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1
Introduction

Quantum field theory, or to be more precise, perturbative quantum field the-
ory, provides the framework for theories or models in particle physics, such
as the Standard Model of elementary particle physics. The Standard Model is
our most complete description of nature on the small scale, although it has its
problems.

Experimentally measurable quantities, such as scattering cross sections
and decay rates, are obtained from the correlation functions. Feynman graphs
and Feynman rules are the tools one uses to compute these functions. These
computations involve integrals over momenta, and it is known that for scalar
theories these can be rewritten systematically as integrals over positive param-
eters (Schwinger parameters), involving certain polynomials (the Symanzik
polynomials). This will be discussed in chapter 2.

Many tools have been and are being developed to compute these paramet-
ric integrals and study the underlying mathematics.∗ Together with a pro-
gram that generates Feynman graphs and finds the subdivergences†, one has
in principle a powerful tool to do computations. However, a serious problem
is that the expressions can get gigantic.

The goal of this thesis is to extend this parametric representation from
scalar theories to gauge theories: quantum electrodynamics, scalar electrody-
namics and Yang-Mills theories will be discussed here, in chapter 3, 4 and 5

respectively. This adds to to previous work for QED by Nakanishi, Cvitanović
and Kinoshita.‡

Furthermore, the respective Ward identities in these theories are studied.
These identities show that the gauge bosons, or photons in the case of (s)QED,
are transversal, as expected from the classical theory.

∗For example, see [5], [2], [13] and [14].
†such as [4]
‡[12], section 9-2 and [8] respectively. See also [1], section V.
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2
Scalar Theories

2.1 Feynman Graphs

We start by introducing the combinatorial tool we need for our computations:

Definition 2.1. A Feynman graph∗ Γ is defined by:

• a finite set of half-edges Γhe,

• a partition Γ[0] on Γhe, which we call the set of vertices,

• and a set of internal edges† Γ[1], which consists of disjoint unordered pairs
of half-edges.

The half-edges that do not show up in Γ[1] are called external edges‡ and
the set of external edges is denoted by Γext:

Γext := Γhe∖ ⋃
e∈Γ[1]

e . (2.1)

An edge e ∈ Γ[1] is called incident to a vertex v ∈ Γ[0] if v ∩ e 6= ∅. Two
vertices are said to be adjacent if there is an edge incident to both of them, and
two edges are adjacent if they are incident to the same vertex.

We use the words ‘graphs’, ‘edges’ and ‘vertices’ for a reason: we represent
Feynman graphs indeed graphically:

Example 2.2. i. Let Γ be given by

Γhe = {1, 2, 3, 4, 5, 6} , Γ[0] =
{
{1, 2, 3}, {4, 5, 6}

}
and Γ[1] =

{
{3, 4}

}
.

∗or Feynman diagram
†In physics literature the word lines is also used.
‡or legs
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This graph looks like:

Γ =
34

61

2 5

.

We have Γext = {1, 2, 5, 6}.

ii. Let Γhe and Γ[0] be as above, but now take

Γ[1] =
{
{2, 4}, {3, 5}

}
.

This one looks like:

Γ =
2 4

53

1 6 .

In this case: Γext = {1, 6}.

iii. The empty graph ∅ (∅he = ∅) is a graph too.

The number of half-edges #v in a vertex v is called the valence of v. If every
vertex in a graph has the same valence k, we say that it is a k-regular graph.
Both graphs in example 2.2.i and ii are 3-regular.

Definition 2.3. Let Γ1 and Γ2 be Feynman graphs. A Feynman graph isomor-
phism φ : Γ1 → Γ2 is given by a bijection φ : Γhe

1 → Γhe
2 which respects the

vertices, internal edges and external edges. By this we mean:

• if v ∈ Γ
[0]
1 , then φ(v) ∈ Γ

[0]
2 ,

• if e ∈ Γ
[1]
1 , then φ(e) ∈ Γ

[1]
2 ,

• and for every h ∈ Γext
1 : φ(h) = h.

If such an isomorphism between Γ1 and Γ2 exists, we say that Γ1 and Γ2 are
equivalent Feynman graphs: Γ1

∼= Γ2.

Note that the third condition above implies that Γ1 and Γ2 can only be
equivalent if Γext

1 = Γext
2 .

Example 2.4. i. Let

Γ1 =
3 4

56

1 2 , Γ2 =
37 42

99100

1 2

and φ : Γ1 → Γ2 given by

1 7→ 1 , 2 7→ 2 , 3 7→ 37 , 4 7→ 42 , 5 7→ 99 , 6 7→ 100 .

φ is a isomorphism in the sense of definition 2.3 and hence Γ1
∼= Γ2.

ii. Let

Γ1 =
3

4 5
6

7
89

10

11
12

1 2 and Γ2 =

3 4

5
6

78

9
10

11121 2 .

Bijections Γhe
1 → Γhe

2 exist, but none of them will meet the first two
properties in above definition simultaneously. So Γ1 � Γ2.
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iii. Because of the third condition in above definition:

56

41

2 3

� 56

41

2 3

.

Definition 2.5. Let Γ and γ be Feynman graphs. We say that γ is a subgraph
of Γ (notation: γ ⊆ Γ) if γ[0] ⊆ Γ[0] and γ[1] ⊆ Γ[1].

For example:

3
4

9
10

12
8

1

5
11

⊆
3

4 5
6

7
89

10

11
12

1 2 .

Definition 2.6. The symmetry factor of a Feynman graph Γ is defined as

Sym(Γ) := # Aut(Γ) , (2.2)

the order of the group of automorphisms on Γ (i.e. isomorphisms Γ → Γ).

Example 2.7.

Sym
(

4 5
6

7
8

9

3

1

2

)
= #{id} = 1 ,

Sym
(

3 4

56

1 2

)
= #{id, (3 6)(4 5)} = 2

(using the cycle notation),

Sym
( 3 4

1 2

)
= #{id, (3 4)} = 2 ,

Sym
( 3 4

5 6
7 8

1 2

)
= #{id, (3 5)(4 6), (3 7)(4 8), (5 7)(6 8),

(3 5 7)(4 6 8), (3 7 5)(4 8 6)} = 6 .

Definition 2.8. i. A graph Γ is connected if one can go from any vertex to
any other one by hopping over only adjacent vertices. To put it differ-
ently: A graph is connected if it cannot be written as a disjoint union of
several nonempty graphs.

A graph that is not connected is called disconnected.

ii. The number of connected components of a graph Γ is denoted by cΓ.
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iii. A graph Γ is called 1-particle reducible (1PI)∗ if for every e ∈ Γ[1]: Γ \ e is
connected.

The graph
,

for example, is 1-particle irreducible; the graph

is not. Both are connected.

Definition 2.9. i. For a graph Γ and an edge e ∈ Γ[1], we define the fol-
lowing operation: cutting the edge e gives a new graph Γ \ e given by

(Γ \ e)[0] := Γ[0] (2.3)

and
(Γ \ e)[1] := Γ[1] \ {e} . (2.4)

We use the following notation:

Γ \ {e1, . . . , en} := Γ \ e1 \ · · · \ en .

ii. Let e ∈ Γ[1] be incident to the vertices v1 and v2 ∈ Γ[1], and assume
v1 6= v2. (Anticipating to definition 2.11.i: e should not form a self-loop.)
If we contract e, we get a new graph Γ/e given by

(Γ/e)[0] := Γ[0] \ {v1, v2} ∪ {v1 ∪ v2 \ e} (2.5)

and
(Γ/e)[1] := Γ[1] \ {e} . (2.6)

For this operation, we also write

Γ/{e1, . . . , en} := Γ/e1/ · · · /en .

iii. For a subgraph γ ⊆ Γ we define the cograph Γ/γ by:

(Γ/γ)[0] = Γ[0] \ γ[0] ∪ γext and (Γ/γ)[1] = Γ[1] \ γ[1] .

Example 2.10.

i.

3 4

56

1 2 \ {3, 4} =
56

21

3 4

.

ii.

4 5 6

789

3

1

2

/{4, 5} =
6
7

8
9

3

1

2

.

∗Mathematicians would use the term 2-connected.
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iii.

3
4 5

6

7
89

10

11
12

1 2

/
3

4
11

12
9

10

8

1

5

=

5 6

78

1 2

iv.

3 4

5
6

78

9
10

11121 2

/
12 11

78

9 6 =

3 4

5
69

10
1 2

The dot indicates the 2-valent vertex {6, 9}.

Definition 2.11. i. A loop∗ is a connected subgraph where every vertex
contains two internal half-edges. We denote the set of loops of a graph
Γ by LΓ.

A loop with only one vertex is called a self-loop.†

ii. A connected graph without loops is called a tree and a disjoint union
of n trees is a forest, or n-forest, if one wants to specify the number of
connected components.

iii. The loop order lΓ of a connected graph Γ is the number of edges one has
to cut, such that the result is a tree.

For a disconnected graph Γ = γ1 · · · γcΓ
, the loop order is

lΓ = lγ1 + · · ·+ lγcΓ
.

Example 2.12. The graph

3
4 5

6

7
89

10

11
12

1 2

has the following set of loops:

L =

{
3

4
11

12
9

10

8

1

5

,
7

8
12

11
5

6
2

9

4

,
3

4 5
6

7
89

10
2

12

1

11

}

and loop order l = 2.

Note that if one cuts an edge e ∈ Γ[1], either the loop number of the graph
decreases by 1, or one gets one more connected component:

lΓ\e − cΓ\e = lΓ − cΓ − 1 . (2.7)

Lemma 2.13 (Euler’s formula). For any graph

#Γ[1] − #Γ[0] = lΓ − cΓ . (2.8)
∗In mathematical literature, this is usually called a cycle.
†This is what mathematicians usually call a loop.
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Proof. By induction in #Γ[1]:

• If Γ has no internal edges, it is only a bunch of disconnected vertices. So
#Γ[0] = cΓ and lΓ = 0. So (2.8) holds.

• Let e ∈ Γ[1]. Note that per definition #(Γ \ e)[1] = #Γ[1] − 1 (equation
(2.4)). Assume (2.8) is true for Γ \ e. Then:

#Γ[1] − #Γ[0] = #(Γ \ e)[1] − #(Γ \ e)[0] + 1
= lΓ\e − cΓ\e + 1 = lΓ − cΓ ,

where we used equations (2.3) and (2.7).

Lemma 2.14. For k-regular Feynman graphs:

i. #Γ[0] =
#Γext + 2(lΓ − cΓ)

k− 2
, (2.9)

ii. #Γ[1] =
#Γext + k(lΓ − cΓ)

k− 2
. (2.10)

Proof. This follows from Euler’s formula together with

k#Γ[0] = #Γhe = 2#Γ[1] + #Γext .

Although the graph
Γ = 1 2 ,

does not fit in our definition 2.1, we will allow it. If we take Γext = {1, 2}
and lΓ = 0, then from above lemma we have paradoxically #Γ[0] = 0 and
#Γ[1] = −1.

Note that the 1-loop vacuum bubble,

,

does not fit in our setup either.

Definition 2.15. An orientation on a Feynman graph Γ is an assignment of a
sign εh ∈ {1,−1} to every half-edge h ∈ Γhe, such that for all {h1, h2} ∈ Γ[1]:
εh1 = −εh2 .

If eh = 1, we say h is ingoing and if eh = −1, we say it is outgoing.

We represent such an orientation by grey arrows. For example: the orien-
tation on the graph

2 4

53

1 6

is given by ε1 = ε3 = ε4 = 1 and ε2 = ε5 = ε6 = −1.
In the rest of this thesis, instead of labelling the half-edges, we will give

labels to the vertices and the edges.
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2.2 Feynman Rules

In this chapter, we look at theories in d space-time dimensions with a classical
Lagrangian of the form

L = 1
2 (∂µφ)(∂µφ)− 1

k! λφk , (2.11)

where φ is a real scalar field and k ∈N, k ≥ 3.
For odd k, these theories are actually unphysical. The potential term is

unbounded from below then, so there is no stable vacuum.
These theories are massless. For massive theories one includes a mass term

− 1
2 m2φ2. In this thesis, theories are assumed to be massless, because in the

end we are interested in gauge theories. But occasionally a comment will be
made on the massive case.

In the quantum theory we want to compute correlation functions or Green’s
functions, and to do so Feynman graphs and Feynman rules are used.

We exclude graphs with vacuum bubbles components (a vacuum bubble is
a graph without any external edges), such as

.

Furthermore, we exclude graphs with tadpole subgraphs (a tadpole graph is a
graph with only one external edge), such as

.

In φk-theory, k-regular graphs are the graphs we need. The Feynman rules
in this case are:

Definition 2.16. Let Γ be a φk-theory Feynman graph. Choose an orientation
on Γ. Choose a set of lΓ loops L ⊆ L (Γ) and for each loop in L a clockwise
or anticlockwise orientation.∗ Assign a momentum vector ξe to every edge
e ∈ Γ[1] and a momentum vector k` to every loop ` ∈ L. Γ’s Feynman amplitude
is then:

Φ(Γ) := 1
πdlΓ/2

∫
dk

1

∏
e∈Γ[1]

p2
e

, (2.12)

where we use the short-hand notation∫
dk := ∏

`∈L

∫
ddk (2.13)

and
pe := ξe + ∑

`∈L
`[1]3e

εe`k` . (2.14)

∗By this we mean that for every vertex v in the loop, the two internal half-edges h1, h2 ∈ v are
oriented opposite: εh1 = −εh2 .
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The sign εe` ∈ {1,−1} is 1 if e is oriented the same way in Γ and `, and −1 if
it is oriented the opposite way.

The reader might miss some factors i, −iλ and 1
(2π)d ; these will be included

in definition 2.19. Also, the factor 1
πdlΓ/2 which we included here will be

compensated there. In example 2.21 and theorem 2.24 it will be clear why this
is convenient.

For massive theories we have p2
e −m2 in the denominator instead of p2

e .

Example 2.17. Consider the graph

4
6

7

5

9
8

3

1

2

with L = {`1, `2}, where the loops are

`1 =
4

9
8

7

1

5

and `2 = 9

5

6

7 38

4 2

.

The Feynman amplitude is

Φ
( )

= 1
πd

∫∫ ddk`1ddk`2

p2
4 p2

5 p2
6 p2

7 p2
8 p2

9

= 1
πd

∫∫ ddk`1ddk`2

(ξ4 + k`1)
2(ξ5 + k`2)

2(ξ6 + k`2)
2(ξ7 + k`2)

2(ξ8 + k`1)
2(ξ9 + k`1 − k`2)

2 .

Definition 2.18. For a graph Γ, momentum conservation (abbreviation: m.c.) is
given by the following system of equations:

∀v ∈ Γ[0] : ∑
h∈v

ph = 0 , (2.15)

or equivalently
∀v ∈ Γ[0] : ∑

h∈v
ξh = 0 . (2.16)

(For an edge e = {h1, h2} ∈ Γ[1] we write ξe = ξh1 = ξh1 .) We also assign
momenta ph = ξh to the external edges h ∈ Γext.

Φ(Γ) is a function of the internal ξe, and Φ(Γ)|m.c. is a function of the
external momenta pe, with the condition that overall momentum conservation
holds:

∑
h∈Γext

ph = 0 . (2.17)

One-scale graphs graphs are graphs for which the amplitude depends on
only one momentum (with momentum conservation), such as all propagator

12



graphs (i.e.: graphs with 2 external edges). For such graphs, we drop the
index for the external momentum, and just write p.

In theorem 3.9 it will be clear why we do not impose momentum conser-
vation from the beginning.

If for two graphs Γ1 and Γ2 Φ(Γ1)|m.c. = Φ(Γ2)|m.c., we write Γ1 ∼ Γ2. Note
that Γ1

∼= Γ2 implies Γ1 ∼ Γ2. In other words: Φ(Γ)|m.c. does not depend
on Γ’s internal labelling. Neither depends it on the orientation of its internal
edges and the choice of the set L.

Definition 2.19. i. We represent a full combinatorial Green’s function as fol-
lows:

G =

1 n

(2.18)

and define it as:

G := ∑
Γ

1
Sym(Γ)

i#Γ[1]
(−iλ)#Γ[0]

πdlΓ/2

(2π)dlΓ
Γ (2.19)

where the sum runs over all Feynman graphs possible in the theory Γ
modulo equivalence in the given theory with the given external struc-
ture, in this case: Γext = {1, . . . , n}.

ii. We represent a connected combinatorial Green’s function as

G =

1 n

(2.20)

and define it with the same formula (2.19), but with the sum restricted
to only connected graphs.

iii. And we represent a 1PI combinatorial Green’s function as

G =

1 n

. (2.21)

Here the sum in (2.19) is restricted to only 1PI graphs.

In above definition we have the pre-factors we promised just after defini-
tion 2.16: for every edge we have a factor i, for every vertex a factor −iλ and
for every independent loop a factor 1

(2π)4 . The factor 1
πdlΓ/2 in equation (2.12)

also gets compensated.

13



If G is a connected or 1PI Green’s function, using lemmata 2.13 and 2.14,
we can rewrite it as:

G = −iλ
n−2
k−2 ∑

l
xlG(l) (2.22)

where

x =
iλ

2
k−2

2dπd/2 , (2.23)

and
G(l) := ∑

Γ
lΓ=l

1
Sym(Γ)

Γ (2.24)

is the l-loop combinatorial Green’s function, or the combinatorial Green’s func-
tion at order l in perturbation theory.

Example 2.20. i. In φ3 theory, the connected 2-loop propagator function is

(2)
= 1

2 + 1
2 + 1

4

and the 1PI one is

(2)
= 1

2 + 1
2 .

ii. In φ4 theory they are

(2)
= 1

6 + 1
4 + 1

4

and

(2)
= 1

6 + 1
4 .

We use the word ‘combinatorial’ for G; the actual Green’s function is given
by applying the Feynman rules to G: Φ(G)|m.c.. (G is a linear combination of
graphs, so Φ’s definition is extended linearly.)

