the number of used voxels, allowing a good control
of the power of this multi-test procedure.
Remark 4: In the second step of the algorithm, if the number of locations in
Wx \Vi (set of voxels inWx, but not in Vi) is too small, the algorithm ends and
returns the last estimate.
Remark 5: The maximal size of Vi which controls the gain in the signal to noise
ratio is fixed for computational time reasons.
Remark 6: In the case of a generalized median defined in (4), to take into
account that (i) for Laplace-distributed noise the asymptotic for the median
differs from that of the mean by a factor 2 in variance (see [45] or [42, cor.
21.5]); (ii) median and mean are the same when sets contain only one element,
we propose the quickly computable approximation

ρ(|Vj |, |Wi|) =
1
4

(
1 + 7/|Vj |
|Vj |

+
1 + 7/|Wi|
|Wi|

)
.

7.3. Algorithms
In this section, we describe synthetically our denoising and clustering algo-

rithms. Given two lists A and B, the notations [A;B], A∪B and A \B denote
the concatenation without deletion, the union and the complement of B relative
to A, respectively.
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Denoising algorithm

Input: x ∈ X
Output: Vx and Îx
Initialization : // define first neighborhood
i := 0 ; V0 := ∅ ; W0 := {x} ; accepted := 1
// Main loop : find new neighbors and test statistical

closeness
while accepted do

// build new neighborhood
i := i+ 1 ; Vi := Vi−1 ∪Wi−1

// estimate build on the new neighborhood

Compute Îi using locations in Vi
// find a "ring" around new neighborhood
Find Wi the subset of the ni closest points to Vi in Wx \ Vi.
// estimate build on the ring

Compute Ĵi the estimated enhancement using locations in the ring
Wi.
// test closeness of ring estimate with previous estimates
level := α/i
for j := 1 . . . i do

var := σ2ρ(|Vj |, |Wi|)
if not(Ĵi ≡levelvar Îj) then accepted := 0
(See Section 7.2 for precisions on ρ and these tests.)

return ( Vx := Vi ; Îx := Îi )

Algorithm 1: Spatially pointwise denoising algorithm

The Algorithm 1 is summarized by the flowchart given by Figure 2.

Clustering algorithm
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Input: {(Îx;Vx), x ∈ L} ; v0
Output: C and I // cluster list and cluster centers
Initialization: set C := ∅ and J := ∅ ; lastchange:=0;
while L 6= ∅ do

// build a new cluster
if lastchange=0 then

x := arg maxy∈L |Vy|
c := Children(x)
lastchange:=length(C)+1

else
c := C(lastchange)

(Ĵ, cĴ) := RobustKmeans(c)
L := (L ∪ c) \ cĴ
C(lastchange) := cĴ
J (lastchange) := Ĵ
lastchange:=CheckClusterList(lastchange)

Algorithm 2: Clustering algorithm

function CheckClusterList(j)
Input: j cluster to check for merging
Output: 0 if not merged else merged cluster number
// check if C(j) need to be merged
for i := [1..j − 1] ∪ [j + 1..length(C)] do

if ÎC(i) ≡ασ2ρ(1,min(|C(i)|,|C(j)|)) ÎC(i) then

C(i) := C(i) ∪ C(j);
C := C([1 : j − 1, j + 1 : length(C)]);
break and return(i);

end
end
return(0);

function Children(x)
Input: x a voxel
Output: N the children of x for the relation �
Initialization: N := Vx ; i := 0;
while i < length(N) do

{ i := i+ 1 ; N := [N ; (VN(i) \N) ∩ L] };

Algorithm 3: Functions CheckClusterList and Children

Acknowledgment

This work was supported in 2008 by a grant ”Bonus Qualité Recherche” from
the University Paris Descartes for the project ”Cancer Angiogénèse et Outils
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