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Abstract

In this paper, we study the Jacobian varieties of certain diagonal
curves of genus four : we first give the structure of the Jacobian,
showing that it is simple over the prime field in most cases, then we
give a reduction algorithm, suitable for calculations in the group of its
rational points.
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Introduction

During the last decade, much work has been done to study the
Jacobian varieties of curves of genus 2 (hyperelliptic) or 3 (hyperelliptic
or Picard). Two questions arise naturally : the first is to determine the
structure of the Jacobian variety, the second is to represent its points
in order to perform efficiently computations in the group of its rational
points. In this paper, we study the Jacobians of certain diagonal genus
4 curves from this point of view.
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We first recall well known facts. Let C be a curve of genus g defined
over a finite field k. Its Jacobian variety J(C) is an abelian variety of
dimension g ; in particular its rational points J(C)(k) form a group.
An important tool in the study of JC is the characteristic polynomial
of the action of the Frobenius endomorphism of J(C) relative to k. It is
well known (cf. [Tate] for instance) that the decomposition of J(C) as
a product of simple abelian varieties corresponds to the factorisation of
the characteristic polynomial over Q. In the case of diagonal curves,
the roots of this polynomial are Jacobi sums ; we use this fact, as
well as arithmetic information on Jacobi sums (mainly Stickleberger
theorem) to make explicit the structure of J(C).

The second part of this work is devoted to finding a representation
of the elements of J(C)(k), suitable for performing computations in
this group. Earlier works on this subject follow two directions : in
the first one, an isomorphism between J(C)(k) and the ideal class
group of a ring of regular functions on C is used ; in the second, more
geometric, one tries to generalize the ”chord and tangent” method for
elliptic curves to higher genus curves. We shall adopt the second one.
In order to do this, we shall work with the canonical model of the curve
C in P3, and consider its intersections with quadrics ; the method is a
generalisation of the one in [EstReiChe].

The paper is organized as follows : in section I, we calculate ex-
plicitely the roots of the characteristic polynomial of the action of the
Frobenius of J(C) in terms of Jacobi sums. Then we use arithmetic
information on these sums to obtain informations on the structure of
J(C). The second section is devoted to a reduction algorithm : we
first give a bijection between the points in J(C)(k) and certain divi-
sors on the curve C, using the canonical model of C, then we study
the intersection of C with quadrics to give the algorithm.

1 The structure of the Jacobian.

1.1 General facts.

If C(Fq) is a complete non-singular curve of genus g, one important
tool for studying its Jacobian variety J(C) is Weil’s theorem:

Theorem 1.1 There exist complex numbers α1, α1, . . . , α2g such that,

Nr = #C(Fqr ) = qr + 1−
2g∑

i=1

αi
r (1)

for r > 0, or equivalently, the power series

Z(C, T ) = exp(
∞∑

r=1

Nr
T r

r
) ∈ C[[T ]]
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represents a rational function, with numerator

L(C, T ) =
2g∏

i=1

(1− αiT )

and denominator (1 − T )(1 − qT ). Moreover, L(C, T ) has integer co-
efficients and the complex numbers αi have absolute value q1/2.

Z(C, T ) and L(C, T ) are called the zeta function and the L-polynomial
of C/Fq, respectively. We have also

L(C, T ) = T 2gP (1/T )

where P (λ) is the characteristic polynomial of the Frobenius endomor-
phism π of J(C) relative to Fq. Thus, the computation of Z(C, T )
reduces to the computation of P (λ). It is also well known that the
number of Fq-rational points of J(C) is equal to :

|J(C)(Fq)| = L(C, 1) = P (1).

1.2 Diagonal Curves and their Zeta Functions

First recall that a diagonal curve over Fq is a curve having an affine
equation of the form ym1 = axm2 + b, with m1,m2 ≥ 2 integers prime
to q, and a, b in F∗q . Such a curve has genus :

g =
1
2

((m1 − 1)(m2 − 1)− gcd(m1,m2) + 1) .

In the following, we restrict our attention to the diagonal curves C
of genus 4 in the family :

D(3, 5; γ, δ) : y3 = γx5 + δ, γ, δ ∈ F∗q .