2.2.1 Power Counting
A thing we have to worry about a lot is the convergence of the integral in
equation (2.12). We will do this in section 2.4, but for now we can say a little
bit about how much the amplitude of a graph diverges.∗

For a graph Γ, the superficial degree of divergence ωΓ is defined as follows:
scale every momentum in Φ(Γ) by a factor α, then

Φ(Γ) αωΓ Φ(Γ) .

In φk theory it is
ωΓ = dlΓ − 2#Γ[1] . (2.25)

∗See for example also [10], subsection 8-1-3.
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We say that Γ is superficially convergent if ωΓ < 0 and superficially di-
vergent for ωΓ ≥ 0. In particular: if ωΓ = 0, we say that Γ is logarithmically
divergent, if ωΓ = 1 we say it is linearly divergent (this will not occur in
this chapter, but it will in the next ones) and for ωΓ = 2 it is quadratically
divergent.

The word ‘superficial’ is used above, because ωΓ does not say everything
about convergence. It does not see subdivergences: divergent subgraphs. For
example: in 6 dimensions,

is superficially convergent (ω = −2), while the triangle subgraph is loga-

rithmically divergent, so the integral is undefined.
Using lemma 2.14, ωΓ for φk theory can be expressed in the number of

external edges and the loop order:

ωΓ =
2(k− #Γext)

k− 2
+
(

d− 2k
k− 2

)
lΓ . (2.26)

The divergences we talked about so far are ultraviolet divergences, called
so because they arise from the contributions to the amplitude with large mo-
menta. In massless theories, superficially convergent graphs turn out to have
infrared divergences, caused by low-momentum contributions. In this thesis, we
only deal with the ultraviolet ones.

2.3 Parametric Representation

In definition 2.16 we introduced the Feynman amplitude of a graph as an
integral over loop momenta. In this section we will rewrite this as an integral
over scalar parameters.

It all starts with the Schwinger trick:

1
p2

e
=

∞∫
0

dAe e−p2
e Ae , (2.27)

where Ae is called the Schwinger parameter. If we introduce the parametric
integrand to be

I(Γ) := 1
πdlΓ/2

∫
dk e−∑e∈Γ[1]

p2
e Ae , (2.28)

the Feynman amplitude can be written as

Φ(Γ) =
∫

dAΓ I(Γ) , (2.29)

where we use the following short-hand notation:

∫
dAΓ := ∏

e∈Γ[1]

∞∫
0

dAe . (2.30)
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So the product of propagators in equation (2.12) turns into a sum in the expo-
nent.

Note that the mass dimension of the Schwinger parameters is

[Ae] =
1

mass2 .

The next step is to perform the integration over the loop momenta. Before
discussing the general case, we look at a simple example:

Example 2.21. The parametric integrand of the graph

3

4

1 2

is
I
( )

= 1
πd/2

∫
ddk e−(ξ3+k)2 A3−(ξ4+k)2 A4 .

Complete the square in the exponent

I
( )

= 1
πd/2

∫
ddk e−k2(A3+A4)+2k·(ξ3 A3+ξ4 A4)+ξ2

3 A3+ξ2
4 A4

= 1
πd/2

∫
ddk e−

(
k+ ξ3 A3+ξ4 A4

A3+A4

)2
(A3+A4)−

(ξ3−ξ4)
2 A3 A4

A3+A4

and now it is just a Gaußian integral:

I
( )

=
e−

(ξ3−ξ4)
2 A3 A4

A3+A4

(A3 + A4)d/2 .

Here we see why we had the factor 1
πdlΓ/2 in definition 2.16: it disappears here.

Momentum conservation gives us the relation ξ3 − ξ4 = p. (p is the exter-
nal momentum. See the remark below equation (2.17).) So

I
( )∣∣∣

m.c.
=

e−
p2 A3 A4
A3+A4

(A3 + A4)d/2 .

The amplitude of this graph is given by the following parametric integral:

Φ
( )

=
∫

R2
+

dA3dA4 I
( )

.

One remark has to be made: the Gaußian integration above is actually not
defined in a Minkowski metric, since it is not positive definite. But with a
Wick rotation it can be made positive, i.e. the space-time is made Euclidean.
At the end of the computation one has to Wick rotate back.

For the general case, we need to define two polynomials in the Schwinger
parameters:

Definition 2.22. For a connected graph Γ, define the set

C n
Γ := {C ⊆ Γ[1] | Γ \ C is an n-forest} . (2.31)
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i. Γ’s first Symanzik polynomial is defined as

ψΓ := ∑
C∈C 1

Γ

∏
e∈C

Ae , (2.32)

ii. and its second Symanzik polynomial as

ϕΓ := ∑
C∈C 2

Γ

q2
C ∏

e∈C
Ae , (2.33)

where
qC := ∑

e∈C
εCeξe . (2.34)

εCe ∈ {1, 0,−1} is defined as follows: Γ \ C consists of two connected
components: Γ \ C = T1T2. Choose one of those, say T1. Then

εCe =


1 if e is oriented going into T1,
−1 if e is oriented coming out of T1,
0 otherwise.

Note that choosing T2 instead of T1 gives a minus sign, but since qC is
squared, ϕΓ does not depend on that choice.

At momentum conservation qC can be written as

qC
∣∣
m.c. = − ∑

h∈Γext∩Text
1

εh ph = ∑
h∈Γext∩Text

2

εh ph . (2.35)

For one-scale graphs we write

ϕΓ

∣∣
m.c. =: p2 ϕ′Γ . (2.36)

Both ψΓ and ϕΓ are homogeneous polynomials of degrees

deg ψΓ = lΓ (2.37)

and
deg ϕΓ = lΓ + 1 . (2.38)

Example 2.23. i. The Symanzik polynomials for the graph in example 2.21

are
ψ = A3 + A4 and ϕ = q2

34 A3 A4 ,

where
q34 = ξ3 − ξ4

m.c.
==== p .

Because it is one-scale we can write

ϕ′ = A3 A4

17



ii. For the graph

4
5

6
3

1

2

the Symanzik polynomials are

ψ = A4 + A5 + A6

and
ϕ = q2

64 A6 A4 + q2
45 A4 A5 + q2

56 A5 A6 ,

where

q64 = ξ6 − ξ4
m.c.
==== p1 ,

q45 = ξ4 − ξ5
m.c.
==== p2 ,

q56 = ξ5 − ξ6
m.c.
==== p3 .

iii. For

3 7

56

41 2

we have

ψ = (A3 + A6)(A5 + A7) + A4(A3 + A5 + A6 + A7)

and

ϕ = q2
36 A3 A6(A4 + A5 + A7) + q2

57 A5 A7(A3 + A4 + A6)

+ q2
345 A3 A4 A5 + q2

467 A4 A6 A7

+ q2
347 A3 A4 A7 + q2

456 A4 A5 A6 ,

where

q36 = ξ3 + ξ6
m.c.
==== p ,

q57 = ξ5 + ξ7
m.c.
==== p ,

q345 = ξ3 − ξ4 + ξ5
m.c.
==== p ,

q467 = ξ4 + ξ6 + ξ7
m.c.
==== p ,

q347 = ξ3 − ξ4 − ξ7
m.c.
==== 0 ,

q456 = ξ4 − ξ5 + ξ6
m.c.
==== 0 .

Because it is one-scale:

ϕ′ = A3 A6(A4 + A5 + A7) + A5 A7(A3 + A4 + A6)

+ (A3 A5 + A6 A7)A4 .
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The second Symanzik polynomial can also be written as:

ϕΓ = ∑
C∈C ′2Γ

q2
C

(
∏
e∈C

Ae

)
ψΓ\C , (2.39)

where C ′2Γ consists of the minimal C ⊆ Γ[1] (by ‘minimal’ we mean that for
all e ∈ C: εCe 6= 0) such that Γ \ C has two connected components. Example
2.23.iii above is a good example of this.

Theorem 2.24. For a general Feynman graph, the parametric integrand with
the loop momenta integreated out can be written as:

I(Γ) =
e−ϕΓ/ψΓ

ψd/2
Γ

.∗ (2.40)

In the massive case, one gets mass terms in the exponential:

I(Γ) =
e−ϕΓ/ψΓ−m2 ∑e∈Γ[1]

Ae

ψd/2
Γ

(2.41)

So, we have written the amplitude of a graph Γ as an #Γ[1]-dimensional
integral over positive parameters. The number of integrations can be reduced
by one as follows:

Proposition 2.25. i. Φ(Γ) =
∫

ΩΓ I (Γ) , (2.42)

where

I (Γ) :=
∞∫

0

dt t#Γ[1]−1 I(Γ)
∣∣

A=ta (2.43)

and
ΩΓ := daΓ δ

(
1− ∑

e∈Γ[1]

λeae

)
. (2.44)

All λe ≥ 0 and are such that there is at least one λe 6= 0.

This also holds in other theories than φk.

ii. In φk theory I (Γ) is

I (Γ) =
ϕωΓ/2

Γ

ψ
(ωΓ+d)/2
Γ

Γ(− 1
2 ωΓ) . (2.45)

(Γ stands for the Euler Γ-function.)

Proof. i. First note that the number 1 can be written as

∞∫
0

dt δ
(

t− ∑
e∈Γ[1]

λe Ae

)
= 1 ,

∗For a proof, we refer to [10], subsection 6-2-3 together with [3], and to [14], subsection 2.1.1.
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because of the restrictions we have put on the λe. Plug this into equation
(2.29):

Φ(Γ) =

∞∫
0

dt
∫

dAΓ δ
(

t− ∑
e∈Γ[1]

λe Ae

)
I(Γ) .

Substitute AΓ = taΓ (by this we mean Ae = tae for every e ∈ Γ[1]):

Φ(Γ) =

∞∫
0

dt
∫

daΓ t#Γ[1]−1δ
(

1− ∑
e∈Γ[1]

λeae

)
I(Γ)

∣∣
AΓ=taΓ

.

Note that the form of the integrand is not used, which means that it also
holds for other theories.

ii. If we use the expression for I(Γ) (theorem 2.24), we get

I (Γ) =
1

ψd/2
Γ

∞∫
0

dt t#Γ[1]−dl/2−1e−tϕΓ/ψΓ

=
1

ψd/2
Γ

∞∫
0

dt t−ωΓ/2−1e−tϕΓ/ψΓ , .

Recall (2.37) and (2.38). (We did not explicitly write that ψΓ and ϕΓ

are polynomials in the parameters ae instead of Ae.) In the second step
equation (2.25) is used. Doing the integral by using the definition of the
Γ-function gives the result.

For this integration, we have to assume an Euclidean space-time, such
that φΓ ≥ 0. See the remark about Wick rotation after example 2.21

Remark 2.26. Because of the Γ-function, I (Γ) diverges if ωΓ ≥ 0 and con-
verges if ωΓ < 0. This is precisely the ultraviolet divergence we described
in subsection 2.2.1. Actually, it is also convergent for odd ωΓ > 0, but we
will not see such a case. Sub- and infrared divergences arise if we do the
ΩΓ-integration.

One is free to choose the λe in equation (2.44); a different choice is just a
change of integration variables. A choice where one λe = 1 and the other ones
are 0 is usually the best for doing the computations.

Example 2.27. We continue with example 2.21 / 2.23.i, for which ω = d− 4.
With proposition 2.25.ii we have

I
( )

m.c.
====

(p2a3a4)
d/2−2

(a3 + a4)d−2 Γ(2− 1
2 d), .

This diverges (ultraviolet) for d ∈ {4, 6, 8, . . .}.

Φ
( )

= (p2)d/2−2
∞∫

0

da3
ad/2−2

3
(a3 + 1)d−2 Γ(2− 1

2 d)

= 8
√

π2−d(p2)d/2−2 Γ( 1
2 d− 1)

Γ( 1
2 d− 1

2 )
Γ(2− 1

2 d) .
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Here we see another divergence: Γ( 1
2 d− 1) diverges for d ∈ {0, 2}. This is the

infrared divergence.

2.4 Renormalization

2.4.1 φ3 Theory in 6 Dimensions
So, we have these divergent integrals. In the following we will show how we
deal with it in the case of φ3 theory in 6 space-time dimensions, although this
theory is not physical.

With equation (2.26), one can see that the superficial degree of divergence
is

ωΓ = 6− 2#Γext . (2.46)

Note that it does not depend on the loop order, only on the external structure.
The only divergent graphs are propagator (quadratically divergent) and vertex
graphs (logarithmically divergent):

ω = 2 and ω = 0 .

First, we look at graphs without subdivergences.∗ Loosely said, we make
sense of these divergent integrals by subtracting another divergence. To keep
things defined, we do this subtraction on the level of the integrand.

Definition 2.28. Let Γ be a vertex graph:

Γ =

3

1

2

,

and assume that it has no subdivergences. We introduce a momentum scale µ
and define the renormalized integrand as:

Iren(Γ) := I(Γ)− I◦(Γ) , (2.47)

where the superscript ◦ means evaluation at a point in the space of external
momenta p1, p2 and p3 given by p2

1 = p2
2 = p2

3 = µ2. Momentum conservation
is assumed, so p1 · p2 = p1 · p3 = p2 · p3 = − 1

2 µ2. The renormalized integrand
fulfills the renormalization condition

Iren(Γ)
∣∣

p2
1=p2

2=p2
3=µ2 = 0 . (2.48)

Doing one integration, as in proposition 2.25, gives:

I ren(Γ) =
1

ψ3

∞∫
0

dt
t
(e−tϕΓ/ψΓ − e−tϕ◦Γ/ψΓ ) . (2.49)

With the identity

∞∫
c

dt
t

e−tϕΓ/ψΓ = − ln c− γE − ln
ϕΓ

ψΓ
+O(c) (2.50)

∗In Hopf-algebraic language one says primitive graphs.
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(as c→ 0), can be written as

I ren(Γ) = − 1
ψ3

Γ

ln
ϕΓ

ϕ◦Γ
(2.51)

The number γE ≈ 0.577 is the Euler-Mascheroni constant.

Example 2.29. Take the graph from example 2.23.ii. For this one:

I ren
( )

= − 1
(a4 + a5 + a6)3 ln

p2
1a6a4 + p2

2a4a5 + p2
3a5a6

µ2(a6a4 + a4a5 + a5a6)
.

If one takes p2
1 = p2

2 = p2
3 = p2, to make life easier, it is

I ren
( )

= − 1
(a4 + a5 + a6)3 ln

p2

µ2 .

The amplitude is then:

Φren
( )

= −
∫

R2
+

da4da5

(a4 + a5 + 1)3 ln
p2

µ2 = − 1
2 ln

p2

µ2 .

Definition 2.30. For propagator graphs, the following renormalization condi-
tions are assumed:

Iren(Γ)
∣∣

p2=0 = 0 (2.52)

and
Iren(Γ)

p2

∣∣∣
p2=µ2

= 0 . (2.53)

So for a propagator graph Γ without subdivergences, we define:

Iren(Γ) := I(Γ)− I(Γ)
∣∣

p2=0 −
p2

µ2

(
I(Γ)

∣∣
p2=µ2 − I(Γ)

∣∣
p2=0

)
=

1
ψ3

Γ

(
e−p2 ϕ′Γ/ψΓ − 1− p2

µ2 (e
−µ2 ϕ′Γ/ψΓ − 1)

)
.

(2.54)

(Recall equation (2.36).)

I ren(Γ) is:

I ren(Γ) =
1

ψ3
Γ

∞∫
0

dt
t2

(
e−tp2 ϕ′Γ/ψΓ − 1− p2

µ2 (e
−tµ2 ϕ′Γ/ψΓ − 1)

)
(2.55)

A partial integration and equation (2.50) give:

∞∫
c

dt
t2 (e

−tp2 ϕ′Γ/ψΓ − 1) = −
p2 ϕ′Γ
ψΓ

∞∫
c

dt
t

e−tp2 ϕ′Γ/ψΓ +
1
c
(e−cp2 ϕ′Γ/ψΓ − 1)

=
p2 ϕ′Γ
ψΓ

(
γE + ln

p2 ϕ′Γ
ψΓ

+ ln c− 1
)
+O(c) ,

(2.56)
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and so:

I ren(Γ) =
ϕΓ

ψ4
Γ

ln
p2

µ2 (2.57)

Note that the boundary terms from the partial integration cancel.

Example 2.31. Actually, there is only one primitive propagator graph in φ3-
theory: the 1-loop graph in example 2.27. For this one:

I ren
( )

=
p2a3a4

(a3 + a4)4 ln
p2

µ2 ,

and so the amplitude is

Φren
( )

= p2
∞∫

0

da3
a3

(a3 + 1)4 ln
p2

µ2 = 1
6 p2 ln

p2

µ2 .

For the renormalization of subdivergences, we need the following defini-
tion:

Definition 2.32. A forest (of subdivergences) f of a graph Γ is a set of divergent,
connected subgraphs of Γ such that for every γ1, γ2 ∈ f : either γ1 ⊆ γ2, or
γ2 ⊆ γ1, or γ1 ∩ γ2 = ∅.

The set of all forests of Γ is denoted by F (Γ).

In definition 2.11.iii the word ‘forest’ was used already. Forests of subdi-
vergences have an interpretation as forest graphs.

Definition 2.33. Let Γ be a graph with only logarithmic subdivergences. To
make life slightly easier, propagator subdivergences are excluded. Then the
renormalized integrand is given by the forest formula:∗

Iren(Γ) = ∑
f∈F (Γ)

(−)# f I◦( f )I(Γ/ f ) . (2.58)

The integrand of a forest is the following product of integrands of cographs:

I◦( f ) = ∏
γ∈ f

I◦
(

γ
/ ⋃

γ′(γ
γ′∈ f

γ′
)

. (2.59)

Example 2.34. The graph

4
8

9

7

5
6

3

1

2

has the following forests:

F

( )
=

{
∅,
{ }

,
{

4
5

6
}

,
{

,
}}

.

