Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



#### Exercises: sheet 1

- 1. Prove: Let X be Poisson(s) and Y be Poisson(t) distributed. If X and Y are independent, then X+Y is Poisson(t+s) distributed (t,s>0). This means that the property of a convolution semigroup of measures  $(P(t))_{t>0}$  holds: P(s)\*P(t)=P(t+s), s,t>0. Which measure P(0) is the neutral element of such a convolution semigroup?
- 2. Let  $(N_t, t \ge 0)$  be a Poisson process of intensity  $\lambda > 0$  and let  $(Y_k)_{k \ge 1}$  be a sequence of i.i.d. random variables, independent of N. Then  $X_t := \sum_{k=1}^{N_t} Y_k$  is called *compound Poisson process*  $(X_t := 0 \text{ if } N_t = 0)$ .
  - (a) Show that  $(X_t)$  has independent and stationary increments. Infer that the laws  $P(t) = \mathbb{P}^{X_t}$  define a convolution semigroup (as in (1)).
  - (b) Determine expectation and variance of  $X_t$  in the case  $Y_k \in L^2$ .
- 3. Flies and wasps land on your dinner plate in the manner of independent Poisson processes with respective intensities  $\mu$  and  $\lambda$ . Show that the arrival of flying beasts form a Poisson process of intensity  $\lambda + \mu$  (Superposition). The probability that an arriving fly is a blow-fly is p. Does the arrival of blow-flies also form a Poisson process? (Thinning)
- 4. The number of busses that arrive until time t at a bus stop follows a Poisson process with intensity  $\lambda > 0$  (in our model). Adam and Berta arrive together at time  $t_0 > 0$  at the bus stop and discuss how long they have to wait in the mean for the next bus.

Adam: Since the waiting times are  $\text{Exp}(\lambda)$ -distributed and the exponential distribution is memoryless, the mean is  $\lambda^{-1}$ .

Berta: The time between the arrival of two busses is  $\text{Exp}(\lambda)$ -distributed and has mean  $\lambda^{-1}$ . Since on average the same time elapses before our arrival and after our arrival, we obtain the mean waiting time  $\frac{1}{2}\lambda^{-1}$  (at least assuming that at least one bus had arrived before time  $t_0$ ).

What is the correct answer to this waiting time paradoxon?

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



### Exercises: sheet 2

- 1. Let  $(P(t))_{t\geqslant 0}$  be the transition matrices of a continuous-time, time-homogeneous Markov chain with finite state space. Assume that the transition probabilities  $p_{ij}(t)$  are differentiable for  $t\geqslant 0$ . Prove:
  - (a) The derivative satisfies  $p'_{ij}(0) \ge 0$  for  $i \ne j$ ,  $p'_{ii}(0) \le 0$  and  $\sum_j p'_{ij}(0) = 0$ .
  - (b) With the matrix (generator)  $A = (p'_{ij}(0))_{i,j}$  we obtain the forward and backward equation:

$$P'(t) = P(t)A, \quad P'(t) = AP(t), \quad t \geqslant 0.$$

- (c) The generator A defines uniquely P(t):  $P(t) = e^{At} := \sum_{k \ge 0} A^k t^k / k!$ .
- (d\*) Find conditions to extend these results to general countable state space.
- 2. Let  $(X_n, n \ge 0)$  be a discrete-time, time-homogeneous Markov chain and let  $(N_t, t \ge 0)$  be a Poisson process of intensity  $\lambda > 0$ , independent of X. Show that  $Y_t := X_{N_t}, t \ge 0$ , is a continuous-time, time-homogeneous Markov chain. Determine its transition probabilities and its generator.

*Remark*: Under regularity conditions this gives all continuous-time, time-homogeneous Markov chains.

- 3. Let  $C([0,\infty))$  be equipped with the topology of uniform convergence on compacts using the metric  $d(f,g) := \sum_{k \ge 1} 2^{-k} (\sup_{t \in [0,k]} |f(t) g(t)| \wedge 1)$ . Prove:
  - (a)  $(C([0,\infty)),d)$  is Polish.
  - (b) The Borel  $\sigma$ -algebra is the smallest  $\sigma$ -algebra such that all coordinate projections  $\pi_t: C([0,\infty)) \to \mathbb{R}, \ t \geq 0$ , are measurable.
  - (c) For any continuous stochastic process  $(X_t, t \ge 0)$  on  $(\Omega, \mathscr{F}, \mathbb{P})$  the mapping  $\bar{X}: \Omega \to C([0,\infty))$  with  $\bar{X}(\omega)_t := X_t(\omega)$  is Borel-measurable.
  - (d) The law of  $\bar{X}$  is uniquely determined by the finite-dimensional distributions of X.
- 4. Prove the regularity lemma: Let P be a probability measure on the Borel  $\sigma$ -algebra  $\mathfrak{B}$  of any metric (or topological) space. Then

$$\mathcal{D} := \left\{ B \in \mathfrak{B} \,\middle|\, P(B) = \sup_{K \subseteq B \text{ compact}} P(K) = \inf_{O \supseteq B \text{ open}} P(O) \right\}$$

is closed under set differences and countable unions ( $\mathcal{D}$  is a  $\sigma$ -ring). If P is tight, then  $\mathcal{D}$  is a  $\sigma$ -algebra.