We first determine the number Ni of Fqi-rational points on C. Set
d = gcd(5, q−1) and e = gcd(3, q−1), and let χ be a character of order
de of the multiplicative group F∗q , extended to Fq by setting χ(0) = 0 ;
from a classical result on the number of solutions of diagonal equations
[Small], we have :

N1 = 1 +
d−1∑
i=0

e−1∑
j=0

χei(−γ−1)χei+dj(δ)jFq

(
χei, χdj

)
,

where
jFq

(χei, χdj) =
∑
x∈Fq

χei(x)χdj(1− x)
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is the Jacobi sum over Fq, attached to the characters χei and χdj , and
the number 1 corresponds to the point at infinity (the blowing up of
the singular point P∞(0 : 1 : 0) of the plane model gives a single point
since the exponents 3 and 5 are coprime integers). Noting that the
Jacobi sum with i = j = 0 is q, and the ones with i = 0, j 6= 0 or
i 6= 0, j = 0 are zero, we can rewrite this expression as follows:

N1 = q + 1 +
∑

x∈Fq

d−1∑
i=1

e−1∑
j=1

χei(−γ−1)χei+dj(δ)χei(x)χdj(1− x)

= q + 1 +
d−1∑
i=1

e−1∑
j=1

χei(−γ−1)χei+dj(δ)jFq
(χei, χdj)

In order to write down the zeta function of C over Fq, we only have
to compute the Ni. If the residue of qi modulo 15 is not one, then at
least one of the integers d, e will be 1, and the preceding formula gives
us that Ni = qi + 1. We are reduced to studying the remaining cases:
let f be the order of q in the multiplicative group G = (Z/15Z)∗. Let
χ1 be a character of order 15 of F∗qf ; we know that if we set for every
l ≥ 1 : χl := χ1 ◦NF

qfl /F
qf

, with NF
qfl /F

qf
the norm from Fqfl to Fq,

then χl is a character of order 15 of the group F∗qfl . Since in our case
d = 5 and e = 3, we get :

Nfl = qfl + 1 +
4∑

i=1

2∑
j=1

χ3i
l (−γ−1)χ3i+5j

l (δ)jF
qfl

(χ3i
l , χ5j

l )

= qfl + 1 +
∑
i∈G

χ3i
l (−γ−1)χ8i

l (δ)jF
qfl

(χ3i
l , χ5i

l )

= qfl + 1 +
∑
i∈G

(
χ3i

1 (−γ−1)χ8i
1 (δ)jF

qf
(χ3i

1 , χ5i
1 )

)l

the last equality coming from the Hasse Davenport relation, and
from the fact that, since a, b ∈ Fqf , we have χl(a) = χ1(a)l and χl(δ) =
χ1(δ)l. On the other hand, since x 7→ xq is an automorphism of Fqf ,
we have the following for the Jacobi sums involved in the last equality :

jF
qf

(χ3q
1 , χ5q

1 ) = jF
qf

(χ3
1, χ

5
1).

Thus we see that if H is the subgroup of order f of G, generated
by q, then the Jacobi sum jF

qf
(χ3i

1 , χ5i
1 ) is independent of the choice
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of i in a coset of H in G ; for this reason we introduce Q, the quotient
group G/H, say of order g. With these notations, and since a and
b are elements of Fq fixed by the automorphism x 7→ xq, we get the
relation :

Nfl = qfl + 1 + f
∑
i∈Q

(
χ3i

1 (−γ−1)χ3i+5j
1 (δ)jF

qf
(χ3i

1 , χ5i
1 )

)l

Now if πj , 1 ≤ j ≤ 8 are the reciprocal roots of the numerator of
the zeta function of C, we can write for any i ≥ 1 :

Ni = qi + 1 +
8∑

j=1

πi
j

Comparing the two results, we get, for all k ≥ 1 :

qk+1+
8∑

j=1

πk
j =

{
qk + 1 if k is not a multiple of f

qfl + 1 + f
∑

i∈K

(
χ3i

1 (−γ−1)χ8i
1 (δ)jF

qf
(χ3i

1 , χ5i
1 )

)l

if k = fl.

Thus we get :

πf
j = χ3i

1 (−γ−1)χ8i
1 (δ)jF

qf
(χ3i

1 , χ5i
1 ) for some i ∈ Q

and the reciprocal roots are exactly the f -roots of these algebraic in-
tegers.