∗See [10], subsection 8-2-3 and [6], equation (40). In the latter, propagator divergences in the
parametric context are discussed as well.
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The renormalized integrand is

Iren
( )

= I
( )

− I◦
( )

− I◦
(

4
5

6
)

I
(

7
9

8
)

+ I◦
(

4
5

6
)

I◦
(

7
9

8
)

.

For an overall divergent graph Γ, the forest formula can be split in two
sums, one with the forests that do not contain Γ itself, and one with the
forests that do. So:

Iren(Γ) = ∑
f∈F ′(Γ)

(−)# f (I◦( f )I(Γ/ f )− I◦( f )I◦(Γ/ f )
)

, (2.60)

where
F ′(Γ) = { f ∈ F (Γ) | f /3 Γ} . (2.61)

Let us denote the renormalized integrand of a graph Γ, where the subdiver-
gences are ignored by Iren(Γ). Then

Iren(Γ) = ∑
f∈F ′(Γ)

(−)# f I◦( f )Iren(Γ/ f ) . (2.62)

2.4.2 Other Theories
Three classes of theories are distinguished:

• Superrenormalizable theories: theories with only a finite number of super-
ficially divergent graphs.

• Renormalizable theories: theories with infinitely many superficially diver-
gent graphs, but with a finite number of divergent Green’s functions.
The degree of divergence does not depend on the order in perturbation
theory.

• Unrenormalizable theories: theories where every Green’s function is diver-
gent from some point three in perturbation theory.

Looking at equation (2.26), we see that the renormalizable φk-theories are
the ones for which d = 2k

k−2 , in order to let the lΓ dependency disappear. The
three only ones are:

• 6-dimensional φ3 theory (ωΓ is given in equation (2.46)),

• 4-dimensional φ4 theory, where

ωΓ = 4− #Γext , (2.63)

• and 3-dimensional φ6 theory, where

ωΓ = 3− 1
2 #Γext . (2.64)
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Note that for these theories propagator graphs are always quadratically diver-
gent and vertex graphs (i.e. k-point graphs) are always logarithmically diver-
gent. Furthermore, the propagator and vertex graphs are the only superficially
divergent ones in these theories. (4-regular 3-point graphs and 6-regular 3-,
4- and 5-point graphs do not exist and we disregard vacuum and tadpole
graphs.)

We conclude this chapter with remark on self-loops in φ4 theory:

Remark 2.35. The integrand of a self-loop graph in 4-dimensional φ4 theory
is:

I
( 3 )

=
1

A2
3

.

Because it does not depend on the momentum, the renormalized integrand
vanishes:

Iren
( )

= 0 .

Together with the forest formula, this implies that every graph with self-
loops, and also more general graphs like

have a vanishing integrand after renormalization.
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3
Quantum Electrodynamics

3.1 Feynman Rules

3.1.1 Lagrangian
First of all: from now on, everything will be in 4-dimensional space-time.

In quantum electrodynamics (QED) we have two fields: a spinor field ψ for
the fermions and a vector field A, called the gauge field for the photons. The
Lagrangian is

L = − 1
4 FµνFµν + iψ /Dψ . (3.1)

Here,
Dµ = ∂µ + ieAµ (3.2)

is the covariant derivative and

Fµν = − i
e
[Dµ, Dν] = ∂µ Aν − ∂ν Aµ (3.3)

is the field tensor.
Furthermore, we need the Clifford algebra, which is generated by 4× 4 ma-

trices γµ that fulfill the Clifford relation:

γµγν + γνγµ = 2gµν . (3.4)

The Feynman slash notation is a short-hand notation for the Clifford represen-
tation of a Lorentz vector a:

/a := γµaµ . (3.5)

This Lagrangian describes massless QED. For massive fermions, one adds
a term −mψψ.

An important property of this Lagrangian is gauge invariance, U(1) gauge
invariance to be precise. This means that for a U(1)-valued function U on the
space-time, the Lagrangian is invariant under the gauge transformation

ψ 7→ Uψ , Dµ 7→ UDµU−1 . (3.6)
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If you like the Lie algebra formalism better than the Lie group formalism,
let iα be a u(1) = iR-valued function and write

U = eiα . (3.7)

Then the gauge transformation can be written as

ψ 7→ eiαψ , Aµ 7→ Aµ −
1
e

∂µα . (3.8)

3.1.2 Feynman Graphs
For QED, we need to enrich the notion of Feynman graphs from section 2.1
a bit: half-edges occur in three types instead of one. We have photon half-
edges and incoming and outgoing fermion half-edges, which we represent
graphically as

, and

respectively.
Edges come in two types: photon edges consists of 2 photon-half-edges

and fermion edges consist of an incoming and an outgoing fermion edge.
Naturally, they look like

and

respectively.
There is one vertex type with a photon and an incoming and an outgoing

fermion:
.

We denote the set of photon edges by Γ
[1], the set of fermion edges by Γ

[1],
the set of external ingoing fermion half-edges by Γext etcetera.

Feynman graph isomorphisms need an extra condition with respect to in
definition 2.3.i: an isomorphism also has to respect half-edge type. This has
for example the implication that

Sym
( )

= 1

instead of 1
2 .

Note that this implies that in QED every symmetry factor is simply 1,
because the vertex has no symmetries.

There is an analogon of lemma 2.14 for QED:

Lemma 3.1. For a QED graph Γ:

i. #Γ[0] = #Γext + 2(lΓ − cΓ) , (3.9)

ii. #Γ[1] = #Γext + 3(lΓ − cΓ) , (3.10)

iii. #Γ
[1]

= #Γext + lΓ − cΓ , (3.11)

iv. #Γ
[1]

= #Γext + #Γext + 2(lΓ − cΓ) . (3.12)

Proof. Taking k = 3 in lemma 2.14 gives i and ii. For iii and iv, use

2Γ
[1]

+ #Γext = #Γhe = #Γhe = #Γ
[1]

+ #Γext .
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3.1.3 Feynman Rules
To write down the Feynman amplitude of a QED graph Γ, assign to every
internal and external photon half-edge h ∈ Γhe a Lorentz index µh and to

every fermion edge e ∈ Γ
[1] a Lorentz index µe. Actually, the fermion half-

edges also carry a spinor indices, but these will not be written explicitly in
this thesis. The Feynman amplitude is

Φ(Γ) := 1
π2lΓ

∫
dkL

N(Γ)

∏
e∈Γ[1]

p2
e

. (3.13)

The numerator N(Γ) is a product of the following:

• for every photon edge e = {h1, h2} ∈ Γ
[1] a factor

gµh1
µh2
− (1− α)

peµh1
peµh2

p2
e

(3.14)

(α is the gauge parameter),

• for every fermion edge e ∈ Γ
[1] a factor

γµe pµe
e = /pe , (3.15)

• and for every vertex
h3

h1

h2

∈ Γ[0] a factor γµh1 . (3.16)

We have to be careful with the order of the γ-matrices, since they do not
commute. We write the numerator as

N(Γ) = γ(Γ)

(
∏

{h1,h2}=e∈Γ
[1]

(
gµh1

µh2
− (1− α)

peµh1
peµh2

p2
e

))

×
(

∏
e∈Γ

[1]

pµe
e

)
,

(3.17)

where all the γ-matrices are collected in γ(Γ).
Note that Φ(Γ) has ‘open’ Lorentz indices for the external photons. The

other Lorentz indices are contracted.
For the Feynman gauge, i.e. α = 1, the numerator can be simplified with

some abuse of notation. For this, instead of assigning Lorentz indices to the
photon half-edges, we assign them to the internal and external photon edges.
We drop the gµh1

µh2
and do not care about upper or lower indices, but still use

Einstein’s summation convention for repeated indices. The numerator is then
simply

N(Γ) = γ(Γ) ∏
e∈Γ

[1]

pµe
e . (3.18)
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The Feynman gauge is assumed unless indicated otherwise. We will briefly
come back to other covariant gauges in remark 3.14.

Example 3.2. For the graph

5

4 6
8

7
9

3

1

2

we have

N
( )

= γ
( )

pµ4
4 pµ5

5 pµ8
8 pµ9

9 ,

with

γ
( )

= γµ7 γµ5 γµ1 γµ4 γµ6 Tr(γµ6 γµ9 γµ7 γµ8) .

If external fermions are in a physical state, a spinor ue has to be included
if it is ingoing and ue if it is outoing. These spinors fulfill the Dirac equation in
momentum space:

/peue = 0 (3.19)

and
ue/pe = 0 . (3.20)

(Remember that that our fermions are massless.) For anti-fermions, it is cus-
tomary to write ve and ve.

For physical external photons, one has to include a polatization vector ε
µe
e ,

which is transversal:
pe · εe = 0 . (3.21)

Furthermore, physical photons have lightlike momentum:

p2
e = 0 . (3.22)

We represent physical external particles graphically by a dot:

, and .

Analogous to definition 2.19, we define Green’s functions as

G := ∑
Γ

(−)#LΓ
1

Sym(Γ)

(−i)#Γ
[1]

i#Γ
[1]
(ie)#Γ[0]

π2lΓ

(2π)4lΓ
Γ . (3.23)

Note the sign in front: every fermion loop in Γ gives a minus sign. (LΓ
denotes the set of fermion loops in Γ.) This is a consequence of Fermi statistics.

Using lemma 3.1, it can be written as

G = (−)#Γext+#Γext
ieΓext−2

∞

∑
l=0

xlG(l) , (3.24)
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with

x = − ie2

16π2 (3.25)

and
G(l) = ∑

Γ
lΓ=l

(−)#LΓ
1

Sym(Γ)
Γ . (3.26)

3.1.4 Power Counting
Looking at equations (3.13) and (3.18), we see that the superficial degree of
divergence is

ωΓ = 4lΓ − 2#Γ
[1] − #Γ

[1]
= 2lΓ + #Γ

[1] − 2#Γ[1] . (3.27)

With the use of lemma 3.1 it can be written as

ωΓ = 4− #Γext − 3#Γext . (3.28)

This means we have the following superficial divergences:

ω = 2 , ω = 1 , ω = 0 ,

ω = 1 , and ω = 0 .
(3.29)

We will get back on this at the beginning of section 3.4.
The following result will be useful there:

Lemma 3.3 (Furry’s theorem).

N
( )

=


0 odd number of photons,

2N
( )

even number of photons.
(3.30)

By this unoriented fermion loop we mean the sum over both orientations:

:' + . (3.31)

The relation ' means that the left- and the right-hand side have exactly
the same Feynman rules.

Proof.

1′1 n

2′ n′ = Tr(γµn γµn′ · · · γµ1 γµ1′ )pµn′
n′ · · · p

µ1′
1′

+ (−)n Tr(γµ1′γµ1 · · · γµn′γµn)pµn′
n′ · · · p

µ1′
1′ .
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The n minus signs appear because in the clockwise orientation, the momenta
are oriented opposite to the fermion arrow. The γ-matrices have the following
property:∗

Tr(γµn γµn′ · · · γµ1 γµ1′ ) = Tr(γµ1′γµ1 · · · γµn′γµn),

so the statement is proven.

Note that unoriented fermion loops have symmetry factor and that they
respect them, for example:

1
2 ∼ 1

2

(
+

)
∼ .

3.2 Ward Identities

In classical electrodynamics we know that electromagnetic waves are trans-
verse. The Ward identities confirm that in the quantized theory longitudinal
photons are indeed unphysical:

pµ0
0 Φ

(
0

)
?
= 0 .

(We omit writing ‘m.c.’ in this section, but momentum conservation is as-
sumed everywhere.)

If we introduce a new notation for external edges (a longitudinal photon):

,

with the Feynman rule that one has to include a factor

pµe
e (3.32)

for such an external edge e, the Ward identities can be written as

?∼ 0 .

Lemma 3.4.

∼ − + . (3.33)

∗[15], equation (A.28)
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The dotted line is just there to keep it consistent with momentum conser-
vation; it does not alter the Feynman rules.

Proof. With momentum conservation, p0 = −p1 + p2, one has

Φ

(
1
2

0

3

4 )
= pµ0

0
γµ4 /p2γµ0 /p1γµ3

p2
1 p2

2
= −

γµ4 /p2γµ3

p2
2

+
γµ4 /p1γµ3

p2
1

= Φ

(
− 20

3

4

+ 10

3

4 )
.

Before we go to the Ward identities, we first give the Ward-Takahashi identi-
ties, which relate of-shell 1PI functions to each other:∗

Theorem 3.5 (Ward-Takahashi identities).

(l)
∼ −

(l)
− · · · −

(l)

+
(l)

+ · · ·+
(l)

.

(3.34)

Proof. Consider a 1PI graph Γ of the form

Γ =

and take a fermion line that is going through it:

.

The next step is to sum over the fermion edges in the line and insert a longi-

∗See also for example [15], section 7.4
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tudinal photon into each of these edges. With lemma 3.4 we get:

+ · · ·+

∼ − + − · · · − +

= − + .

The terms in the middle line cancel in pairs, except for the two outer ones.
Now take fermion loop in Γ:

and do the same thing:

+ + + · · ·

= − + − +

− + + · · · = 0 .

Here we see that the whole thing cancels pairwise.
So, if we insert a longitudinal photon in every internal fermion edge in Γ,

we get for every open fermion line two contributions:

− − · · · − + + · · ·+ .

Note that the graph remains 1PI after inserting a photon into an internal
fermion edges.

We do not have to worry about symmetry factors. In subsection 3.1.2 we
remarked that in QED we do not have symmetry factors oter than 1. (We do
not use the notation of lemma 3.3.)

Summing over all such graphs completes the proof.
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Corollary 3.6. Write the 1PI fermion propagator function as

Σ(l)(p) := Φ
(

(l)

)
, (3.35)

the photon propagator function as

Π
µ1µ2
(l) (p) := Φ

(
(l)

1 2

)
(3.36)

and the vertex function as

Γ
µ1
(l) (p2, p3) := Φ

(
(l)

3

1

2

)
. (3.37)

Then:

i. pµΠ
µν

(l)(p) = 0 , (3.38)

ii. pµ
1 Γ

µ

(l)(p2, p2 + p1) = Σ(l)(p2)− Σ(l)(p2 + p1) , (3.39)

iii.
Γ

µ

(l)(p, p) = −
dΣ(l)(p)

dpµ
. (3.40)

Proof. The identities i and ii follow directly from theorem 3.5. Identity iii
follows from ii by differentiating to p1 and setting it to 0.

For the Ward identities, we first need something similar to lemma 3.4, but
with physical external fermions:

Lemma 3.7.

i.
∼ , (3.41)

ii.
∼ − , (3.42)

iii.
∼ 0 . (3.43)

Proof. i. With the Dirac equation (3.19):

Φ
(

0

1

3)
=

γµ3 /p2/p0u1

p2
2

=
γµ3 /p2(−/p1 + /p2)u1

p2
2

= γµ3 u1

= Φ
(

0

1

3

)
.
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ii. This is proven analogously using (3.20).

iii. And for this one, use both (3.19) and (3.20).

Theorem 3.8 (Ward identities).

Φ

(
(l)

)
= 0 (3.44)

Proof. The proof is the same as in theorem 3.5, except if one takes a fermion
line going through the graph,

,

we do not only insert the photon in the internal fermion edges, but also in the
external ones. With lemmata 3.4 and 3.7, one sees that

+ + · · ·+ +

= − + · · ·+ − = 0 .

The rest of the proof is the same.

3.3 Parametric Representation

In analogy with equation (2.28), we define the parametric integrand in QED
as

I(Γ) := 1
π2lΓ

∫
dk N(Γ)e−∑e∈Γ[1]

p2
e Ae , (3.45)

such that
Φ(Γ) =

∫
dAΓ I(Γ) . (3.46)

The numerator N(Γ) contains loop momenta, so theorem 2.24 cannot be
applied here directly. In the following we will use a little trick using a suitable
differential operator acting on the parametric integrand in scalar theory.

Theorem 3.9. Define the differential operator

p̂µe
e := − 1

2Ae

∂

∂ξeµe

(3.47)
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and let N̂(Γ) be the differential operator obtained by replacing every momen-
tum pe (e ∈ Γ

[1]) in N(Γ) by p̂e:

N̂(Γ) := N(Γ)
∣∣
∀e∈Γ[1] :pe p̂e

= γ(Γ) ∏
e∈Γ

[1]

p̂µe
e , (3.48)

Then, the parametric integrand in QED can be written as

I(Γ) = N̂(Γ)
e−ϕΓ/ψΓ

ψ2
Γ

. (3.49)

Proof. First note that

p̂µ
e e−∑e′∈Γ[1]

p2
e′Ae′ = pµ

e e−∑e′∈Γ[1]
p2

e′Ae′ . (3.50)

This is the reason we assigned an independent ξe to each edge in definition
2.16, instead of using momentum conservation right away.

The integrand can be written as

I(Γ) = N̂(Γ) 1
π2lΓ

∫
dk e−∑e∈Γ[1]

p2
e Ae .

Since every pe appears in N(Γ) at most once, we do not have to take the
Leibniz rule (the product rule) into account.

The object the differential operator N̂(Γ) acts on is exactly the integrand
in scalar theory (equation (2.28)), so we can apply theorem 2.24.

