$\theta$-Maruyama scheme asymptotic
and exponential stability stochastic delay differential \&
difference equations Halanay-type
inequalities On
Halanay-type analysis of exponential stability for the
$\theta$--Maruyama method for stochastic delay differential equations
Christopher T.H. Baker Baker
Christopher T.H.
Evelyn Buckwar Buckwar
Evelyn
Institut für Mathematik,
Humboldt-Universität zu Berlin (ISSN 0863-0976), 14
On Halanay-type analysis of exponential stability for the
$\theta$--Maruyama method for stochastic delay differential equations
Christopher T.H. Baker
, Evelyn Buckwar
Preprint series: Institut für Mathematik,
Humboldt-Universität zu Berlin (ISSN 0863-0976), 14
MSC 2000
- 65C30 Stochastic differential and integral equations
- 60H35 Computational methods for stochastic equations
Abstract
Using
an approach that has its origins in work of Halanay, we consider
stability in mean square of numerical solutions obtained from the {\em
$\theta$--Maruyama discretization} of a test stochastic delay
differential equation $$ dX(t) = \{f(t) -\alpha X(t) + \beta
X(t-\tau)\} {\rd}t + \{g(t) + \eta \ X(t) + \mu X (t-\tau) \} \
{\rd}W(t), $$ interpreted in the It\^o sense, where $W(t)$ denotes a
Wiener process. We focus on demonstrating that we may use techniques
advanced in a recent report by Baker and Buckwar to obtain criteria for
asymptotic and exponential stability, in mean square, for the solutions
of the recurrence $$ {\wtX}_{n+1} \!-\! {\wtX}_n \!=\! \theta
h\{f_{n+1} \!-\! \A {\wtX}_{n+1} \!+\! \B {\wtX}_{n+1-N}\} \ + $$ $$ \!
+ (1-\theta) h \{f_n \!-\! \A {\wtX}_{n} \! +\! \B {\wtX}_{n-N}\} \!+\!
\sqrt{h}(g_n \!+\! \eta {\wtX}_n \!+\! \mu {\wtX}_{n-N_{}})\xi_n\quad
(\xi_n \in \N (0,1)).
$$
This
document is well-formed XML.