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



# Exercises: sheet 3

- 1. A discrete-time Markov process with state space  $(S, \mathcal{S})$  is specified by an initial distribution  $\mu^0$  on  $(S, \mathcal{S})$  and a transition kernel  $P: S \times \mathcal{S} \to [0, 1]$  (i.e.  $B \mapsto P(x, B)$  is a probability measure for all  $x \in S$  and  $x \mapsto P(x, B)$  is measurable for all  $B \in \mathcal{S}$ ). Show:
  - (a) If we put iteratively  $P^n(x,B) := \int_S P^{n-1}(y,B) \, P(x,dy)$  for  $n \ge 2$  and  $P^1 := P$ , then each  $P^n$  is again a transition kernel.
  - (b) Put for all  $n \ge 1$ ,  $A \in \mathscr{S}^{\otimes n}$

$$Q_n(A) := \int_{S^n} \mathbf{1}_A(x_0, x_1, \dots, x_{n-1}) \mu^0(dx_0) P(x_0, dx_1) \cdots P(x_{n-2}, dx_{n-1}).$$

Then  $(Q_n)_{n\geqslant 1}$  defines a projective family on  $S^{\mathbb{N}}$ .

- (c) Let  $(S, \mathscr{S})$  be Polish. Then for each initial distribution  $\mu_0$  and each transition kernel P there exists a stochastic process  $(X_n, n \ge 0)$  satisfying  $\mathbb{P}^{X_0} = \mu_0$  and  $\mathbb{P}^{(X_0, \dots, X_{n-1})} = Q_n, n \ge 1$  (the Markov process).
- 2. A Gaussian process  $(X_t, t \in T)$  is a process whose finite-dimensional distributions are (generalized) Gaussian, i.e.  $(X_{t_1}, \ldots, X_{t_n}) \sim N(\mu_{t_1, \ldots, t_n}, \Sigma_{t_1, \ldots, t_n})$  with  $\Sigma_{t_1, \ldots, t_n} \in \mathbb{R}^{n \times n}$  positive semi-definite.
  - (a) Why are the finite-dimensional distributions of X uniquely determined by the expectation function  $t \mapsto \mathbb{E}[X_t]$  and the covariance function  $(s,t) \mapsto \operatorname{Cov}(X_s, X_t)$ ?
  - (b) Prove that for an arbitrary function  $\mu: T \to \mathbb{R}$  and any symmetric, positive (semi-)definite function  $C: T^2 \to \mathbb{R}$ , i.e. C(t,s) = C(s,t) and

$$\forall n \geqslant 1; t_1, \dots, t_n \in T; \lambda_1, \dots, \lambda_n \in \mathbb{R} : \sum_{i,j=1}^n C(t_i, t_j) \lambda_i \lambda_j \geqslant 0,$$

there is a Gaussian process with expectation function  $\mu$  and covariance function C.

- 3. Let (X,Y) be a two-dimensional random vector with Lebesgue density  $f^{X,Y}$ .
  - (a) For  $x \in \mathbb{R}$  with  $f^X(x) > 0$   $(f^X(x) = \int f^{X,Y}(x,\eta) d\eta)$  consider the conditional density  $f^{Y|X=x}(y) := f^{X,Y}(x,y)/f^X(x)$ . Which condition on  $f^{X,Y}$  ensures for any Borel set B

$$\lim_{h\downarrow 0} \mathbb{P}(Y \in B \mid X \in [x, x+h]) = \int_B f^{Y|X=x}(y) \, dy \quad ?$$

(b) Show that for  $Y \in L^2$  (without any condition on  $f^{X,Y}$ ) the function

$$\varphi_Y(x) := \begin{cases} \int y f^{Y|X=x}(y) \, dy, & f^X(x) > 0 \\ 0, & \text{otherwise} \end{cases}$$

minimizes the  $L^2$ -distance  $\mathbb{E}[(Y - \varphi(X))^2]$  over all measurable functions  $\varphi$ . We write  $\mathbb{E}[Y \mid X = x] := \varphi_Y(x)$  and  $\mathbb{E}[Y \mid X] := \varphi_Y(X)$ .

(c) Prove that  $\varphi_Y$  is  $\mathbb{P}^X$ -a.s. uniquely (among all  $\varphi: \mathbb{R} \to \mathbb{R}$  measurable) characterized by solving

$$\forall A \in \mathfrak{B}_{\mathbb{R}} : \mathbb{E}[\varphi(X)\mathbf{1}_A(X)] = \mathbb{E}[Y\mathbf{1}_A(X)].$$

- 4. In the situation of exercise 3 prove the following properties:
  - (a)  $\mathbb{E}[\mathbb{E}[Y \mid X]] = \mathbb{E}[Y];$
  - (b) if X and Y are independent, then  $\mathbb{E}[Y | X] = \mathbb{E}[Y]$  holds a.s.;
  - (c) if  $Y \ge 0$  a.s., then  $\mathbb{E}[Y \mid X] \ge 0$  a.s.;
  - (d) for all  $\alpha, \beta \in \mathbb{R}$ ,  $\alpha \neq 0$  we have  $\mathbb{E}[\alpha Y + \beta \mid X] = \alpha \mathbb{E}[Y \mid X] + \beta$  a.s.;
  - (e) if  $\varphi : \mathbb{R} \to \mathbb{R}$  is such that  $(x,y) \mapsto (x,y\varphi(x))$  is a diffeomorphism and  $Y\varphi(X) \in L^2$ , then  $\mathbb{E}[Y\varphi(X) \mid X] = \mathbb{E}[Y \mid X]\varphi(X)$  a.s.