Remark 3.10. i. Before we go to some examples, let us introduce some
useful notations. The first one is:

p̃µ
e := − p̂µ

e ϕΓ . (3.51)

It is homogeneous of degree

deg p̃e = lΓ (3.52)

in the Schwinger parameters. For one-scale graphs we can write

p̃µ
e
∣∣
m.c. =: pµαe . (3.53)

ϕΓ is quadratic in the momenta. This means that p̂µ
e p̃ν

f is always propor-
tional to gµν, so we write

p̂µ
e1 p̃ν

e2
=: gµνβe1e2 , (3.54)

where βe1e2 is of degree

deg βe1e2 = lΓ − 1 . (3.55)

Furthermore,
p̂µ1

e1 p̂µ2
e2 p̂µ3

e3 ϕΓ = 0 .
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ii. Applying the differential operators and using the Leibniz rule, we see
that the integrand can be written as

I(Γ) =

b#Γ
[1]/2c

∑
i=0

Bi(Γ)

ψ#Γ
[1]−i+2

e−ϕΓ/ψΓ . (3.56)

The index i counts the number of times the Leibniz rule is applied. Bi(Γ)
is:

Bi(Γ) := γ(Γ) 1
2i i!(k−2i)! ∑

perm. of Γ
[1]

gµe1 µe2 · · · gµe2i−1 µe2i

× βe1e2 · · · βe2i−1e2i p̃
µe2i+1
e2i+1 · · · p̃

µek
ek ,

(3.57)

where we labelled Γ
[1]

= {e1, . . . , ek}. The combinatorial factor compen-
sates double counting. Bi(Γ) is of degree

deg Bi(Γ) = lΓ(#Γ
[1] − i)− i (3.58)

in the Schwinger parameters.

Example 3.11. i. Take the graph

3

4

1 2 .

In example 2.23.i the Symanzik polynomials were given, but with this
orientation

q34 = ξ3 + ξ4
m.c.
==== p .

So:
p̃µ

3 = qµ
34 A4

m.c.
==== pµ A4 .

The γ-structure is

γ
( )

= γµ4 γµ3 γµ4 = −2γµ3 .

This gives us the parametric integrand

I
( )

= N̂
( ) e−ϕ /ψ

ψ2 = −2γµ3 p̂µ3
3

e−ϕ /ψ

ψ2

= −2γµ3
p̃µ3

3

ψ3 e−ϕ /ψ m.c.
==== −2/p

A4

(A3 + A4)3 e−
p2 A3 A4
A3+A4 .

ii. For the graph

3

4

1 2
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we have:

p̃µ
3 = qµ

34 A4
m.c.
==== pµ A4 ,

p̃µ
4 = −qµ

34 A3
m.c.
==== −pµ A3 ,

and
gµνβ34 = p̂µ

3 p̃ν
4 = 1

2 gµν .

The γ-structure is:

γ
( )

= Tr(γµ1 γµ4 γµ2 γµ3)

= 4(gµ1µ4 gµ2µ3 − gµ1µ2 gµ4µ3 + gµ1µ3 gµ4µ2) .

Putting this together, we get for the integrand:

I
( )

= Tr(γµ1 γµ4 γµ2 γµ3) p̂µ3
3 p̂µ4

4
e−ϕ /ψ

ψ2

= Tr(γµ1 γµ4 γµ2 γµ3)
( p̃µ3

3 p̃µ4
4

ψ4 +
gµ3µ4 β34

ψ3

)
e−ϕ /ψ

= Tr(γµ1 γµ4 γµ2 γµ3)
(
− pµ3 pµ4 A3 A4

(A3 + A4)4

+
gµ3µ4

2(A3 + A4)3

)
e−

p2 A3 A4
A3+A4

= 4
(
(−2pµ1 pµ2 + gµ1µ2 p2)

A3 A4

(A3 + A4)4

− gµ1µ2
1

(A3 + A4)3

)
e−

p2 A3 A4
A3+A4 .

iii. The Symanzik polynomials of the graph

5

4
6

3

1

2

are given in example 2.23.ii, but with this orientation

q45 = −ξ4 + ξ5
m.c.
==== p1 ,

q46 = ξ4 + ξ6
m.c.
==== p2 ,

q56 = ξ5 + ξ6
m.c.
==== p3 .

Then

p̃µ
4 = −qµ

45 A5 + qµ
46 A6

m.c.
==== −pµ

1 A5 + pµ
2 A6 ,

p̃µ
5 = qµ

45 A4 + qµ
56 A6

m.c.
==== pµ

1 A4 + pµ
3 A6 ,

gµνβ45 = 1
2 gµν .

38



We have

γ
( )

= γµ6 γµ5 γµ1 γµ4 γµ6 = −2γµ4 γµ1 γµ5 .

and the integrand is

I
( )

= −2γµ4 γµ1 γµ5 p̂µ4
4 p̂µ5

5
e
−ϕ /ψ

ψ2

= −2γµ4 γµ1 γµ5
( p̃µ4

4 p̃µ5
5

ψ4 +
gµ4µ5 β45

ψ3

)
e
−ϕ /ψ

= 2
(
− /̃p4γµ1 /̃p5

ψ4 + γµ1
1

ψ3

)
e
−ϕ /ψ

.

If we take the photon momentum p1 = 0 and the fermion momenta
p2 = p3 = p, it simplifies to

I
( )∣∣∣p1=0

p2=p3=p
= 2

(
− /pγµ1 /p

A2
6

ψ4 + γµ1
1

ψ3

)
e
− p2(A4+A5)A6

ψ

.

iv. And finally a slightly more complicated 2-loop example:

3

4

56

7

1 2 ,

for which the Symanzik polynomials were given in example 2.23.iii. For
this one, one has:

p̃µ
3 = qµ

36 A6(A4 + A5 + A7) + qµ
345 A4 A5 + qµ

347 A4 A7
m.c
=== pµ

(
A6(A4 + A5 + A7) + A4 A5

)
= pµα3 ,

p̃µ
4 = −qµ

345 A3 A5 + qµ
467 A6 A7 − qµ

347 A3 A7 + qµ
456 A5 A6

m.c
=== pµ

(
− A3 A5 + A6 A7

)
= pµα4 ,

p̃µ
5 = qµ

57 A7(A3 + A4 + A6) + qµ
345 A3 A4 − qµ

456 A4 A6
m.c
=== pµ

(
A7(A3 + A4 + A6) + A3 A4

)
= pµα5 ,

gµνβ34 = 1
2 gµν(A5 + A7) ,

gµνβ35 = − 1
2 gµν A4 ,

gµνβ45 = 1
2 gµν(A3 + A6) .

γ
( )

= γµ7 γµ5 γµ6 γµ4 γµ7 γµ3 γµ6 = −8gµ5µ3 γµ4 .
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I
( )

= −8gµ5µ3 γµ4 p̂µ3
3 p̂µ4

4 p̂µ5
5

e−ϕ /ψ

ψ2

= −8gµ5µ3 γµ4
( p̃µ3

3 p̃µ4
4 p̃µ5

5

ψ5

+
gµ3µ4 β34 p̃µ5

5 + gµ3µ5 β35 p̃µ4
4 + gµ4µ5 β45 p̃µ3

3

ψ4

)
× e−φ /ψ

m.c.
==== −8/p

(
p2 α3α4α5

ψ5 +
β34α5 + 4β35α4 + β45α3

ψ4

)
× e−p2 ϕ′ /ψ .

Remark 3.12. Applying p̂µ
e on equation (2.39), gives us:

p̃µ
e = ∑

C∈C ′2Γ
C3e

εCeqµ
C

(
∏

e′∈C\{e}
Ae′
)

ψΓ\C . (3.59)

By applying another p̂, one can see that

βee′ = − 1
2 ∑

C∈C ′2Γ
C3e,e′

εCeεCe′
(

∏
e′′∈C\{e,e′}

Ae′′
)

ψΓ\C , (3.60)

for e 6= e′. For the case e = e′, one has

βee = −
1

2Ae
∑

C∈C ′2Γ
C3e

(
∏

e′∈C\{e}
Ae′
)

ψΓ\C . (3.61)

The case e = e′ does not occur in QED in the Feynman gauge, but it does in
other gauges (see the remark 3.14) and sQED and non-Abelian gauge theories
(see the next two chapters). (Note that because of the 1

Ae
, βee this is not a

homogeneous polynomial, but a homogeneous rational function.)

Remark 3.13. Recall proposition 2.25.i. Using equation (3.56), we can see that
in QED

I (Γ) =

b#Γ
[1]/2c

∑
i=0

Bi(Γ)

ψ#Γ
[1]−i+2

∞∫
0

dt t#Γ[1]−2lΓ−i−1e−tϕΓ/ψΓ . (3.62)

With equations (3.58) and (3.27), we have:

I (Γ) =

b#Γ
[1]/2c

∑
i=0

Bi(Γ)

ψ#Γ
[1]−i+2

∞∫
0

dt t(−ωΓ+#Γ
[1]
)/2−i−1e−tϕΓ/ψΓ

=

b#Γ
[1]/2c

∑
i=0

Bi(Γ)ϕ
(ωΓ−#Γ

[1]
)/2+i

Γ

ψ(ωΓ+#Γ
[1]
)/2+2

Γ
( 1

2 (−ωΓ + #Γ
[1]
)− i

)
.

(3.63)
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For an even number of internal fermions, the most divergent term of I (Γ)

is at i = 1
2 #Γ

[1]; there we have Γ(− 1
2 ωΓ), just like in remark 2.26. For odd #Γ

[1],

the most divergent term is at i = 1
2 (#Γ

[1] − 1). Then we have Γ(− 1
2 ωΓ + 1).

So in this case the integral is a little bit less divergent than we would expect.

Remark 3.14. With a little bit more effort, we can make a parametric inte-
grand for other gauges than the Feynman gauge. Recall (3.14). Instead of the
replacement pe  p̂e, we replace

peµh1
peµh2

p2
e

 Ae p̂eµh1
p̂eµh2

+ 1
2 gµh1

µh2

to obtain N̂(Γ):

N̂(Γ) = γ(Γ)
(

∏
{h1,h2}=e∈Γ

[1]

( 1
2 (1 + α)gµh1

µh2
− (1− α)Ae p̂eµh1

p̂eµh2

))
×
(

∏
e∈Γ

[1]

p̂µe
e

)
.

(3.64)

Proof.

∞∫
0

dAe(Ae p̂eµh1
p̂eµh2

+ 1
2 gµh1

µh2
)e−p2

e Ae = peµh1
peµh2

∞∫
0

dAe Aee−p2
e Ae

=
peµh1

peµh2

(p2
e )

2 .

We used that
p̂µ

e pν
e = − 1

2Ae
gµν , (3.65)

so the term from the Leibniz rule vanishes against 1
2 gµh1

µh2 , and

∞∫
0

dAe Aee−p2
e Ae =

1
(p2

e )
2 . (3.66)

Example 3.15. Let us go back to example 3.11.i. We label the two half-edges
of the photon edge 4 with 4′ and 4′′:

4′ 4′′

3

1 2 .

The Feynman rules give the numerator

N
( )

= γµ4′′γµ3 γµ4′
(

gµ4′µ4′′ − (1− α)
pµ4′

4 pµ4′′
4

p2
4

)
pµ3

3 .

The corresponding differential operator is then

N̂
( )

= γµ4′′γµ3 γµ4′
(

1
2 (1 + α)gµ4′µ4′′ − (1− α)A4 p̂µ4′

4 p̂µ4′′
4

)
p̂µ3

3 .
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Whith this, we get for the interand

I
( )

= N̂
( ) e−ϕ /ψ

ψ2

m.c.
==== γµ4′′γµ3 γµ4′

(
1
2 (1 + α)gµ4′µ4′′ pµ3

A4

(A3 + A4)3

− (1− α)pµ4′ pµ4′′ pµ3
A2

3 A2
4

(A3 + A4)5

+ 1
2 (1− α)(gµ4′µ4′′ pµ3 + gµ4′µ3 pµ4′′ + gµ4′′µ3 pµ4′ )

A3 A4

(A3 + A4)4

)
× e−

p2 A3 A4
A3+A4

= /p
( (2− 4α)A3 A4 − (1 + α)A2

4
(A3 + A4)4

− p2(1− α)
A2

3 A2
4

(A3 + A4)5

)
e−

p2 A3 A4
A3+A4 .

For α = 1 we indeed get back the result of example 3.11.i.

3.3.1 A Ward-Takahashi Identity Revisited
In this subsection we give an alternative proof of the Ward identity in corollary
3.6.iii using the parametric representation.

Lemma 3.16. Let Γ be a fermion propagator graph. Then:

dI(Γ)|m.c.

dpµ
= ∑

e∈Γ
[1]

∂I(Γ)

∂ξeµ

∣∣∣
m.c.

. (3.67)

Proof. Let C ∈ C ′2Γ and label C = {1, . . . , l}. Two things can happen:

• Assume that C is such that Γ\C is of the form

Γ\C = 1 2 2k− 1 2k 2k + 1 l .

Then

qC = ξ1 − ξ2 + · · ·+ ξ2k+1 − ξ2k + ξ2k+1 + · · ·+ ξl
m.c.
==== 0 ,

and

∑
e∈Γ

[1]

∂qν
C

∂ξeµ
=

2k

∑
e=1

∂qν
C

∂ξeµ
= gµν − gµν + · · ·+ gµν − gµν = 0 .
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So
dqν

C|m.c.

dpµ
= 0 = ∑

e∈Γ
[1]

∂qν
C

∂ξeµ
.

• Assume that C is such that Γ\C is of the form

Γ\C =

l

2k + 2
2k + 1

2k

2
1

.

Then

qC = ξ1 − ξ2 + · · · − ξ2k + ξ2k+1 + ξ2k+2 + · · ·+ ξl
m.c.
==== p ,

and

∑
e∈Γ

[1]

∂qν
C

∂ξeµ
=

2k+1

∑
e=1

∂qν
C

∂ξeµ
= gµν − gµν + · · · − gµν + gµν = gµν .

So
dqν

C|m.c.

dpµ
= gµν = ∑

e∈Γ
[1]

∂qν
C

∂ξeµ
.

So for any C ∈ C ′2Γ :
dqν

C|m.c.

dpµ
= ∑

e∈Γ
[1]

∂qν
C

∂ξeµ
.

From this
dϕΓ|m.c.

dpµ
= ∑

e∈Γ
[1]

∂ϕΓ

∂ξeµ

∣∣∣
m.c.

,

and
dp̃ν

e |m.c.

dpµ
= ∑

e∈Γ
[1]

∂ p̃ν
e

∂ξeµ
.

follow.

Lemma 3.17. Let Γ be a fermion propagator graph. Then:

∂Φ(Γ)|m.c.

∂pµ0

= − ∑
e∈Γ

[1]

Φ(Γ(e))
∣∣
m.c. , (3.68)
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where Γ(e) is the graph one gets by inserting an external photon edge (labelled

0) in fermion edge e ∈ Γ
[1]: for a Γ of the form

Γ =

e

,

Γ(e) looks like

Γ(e) =

0

.

The momentum of this photon is p0 = 0; so momentum is conserved.

Proof. Integrating lemma 3.16 over all Schwinger parameters yields

∂Φ(Γ)|m.c.

∂pµ0

= ∑
e∈Γ

[1]

∂Φ(Γ)

∂ξeµ0

∣∣∣
m.c.

.

From the Clifford relation (3.4) follows

∂

∂ξeµ0

/p
p2

e
=

p2
e γµ0 − 2pµ0

e /pe
(p2

e )
2 = −/peγµ0 /pe

(p2
e )

2 ,

so
∂Φ(Γ)

∂ξeµ0

= −Φ(Γ(e)) .

Corollary 3.6 follows from this by summing over all 1PI fermion propaga-
tor graphs at loop order l.

3.4 Renormalization

The superficially divergent graphs are given in equation (3.29). From Furry’s
theorem (lemma 3.3) we know that the 3-photon Green’s function vanishes.
Furthermore, because of the Ward identity (theorem 3.5), the 4-photon func-
tion is finite, despite the superficial degree of divergence being 0.∗ This is
why we can regard the fermion and photon propagator graphs and the vertex
graphs to be the only divergent ones.

Definition 3.18. Let Γ be a fermion propagator graph:

Γ = .

∗See [15], around equation (10.9).
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The integrand I(Γ) is proportional to /p (see equation (3.72)):

I(Γ) =: /pI′(Γ) (3.69)

Let
I◦(Γ) := I′(Γ)

∣∣
p2=µ2 . (3.70)

Then, the overall divergence of Γ is renormalized as follows:

Iren(Γ) = I − /pI◦(Γ) . (3.71)

Example 3.19. In example 3.15, the integrand for the 1-loop fermion propa-
gator graph was computed for a general covariant gauge. The renormalized
integrand is:

Iren
( )

= /p
(2− 4α)A3 A4 − (1 + α)A2

4
(A3 + A4)4

(
e−

p2 A3 A4
A3+A4 − e−

µ2 A3 A4
A3+A4

)
− /p(1− α)

A2
3 A2

4
(A3 + A4)5

(
p2e−

p2 A3 A4
A3+A4 − µ2e−

µ2 A3 A4
A3+A4

)
.

Integrating t gives (equation (2.43)):

I ren
( )

= /p
(2− 4α)a3a4 − (1 + α)a2

4
(a3 + a4)4

∞∫
0

dt
t

(
e−t p2a3a4

a3+a4 − e−t µ2a3a4
a3+a4

)

− /p(1− α)
a2

3a2
4

(a3 + a4)5

∞∫
0

dt
(

p2e−t p2a3a4
a3+a4 − µ2e−t µ2a3a4

a3+a4

)

= −/p
(2− 4α)a3a4 − (1 + α)a2

4
(a3 + a4)4 ln

p2

µ2 .

The amplitude of this graph, and hence the 1-loop Green’s function, is then

Σ(1)(p) = Φren
( )

= −/p
∞∫

0

da3
(2− 4α)a3 − (1 + α)

(a3 + 1)4 ln
p2

µ2 = α/p ln
p2

µ2 .

Remark 3.20. From lemma 3.1.iv, it follows that for fermion propagator graphs
Γ #Γ

[1]
= 2lΓ − 1. Now go back to equation (3.56): i runs from 0 to lΓ − 1. Γ

is 1-scale, and there are 2lΓ − 2i − 1 powers of p in Bi(Γ), so Bi(Γ) is of the
form:

Bi(Γ) =: /p(p2)lΓ−i−1B′i(Γ) , (3.72)

where B′i(Γ) contains no momenta. So:

Iren(Γ) = I − /pI◦(Γ)

= /p
lΓ−1

∑
i=0

B′i(Γ)

ψ2lΓ−i+1

(
(p2)lΓ−i−1e−p2 ϕ′Γ/ψΓ − (µ2)lΓ−i−1e−µ2 ϕ′Γ/ψΓ

)
.