Now we can write down the numerator of the zeta function of C
over Fq :

Proposition 1.1 Let q be a power of a prime p, f be the order of the
residue of q in G = (Z/15Z)∗, and χ1 a character of order 15 of F∗qf .
If Q = G/H, H =< q >, then the numerator of the zeta function of
the curve C defined over Fq is :

P (T ) =
∏
i∈Q

(1− χ3i
1 (−γ−1)χ8i

1 (δ)jF
qf

(χ3i
1 , χ5i

1 )T f ).

1.3 Jacobi Sums and the structure of the Jacobian

In order to study the structure of the Jacobian of C, we have to study
the L-polynomial of C ; this is the aim of this section : we give well-
known arithmetic properties of the Jacobi sums that are the reciprocal
roots of this polynomial, then we deduce the structure of the Jacobian
from the factorisation of this polynomial in the case where q is prime.
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Computation of the Jacobi sums Assume first that q = p is
a prime number such that p ≡ 1 mod 15. If we denote D = Z[ζ15], the
ideal pD completely splits in D. Let p be a fixed prime ideal of D lying
over p. Then D/p is isomorphic to Fp. Let χp be the 15 − th power
residue symbol modulo p, which means that χp is a multiplicative
character of order 15 (cf. [Lidl-Nied] p. 205) that sends a nonzero x
in D to

χp(x) =
(

x

p

)
15

≡ x(p−1)/15 (mod p),

the unique 15-th root of unity in D congruent to x(p−1)/15 modulo p.

For any integers a and b we set

j(a, b) := jp(χa
p, χb

p) =
∑

x, y ∈ (D/p)×

x + y = 1

χp(x)aχp(y)b.

We have the following congruence of Iwasawa (cf. [Yui] p.113):

j(a, b) ≡ χ
15−(a+b)
p (−1) mod (1− ζ15)2.

Moreover, we have Stickelberger Relation cf. [Lang] thm.
IV.11, p.98) : for positive integers a, b such that 15 doesn’t divide
a + b, we have the equality of ideals of D :(

jp(χa
p, χb

p)
)

= pθ(a,b),

where

θ(a, b) =
∑

n∈(Z/15Z)∗

([
(a + b)n

15

]
−

[an

m

]
−

[
bn

m

])
σ−1

n ,

(and σn is the automorphism of Gal(Q(ζ15)/Q) defined by ζ15 7→ ζn
15).

In our case, we obtain :(
jp(χ3

p, χ
5
p)

)
= pσ8pσ4pσ2pσ14 .

Since Z[ζ15] is a principal ideal domain, if we denote by β a genera-
tor of p, then : (jp(χ3

p, χ
5
p)) = (β)θ(3,5). Thus jp(χ3

p, χ
5
p) = uβθ(3,5), for

some u in D∗ ; moreover all the conjugates of u over Q have complex
absolute value 1, thus from a well-known result u is a root of unity.
Since the only roots of unity in Z[ζ15] are the ±ζs

15 with 0 ≤ s ≤ 14
(cf. [Be-Ev-W] thm. 2.1.13 p.64), we get :

jp(χa
p, χb

p) = ±ζs
mβθ(a,b).
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So the computation of the exact value of the Jacobi sum is reduced
to the determination of the sign, the exponent s, and of the generator
β of the ideal p. The computation of the generator β is known as the
”Principal ideal problem” (cf. [Coh] p. 354 6.5.5) and can be solved
using algorithm 6.5.10 (cf. [Coh] p. 355).

Example :

• p = 1500015015015150004531

p = 1500015015015150004531Z[ζ]+(5758955493080877644+ζ)Z[ζ],

and

β = 49 + 287ζ − 33ζ2 + 292ζ3 + 101ζ4 + 15ζ5 − 66ζ6 + 93ζ7.

The answer is very quick even for “large” prime numbers. To find the
sign r ∈ ±1, and the exponent s we follow Buhler and Koblitz (cf.
[Buh-Kob] p.150) and use the Iwasawa congruence,

j(3, 5) ≡ χ7(−1) mod (1− ζ)2,

in the ring Z[ζ15]. We set βθ(3,5) =
∑7

j=0 ajζ
j and π = ζ − 1. So we

have ζk = (1 + π)k ≡ 1 + kπ mod π2, and

j(3, 5) ≡ r(1 + sπ)
∑7

j=0 aj(1 + jπ) mod π2

≡ r
(∑7

0 aj +
(
s
∑7

0 aj +
∑7

0 jaj

)
π
)
≡ χ7(−1) mod π2.