Submit before the lecture on Tuesday, 10 November 2009

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



#### Exercises: sheet 4

- 1. Let  $\Omega = \bigcup_{n \in \mathbb{N}} B_n$  be a measurable, countable partition for given  $(\Omega, \mathcal{F}, \mathbb{P})$  and put  $\mathcal{B} := \sigma(B_n, n \in \mathbb{N})$ . Show:
  - (a) Every  $\mathcal{B}$ -measurable random variable X can be written as  $X = \sum_{n} \alpha_{n} \mathbf{1}_{B_{n}}$  with suitable  $\alpha_{n} \in \mathbb{R}$ . For  $Y \in L^{1}$  we have  $\mathbb{E}[Y \mid \mathcal{B}] = \sum_{n: \mathbb{P}(B_{n}) > 0} \left(\frac{1}{\mathbb{P}(B_{n})} \int_{B_{n}} Y d\mathbb{P}\right) \mathbf{1}_{B_{n}}$ .
  - (b) Specify  $\Omega = [0,1)$  with Borel  $\sigma$ -algebra and  $\mathbb{P} = U([0,1))$ , the uniform distribution. For  $Y(\omega) := \omega$ ,  $\omega \in [0,1)$ , determine  $\mathbb{E}[Y \mid \sigma([(k-1)/n,k/n), k=1,\ldots,n)]$ . For n=1,3,5,10 plot the conditional expectations and Y itself as functions on  $\Omega$ .
- 2. Let (X,Y) be a two-dimensional  $N(\mu,\Sigma)$ -random vector.
  - (a) For which  $\alpha \in \mathbb{R}$  are X and  $Y \alpha X$  uncorrelated?
  - (b) Conclude that X and  $Y (\alpha X + \beta)$  are independent for these values  $\alpha$  and for arbitrary  $\beta \in \mathbb{R}$  such that  $\mathbb{E}[Y|X] = \alpha X + \beta$  with suitable  $\beta \in \mathbb{R}$ .
- 3. For  $Y \in L^2$  define the conditional variance of Y given X by

$$\operatorname{Var}(Y|X) := \mathbb{E}[(Y - \mathbb{E}[Y \mid X])^2 \mid X].$$

- (a) Why is Var(Y|X) well defined?
- (b) Show  $Var(Y) = Var(\mathbb{E}[Y | X]) + \mathbb{E}[Var(Y | X)].$
- (c) Use (b) to prove for independent random variables  $(Z_k)_{k\geqslant 1}$  and N in  $L^2$  with  $(Z_k)$  identically distributed and N  $\mathbb{N}$ -valued:

$$\operatorname{Var}\left(\sum_{k=1}^{N} Z_{k}\right) = \mathbb{E}[Z_{1}]^{2} \operatorname{Var}(N) + \mathbb{E}[N] \operatorname{Var}(Z_{1}).$$

- 4. For a convex function  $\varphi : \mathbb{R} \to \mathbb{R}$  (i.e.  $\varphi(\alpha x + (1 \alpha)y) \leqslant \alpha \varphi(x) + (1 \alpha)\varphi(y)$ ) for  $x, y \in \mathbb{R}$ ,  $\alpha \in (0, 1)$ ) show:
  - (a)  $D(x,y):=\frac{\varphi(y)-\varphi(x)}{y-x}, \ x\neq y$ , is non-decreasing in x and y, which implies that  $\varphi$  is differentiable from the right and from the left and that  $\varphi$  is continuous.
  - (b) Using the right-derivative  $\varphi'_+$ , we have:

$$\forall x, y \in \mathbb{R}: \qquad \qquad \varphi(y) \geqslant \varphi(x) + \varphi'_{+}(x)(y - x),$$
  
$$\forall y \in \mathbb{R}: \qquad \qquad \varphi(y) = \sup_{x \in \mathbb{Q}} (\varphi(x) + \varphi'_{+}(x)(y - x)).$$

(c) Assume  $Y, \varphi(Y) \in L^1$ . Then  $\mathbb{E}[\varphi(Y) | \mathcal{G}] \geqslant \varphi(x) + \varphi'_+(x)(\mathbb{E}[Y | \mathcal{G}] - x)$  holds for all  $x \in \mathbb{R}$ . Infer Jensen's inequality:  $\mathbb{E}[\varphi(Y) | \mathcal{G}] \geqslant \varphi(\mathbb{E}[Y | \mathcal{G}])$ .

Submit before the lecture on Tuesday, 17 November 2009

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



### Exercises: sheet 5

- 1. Doubling strategy: In each round a fair coin is tossed, for heads the player receives his double stake, for tails he loses his stake. His initial capital is  $K_0 = 0$ . At game  $n \ge 1$  his strategy is as follows: if heads has appeared before, his stake is zero (he stops playing); otherwise his stake is  $2^{n-1}$  Euro.
  - (a) Argue why his capital  $K_n$  after game n can be modeled with independent  $(X_i)$  such that  $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$  via

$$K_n = \begin{cases} -(2^n - 1), & X_1 = \dots = X_n = -1, \\ 1, & \text{otherwise.} \end{cases}$$