45



With equation (2.43), one has:

I ren(Γ) = /p
lΓ−1

∑
i=0

B′i(Γ)

ψ2lΓ−i+1

∞∫
0

dt tlΓ−i−2((p2)lΓ−i−1e−tp2 ϕ′Γ/ψΓ

− (µ2)lΓ−i−1e−tµ2 ϕ′Γ/ψΓ
)

= −/p
B′lΓ−1(Γ)

ψlΓ+2 ln
p2

µ2 ,

(3.73)

where we used

t#Γ[1]−1+deg Bi(Γ)−(2lΓ−i+1)deg ψΓ = tlΓ−i−2 .

Note that it simplifies to only one remaining term; the terms with i < lΓ − 1
all vanish.

Definition 3.21. Let Γ be a vertex graph:

Γ =

3

1

2

.

At p1 = 0 and p2 = p3 = p, the integrand is of the form

I(Γ) = γµ I′(Γ) + /ppµ I′′(Γ) . (3.74)

We subtract for the overall divergence as follows:

Iren(Γ) = I(Γ)− γµ1 I◦(Γ) , (3.75)

where
I◦(Γ) = I′(Γ)

∣∣
p2=µ2 . (3.76)

This is motivated as follows: Recall the definitions (3.35) and (3.37). These
are of the form

Γ
µ

(l)(p, p) = γµΓ′(p2) + /ppµΓ′′(p2) and Σ(l)(p) = /pΣ′(l)(p2) . (3.77)

Then, the Ward-Takahashi identity (3.40) can be written as
Γ′(p2) = −Σ′(l)(p2) ,

Γ′′(p2) = −2
dΣ′(l)(p2)

dp2 .
(3.78)

With the renormalization scheme given in definitions 3.18 and 3.21, one has

Σren′
(l) (p)2 = Σ′(l)(p2)− Σ′(l)(µ

2) = −Γ′(p2) + Γ′(µ2) = −Γren′(p2) (3.79)

and

− 2
dΣren′

(l) (p2)

dp2 = −2
dΣ′(l)(p2)

dp2 = Γ′′(p2) = Γren′′(p2) . (3.80)
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So this scheme is compatible with the Ward identities.∗

Example 3.22. Continue with example 3.11.iii: with the Clifford relation (3.4),
the integrand with p1 = 0 can be written as

I
( )∣∣∣p1=0

p2=p3=p
= 2

(
p2γµ1

A2
6

ψ4 − 2/ppµ1
A2

6

ψ4 + γµ1
1

ψ3

)
e
− p2(A4+A5)A6

ψ

,

so the counter-term is

I◦
( )

= 2
(

µ2 A2
6

ψ4 +
1

ψ3

)
e
− µ2(A4+A5)A6

ψ

,

and the renormalized integrand is

Iren
( )

= −2
1

ψ4

(
/̃p4γµ1 /̃p5e

−ϕ /ψ
+ µ2 A2

6e
− µ2(A4+A5)A6

ψ )

+ 2γµ1
1

ψ3

(
e
−ϕ /ψ

− e
− µ2(A4+A5)A6

ψ )
.

With equation (2.43) the t-integration can be done:

I ren
( )

= −2
1

ψ4

∞∫
0

dt
(
/̃p4γµ1 /̃p5e

−tϕ /ψ
+ γµ1 µ2a2

6e
−t µ2(a4+a5)a6

ψ )

+ 2γµ1
1

ψ3

∞∫
0

dt
t
(
e
−tϕ /ψ

− e
−t µ2(a4+a5)a6

ψ )
= −2

( /̃p4γµ1 /̃p5
ϕ

+ γµ1
a6

a4 + a5

) 1
ψ3

− 2γµ1
1

ψ3 ln
ϕ

µ2(a4 + a5)a6
.

To make life easier, we make the graph 1-scale by taking p1 = 0 and p2 =
p3 = p. Then, I simplifies to

I ren
( )

= −2
(/pγµ1 /p

p2 + γµ1
) a6

ψ3 (a4 + a5)
− 2γµ1

1
ψ3 ln

p2

µ2 .

= −4 /ppµ

p2
a6

ψ3 (a4 + a5)
− 2γµ1

1
ψ3 ln

p2

µ2 a

so the amplitude, and hence the 1-loop Green’s function, is

Γ
µ1
(1)(p) = Φren

( )
= −2 /ppµ

p2 − γµ1 ln
p2

µ2 .

∗In [16] it is discussd that it also works with subdivergences.
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Definition 3.23. For a photon propagator graph

Γ = 1 2 ,

the integrand is of the form

I(Γ) = pµ1 pµ2 I′(Γ) + p2gµ1µ2 I′(Γ) . (3.81)

Up to subdivergences, we define the renormalized integrand as

Iren(Γ) = pµ1 pµ2
(

J′(Γ)− J′(Γ)
∣∣

p2=µ2

)
+ p2gµ1µ2

(
J′′(Γ)− J′′(Γ)

∣∣
p2=µ2

)
,

(3.82)

where
J(Γ) := J(Γ)− J(Γ)

∣∣
p2=0 . (3.83)

Example 3.24. Continue with example 3.11.ii: The renormalized integrand is

Iren
( )

= 4
(−2pµ1 pµ2 + gµ1µ2 p2)A3 A4

(A3 + A4)4

(
e−

p2 A3 A4
A3+A4 − e−

µ2 A3 A4
A3+A4

)
− 4

p2gµ1µ2

(A3 + A4)3

( 1
p2

(
e−

p2 A3 A4
A3+A4 − 1

)
− 1

µ2

(
e−

µ2 A3 A4
A3+A4 − 1

))
.

Do the t-integration:

I ren
( )

= 4
(−2pµ1 pµ2 + gµ1µ2 p2)a3a4

(a3 + a4)4

∞∫
0

dt
t
(
e−t p2a3a4

a3+a4 − e−t µ2a3a4
a3+a4

)

− 4
p2gµ1µ2

(a3 + a4)3

∞∫
0

dt
t2

( 1
p2

(
e−t p2a3a4

a3+a4 − 1
)

− 1
µ2

(
e−t µ2a3a4

a3+a4 − 1
))

= 8(pµ1 pµ2 − gµ1µ2 p2)
a3a4

(a3 + a4)4 ln
p2

µ2 .

Here we can see already that the amplitude of this graph is transversal. The
amplitude is:

Φren
( )

= 4
3 (pµ3 pµ4 − p2gµ3µ4) ln

p2

µ2 .

For the 1-loop Green’s function, we have to include a minus sign for the
fermion loop (equation 3.26):

Π
µ1µ2
(1) (p) = Φren

(
−

)
= 4

3 (−pµ3 pµ4 + p2gµ3µ4) ln
p2

µ2 .
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Remark 3.25. For a photon propagator graph Γ, there is a similar simplifica-
tion as we have seen for fermion propagators in remark 3.20. From lemma
3.1.iv follows that #Γ

[1]
= 2lΓ, so i in equation (3.56) runs from 0 to lΓ. There

are 2lΓ − 2i powers of p in Bi(Γ), so because of Lorentz covariance, Bi(Γ) has
to be of the form:

Bi(Γ) =: pµ1 pµ2(p2)lΓ−i−1B′i(Γ) + gµ1µ2(p2)lΓ−iB′′i (Γ) (3.84)

where B′i(Γ) and B′′i (Γ) contain no momenta. Note that B′lΓ
(Γ) = 0. The

integrand is now:

I(Γ) =
lΓ−1

∑
i=0

(p2)lΓ−i−1 pµ1 pµ2 B′i(Γ) + p2gµ1µ2 B′′i (Γ)

ψ2lΓ−i+2 e−p2 ϕ′Γ/ψΓ

+ gµ1µ2
B′′lΓ

(Γ)

ψlΓ+2 e−p2 ϕ′Γ/ψΓ .

Subtraction for the overall divergence gives:

Iren(Γ) =
lΓ−1

∑
i=0

pµ1 pµ2 B′i(Γ) + p2gµ1µ2 B′′i (Γ)

ψ2lΓ−i+2

×
(
(p2)lΓ−i−1e−p2 ϕ′Γ/ψΓ − (µ2)lΓ−i−1e−µ2 ϕ′Γ/ψΓ

)
+ gµ1µ2

B′′lΓ
(Γ)

ψlΓ+2

(
e−p2 ϕ′Γ/ψΓ − 1− p2

µ2

(
e−µ2 ϕ′Γ/ψΓ − 1

))
.

Performing the t-integration, with

t#Γ[1]−1+deg Bi(Γ)−(2lΓ−i+2)deg ψΓ = tlΓ−i−2 ,

one obtains:

I ren(Γ) =
lΓ−1

∑
i=0

pµ1 pµ2 B′i(Γ) + p2gµ1µ2 B′′i (Γ)

ψ2lΓ−i+2

∞∫
0

dt tlΓ−i−2

×
(
(p2)lΓ−i−1e−tp2 ϕ′Γ/ψΓ − (µ2)lΓ−i−1e−tµ2 ϕ′Γ/ψΓ

)
+ gµ1µ2

B′′lΓ
(Γ)

ψlΓ+2

∞∫
0

dt
t2

×
(

e−tp2 ϕ′Γ/ψΓ − 1− p2

µ2

(
e−tµ2 ϕ′Γ/ψΓ − 1

))
=
−pµ1 pµ2 B′lΓ−1(Γ) + p2gµ1µ2

(
− B′′lΓ−1(Γ) + B′′lΓ

(Γ)ϕ′Γ
)

ψlΓ+3

× ln
p2

µ2 .

(3.85)

Only three terms are left.
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To conclude this chapter, we give an example with subdivergences:

Example 3.26. Continue with example 3.11.iv. For the renormalization we use
the forest formula 2.62. The forests for our graph (only the ones that do not
contain the graph itself) are

F ′
( )

=

{
∅,
{

3

6
4

}
,
{

4
7

5 }}
,

so with 2.62 we have for the renormalized integrand

Iren
( )

= Iren
( )

− I◦
( )

Iren
(

7

5 )
− I◦

( )
Iren
( 6

3

)
.

Do the t-integration:

I ren
( )

= I ren
( )

−M
({ }

,
)

−M
({ }

,
)

The first term is (see remark 3.20):

I ren
( )

= 8
β34α5 + 4β35α4 + β45α3

ψ4 ln
p2

µ2 .

For the second and third term, we used the notation

M( f , Γ/ f ) =
∞∫

0

dt t#Γ[1]−1 I◦( f )Iren(Γ/ f )
∣∣

A=ta .

The second term turns out to be

M
({ }

,
)

= −4/p
a2

6a7

ψ3 ψ2

( 1

φ′ ψ + p2

µ2 φ′ ψ
− 1

φ′ ψ + φ′ ψ

)

+ 4/p
a7

ψ3 ψ3 ln
φ′ ψ + p2

µ2 φ′ ψ

φ′ ψ + φ′ ψ
,

whith
ψ = a5 + a7 , ψ = a3 + a4 + a6 ,

φ′ = a5a7 , and φ′ = (a3 + a4)a6 .
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The third one is something similar. This can be integrated to:∗

Φren
( )

= −/p
(

ln2 p2

µ2 + ln
p2

µ2

)
.

∗Erik Panzer’s Maple program HyperInt is used for this; see [13] and [14], chapter 4.
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4
Scalar Quantum
Electrodynamics

4.1 Feynman Rules

4.1.1 Lagrangian
In this chapter we study scalar quantum electrodynamics (sQED),∗ which is a
theory similar to QED, but with a complex scalar field φ instead of the spinor
field. The Lagrangian is

L = − 1
4 FµνFµν + (Dµφ)(Dµφ∗)− 1

4 λ(φ∗φ)2 . (4.1)

Just like QED, this is U(1) gauge invariant.

4.1.2 Feynman Graphs
For the Feynman graphs, we have photon half-edges (as in QED) and incom-
ing and outgoing scalar half-edges, which we represent graphically as

, and

respectively. In chapter 2 we had real scalar fields; now they are complex.
That is why we have an arrow here.

As in QED, these half-edges combine to two types of edges:

and .

But unlike QED we have several types of vertices:

, and .

∗See [10], subsection 6-1-4.
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4.1.3 Feynman Rules
We take the Feynman gauge again, which means that we can use the same
abuse of notation as in subsection 3.1.3. Assign to every internal and external
photon edge e ∈ Γ

[1] ∪ Γext a Lorentz index µe.
As in the previous chapter, the Feynman amplitude is

Φ(Γ) = 1
π2lΓ

∫
dkL

N(Γ)

∏
e∈Γ[1]

p2
e

. (4.2)

Here, the numerator N(Γ) is a product of:

• for every vertex 3

1

2

v ∈ Γ
[1]

a factor
(p2 + p3)

µ1 =: Vv , (4.3)

• and for every vertex
1

2

v ∈ Γ
[1]

a factor
− 2gµ1µ2 =: Vv , (4.4)

so the numerator N(Γ) looks like

N(Γ) =
(

∏
v∈Γ

[1]

Vv

)(
∏

v∈Γ
[0]

Vv

)
. (4.5)

The Green’s functions are

G = ∑
Γ

1
Sym Γ

i#Γ
[1]
(−i)#Γ

[1]
(−ie)

#Γ
[0]

(−ie2)
#Γ

[0]

(−iλ)
#Γ

[0]

π2lΓ

(2π)4lΓ
Γ . (4.6)

Take λ = −e2. Then the connected and 1PI functions can be written as

G = (−)#Γext
ie#Γext−2

∞

∑
l=0

xlG(l) , (4.7)

where

x := − ie2

16π2 . (4.8)

The superficial degree of divergence in sQED is

ωΓ = 4lΓ + #Γ
[0] − 2(#Γ

[1]
+ #Γ

[1]
) . (4.9)

This turns out to be the same as in φ4 theory:

ωΓ = 4− #Γext , (4.10)
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so we have the following superficial divergences:

ω = ω = 2 ,

ω = ω = 1 ,

ω = ω = ω = 0 .

(4.11)

It is not difficult to see that Furry’s theorem (lemma 3.3) also holds here.
The Feynman rule for 3-valent vertex gives a minus sign when the arrow is
flipped. So the numerators for both orientations cancel.

Note that the 4-scalar function is divergent. In order to renormalize sensi-
bly, we therefore need the 4-scalar vertex.

4.1.4 The 2-Scalar-2-Photon Vertex

Definition 4.1. i. For a scalar edge e ∈ Γ
[1], we define the operator

κeΓ :=


1
2 Γ\e if e is incident to two 3-valent vertices:

e ⊆ Γ ,
0 otherwise,

(4.12)

ii. and we define
κΓ := ∑

e∈Γ
[1]

κeΓ . (4.13)

Example 4.2.

i. κ = 1
2

(
+ +

)
,

ii. κ = 1
2 ,

iii. κ = 0 .

Lemma 4.3. Let G be a connected Green’s function. Then

1
k+1 κG

∣∣
k = G

∣∣
k+1 . (4.14)

G|k is G, restricted to the graphs with exactly k 2-photon-2-scalar vertices.

Proof. It is clear that the left and the right hand side contain the same graphs.
The point of this proof is to show that the coefficients for these graphs are
equal.

To do this, we start with a graph Γ with #Γ
[0]

= k + 1 and let v ∈ Γ
[0]. We

represent Γ as:

Γ =

v

54



Using definition 4.1, we can write:

1

Sym

=
1

Sym

(
κe

e

+ κe′

e′

)

Here we see why κ is defined with a factor 1
2 : It compensates for the two ways

of making a 2-scalar-2-scalar vertex.
The following two cases can occur:

•

= ,

for example if
Γ =

e
.

Then

Sym = 2 Sym ,

and so

1

Sym

=
1

Sym

κe

e

.

•

6= .

Then

Sym = Sym = Sym ,

and so:

1

Sym

=
1

Sym

κe

e

+
1

Sym

κe′

e′

.
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Symmetrizing over all vertices in Γ (that gives the factor 1
k+1 ) and then sum-

ming over all graphs Γ with #Γ
[0] (as always, with a given external structure

and modulo equivalence) proves the lemma.

Example 4.4.

i. 1
2 κ

(2)

∣∣∣
1

= 1
2 κ
(

+ +

+ 1
2 + 1

2 +

+ 1
2 + 1

2

+ 1
2 + 1

2 + 1
2

)

= 1
2

1
2

(
+ + 1

2 2 + +
)

= 1
2 + 1

2 + 1
4 =

(2)

∣∣∣
2

.

ii.
κ

(1)

∣∣∣
0

= κ
(

+ + + +
)

= 1
2

(
+ + +

+ + + 2
)

= + + 1
2 + 1

2 +

=
(1)

∣∣∣
1

.

Lemma 4.3 does not work for 1PI Green’s functions. For example:

κ
(1)

∣∣∣
0

= κ
(

+
)
= 1

2

(
+

)
.

We miss the graphs that add the factor 1
2 up to 1.
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Lemma 4.5. For connected Green’s functions G:

eκG
∣∣
0 = G . (4.15)

Proof. Using lemma 4.3 and induction in k, one can see that

1
k! κ

kG
∣∣
0 = G

∣∣
k . (4.16)

Summing over all k proves the lemma:

eκG
∣∣
0 = ∑

k≥0

1
k! κ

kG
∣∣
0 = ∑

k≥0
G
∣∣
k = G . (4.17)

Remark 4.6. The exponent

eκ Γ := ∑
k≥0

1
k! κ

kΓ (4.18)

is defined as an infinite sum, but actually it is just a finite one. Let mΓ be the
number such that κmΓ Γ 6= 0 and κmΓ+1Γ = 0, for example

m = 2 .