Note that if p = 15f +1, then χ7(−1) = (−1)f . We will choose the
sign r such that (−1)f ≡ r

∑7
0 aj mod 15, and set s ≡ r

∑7
0 jaj mod 15.

Structure of the Jacobian : The aim of this paragraph is to
check whether the Jacobian J(C) of C is Fp-simple, depending on the
residue of p modulo 15. Recall that the characteristic polynomial of
Frobenius of J(C) relative to Fp is given by :

P (T ) =
∏
i∈K

(T f − χ3i
1 (−γ−1)χ8i

1 (δ)jF
pf

(χ3i
1 , χ5i

1 )),

where f is the order of p in Z/15Z∗. If the polynomial P (T ) =
T 2gL(C, 1/T ) is Q-irreducible, then the Jacobian J(C) is Fp-simple
(cf [Tate] Theorem 2.(e)).

Let us study the degrees as algebraic integers of the roots of P (T ),
depending on the residue of p modulo 15 :
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1) p ≡ 1 mod 15 :
Here f = 1, the decomposition subfield of the prime p in Q(ζ15)

is the whole field Q(ζ15), and the roots of P are the eight algebraic
integers :

χ3i
1 (−γ−1)χ8i

1 (δ)jFp
(χ3i

1 , χ5i
1 ), i ∈ G

Since the term χ3i
1 (−γ−1)χ8i

1 (δ), being a root of unity, does not
change the prime ideal decomposition, we see that the ideals generated
by these eight algebraic integers have distinct prime decompositions in
the integer ring of Q(ζ15). Since they are conjugate under the action
of Gal(Q(ζ15)/Q), we see that they must be algebraic integers of de-
gree 8 over Q, and that P must be their minimal polynomial, hence
irreducible.

2) p ≡ 2, 8 mod 15 :
We study these two cases together, since 2 and 8 generate the same

subgroup of G. Here the decomposition field kp of p is a quadratic
extension of Q. In fact, we can write in its integers ring : (p) =
p1p2, p1, p2 being two prime ideals, fixed by the elements σ2, σ4, σ8 of
G, and permuted by σ7, σ11, σ13, σ14. The decomposition of the ideal
generated by the Jacobi sum is then : (j) = p3

1p2.
Thus the two Jacobi sums must be algebraic integers of degree 2

over Q, and the roots of P are the fourth roots of these sums. To
conclude in this case, we remark that since the ring of integers Z[ζ15]
of Q(ζ15) is a principal domain, the ring of integers of kp is a principal
domain too, and we can apply Eisenstein criterion to the polynomial
(over this ring)

T 4 − χ3i
1 (−γ−1)χ8i

1 (δ)jFp4
(χ3i

1 , χ5i
1 )

and to the prime p2. We get that this last polynomial is irreducible
over kp, and that its roots are algebraic integers of degree 8.

3) p ≡ 7, 13 mod 15 :
Here we can rewrite what we have done in the preceding case, to

obtain the same result.

4) p ≡ 4 mod 15 :
We have f = 2, and the decomposition subfield of p is a degree

four extension of Q. We get four primes in the decomposition of (p):
(p) = p1p2p3p4, each one being fixed by σ4, pσ2

1 = p2, pσ14
1 = p3, pσ7

1 =
p4. The ideal generated by the Jacobi sum jFp2

(χ3
1, χ

5
1) has the form

p1p
2
2p3. Considering the action of Gal(kp/Q) on this decomposition,

we get that the Jacobi sum is an algebraic integer of degree 4 over Q.
Here again we can apply Eisenstein’s criterion to the polynomial
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T 2 − χ3i
1 (−γ−1)χ8i

1 (δ)jFp2
(χ3i

1 , χ5i
1 )

and to one of the primes p1, p3 in the integer ring of kp, and we get
the desired result.

5) p ≡ 11 mod 15 :
We can rephrase here what we have just said, and we get the same

result.