- (b) Represent  $K_n$  as martingale transform.
- (c) Prove  $\lim_{n\to\infty} K_n = 1$  a.s. although  $\mathbb{E}[K_n] = 0$  for all  $n \ge 0$  holds.
- 2. Let T be an  $\mathbb{N}_0$ -valued random variable and  $S_n := \mathbf{1}_{\{n \geqslant T\}}, n \geqslant 0$ . Show:
  - (a) The natural filtration satisfies  $\mathcal{F}_n^S = \sigma(\{T=k\}, k=0,\ldots,n)$ .
  - (b)  $(S_n)$  is a submartingale with respect to  $(\mathcal{F}_n^S)$  and

$$\mathbb{E}[S_{n+1} \mid \mathcal{F}_n^S] = \mathbf{1}_{\{S_n=1\}} + \mathbb{P}(T = n+1 \mid T \geqslant n+1) \mathbf{1}_{\{S_n=0\}} \mathbb{P}\text{-a.s.}$$

- (c) Determine the Doob decomposition of  $(S_n)$ . Sketch for geometrically distributed T ( $\mathbb{P}(T=k)=(1-p)p^k$ ) the sample paths of  $(S_n)$ , its compensator and their difference.
- 3. Prove the *Höffding inequality*: Let  $(M_n)$  be a martingale with  $M_0 = 0$  and  $|M_n(\omega) M_{n-1}(\omega)| \leq K_n$ ,  $\omega \in \Omega$ ,  $n \geq 1$ . Then:

$$\mathbb{P}(|M_n| \geqslant x) \leqslant 2 \exp\left(-\frac{x^2}{2\sum_{i=1}^n K_i^2}\right), \quad x > 0.$$

Proceed stepwise:

- (a) From  $\mathbb{E}[Z] = 0$  and  $|Z| \leq 1$  we deduce  $e^{\eta Z} \leq \cosh(\eta) + Z \sinh(\eta)$  and  $\mathbb{E}[e^{\eta Z}] \leq \cosh(\eta) \leq e^{\eta^2/2}$  for all  $\eta \in \mathbb{R}$ .
- (b) This implies  $\mathbb{E}[\exp(\eta M_n) \mid \mathcal{F}_{n-1}] \leq \exp(\eta M_{n-1} + \eta^2 K_n^2/2)$ .
- (c) By induction we obtain  $\mathbb{E}[\exp(\eta M_n)] \leq \exp(\eta^2 \sum_{i=1}^n K_i^2/2)$ .
- (d) Use the (generalized) Markov inequality and optimize over  $\eta$  to conclude.

4. Your winnings per unit stake on game game n are  $\varepsilon_n$ , where  $(\varepsilon_n)$  are independent random variables with  $\mathbb{P}(\varepsilon_n = 1) = p$ ,  $\mathbb{P}(\varepsilon_n = -1) = 1 - p$  for p > 1/2. Your stake  $X_n$  on game n must lie between zero and  $C_{n-1}$ , your capital at time n-1. For some  $N \in \mathbb{N}$  and  $C_0 > 0$  your objective is to maximize the expected interest rate  $\mathbb{E}[\log(C_N/C_0)]$ .

Show that for any predictable strategy X the process  $\log(C_n) - n\alpha$  is a supermartingale with respect to  $\mathscr{F}_n := \sigma(\varepsilon_1, \dots, \varepsilon_n)$  where

$$\alpha := p \log p + (1 - p) \log(1 - p) + \log 2 \ (entropy).$$

Hence,  $\mathbb{E}[\log(C_N/C_0)] \leq N\alpha$  always holds. Find an optimal strategy such that  $\log(C_n) - n\alpha$  is even a martingale.

Remark: This is the martingale approach to optimal control.

Submit before the lecture on Tuesday, 24 November 2009

Course Stochastic Processes

Winter 2009/10

Humboldt-Universität zu Berlin



### Exercises: sheet 6

- 1. Let  $(\mathcal{F}_n^X)_{n\geqslant 0}$  be the natural filtration of a process  $(X_n)_{n\geqslant 0}$  and consider a finite stopping time  $\tau$  with respect to  $(\mathcal{F}_n^X)$ .
  - (a) Prove  $\mathcal{F}_{\tau} = \sigma(\tau, X_{\tau \wedge n}, n \geq 0)$ . Hint: for ' $\subseteq$ ' write  $A \in \mathcal{F}_{\tau}$  as  $A = \bigcup_{n} A \cap \{\tau = n\}$ .
  - (b\*) Do we even have  $\mathcal{F}_{\tau} = \sigma(X_{\tau \wedge n}, n \geq 0)$ ?
- 2. Let  $(S_n)_{n\geqslant 0}$  be a simple random walk with  $\mathbb{P}(S_n-S_{n-1}=1)=p, \mathbb{P}(S_n-S_{n-1}=-1)=q=1-p, p\in (0,1).$  Prove:
  - (a) Put  $M(\lambda) = pe^{\lambda} + qe^{-\lambda}$ ,  $\lambda \in \mathbb{R}$ . Then the process

$$Y_n^{\lambda} := \exp\left(\lambda S_n - n\log(M(\lambda))\right), \quad n \geqslant 0,$$

is a martingale (w.r.t. its natural filtration).