We can write

eκ Γ :=
mΓ

∑
k≥0

1
k! κ

kΓ . (4.19)

The exponent can also be written as

eκ Γ = ∑
k≥0

∑
{e1,...,ek}⊆Γ

[1]

κe1 · · · κek Γ . (4.20)

The factors 1
k! were just there to compensate for double counting.

4.2 Ward Identities

First, a lemma analogous to lemmata 3.4 and 3.7:

Lemma 4.7.

i.

(1 + κ1 + κ2)
1

2
∼ −(1 + κ2) 2

+ (1 + κ1) 1 ,

(4.21)

ii.

(1 + κ2)

2

∼ , (4.22)
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iii.

(1 + κ1)

1

∼ − . (4.23)

Proof. i. Actually, a lot of cases have to be distinguished: Both edges 1
and 2 can be incident to a 1-photon-2-scalar vertex, a 2-photon-2-scalar
vertex or a 4-scalar vertex.

• If both edges 1 and 2 are incident to 1-photon-2-scalar vertices, one
has (using momentum conservation, p0 = −p1 + p2):

Φ

(
1
2

0

5

6

3

4

+ 1
2 20

5

6

3

4

+ 1
2 10

5

6

3

4 )

= pµ0
0
(p5 + p1)

µ3(p1 + p2)
µ0(p2 + p6)

µ4

p2
1 p2

2

−
pµ3

0 (p2 + p6)
µ4

p2
2

−
(p5 + p1)

µ3 pµ4
0

p2
1

= − (p5 + p1)
µ3(p2 + p6)

µ4

p2
2

+
(p5 + p1)

µ3(p2 + p6)
µ4

p2
1

− (−p1 + p2)
µ3(p2 + p6)

µ4

p2
2

+
(p5 + p1)

µ3(p1 − p2)
µ4

p2
1

= − (p5 + p2)
µ3(p2 + p6)

µ4

p2
2

+
(p5 + p1)

µ3(p1 + p6)
µ4

p2
1

= Φ

(
− 20

5

6

3

4

+ 10

5

6

3

4 )
,

so

−(1 + κ2) 2 + (1 + κ1) 1 = − − 1
2 + + 1

2

= − +

∼ + 1
2 + 1

2

= (1 + κ1 + κ2) 1
2 .

• If edge 1 is incident to a 2-photon-2-scalar vertex and edge 2 to a
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1-photon-2-scalar vertex:

Φ

(
1
2 1

2
0

3

4

5

6

+ 1
22 10

3

4

5

6 )

= −pµ0
0

gµ3µ4(p1 + p2)
µ0(p2 + p3)

µ6

p2
1 p2

2
+ pµ0

0
gµ3µ4 gµ0µ6

p2
1

=
gµ3µ4(p2 + p3)

µ6

p2
2

− gµ3µ4(p2 + p3)
µ6

p2
1

+
gµ3µ4(−p1 + p2)

µ6

p2
1

=
gµ3µ4(p2 + p3)

µ6

p2
2

− gµ3µ4(p1 + p3)
µ6

p2
1

= Φ

(
− 1

2 20

3

4

5

6

+ 1
2 10

3

4

5

6 )
,

so

(1 + κ1 + κ2)
1
2 1

2 = 1
2 + 1

22 ∼ − 1
2 + 1

2

= −(1 + κ2)
1
2 2 + (1 + κ1)

1
2 1 .

All other cases are proven similarly.

ii. Here too some different cases have to be distinguished. The edge 2 can
be incident to three differend types of vertices, for instance the 1-photon-
2-scalar vertex:

Φ

(
20

1

4

3 + 1
2 0

1

4

3

)

= pµ0
0
(p1 + p2)

µ0(p2 + p4)
µ3

p2
2

− pµ3
0

= −
p2

1(p2 + p4)
µ3

p2
2

+ (p2 + p4)
µ3 − (−p1 + p2)

µ3

= (p1 + p4)
µ3 = Φ

(
0

1

4

3

)
.

The external edge 1 representes a physical photon, wich has a null mo-
mentum: p2

1 = 0.

iii. This is proven analogously to ii.

From this lemma follows:
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Corollary 4.8. The following blobs represent a graph without any 2-boson-2-
scalar vertices.

i.

eκ ∼ −eκ + eκ , (4.24)

ii.

eκ ∼ eκ , (4.25)

iii.

eκ ∼ −eκ . (4.26)

Theorem 4.9 (Ward identities).

(l)
∼ 0 . (4.27)

Proof. Start by taking take a graph of the form

,

that has no 2-boson-2-scalar vertices. As in the proof of theorem 3.8, insert a
longitudinal photon in every internal and external scalar edge. Next, apply
the operator eκ and sum over all l-loop connected graphs whithout 2-boson-
2-scalar vertices (with the given external structure, modulo equivalence and
weighted by the symmetry factors). This gives, using corollary 4.8:

eκ

(l)

∣∣∣∣
0
∼ 0 .

With lemma 4.5 one can see that the theorem is true.

4.3 Parametric Representation

4.3.1 Marking Edges
The operator κe forgets information about the topology of a graph. In this
section this information is useful, so therefore we introduce a related operator
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χe that keeps the topology: instead of contracting the edge e, it puts a little
mark on it:

Definition 4.10. i. For a scalar edge e ∈ Γ
[1], we define

χeΓ :=

 e

if Γ =

e

,

0 otherwise,

(4.28)

ii. and we define
χΓ := ∑

e∈Γ
[1]

χeΓ . (4.29)

Example 4.11. Analogously to example 4.2, we have:

i. χ = + + ,

ii. χ = ,

iii. χ = 0 .

This marked edge is just a different notation for the 2-scalar-2-photon ver-
tex, and as such this edge type does not represent a propagator. The Feynman
rule for this new edge type is:

We := Φ
(

e
)
= 1

2 Φ
(

v
)
= 1

2 Vv = −gµ1µ2 . (4.30)

We replace the 2-scalar-2-photon vertex by this marked edge. The denomina-
tor is now

N(Γ) =
(

∏
e∈Γ

[1]

We

)(
∏

v∈Γ
[0]

Vv

)
(4.31)

Because the marked edges are not propagators, they have to be excluded from
the denominator:

Φ(Γ) = 1
π2lΓ

∫
dkL

N(Γ)

∏
e∈Γ[1]\Γ[1]

p2
e

. (4.32)

Furthermore, they are only allowed as internal edges.

4.3.2 Parametric Representation
Just like in the previous chapters we define the parametric integral as:

I(Γ) := 1
π2lΓ

∫
dkL N(Γ)e

−∑
e∈Γ[1]\Γ[1]

p2
e Ae

, (4.33)
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but now, we omit the marked edges from the exponent. For the amplitude,
we do not integrate over them:

Φ(Γ) =
∫

dA
Γ/Γ

[1] I(Γ) (4.34)

Theorem 4.12. First some things have to be defined: As in theorem 3.9, N̂(Γ)
is the differential operator obtained by replacing the momenta pe by differen-
tial operators p̂e (equation (3.47)) in N(Γ). So in sQED

N̂(Γ) =
(

∏
e∈Γ

[1]

We

)(
∏

v∈Γ
[0]

V̂v

)
. (4.35)

Let ϕΓ be ϕΓ plus contributions for the external scalar edges:

ϕΓ := ϕΓ + ∑
h∈Γext

ξ2
h Ahψ . (4.36)

Define:

U(Γ) := N̂(Γ)
e−ϕΓ/ψΓ

ψ2
Γ

∣∣∣
AΓext=0

, (4.37)

where AΓext = 0 is a short-hand notation for ∀h ∈ Γext : Ah = 0.
Having defined this, one has

U(Γ) = ∑
i≥0

1
i! ∑

e1,...ei∈Γ
[1]

1
2i Ae1 · · · Aei

u(χe1 · · · χei Γ) , (4.38)

where the u(Γ) have the property

u(Γ)
∣∣

A
Γ
[1]=0 = I(Γ) . (4.39)

Proof. Using theorem 2.24 reversely, we have

U(Γ) = 1
π2lΓ

∫
dkL

(
∏

e∈Γ
[1]

We

)(
∏

v∈Γ
[0]

V̂v

)
e
−∑e∈Γ[1]∪Γext p2

e Ae ∣∣∣
AΓext=0

.

Note that in the sum in the exponent the external scalar edges are also in-
cluded. For e ∈ Γ[1] ∪ Γext,

p̂µ
e e
−∑e∈Γ[1]∪Γext p2

e Ae ∣∣∣
AΓext=0

= pµ
e e−∑e∈Γ[1]

p2
e Ae ,

so for v ∈ Γ
[0]:

V̂ve
−∑e∈Γ[1]∪Γext p2

e Ae ∣∣∣
AΓext=0

= Vve−∑e∈Γ[1]
p2

e Ae .

62



This equation also holds for vertices v with an external scalar edge incident
to it. That is the reason why ϕΓ is used rather than just ϕΓ. The Schwinger
parameters of these external edges are set to 0, after applying the differential
operator.

Unlike QED, we have to take the Leibniz rule into account. If v1, v2 ∈ Γ
[0]

are not adjacent, V̂v1 Vv2 = 0. If they are adjacent, then with equation (3.65)
one sees that:

• If there is one scalar edge, e, incident to both v1 and v2,

e

41

2 3
v1

v2

⊆ Γ ,

then

V̂v1 Vv2 = ( p̂3 + p̂e)
µ2(pe + p4)

µ1 = − 1
2Ae

gµ2µ1 =
We

2Ae
.

• If there are two scalar edges, e1 and e2, incident to both v1 and v2,

e1

e2

1 2v1v2 ⊆ Γ ,

then

V̂v1 Vv2 = ( p̂e2 + p̂e1)
µ1(pe1 + pe2)

µ1 = − 1
2Ae1

gµ1µ1 − 1
2Ae2

gµ1µ1

=
We1

2Ae1

+
We2

2Ae2

.

So

U(Γ) = 1
π2lΓ

∫
dkL

(
∏

e∈Γ
[1]

We

)(
∏

v∈Γ
[0]

Vv + ∑
e∈Γ

[1]

We

2Ae
∏

v∈Γ
[1]

e not inc. to v

Vv

+ 1
2 ∑

e1,e2∈Γ
[1]

not adj.

We1We2

22 Ae1 Ae2
∏

v∈Γ
[1]

e1,e2 not inc. to v

Vv

+ 1
3! · · ·

)
e−∑e∈Γ[1]

p2
e Ae .

(The factors 1
2 , 1

3! etc. are just there to compensate for double counting.) If we
introduce

u(Γ) := 1
π2lΓ

∫
dkL N(Γ)e−∑e∈Γ[1]

p2
e Ae , (4.40)

it can we written as

U(Γ) = u(Γ) + ∑
e∈Γ

[1]

1
2Ae

u(χeΓ) + 1
2 ∑

e1,e2∈Γ
[1]

1
22 Ae1 Ae2

u(χe1 χe2 Γ) + 1
3! · · · .
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And indeed, u(Γ) has the property

u(Γ)
∣∣

A
Γ
[1]=0 = 1

π2lΓ

∫
dkL N(Γ)e

−∑
e∈Γ[1]\Γ[1]

p2
e Ae

= I(Γ) .

For the following, we alter definition (3.51) a bit:

p̃µ
e := − p̂µ

e ϕΓ . (4.41)

For internal edges e nothing changes actually; for external edges e:

p̃µ
e = ξ

µ
e ψΓ = pµ

e ψΓ . (4.42)

Furthermore, it is convenient to define

Ṽv := −V̂v ϕΓ (4.43)

and
W̃v1v2 := V̂v1 Ṽv2 . (4.44)

W̃v1v2 is proportional to gµe1 µe2 , if e1 and e2 are the photon edges incident to
v1 and v2 respectively. And for 1-scale graphs, Ṽv1 is proportional to pµe1 .

Remark 4.13. Analogously to remark 3.10.ii, we have

U(Γ) =

b#Γ
[0]/2c

∑
i=0

Bi(Γ)

ψ
#Γ

[0]−i+2

Γ

e−ϕΓ/ψΓ , (4.45)

where

Bi(Γ) :=
(

∏
e∈Γ

[1]

We

)
1

2i i!(k−2i)! ∑
perm. of Γ

[0]

W̃v1v2 · · · W̃v2i+1v2i Ṽv2i+1 · · · Ṽvk (4.46)

and we labelled Γ
[0]

= {v1, . . . , vk}.

So U(Γ) can be computed. The question is now how to get the u(Γ) from
this, because if one has those, it is not difficult to get the parametric integrands
I(Γ).

Theorem 4.14. i. u(Γ) can be computed recursively:

u(Γ) = U(Γ)−∑
i≥1

1
i! ∑

e1,...,ei∈Γ[1]

1
2i Ae1 · · · Aei

u(χe1 · · · χei Γ) , (4.47)

ii. or directly from the Us:

u(Γ) = ∑
i≥0

(−)i 1
i! ∑

e1,...,ei∈Γ[1]

1
2i Ae1 · · · Aei

U(χe1 · · · χei Γ) . (4.48)

Proof. i. This is equation (4.38).
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ii. Proof by strong induction in mΓ (this is defined in remark 4.6):

• For mΓ = 0: we have u(Γ) = U(Γ)

• Assume that (4.48) holds for all graphs of the form χe1 · · · χei Γ 6= 0,

where e1, . . . , ej ∈ Γ
[1]:

u(χe1 · · · χei Γ) = ∑
j≥0

(−)j 1
j! ∑

e′1,...,e′j∈Γ[1]

1
2j Ae′1

· · · Ae′j

×U(χe′1
· · · χe′j

χe1 · · · χei Γ) .

Note that mχe′1
···χe′i

Γ = mΓ − i. Use theorem i:

u(Γ) = U(Γ)−∑
i≥1

∑
j≥0

(−)j 1
i!j! ∑

e1,...,ei+j∈Γ[1]

1
2i+j Ae1 · · · Aei+j

×U(χe1 · · · χei+j Γ)

= U(Γ)− ∑
k≥1

k−1

∑
j=0

(−)j 1
(k−j)!j! ∑

e1,...,ek∈Γ[1]

1
2k Ae1 · · · Aek

×U(χe1 · · · χek Γ)

= U(Γ) + ∑
k≥1

(−)k 1
k! ∑

e1,...,ek∈Γ[1]

1
2k Ae1 · · · Aek

U(χe1 · · · χek Γ) .

k = i + j is substituted and the trick

k

∑
j=0

(−)j 1
(k−j)!j! =

1
k!

k

∑
j=0

(−)j(k
j) = (1− 1)k = 0

is used.

Example 4.15. i. Take the graph

3

4

1 2a b .

The Symanzik polynomials and p̃3 were given in example 3.11.i. With

V̂a = ( p̂1 + p̂3)
µ4 and V̂b = ( p̂3 + p̂2)

µ4

we have

Ṽa = ( p̃1 + p̃3)
µ4 m.c.

==== pµ4(ψ + A4) = pµ4(A3 + 2A4) ,

Ṽb = ( p̃3 + p̃2)
µ4 m.c.

==== pµ4(A4 + ψ ) = pµ4(A3 + 2A4) ,

and
W̃ab = p̂µ4

3 p̃µ4
3 = − A4

2A3
gµ4µ4 = −2A4

A3
.
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Applying the differential operator gives

U
( )

= V̂aV̂b
e−ϕ /ψ

ψ2

∣∣∣
A1=A2=0

=
( ṼaṼb

ψ4 +
W̃ab

ψ3

)
e−ϕ /ψ

m.c.
====

(
p2 (A3 + 2A4)

2

ψ4 − 2A4

A3ψ3

)
e−p2 ϕ′ /ψ .

We also need

U
( )

m.c.
==== W3

e−p2 ϕ′ /ψ

ψ2 = −gµ4µ4
e−p2 ϕ′ /ψ

ψ2

= −4
e−p2 ϕ′ /ψ

ψ2 .

Using theorem 4.14, one obtains the integrand

I
( )

= u
( )

= U
( )

− 1
2A3

U
( )

=
(

p2 (A3 + 2A4)
2

ψ4 +
2

ψ3

)
e−p2 ϕ′ /ψ .

Note that the pole 1
A3

disappears.

ii. For the graph

3

4

1 2a b ,

the Symanzik polynomials and p̃3 and p̃4 were given in example 3.11.ii.
With

V̂a = ( p̂4 + p̂3)
µ1 and V̂b = ( p̂3 + p̂4)

µ2

one has

Ṽa = ( p̃4 + p̃3)
µ1 m.c.

==== pµ1(−A3 + A4) ,

Ṽb = ( p̃3 + p̃4)
µ2 m.c.

==== pµ2(−A3 + A4) ,

and

W̃ab = ( p̂4 + p̂3)
µ1( p̂3 + p̂4)

µ2 = gµ1µ2
(

1− A4

2A3
− A3

2A4

)
.

Applying the differential operator gives us

U
( )

= V̂aV̂b
e−ϕ /ψ

ψ2 =
( ṼaṼb

ψ4 +
W̃ab

ψ3

)
e−ϕ /ψ

m.c.
====

(
pµ1 pµ2

(A3 − A4)
2

ψ4

+ gµ1µ2
(

1− A4

2A3
− A3

2A4

) 1
ψ3

)
e−p2 ϕ′ /ψ .
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We also need

U
( )

m.c.
==== W3

e−p2 ϕ′ /ψ

ψ2 = −gµ1µ2
e−p2 ϕ′ /ψ

ψ2

and likewise

U
( )

= −gµ1µ2
e−p2 ϕ′ /ψ

ψ2 .

Using theorem 4.14, we get integrand

I
( )

= U
( )

− 1
2A3

U
( )

− 1
2A4

U
( )

=
(

pµ1 pµ2
(A3 − A4)

2

ψ4 + 2gµ1µ2
1

ψ3

)
e−p2 ϕ′ /ψ ,

which does not have the poles 1
A3

and 1
A4

. Renormalizing as in definition
3.23 gives

I ren
( )

=
(
− pµ1 pµ2(a3 − a4)

2 + 2p2gµ1µ2 ϕ′
) 1

ψ3 ln
p2

µ2 .

