Tatyana Shtykel
On the criterion of asymptotical stability for index-1 tractable DAEs
Preprint series:
Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976)
- MSC:
- 15A22 Matrix pencils, See also {47A56}
- 34D20 Lyapunov stability
- 65F15 Eigenvalues, eigenvectors
Abstract: This paper considers the index-1 tractable differential-algebraic
equation. The Lyapunov stability of the trivial solution is discussed.
As a criterion of the asymptotical stability we propose a numerical
parameter æ(A,B) characterizing the property of the
index-1 matrix pencil
{A, B} to have all finite eigenvalues within the negative complex
half-plane. An algorithm for computing this parameter is described.
Keywords: differential algebraic equation, Lyapunov stability, matrix pencil, projector