(b) For  $a, b \in \mathbb{Z}$  with a < 0 < b and the stopping time(!)  $\tau := \inf\{n \ge 0 \mid S_n \in \{a, b\}\}$  we have

$$e^{a\lambda} \mathbb{E}[M(\lambda)^{-\tau} \mathbf{1}_{\{S_{\tau}=a\}}] + e^{b\lambda} \mathbb{E}[M(\lambda)^{-\tau} \mathbf{1}_{\{S_{\tau}=b\}}] = 1 \text{ if } M(\lambda) \geqslant 1.$$

(c) This implies for all  $s \in (0,1]$  (put  $s = M(\lambda)^{-1}$ )

$$\mathbb{E}[s^{\tau} \mathbf{1}_{\{S_{\tau}=a\}}] = \frac{\lambda_{+}(s)^{b} - \lambda_{-}(s)^{b}}{\lambda_{+}(s)^{b} \lambda_{-}(s)^{a} - \lambda_{+}(s)^{a} \lambda_{-}(s)^{b}},$$

$$\mathbb{E}[s^{\tau} \mathbf{1}_{\{S_{\tau}=b\}}] = \frac{\lambda_{-}(s)^{a} - \lambda_{+}(s)^{a}}{\lambda_{+}(s)^{b} \lambda_{-}(s)^{a} - \lambda_{+}(s)^{a} \lambda_{-}(s)^{b}},$$

with 
$$\lambda_{\pm}(s) = (1 \pm \sqrt{1 - 4pqs^2})/(2ps)$$
.

(d) Now let  $a \downarrow -\infty$  and infer that the generating function of the first passage time  $\tau_b := \inf\{n \ge 0 \mid S_n = b\}$  is given by

$$\varphi_{\tau_b}(s) := \mathbb{E}[s^{\tau_b} \mathbf{1}_{\{\tau_b < \infty\}}] = \left(\frac{1 - \sqrt{1 - 4pqs^2}}{2qs}\right)^b, \quad s \in (0, 1].$$

In particular, we have  $\mathbb{P}(\tau_b < \infty) = \varphi_{\tau_b}(1) = \min(1, p/q)^b$ .

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



# Exercises: sheet 7

- 1. Let  $(X_n)_{n\geqslant 0}$  be an  $(\mathscr{F}_n)$ -adapted family of random variables in  $L^1$ . Show that  $(X_n)_{n\geqslant 0}$  is a martingale if and only if for all bounded  $(\mathscr{F}_n)$ -stopping times  $\tau$  the identity  $\mathbb{E}[X_\tau] = \mathbb{E}[X_0]$  holds.
- 2. Prove that a family  $(X_i)_{i\in I}$  of random variables is uniformly integrable if and only if  $\sup_{i\in I} ||X_i||_{L^1} < \infty$  holds as well as

$$\forall \varepsilon > 0 \; \exists \, \delta > 0 : \; \mathbb{P}(A) < \delta \Rightarrow \sup_{i \in I} \mathbb{E}[|X_i| \mathbf{1}_A] < \varepsilon.$$

- 3. Give a martingale proof of Kolmogorov's 0-1 law:
  - (a) Let  $(\mathscr{F}_n)$  be a filtration and  $\mathscr{F}_{\infty} = \sigma(\mathscr{F}_n, n \geqslant 0)$ . Then for  $A \in \mathscr{F}_{\infty}$  we have  $\lim_{n \to \infty} \mathbb{E}[\mathbf{1}_A \mid \mathscr{F}_n] = \mathbf{1}_A$  a.s.
  - (b) For a sequence  $(X_k)_{k\geqslant 1}$  of independent random variables consider the natural filtration  $(\mathscr{F}_n)$  and the terminal  $\sigma$ -algebra  $\mathscr{T}:=\bigcap_{n\geqslant 1}\sigma(X_k,\,k\geqslant n)$ . Then for  $A\in\mathscr{T}$  we deduce  $\mathbb{P}(A)=\mathbb{E}[1_A\,|\,\mathscr{F}_n]\to\mathbf{1}_A$  a.s. such that  $P(A)\in\{0,1\}$  holds.
- 4. A monkey types at random the 26 capital letters of the Latin alphabet. Let  $\tau$  be the first time by which the monkey has completed the sequence ABRACADABRA. Prove that  $\tau$  is almost surely finite and satisfies

$$\mathbb{E}[\tau] = 26^{11} + 26^4 + 26.$$

How much time does it take on average if one letter is typed every second? *Hint:* You may look at a fair game with gamblers  $G_n$  arriving before times  $n = 1, 2, ..., G_n$  bets 1 Euro on 'A' for letter n; if he wins, he puts 26 Euro on 'B' for letter n + 1, otherwise he stops. If he wins again, he puts  $26^2$  Euro on 'R', otherwise he stops etc.