This gives the amplitude:

Φren
( )

= 1
3 (−pµ1 pµ2 + p2gµ1µ2) ln

p2

µ2 .

It is transversal, as one would expect.

By the way, with the same argument as in remark 2.35, we see that

1
2 Iren

( )
= Iren

( )
= 0 .

In remark 3.14 it is explained how in QED a parametric integrand can be
constructed for other covariant gauges than the Feynman gauge. Exactly the
same thing can be done for scalar QED.
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5
Non-Abelian Gauge Theories

5.1 Feynman Rules

5.1.1 Lagrangian

In the previous two chapters we had an Abelian gauge group: U(1). In this
chapter we look at non-Abelian gauge theories or Yang-Mills theories,∗ which have
a non-Abelian gauge group G.

The gauge group is a Lie group, and we denote the generators of the Lie
algebra g corresponding to G by ta. Since the Lie algebra is closed under the
bracket, we introduce the structure constants f abc:

[ta, tb] =: i f abctc . (5.1)

(Einstein’s summation convention is used.) They are antisymmetric in every
index, because the Lie bracket is antisymmetric. In terms of the structure
constants, the Jacobi identity reads:

f a0a1b f a2a3b + f a0a3b f a1a2b + f a0a2b f a3a1b = 0 . (5.2)

The Yang-Mills Lagrangian is

L = − 1
4 Fa

µνFaµν − ca∂µDadab
µ cb . (5.3)

This needs some explanation. The first term is the generalization of the first
term in equation (3.1). The covariant derivative is now

Dµ = ∂µ − igAa
µta (5.4)

and the field tensor Fa
µν is given by

Fa
µνta =

i
g
[Dµ, Dν] , (5.5)

∗See [15], chapters 15 and 16 and [10], sections 12-1 and 12-2.
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so
Fa

µν = ∂µ Aaν − ∂ν Aaµ + g f abc Ab
µ Ac

ν . (5.6)

In the second term of the Lagrangian we have the Faddeev-Popov ghost field
c. This is a Graßmannian field: it has spin 0, but fulfills anti-commutation
relations. Under gauge transformations it transforms in the adjoint represen-
tation, therefore one has the covariant derivative in the adjoint representation
((tc)ab = f abc):

Dadab
µ = δac∂µ − g f abc Ac

µ . (5.7)

This Lagrangian is gauge invariant; the two terms are even gauge invari-
ant separately. The reason ghosts are introduced is to make the ‘measure’ of
the Feynman path integral, and hence the path integral itself, gauge invariant.
Because of their anti-commutativity, the ghost fields form a kind of a deter-
minant, the Faddeev-Popov determinant, which acts as a Jacobian if one changes
the gauge.∗

Ghosts violate spin-statistics: they anti-commute and have integer spin.
This means that they cannot be physical, so they will not occur in a physical
initial of final state of a scattering process.

To keep notations a bit simpler, we only focus on the pure gauge theory;
we do not consider couplings to fermion or scalar fields.

5.1.2 Feynman Graphs
There are the following half-edges:

, and :

the gauge boson, and the ingoing and outgoing ghost respectively, which
combine to the edges

and .

There is a 3-boson, 4-boson and ghost vertex:

, and .

5.1.3 Feynman Rules
As always, the Feynman amplitude of a graph Γ is given by:

Φ(Γ) =
∫

dk
N(Γ)

∏
e∈Γ[1]

p2
e

. (5.8)

In the Feynman gauge, the numerator N(Γ) is now given as follows: As in
QED and sQED, assign to each internal and external boson edge e ∈ Γ

[1] ∪ Γext

a Lorentz index µe, but now also assign to every internal and external edge
e ∈ Γ[1] ∪ Γext a ‘color’ index ae. Then to obtain N(Γ), include

• for every 3-boson vertex 3

1

2

v ∈ Γ
[1]

∗See [15], section 16.2 and [17], section 15.5-6.
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a factor

f a1a2a3
(

gµ2µ3(p2 − p3)
µ1

+ gµ3µ1(p3 − p1)
µ2

+ gµ1µ2(p1 − p2)
µ3
)
=: Vv ,

(5.9)

• for every 4-boson vertex
41

2 3

v ∈ Γ
[1]

a factor

f a1a2b f a3a4b(gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3)

+ f a1a3b f a2a4b(gµ1µ2 gµ3µ4 − gµ1µ4 gµ3µ2)

+ f a1a4b f a2a3b(gµ1µ2 gµ4µ3 − gµ1µ3 gµ4µ2) =: Vv ,

(5.10)

• and for every ghost vertex
3

1

2

v ∈ Γ
[1]

a factor
f a1a2a3 pµ1

3 =: Vv . (5.11)

So the numerator is

N(Γ) =
(

∏
v∈Γ

[0]

Vv

)(
∏

v∈Γ
[0]

Vv

)(
∏

v∈Γ
[0]

Vv

)
. (5.12)

The Green’s functions are given by

G = ∑
Γ

(−)#LΓ
1

Sym Γ

g
#Γ

[0]

(−ig2)
#Γ

[0]

(−g)
#Γ

[0]

(−i)#Γ
[1]

i#Γ
[1]

24lΓ π2lΓ
Γ . (5.13)

Because the ghost fields anti-commute, there is a minus-sign for every ghost
loop. Connected and 1PI functions can be written as

G = i−#Γext−1g#Γext−2
∞

∑
l=0

xlG(l) , (5.14)

where

x :=
ig2

16π2 (5.15)

and
G(l) := ∑

Γ

(−)#LΓ
1

Sym Γ
Γ . (5.16)
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5.1.4 Marking Edges
As in subsection 4.3.1, we replace the 4-valent vertex by an edge with a little
mark. Here we give it the following Feynman rule: for every marked edge
e ∈ Γ

[1], for which the adjacent edges are labeled as

e

41

2 3

, (5.17)

include a factor

f a1a2b f a3a4b(gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3) := We . (5.18)

This is one of the three terms of (5.10), so:

+ + ' . (5.19)

The amplitude is now

Φ(Γ) =
∫

dk
N(Γ)

∏
e∈Γ[1]\Γ[1]

p2
e

(5.20)

with the numerator

N(Γ) =
(

∏
e∈Γ

[1]

We

)(
∏

v∈Γ
[0]

Vv

)(
∏

v∈Γ
[0]

Vv

)
. (5.21)

As already said in subsection 4.3.1, it is important to note that these marked
edges are not propagators, and that they are only allowed as internal edges.

Lemma 5.1. A connected graph Γ without any marked edges (but possibly
with 4-valent vertices) can as follows be written in terms of graphs with
marked edges and no 4-valent vertices:

1
Sym Γ

Γ ' ∑
Γ′

#Γ
[0]
=0

Γ′/Γ
′[1]

=Γ

1
Sym Γ′

Γ′ . (5.22)

The sum runs over all connected graphs Γ′ modulo equivalence with the same
external structure as Γ.

Proof. It is clear that on the right hand side we have the right graphs to make
Γ using (5.19); the point of the following proof is to show that the symmetry
factors are correct. The proof is quite similar to the proof of lemma 4.3.
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We start by taking a v ∈ Γ
[0]. We represent Γ as:

Γ =

v

and apply equation (5.19):

1

Sym

' 1

Sym

(
+

+

)
.

The following three cases can occur:

•

= = ,

for example for

Γ = v = + + = 3 .

Then

Sym = 1
3 Sym

and so

1

Sym

' 1

Sym

.

•

6= =

(or another combination of two inequalities and one equality), for exam-
ple for

Γ = v = + + = 2 + .
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Then

1

Sym

' 1

Sym

+
1

Sym

.

•

6=

6= 6=

.

Then

1

Sym

' 1

Sym

+
1

Sym

+
1

Sym

.

This can be repeated until all 4-valent vertices are converted into marked
edges.

Example 5.2.

i. 1
2 ' 1

2

(
+ +

)
= .

The graph with the tadpole does not contribute, because it has a vanish-
ing color factor.

ii. 1
2 ' + 1

2 .

iii. 1
6 ' 1

2 ' + 1
2 .
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Even for a 1PI graph Γ, we need the sum in equation (5.22) to run over
connected graphs Γ′. For example:

1
2 ' 1

2 + .

From lemma 5.1 follows:

Corollary 5.3. Using the 4-boson vertex or using the marked edge is com-
pletely equivalent. In other words: for a connected Green’s function G,

G
∣∣
k ' G

∣∣
k , (5.23)

where G|k is G restricted to graphs with exactly k 4-valent vertices (and no
marked edges) and G|k is G restricted to graphs with exactly k marked edges
(and no 4-valent vertices).

Example 5.4. With example 5.2.i and ii, we can write:

(2)

∣∣∣
2

= 1
6 + 1

4 + 1
4

' + 1
2 + + =

(2)

∣∣∣
2

.

As in definition 4.10, we define operators χe and χ that mark edges:

Definition 5.5. i. For a graph Γ and an edge e ∈ Γ
[1]:

χeΓ :=

 e

if Γ =

e

,

0 otherwise,

(5.24)

ii. and
χΓ := ∑

e∈Γ
[1]

χeΓ . (5.25)

Example 5.6.

i.
χ = + + + + ,

ii.
χ = ,
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iii.
χ = 0 and χ = 0 .

This operator can be used to express connected Green’s functions in fully
3-valent Green’s functions:

G
∣∣
k '

1
k! χ

kG
∣∣
0 . (5.26)

For example:

1
2 χ2 1

2 = 1
2

(
+ +

)
' 1

2 + .

Summing (5.26) over all k gives:

G ' eχG
∣∣
0 . (5.27)

The same thing can be done with ghost loops. For this we define:

Definition 5.7.

i.
δ`Γ :=

{
Γ
∣∣
every internal edge in ` replaced by if `[0] = `

[0] ,

0 otherwise,
(5.28)

ii. and
δΓ = ∑

`∈LΓ

δ`Γ . (5.29)

Example 5.8.

δ 1
2 = 1

2

(
+ +

)
= + 1

2 .

As in lemma 3.3, a ghost loop without arrows is a short-hand notation for
both orientations:

+ 1
2 = + + 1

2 + 1
2

= + + .

The numerator for such a graph can be written as

N(Γ) =
(

∏
e∈Γ

[1]

We

)(
∏

v∈Γ
[0]

Vv

)(
∏

`∈LΓ

C`

)
, (5.30)

where for an unoriented ghost loop

` =

n′
1 n

1′ (n− 1)′:
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C` := N
(

+
)

= f a1an′ a1′ · · · f ana(n−1)′ an′ pµ1
1′ · · · p

µn
n′

+ f a1a1′ an′ · · · f anan′ a(n−1)′ (−pn′)
µ1(−p1′)

µ2 · · · (−p(n−1)′)
µn

= f a1an′ a1′ · · · f ana(n−1)′ an′ (pµ1
1′ · · · p

µn
n′ + pµ1

n′ pµ2
1′ · · · p

µn
(n−1)′) .

(5.31)

Then:
G ' e−δG

∣∣
0 . (5.32)

G|0 is the Green’s function G without the graphs with ghost loops. The
minus sign in fron of the δ is the Fermi minus for the ghost loops.

With these two operators, Green’s functions can be expressed in fully 3-
valent, ghost-less Green’s functions.

G ' eχe−δG
∣∣
0
0

. (5.33)

5.2 Ward Identities

Like the Ward-Takahashi identities give relations between off-shell functions
in QED, there are more complicated relations for Yang-Mills theories, the
Slavnov-Taylor identities.

In this section, we go straight to the Ward identities:

?∼ 0 . (5.34)

(Recall the diagrammatic notation from equation (3.32).) The proof given in
this section is similar to Gerard ’t Hooft’s in [9], section 4. See also Predrag
Cvitanović’ treatise in [7], chapter 7.

It is convenient to extend the Feynman rule (3.32) also for internal edges:
for every edge

e , include a factor


pµe

e if e is external,
pµe

e

p2
e

if e is internal.
(5.35)

Before we prove the Ward identities, it’s useful to prove some identities
using this new notation:

Lemma 5.9.

i. ∼ + + + , (5.36)

where we introduced:

Φ

(
2

0

1

)
:= f a0a1a2 p2

2gµ1µ2 . (5.37)
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ii.
+ + + + + ∼ 0 . (5.38)

iii.
+ + + ∼ 0 . (5.39)

iv. − − + ∼ 0 . (5.40)

Proof.

i.
Φ

(
2

0

1

)
= f a0a1a2(p1 + p2)

µ0
(

gµ1µ2(−p1 + p2)
µ0

− gµ2µ0(2p2 + p1)
µ1 + gµ0µ1(2p1 + p2)

µ2
)

= f a0a1a2(−p2
1gµ1µ2 + p2

2gµ1µ2 + pµ1
1 pµ2

1 − pµ1
2 pµ2

2 )

= Φ

(
2

0

1

+ 2

0

1

+ 2

0

1

+ 2

0

1

)
.

The first two terms are precisely our newly defined (5.37), in the last two
we recognize the ghost vertex (5.11) and equation (5.35).

ii. For the first two terms we have:

Φ

( 30

1 2

+

30

1 2

)

= f a0a1b f a2a3b(gµ3µ1(2p3 + p2)
µ2 − gµ1µ2(2p2 + p3)

µ3 + gµ2µ3(p2 − p3)
µ1
)

+ f a1a2b f a3a4b(− gµ1µ3(p1 + p2 + p3)
µ2 + gµ1µ2(p1 + p2 + p3)

µ3
)

= f a0a1b f a2a3b(gµ2µ3(p2 − p3)
µ1 + gµ3µ1(p3 − p1)

µ2 + gµ1µ2(p1 − p2)
µ3
)

.

Up to the color factor, this is cyclic in the indices 1, 2 and 3. So with the
Jacobi identity (5.2) we have:

Φ

( 30

1 2

+

30

1 2

+

30

1 2

+

30

1 2

+

30

1 2

+

30

1 2

)

= ( f a0a1b f a2a3b + f a0a3b f a1a2b + f a0a2b f a3a1b)

×
(

gµ2µ3(p2 − p3)
µ1 + gµ3µ1(p3 − p1)

µ2 + gµ1µ2(p1 − p2)
µ3
)
= 0 .
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iii.
Φ

(
4

0

1

2 3

)
= f a0a1b f ba2c f a3a4c(gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3) .

Using the antisymmetry of the structure constants and Jacobi identity
we get:

Φ

(
4

0

1

2 3

+
4

0

1

2 3

+
4

0

1

2 3

+
4

0

1

2 3

)

= f a0a1b f ba2c f a3a4c(gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3)

+ f a0a2b f ba1c f a3a4c(gµ2µ3 gµ1µ4 − gµ2µ4 gµ1µ3)

+ f a0a3b f ba4c f a1a2c(gµ3µ1 gµ4µ2 − gµ3µ2 gµ4µ1)

+ f a0a4b f ba3c f a1a2c(gµ4µ1 gµ3µ2 − gµ4µ2 gµ3µ1)

=
(
( f a0a1b f ba2c − f a0a2b f ba1c) f a3a4c + ( f a0a3b f ba4c − f a0a4b f ba3c) f a1a2c)
× (gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3)

= −( f a0cb f ba1a2 f a3a4c + f a0cb f ba3a4 f a1a2c)(gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3)

= −( f a0cb f ba1a2 f a3a4c + f a0bc f ca3a4 f a1a2b)(gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3) = 0 .

iv.
Φ

( 30

1 2

−
30

1 2

−
30

1 2

+

30

1 2

)

= f a0ba3 f ba2a1
p3 · (p0 + p3)pµ1

2
(p0 + p3)2 − f a3ba0 f ba2a1

p0 · (p0 + p3)pµ1
2

(p0 + p3)2

− f a0a1b f a3a2b pµ1
2 + f a0a2b f a3a1b pµ1

2

= ( f a0ba3 f ba2a1 − f a0a1b f a3a2b + f a0a2b f a3a1b)pµ1
2 = 0 .

Here we used antisymmetry and the Jacobi identity again.

From the last two terms in lemma 5.9.i we see that ghosts are more or less
longitudinal gauge bosons. The general idea is that they cancel, because ghost
loops provide a Fermi −-sign. We will make this precise in the following.

Before we continue to the case of connected functions, we prove the Ward
identities for the full functions, i.e. including disconnected graphs.

Theorem 5.10 (Ward identities (full Green’s functions)).

∼ 0 . (5.41)

Proof. In lemma 5.9.i we see some kind of recursivity; the longitudinal degrees
of freedom ‘travel’ though the graph (if we neglect the contributions drawn
with the squared).

78



We take the following full Green’s function:

. (5.42)

The outgoing ghost on the bottom is connected to the external one at the
top; either directly or via one or more interactions with a gauge boson:

= + .

The first term of the right-hand side is interesting; this is the object we want
to show to be 0, which means that we have to show that

?∼ .

Let us do the same thing with the boson on the bottom in (5.42). It can be
incident to a 3-valent vertex, a 4-valent one, or a ghost:

∼ 1
2 + 1

2

+ − .

(5.43)

In the last two terms we have to distinguish two cases: the longitudinal line
ends in itself, or in a ghost loop. For the latter case we have to include a
Fermi −-sign for that ghost loop. We did not include the possibility that it
is an external boson since these contributions vanish because of transversality
(equation (3.21)) anyway:

∼ 0 .

The last two terms in equation (5.43) can be written as

∼ and ∼ .

79



because tadpoles have vanishing color factors.
Apply this and lemma 5.9.i on the first term of the right-hand side of (5.43):

∼ + + 1
2

+ − .

We can do the same thing to the first term as we did in (5.43):

∼ 1
2 + 1

2 + −

+ + 1
2 + − .

(5.44)

Note that because of the mass-shell condition (equation (3.22)) we have

∼ 0 .

