vector optimization structural
stability strong
stability constraint
qualification (Mangasarian-Fromovitz) Structural stability of vector optimization
problems
Paulo Mbunga Mbunga
Paulo
Institut für Mathematik, Humboldt-Universität zu
Berlin (ISSN 0863-0976),
Structural stability of vector optimization problems
Paulo
Mbunga
Preprint series: Institut für Mathematik,
Humboldt-Universität zu Berlin (ISSN 0863-0976),
MSC 2000
- 90C29 Multi-objective and goal programming
- 90C31 Sensitivity, stability, parametric optimization
Abstract
We
study global stability properties for vector optimization problems of
the type: \begin{align} \tag*{$\mathcal{VOP}(f,H,G)$:}
\min\left\{f(x)=\left(f_1(x),\dots,f_l(x)\right) \mid x\in
M[H,G]\right\}, \end{align} where \begin{align*} M[H,G]:=\left\{x\in
\R^n\mid h_i(x)=0,\quad g_j(x)\leq 0, \quad i\in I,j\in J\right\}
\end{align*} with \begin{alignat*}{3} I &:= \{1,\dots,m\},
&\quad J &:= \{1,\dots,s\},&\quad L&:=\{1,\dots,l\}.
\end{alignat*} We extend Guddat/Jongen's \cite{structstab} concept of
structural stability of scalar nonlinear optimization problems to
vector optimization problems. Under the assumption that $M[H,G]$ is
compact we prove the necessary condition for the structural stability
of a vector optimization problem, i.e. the scalar problem \begin{align}
\tag*{$\mathcal{P}^{\max}(f,H,G)$:} \min\left\{\max_{l\in L}f_l(x)\mid
x\in M[H,G] \right\} \end{align} has to be structurally stable.
This
document is well-formed XML.