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



### Exercises: sheet 8

- 1. Suppose  $\mathbb{P}_0$ ,  $\mathbb{P}_1$ ,  $\mathbb{P}_2$  are probability measures on  $(\Omega, \mathscr{F})$ . Show:
  - (a) If  $\mathbb{P}_2 \ll \mathbb{P}_1 \ll \mathbb{P}_0$  holds, then  $\frac{d\mathbb{P}_2}{d\mathbb{P}_0} = \frac{d\mathbb{P}_2}{d\mathbb{P}_1} \frac{d\mathbb{P}_1}{d\mathbb{P}_0}$  holds  $\mathbb{P}_0$ -a.s.
  - (b)  $\mathbb{P}_0$  and  $\mathbb{P}_1$  are equivalent (i.e.  $\mathbb{P}_1 \ll \mathbb{P}_0$  and  $\mathbb{P}_0 \ll \mathbb{P}_1$ ) if and only if  $\mathbb{P}_1 \ll \mathbb{P}_0$  and  $\frac{d\mathbb{P}_1}{d\mathbb{P}_0} > 0$  holds  $\mathbb{P}_0$ -a.s. In that case we have  $\frac{d\mathbb{P}_0}{d\mathbb{P}_1} = \left(\frac{d\mathbb{P}_1}{d\mathbb{P}_0}\right)^{-1} \mathbb{P}_0$ -a.s. and  $\mathbb{P}_1$ -a.s.
- 2. Prove in detail for  $\mathbb{Q} \ll \mathbb{P}$ ,  $Z = \frac{d\mathbb{Q}}{d\mathbb{P}}$  and  $Y \in L^1(\mathbb{Q})$  the identity  $\mathbb{E}_{\mathbb{Q}}[Y] = \mathbb{E}_{\mathbb{P}}[YZ]$ . Give an example where  $Y \in L^1(\mathbb{Q})$ , but not  $Y \in L^1(\mathbb{P})$  holds.
- 3. Let  $(Z_n)_{n\geqslant 0}$  be a non-negative martingale on  $(\Omega, \mathscr{F}, \mathbb{P}, (\mathscr{F}_n))$  with  $\mathbb{E}_{\mathbb{P}}[Z_0] = 1$ . Prove:
  - (a)  $\mathbb{Q}_n(A) := \mathbb{E}[Z_n \mathbf{1}_A], A \in \mathscr{F}_n$ , defines a probability measure with  $\mathbb{Q}_n \ll \mathbb{P}|_{\mathscr{F}_n}$  for all  $n \geqslant 0$ . For m > n we have the consistency  $\mathbb{Q}_n = \mathbb{Q}_m|_{\mathscr{F}_n}$ .
  - (b) Conversely, if  $(\mathbb{Q}_n)$  is a sequence of probability measures satisfying this consistency property and  $\mathbb{Q}_n \ll \mathbb{P}|_{\mathscr{F}_n}$  for all  $n \geqslant 0$ , then  $Z_n := \frac{d\mathbb{Q}_n}{d\mathbb{P}|_{\mathscr{F}_n}}$ ,  $n \geqslant 0$ , forms a  $\mathbb{P}$ -martingale.
  - (c) The following change-of-measure rule is valid for  $n\leqslant m$  and  $Y\in L^1(\Omega,\mathscr{F}_m,\mathbb{Q}_m)$ :

$$\mathbb{E}_{\mathbb{Q}_m}[Y \,|\, \mathscr{F}_n] = \frac{\mathbb{E}_{\mathbb{P}}[Y Z_m \,|\, \mathscr{F}_n]}{Z_n} \qquad \mathbb{P}\text{-a.s. and } \mathbb{Q}_m\text{-a.s.}$$

Here, the right hand side is set to zero on  $\{Z_n = 0\}$ .

- 4. Let  $Z_n(x) = (3/2)^n \sum_{k \in \{0,2\}^n} \mathbf{1}_{I(k,n)}(x), x \in [0,1],$  with intervals  $I(k,n) := [\sum_{i=1}^n k_i 3^{-i}, \sum_{i=1}^n k_i 3^{-i} + 3^{-n}].$  Show:
  - (a)  $(Z_n)_{n\geqslant 0}$  with  $Z_0=1$  forms a martingale on  $([0,1],\mathfrak{B}_{[0,1]},\lambda,(\mathscr{F}_n))$  with Lebesgue measure  $\lambda$  on [0,1] and  $\mathscr{F}_n:=\sigma(I(k,n),\,k\in\{0,1,2\}^n)$ .
  - (b)  $(Z_n)$  converges  $\lambda$ -a.s., but not in  $L^1([0,1],\mathfrak{B}_{[0,1]},\lambda)$  (Sketch!).
  - (c) Interpret  $Z_n$  as the density of a probability measure  $\mathbb{P}_n$  with respect to  $\lambda$ . Then  $(\mathbb{P}_n)$  converges weakly to some probability measure  $\mathbb{P}_{\infty}$  ( $\mathbb{P}_{\infty}$  is called *Cantor measure*). There is a Borel set  $C \subseteq [0,1]$  with  $\mathbb{P}_{\infty}(C) = 1$ ,  $\lambda(C) = 0$ .

*Hint*: Show that the distribution functions converge to a limit distribution function, which is  $\lambda$ -a.e. constant.

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



#### Exercises: sheet 9

- 1. Let  $(X_t, t \in T)$  be a Gaussian process for  $T = \mathbb{R}^+$  or  $T = \mathbb{N}_0$ . Show that X is stationary if and only if X is weakly stationary, i.e. its mean function is constant and its covariance function c satisfies c(t,s) = c(t-s,0) for all  $t \ge s$ . Find an example of a non-Gaussian process, which is weakly stationary, but not stationary in the strict sense.
- 2. Let  $X_0 \sim N(\mu, \sigma_0^2)$  and  $\varepsilon_t \sim N(0, \sigma^2)$ ,  $t \ge 1$ , be independent random variables. Then for  $a \in \mathbb{R}$  the *autoregressive process* X is defined recursively by