The first and the sixth term in (5.44) cancel (lemma 5.9.ii):

+

= 1
3

(
+ + +

+ +

)
∼ 0 .

With a similar symmetrization argument and using lemma 5.9.iii it can be
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seen that the second term of (5.44) is zero:

∼ 0 .

The third, fourth, seventh and eighth term cancel because of lemma 5.9.iv:

− + − ∼ 0 .

We are left with:

∼ .

Theorem 5.11 (Ward identities (connected Green’s functions)).

∼ 0 . (5.45)

Proof. We use complete induction in over the number of external legs:

• The statement is trivially true for tadpole functions, because the color
factor of tadpole graphs always vanish.

• First note that

0 ∼

n︷ ︸︸ ︷
=

n

∑
m=1

∑
perm.

m︷ ︸︸ ︷ n−m︷ ︸︸ ︷
.

Assume we have already proven that

∀m < n :

m︷ ︸︸ ︷
∼ 0 .

Recall that we exclude vacuum graphs, so then
n︷ ︸︸ ︷

∼ 0 .
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Example 5.12. i. Apply lemma 5.9.i twice on the following little graph:

1
2 ∼ + ∼ + + ,

and use this to show that the 1-loop 2-point function is indeed transver-
sal:

(1)
= eχe−δ 1

2 = 1
2 + −

∼ + + + − ∼ 0 .

The first and fourth term in the third line cancel because of lemma 5.9.ii,
the other three because of lemma 5.9.iv.

ii. Apply lemma 5.9.i repetitively to the following 4-point graph:

∼ + + + +

+ + + + + .

We will not prove the transversality of the 1-loop 4-point function, but
show using two examples that for each of these terms, there are contri-
butions from other 4-point graphs to which they cancel.

For example, the third term gets cancelled as follows, using lemma 5.9.ii:

+ + + + + ∼ 0 .

These are contributions from

, , , , and

respectively.

And the fifth one gets cancelled in this way (lemma 5.9.iv):

− − + ∼ 0 .

The last two terms are contributions from

− and

respectively.
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5.3 Parametric Representation

Our approach for a parametric representation for amplitudes in non-Abelian
gauge theories is very similar to our method for scalar quantum electrody-
namics in subsection 4.3.2.

The parametric integrand is again

I(Γ) :=
1

π2lΓ

∫
dk N(Γ)e

−∑
e∈Γ[1]\Γ[1]

p2
e Ae

, (5.46)

such that the Feynman amplitude is

Φ(Γ) =
∫

dA
Γ/Γ

[1]
Γ

. (5.47)

Theorem 5.13. As before, N̂(Γ) is the differential operator obtained by replac-
ing the momenta pe by differential operators p̂e (equation (3.47)) in N(Γ). So
in non-Abelian gauge theory

N̂(Γ) =
(

∏
e∈Γ

[1]

We

)(
∏

v∈Γ
[0]

V̂v

)(
∏

`∈LΓ

Ĉ`

)
. (5.48)

The polynomial ϕΓ is ϕΓ plus contributions for the external edges:

ϕΓ := ϕΓ + ∑
h∈Γext

ξ2
h Ahψ . (5.49)

Define:

U(Γ) := N̂(Γ)
e−ϕΓ/ψΓ

ψ2
Γ

∣∣∣
AΓext=0

. (5.50)

Having defined this, one has

U(Γ) = ∑
i≥0

1
i! ∑

e1,...ei∈Γ[1]

1
Ae1 · · · Aei

u(χe1 · · · χei Γ) , (5.51)

where the u(Γ) have the property

u(Γ)
∣∣

A
Γ
[1]=0 = I(Γ) . (5.52)

Proof. Using theorem 2.24, we have

U(Γ) = 1
π2lΓ

∫
dkL

(
∏

e∈Γ
[1]

We

)(
∏

v∈Γ
[0]

V̂v

)(
∏

`∈LΓ

Ĉ`

)
e−∑e∈Γ[1]∪Γext p2

e Ae
∣∣∣

AΓext=0
.

For e ∈ Γ[1] ∪ Γext,

p̂µ
e e−∑e∈Γ[1]∪Γext p2

e Ae = pµ
e e−∑e∈Γ[1]∪Γext p2

e Ae ,
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so for v ∈ Γ
[0]:

V̂ve−∑e∈Γ[1]∪Γext p2
e Ae = Vve−∑e∈Γ[1]∪Γext p2

e Ae

and for ghost loops `:

Ĉ`e
−∑e∈Γ[1]∪Γext p2

e Ae = C`e
−∑e∈Γ[1]∪Γext p2

e Ae .

There is no momentum appearing more than once in C`; that is why there is
no Leibniz rule involved.

For the product over the 3-boson vertices, we do have to consider the Leib-
niz rule. If v1, v2 ∈ Γ

[0] are not adjacent, V̂v1 Vv2 = 0. If they are adjacent, then
with equation (3.65) one sees that:

• If there is one edge, e, incident to both v1 and v2,

e

41

2 3

v1 v2 ⊆ Γ ,

V̂v1 Vv2 =
1

Ae
f a1a2ae f a3a4ae(gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3) =

We

Ae
.

• If there are two edges, e1 and e2, incident to both v1 and v2,

e1

e2

1 2v1v2 ⊆ Γ ,

V̂v1 Vv2 =
1

Ae1

f a1ae2 ae1 f a2ae2 ae1
(

gµ1µ2 gµe2 µe2 − gµ1µe2 gµe2 µ2
)

+
1

Ae2

f a1ae1 ae2 f a2ae1 ae2
(

gµ1µ2 gµe1 µe1 − gµ1µe1 gµe1 µ2
)

=
We1

Ae1

+
We2

Ae2

.

So

U(Γ) = 1
π2lΓ

∫
dkL

(
∏

e∈Γ
[1]

We

)(
∏

v∈Γ
[0]

Vv + ∑
e∈Γ

[1]

We

Ae
∏

v∈Γ
[1]

e not inc. to v

Vv

+ 1
2 ∑

e1,e2∈Γ
[1]

not adj.

We1We2

Ae1 Ae2
∏

v∈Γ
[1]

e1,e2 not inc. to v

Vv

+ 1
3! · · ·

)(
∏

`∈LΓ

C`

)
e−∑e∈Γ[1]

p2
e Ae .

With
u(Γ) := 1

π2lΓ

∫
dkL N(Γ)e−∑e∈Γ[1]

p2
e Ae ,
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it can we written as

U(Γ) = u(Γ) + ∑
e∈Γ

[1]

1
Ae

u(χeΓ) + 1
2 ∑

e1,e2∈Γ
[1]

1
Ae1 Ae2

u(χe1 χe2 Γ) + 1
3! · · · .

And indeed,

u(Γ)
∣∣

A
Γ
[1]=0 = 1

π2lΓ

∫
dkL N(Γ)e

−∑
e∈Γ[1]\Γ[1]

p2
e Ae

= I(Γ) .

Note that we do not have the factor 1
2 we have in sQED (theorem 4.12).

If one wants, one can include fermions without problems.;

Theorem 5.14.

i. u(Γ) = U(Γ)−∑
i≥1

1
i! ∑

e1,...,ei∈Γ[1]

1
Ae1 · · · Aei

u(χe1 · · · χei Γ) , (5.53)

ii. u(Γ) = ∑
i≥0

(−)i 1
i! ∑

e1,...,ei∈Γ[1]

1
Ae1 · · · Aei

U(χe1 · · · χei Γ) . (5.54)

Proof. See the proof of theorem 4.14.

Recall equations (4.43) and (4.44) from previous chapter. We use these
notations in the following example too.

Example 5.15. Take the graph

3

4

1 2a b .

See example 3.11.ii for the Symanzik polynomials and p̃3 and p̃4.
For this graph, we have:

V̂a = f a1a3a4
(

gµ3µ4(− p̂3 − p̂4)
µ1 + gµ4µ1( p̂4 − p̂1)

µ3 + gµ1µ3( p̂1 + p̂3)
µ4
)

,

V̂b = f a2a4a3
(

gµ4µ3(− p̂4 − p̂3)
µ2 + gµ3µ2( p̂3 + p̂2)

µ4 + gµ2µ4(− p̂2 + p̂4)
µ3
)

,

which give,

Ṽa
m.c.
==== f a1a3a4

(
gµ3µ4 pµ1(−A4 + A3) + gµ4µ1 pµ3(−2A3 − A4)

+ gµ1µ3 pµ4(A3 + 2A4)
)

,

Ṽb
m.c.
==== f a2a4a3

(
gµ4µ3 pµ2(A3 − A4) + gµ3µ2 pµ4(A3 + 2A4)

+ gµ2µ4 pµ3(−2A3 − A4)
)

.

Their product is

ṼaṼb
m.c.
==== Cad

2 δa1a2
(

pµ1 pµ2(2A2
3 + 2A2

4 + 14A3 A4)

− p2gµ1µ2(5A2
3 + 5A2

4 + 8A3 A4)
)

,
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where Cad
2 is the quadratic Casimir operator of the adjoint representation of

g, which is defined as:∗

f a1a3a4 f a2a3a4 =: Cad
2 δa1a2 . (5.55)

It also appears in

W̃ab = 3Cad
2 δa1a2 gµ1µ2

(
− 1 +

A4

A3
+

A3

A4

)
.

Apply the differential operator:

U
( )

= V̂aV̂b
e−ϕ /ψ

ψ2

∣∣∣
A1=A2=0

=
( ṼaṼb

ψ4 +
W̃ab

ψ3

)
e−ϕ /ψ

m.c.
==== Cad

2 δa1a2

((
pµ1 pµ2(2A2

3 + 2A2
4 + 14A3 A4)

− p2gµ1µ2(5A2
3 + 5A2

4 + 8A3 A4)
) 1

ψ4

+ 3gµ1µ2
(
− 1 +

A4

A3
+

A3

A4

) 1
ψ3

)
e−p2 ϕ′ /ψ .

We also need

U
( )

= W3
e−ϕ /ψ

ψ2
m.c.
==== −3Cad

2 δa1a2 gµ1µ2
e−p2 ϕ′ /ψ

ψ2

and

U
( )

m.c.
==== −3Cad

2 δa1a2 gµ1µ2
e−p2 ϕ′ /ψ

ψ2 .

So now, the integrand is

I
( )

= U
( )

− 1
A3

U
( )

− 1
A4

U
( )

= Cad
2 δa1a2

((
pµ1 pµ2(2A2

3 + 2A2
4 + 14A3 A4)

− p2gµ1µ2(5A2
3 + 5A2

4 + 8A3 A4)
) 1

ψ4 − 9
gµ1µ2

ψ3

)
e−ϕ /ψ .

The integrand of the ghost loop graph can be computed as:

I
( )

= U
( )

= −Cad
2 δa1a2( p̂µ1

3 p̂µ2
4 + p̂µ1

4 p̂µ2
3 )

e−ϕ /ψ

ψ2

∣∣∣
A1=A2=0

= −Cad
2 δa1a2

( p̃µ1
3 p̃µ2

4 + p̃µ1
4 p̃µ2

3

ψ4 +
2gµ1µ2 β34

ψ3

)
e−ϕ /ψ

m.c.
==== Cad

2 δa1a2
(

2
pµ1 pµ2 A3 A4

ψ4 − gµ1µ2

ψ3

)
e−p2 ϕ′ /ψ .

∗See [15], equation (15.93).
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The two computed integrals combine to

I
(

e−δ
)
= I
(

−
)

= Cad
2 δa1a2

((
pµ1 pµ2(2A2

3 + 2A2
4 + 12A3 A4)

− p2gµ1µ2(5A2
3 + 5A2

4 + 8A3 A4)
) 1

ψ4

+ 8
gµ1µ2

ψ3

)
e−ϕ /ψ .

Renormalize it as in definition 3.23:

I ren
(

e−δ
)
= Cad

2 δa1a2
(
− pµ1 pµ2(2a2

3 + 2a2
4 + 12a3a4)

+ p2gµ1µ2(5a2
3 + 5a2

4)
) 1

ψ4 ln
p2

µ2 ,

and this integrates to

Φren
(

e−δ
)
= 10

3 Cad
2 δa1a2(−pµ1 pµ2 + p2gµ1µ2) ln

p2

µ2 .

As expected, it is transversal.
To get the Green’s function, the only thing one has to do is to include a

symmetry factor 1
2 :

Φren
(

(1)

)
= Φren

(
eχe−δ 1

2

)
= 5

3 Cad
2 δa1a2(−pµ1 pµ2 + p2gµ1µ2) ln

p2

µ2 .

The χ does not do much here actually, because it results in a self-loop, for
wich the renormalized amplitude vanishes. (See remark 2.35.)

5.3.1 The Corolla Polynomial

In [11], the operator N̂(e−δΓ) (where Γ has only 3-boson vertices) is intro-
duced using the so-called corolla polynomial. This is a polynomial in the half-
edge variables ah.

For a graph Γ that has no 4-valent vertices, but possibly internal unori-
ented ghost loops, one first defines the polynomial:

C (Γ; a) :=
(

∏
v∈Γ

[0]
∑
h∈v

ah

)(
∏

v∈Γ
[1]

ahv

)

where hv ∈ v is the boson half-edge in the vertex v. Then, the corolla polyno-
mial for a graph with only 3-boson vertices is defined as

C (Γ; a) := C (e−δΓ; a) .
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Example 5.16. We label the half-edges by the label of the vertex and the edge
they belong to.

C
(

3

4

1 2a b ; a
)

:= (aa1 + aa3 + aa4)(ab1 + ab3 + ab4)

and
C
(

; a
)
= aa1ab2 ,

so the corolla polynomial is

C
(

; a
)
= C

(
− ; a

)
= (aa1 + aa3 + aa4)(ab1 + ab3 + ab4)− aa1ab2 .

Next, we define for an half-edge h ∈ Γhe the differential operator

Dh = f aeae1 ae2 gµe1 µe2 (εh1 p̂e1 − εh1 p̂e2)
µe

where {h, h1, h2} ∈ Γ[0] is the vertex containing h and e, e1, e2 ∈ Γ[1] are the
edges incident to that vertex: e 3 h, e1 3 h1 and e2 3 h2. For example: for the
graph

3

4

1 2a b ,

Da1 = f a1a3a4 gµ3µ4(− p̂3 − p̂4)
µ1 and Db2 = f a2a3a4 gµ3µ4( p̂3 + p̂4)

µ2 .

With this definition, one has, for v ∈ Γ
[0],

∑
h∈v

Dh = V̂v ,

so if Γ has no ghost loops

C (Γ; D) = ∏
v∈Γ[0]

V̂v = N̂(Γ) .

Now take a ghost loop:

C
(

v1 vn

n′
1 n

1′ (n− 1)′ ; D
)
= Dv11 · · ·Dvnn

= f a1an′ a1′ · · · f ana(n−1)′ an′ gµn′µ1′ · · · gµ(n−1)′µn′ ( p̂n′ + p̂1′)
µ1 · · · ( p̂(n−1)′ + p̂n′)

µn

= 4 f a1an′ a1′ · · · f ana(n−1)′ an′ ( p̂n′ + p̂1′)
µ1 · · · ( p̂(n−1)′ + p̂n′)

µn .

The string of metric tensors gives a factor 4. Working out the brackets gives
2n terms. The two terms where every p̂e (or equivalently: every 1

Ae
) shows up
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exactly once give the ghost contributions. So if we get rid of the other 2n − 2
terms we get:

C
(

; D
)∣∣∣ 1

A2
1′

,..., 1
A2

n′
 0

= 4 f a1an′ a1′ · · · f ana(n−1)′ an′ ( p̂µ1
n′ p̂µ2

1′ · · · p̂
µn
(n−1)′ + p̂µ1

1′ · · · p̂
µn
n′ ) = 4N̂

( )
.

(See equation (5.31).)
So in general:

Ĉ (Γ) := C (Γ; D)
∣∣
∀e∈Γ

[1] : 1
A2

e
 0

= 4#LΓ N̂(Γ) .

In the same way the corolla polynomial was defined for a graph Γ with
Γ[0] = Γ

[0], the following differential operator is defined:

Ĉ (Γ) := Ĉ (e−δ/4Γ) .

The factor 1
4 in the exponent compensates the factor 4 that arises for every

ghost loop, so:

Ĉ (Γ) = N̂(e−δΓ) .
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Summary

In this thesis a systematic method is given for writing the amplitudes in
(scalar) quantum electrodynamics and non-Abelian gauge theories in Schwin-
ger parametric form. This is done by turning the numerator of the Feynman
rules in momentum space into a differential operator. It acts then on the
parametric integrand of the scalar theory. For QED it is the most straight-
forward, because the Leibniz rule is not involved here. In the case of sQED
and non-Abelian gauge theories, the contributions from the Leibniz rule are
satisfyingly related to 4-valent vertices. Another feature of this method is that
in the used renormalization scheme, the subtractions for 1-scale graphs cause
significant simplifications.

Furthermore, the Ward identities for mentioned three theories are studied.

Zusammenfassung

In dieser Arbeit wird eine systematische Methode gegeben um die Ampli-
tuden in (skalarer) Quantenelektrodynamik und nicht-Abelsche Eichtheorien
in Schwinger-parametrische Form zu schreiben. Dies wird erreicht in dem
der Zähler der Feynmanregeln im Impulsraum in einem Differentialoperator
umgewandelt wird. Dieser Differentialoperator wirkt dann auf den parametri-
chen Integranden der skalaren Theorie. Für die QED ist das am einfachsten,
weil die Leibnizregel hier nicht nötig ist. Im Fall der sQED und den nicht-
Abelsche Eichtheorien stehen die Beiträge der Leibnizregel in Verbindung mit
4-valente Vertices. Eine andere Eigenschaft dieser Methode ist, dass mit dem
hier benutzten Renormierungsschema die Subtraktionen für 1-scale Graphen
signifikante Vereinfachungen verursachen.

Weiterhin wurden die Ward-Identitäte für die genannten drei Theorien
studiert.
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