$$X_t = aX_{t-1} + \varepsilon_t, \quad t \geqslant 1.$$

- (a) Why is  $(X_t, t \in \mathbb{N}_0)$  a Gaussian process?
- (b) Determine the mean and the covariance function of X.
- (c) For which parameter values  $a, \mu, \sigma_0^2, \sigma^2$  is X stationary?
- (d\*) Simulate some trajectories of  $(X_t, 0 \le t \le 100)$  for  $\mu = 0$ ,  $\sigma_0^2 = \sigma^2 = 1$  and  $a \in \{0; -0.5; 1; -2\}$ .
- 3. Prove the following result for the invariant  $\sigma$ -algebra  $\mathscr{I}_T$  with respect to some measure-preserving transformation T on  $(\Omega, \mathscr{F}, \mathbb{P})$ :
  - (a) A (real-valued) random variable Y is  $\mathscr{I}_T$ -measurable if and only if it is  $\mathbb{P}$ -a.s. invariant, i.e.  $\mathbb{P}(Y \circ T = Y) = 1$ . In particular, T is ergodic if and only if each  $\mathbb{P}$ -a.s. invariant and bounded random variable is  $\mathbb{P}$ -a.s. constant.
  - (b) For each invariant event  $A \in \mathscr{I}_T$  there exists a strictly invariant event B (i.e. with  $T^{-1}(B) = B$  exactly) such that  $\mathbb{P}(A\Delta B) = 0$ .
- 4. Let  $(X_n, n \ge 0)$  be a real-valued ergodic process, canonically constructed on  $(\mathbb{R}^{\mathbb{N}_0}, \mathfrak{B}_{\mathbb{R}}^{\otimes \mathbb{N}_0}, \mathbb{P})$  (i.e. the corresponding left-shift T is measure-preserving and ergodic). Prove:
  - (a) For any  $m \ge 1$  the  $\mathbb{R}^2$ -valued process  $((X_n, X_{n+m}), n \ge 0)$  is also ergodic.
  - (b) Suppose  $X_n \in L^2$  for all  $n \ge 0$ . Then the following estimators for the mean  $\mathbb{E}[X_0]$  and the covariance  $\text{Cov}(X_0, X_m)$  are strongly consistent (i.e. converge a.s. to the true value for  $n \to \infty$ ):

$$\hat{\mu}_n := \frac{1}{n} \sum_{k=0}^{n-1} X_k, \quad \hat{C}_n(m) := \frac{1}{n} \sum_{k=0}^{n-m-1} X_k X_{k+m} - \hat{\mu}_n^2.$$

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



#### Exercises: sheet 10

- 1. Prove von Neumann's ergodic theorem: For measure-preserving T and  $X \in L^p$ ,  $p \ge 1$ , we have that  $A_n := \frac{1}{n} \sum_{i=0}^{n-1} X \circ T^i$  converges to  $\mathbb{E}[X \mid \mathscr{I}_T]$  in  $L^p$ . Hint: Show that  $|A_n|^p$  is uniformly integrable.
- 2. Show that a measure-preserving map T on  $(\Omega, \mathscr{F}, \mathbb{P})$  is ergodic if and only if for all  $A, B \in \mathscr{F}$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{P}(A \cap T^{-k}B) = \mathbb{P}(A) \, \mathbb{P}(B).$$

*Hint:* For one direction apply an ergodic theorem to  $\mathbf{1}_B$ .

- 3. Gelfand's Problem: Does the decimal representation of  $2^n$  ever start with the initial digit 7? Study this as follows:
  - (a) Determine the relative frequencies of the initial digits of  $(2^n)_{1 \leq n \leq 30}$ .
  - (b) Let  $A \sim U([0,1])$ . Prove that the initial digit k in  $(10^A 2^n)_{1 \leq n \leq m}$  converges as  $m \to \infty$  a.s. to  $\log_{10}(k+1) \log_{10}(k)$  (consider  $X_n = A + n \log_{10}(2)$  mod 1!).
  - (c) Prove that the convergence in (b) even holds everywhere. In particular, the relative frequency of the initial digit 7 in the powers of 2 converges to  $\log_{10}(8/7) \approx 0,058$ .

    Hint: Show for trigonometric polynomials  $p(a) = \sum_{|m| \leqslant M} c_m e^{2\pi i m a}$  that  $\frac{1}{n} \sum_{k=0}^{n-1} p(a+k\eta) \to \int_0^1 p(x) dx$  holds for all  $\eta \in \mathbb{R} \setminus \mathbb{Q}$ ,  $a \in [0,1]$  (calculate explicitly for monomials!) and approximate.
- 4. Consider the Ehrenfest model, i.e. a Markov chain on  $S = \{0, 1, ..., N\}$  with transition probabilities  $p_{i,i+1} = (N-i)/N$ ,  $p_{i,i-1} = i/N$ .
  - (a) Show that  $\mu(\{i\}) = {N \choose i} 2^{-N}$ ,  $i \in S$ , is an invariant initial distribution.
  - (b) Is the Markov chain starting in  $\mu$  ergodic?
  - (\*c) Simulate the Ehrenfest model with initial value  $i_0 \in \{N/2; N\}$ , N = 100 for  $T \in \{100; 100, 000\}$  time steps. Plot the relative frequencies of visits to each state in S and compare with  $\mu$ . Explain what you see!

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



# Exercises: sheet 11

1. Decide whether for  $n \to \infty$  the probability  $\mathbb{P}_n$  with the following Lebesgue densities  $f_n$  on  $\mathbb{R}$  converge in total variation distance, weakly or not at all:

$$f_n(x) = ne^{-nx}\mathbf{1}_{[0,\infty)}(x), \quad f_n(x) = \frac{n+1}{n}x^{1/n}\mathbf{1}_{[0,1]}(x), \quad f_n(x) = \frac{1}{n}\mathbf{1}_{[0,n]}(x).$$

- 2. Consider real-valued random variables  $(X_n)_{n\geqslant 1}, (Y_n)_{n\geqslant 1}, X$ . Prove:
  - (a) If  $\mathbb{P}(X = a) = 1$  holds for some  $a \in \mathbb{R}$ , then  $X_n \xrightarrow{d} X \iff X_n \xrightarrow{\mathbb{P}} X$ .
  - (b) If  $Y_n \xrightarrow{d} a$ ,  $a \in \mathbb{R}$ , and  $X_n \xrightarrow{d} X$ , then  $(X_n, Y_n) \xrightarrow{d} (X, a)$ , in particular  $X_n Y_n \xrightarrow{d} a X$ .
- 3. We say that a family of real-valued random variables  $(X_i)_{i \in I}$  is stochastically bounded, notation  $X_i = O_{\mathbb{P}}(1)$ , if

$$\lim_{R \to \infty} \sup_{i \in I} \mathbb{P}(|X_i| > R) = 0.$$

- (a) Show  $X_i = O_{\mathbb{P}}(1)$  if and only if the laws  $(\mathbb{P}^{X_i})_{i \in I}$  are uniformly tight.
- (b) Prove that any  $L^p$ -bounded family of random variables is stochastically bounded, hence has uniformly tight laws.
- (c) If  $X_n \stackrel{\mathbb{P}}{\to} 0$  holds, then we write  $X_n = o_{\mathbb{P}}(1)$ . Check the symbolic rules  $O_{\mathbb{P}}(1) + o_{\mathbb{P}}(1) = O_{\mathbb{P}}(1)$  and  $O_{\mathbb{P}}(1)o_{\mathbb{P}}(1) = o_{\mathbb{P}}(1)$ .
- 4. Prove: Every relatively (weakly) compact family  $(\mathbb{P}_i)_{i\in I}$  of probability measures on a Polish space  $(S,\mathfrak{B}_S)$  is uniformly tight. Proceed as follows:
  - (a) For  $k \geqslant 1$  consider open balls  $(A_{k,m})_{m\geqslant 1}$  of radius 1/k that cover S. If  $\limsup_{M\to\infty}\inf_i \mathbb{P}_i(\bigcup_{m=1}^M A_{k,m})<1$  were true, then by assumption and by the Portmanteau Theorem we would have  $\limsup_{M\to\infty} \mathbb{Q}(\bigcup_{m=1}^M A_{k,m})<1$  for some limiting probability measure  $\mathbb{Q}$ , which is contradictory.
  - (b) Conclude that for any  $\varepsilon > 0$ ,  $k \ge 1$  there are indices  $M_{k,\varepsilon} \ge 1$  such that  $\inf_i \mathbb{P}_i(K) > 1 \varepsilon$  holds with  $K := \bigcap_{k \ge 1} \bigcup_{m=1}^{M_{k,\varepsilon}} A_{k,m}$ . Moreover, K is relatively compact in S, which suffices.

Course Stochastic Processes Winter 2009/10 Humboldt-Universität zu Berlin



# Exercises: sheet 12

- 1. The Brownian bridge  $(X_t, t \in [0, 1])$  is a centered and continuous Gaussian process with  $Cov(X_s, X_t) = s(1 t)$  for  $0 \le s \le t \le 1$ . Show that it has the same law on C([0, 1]) as  $(B_t tB_1, t \in [0, 1])$ , B a Brownian motion. Optional: Simulate 100 trajectories of a Brownian bridge. Use conditional densities to show that X is the process obtained from  $(B_t, t \in [0, 1])$  conditioned on  $\{B_1 = 0\}$ .
- 2. Prove: If the random vector  $X_n \in \mathbb{R}^{d_1}$  is independent of the random vector  $Y_n \in \mathbb{R}^{d_2}$  for all  $n \geqslant 1$  and  $X_n \xrightarrow{d} N(\mu_1, \Sigma_1)$ ,  $Y_n \xrightarrow{d} N(\mu_2, \Sigma_2)$  hold, then  $(X_n, Y_n) \xrightarrow{d} N(\mu_1, \Sigma) \otimes N(\mu_2, \Sigma_2) = N((\mu_1, \mu_2), \operatorname{diag}(\Sigma_1, \Sigma_2))$  follows. Hint: Check that  $(X_n, Y_n)_{n\geqslant 1}$  has tight laws and identify the limiting laws on cartesian products. Optional: Show a more general result for independent laws on Polish spaces.
- 3. Let  $(S, \mathcal{S})$  be a measurable space, T an uncountable set.
  - (a) Show that for each  $B \in \mathscr{S}^{\otimes T}$  there is a countable set  $I \subseteq T$  such that

$$\forall x \in S^T, y \in B : (x(t) = y(t) \text{ for all } t \in I) \Rightarrow x \in B.$$

*Hint:* Check first that sets B with this property form a  $\sigma$ -algebra.

- (b) Conclude for a metric space S with at least two elements that the set  $C := \{f : [0,1] \to S \mid f \text{ continuous}\}\$ does not belong to  $\mathscr{S}^{\otimes [0,1]}$ .
- 4. Consider the simple symmetric random walk  $(S_n, n \ge 0)$  and the stopping time  $\tau_a := \inf\{n \ge 0 \mid S_n = a\}$  for  $a \in \mathbb{N}$ .
  - (a) Prove the reflection principle (sketch!):  $\mathbb{P}(S_n > a) = \mathbb{P}(S_n > a, \tau_a < n) = \mathbb{P}(S_n < a, \tau_a < n)$ .
  - (b) Conclude for  $M_n = \max\{S_0, \ldots, S_n\}$ :

$$\mathbb{P}(M_n \geqslant a) = \mathbb{P}(\tau_a \leqslant n) = \mathbb{P}(S_n = a) + 2 \mathbb{P}(S_n > a).$$