6) p ≡ 14 mod 15 :
Here we get that the prime decomposition of the ideal generated

by the Jacobi sum is p1p2p3p4 = (p), and that the Jacobian is super-
singular.

Finally we obtain the :

Proposition 1.2 The Jacobian of the curve C, defined over the prime
field Fp, is Fp-simple if the residue of p modulo 15 belongs to the set
{1, 2, 4, 7, 8, 11, 13}; it is supersingular if p ≡ 14 mod 15.

Example :

Let p = 181, we find

P (T ) = 1073283121T 8 − 41508187T 7 + 3865798T 6

+116021T 5 − 9545T 4 + 641T 3 + 118T 2 − 7T + 1,

and,
#J(C)(F181) = 1035747961, a prime.

2 A reduction algorithm for curves y3 =
p5(x)

We give a reduction algorithm for a slightly more general class of
curves, namely the plane projective curves defined by an equation
C : Y 3Z2 = Z5p5(X

Z ) over k = Fq, a field of characteristic differ-
ent from 3. We assume the point at infinity P∞ = (0 : 1 : 0) to
be the only singular point, i.e. that the affine plane curve of equa-
tion y3 = p5(x) is nonsingular. Note this is equivelant to asking the
polynomial p5(X) := a5X

5 + a4X
4 + a3X

3 + a2X
2 + a1X + a0 to be

separable over Fq.
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2.1 Representing the points of the Jacobian by affine
divisors

We will make extensive use of the Riemann-Roch theorem : let D
be any divisor on C, a curve of genus g, then we have :

l(D) = l(K −D) + deg D + 1− g,

where K is the canonical divisor on C.
Since C has genus 4, any point of J(C)(k) can be represented by

a degree 0 divisor on C of the form D − dP∞, d ≤ 4, and D effective,
affine (its support doesn’t meet P∞). We will see here to what extent
this representation is unique, and find a subset of the set of affine
effective divisors of degree less than 4 on C such that the map D 7→
D − deg(D)P∞ is one-to-one.

Assume that we have D1 − d1P∞ ≡ D2 − d2P∞, D1, D2 two affine
effective divisors of degrees d1, d2 such that d1 ≤ d2. We get that D1+
(d2− d1)P∞−D2 ≡ 0, i.e. there is a function f in K(C), the function
field of C, such that < f >= D1 + (d2 − d1)P∞ −D2. We are reduced
to classifying the functions in K(C) whose polar divisor is affine of
degree less than 4. The quantity l(K−D) has the following geometric
interpretation: it is the dimension of the space of hyperplanes in Pg−1

passing through the points of D on the canonical model of C. For this
reason, it is more convenient here to work with the canonical model
of C; since C has genus four, its canonical model is the intersection
of a quadric and a cubic in P3 = Proj (k[X0, X1, X2, Y ]), given by the
following homogeneous equations :

{
Y 3 = a5X

2
2X1 + a4X

2
2X0 + a3X

3
1 + a2X

2
1X0 + a1X1X

2
0 + a0X

3
0

X2X0 = X2
1

We want to study the dimensions of the spaces l(D), D an affine
effective divisor of degree d2 ≤ 4 :

i) if d2 = 1, 2 that is D = P or D = P + Q, since K is very
ample (C is not hyperelliptic) we know that l(K −P ) = l(K)− 1, and
l(K − P − Q) = l(K) − 2 for any P,Q (cf [Har] for instance). Thus
Riemann-Roch theorem ensures us that l(P ) = l(P + Q) = 1, these
spaces contain only the constant functions.

ii) if d2 = 3, from the geometric interpretation of the Riemann-Roch
theorem, we get that l(P + Q + R) = 1 or 2 depending on whether the
points P,Q,R are in general position or collinear in P3. This last case
only happens in a very peculiar configuration :

Lemma 2.1 If three affine points P,Q,R of the canonical model of C
are collinear in P3, then there exists a ∈ k̄ such that :

P (1 : a : a2 : b) ; Q(1 : a : a2 : c) ; R(1 : a : a2 : d),
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where b, c, d are the three solutions of y3 = p5(a).

Proof: The equations of the affine hyperplanes H(x1, y, x2) in P3

can take the following forms :
1) x1 = a,
2) y = ax1 + b,
3) x2 = ay + bx1 + c.
First we just try to solve the system H1(x1, y, x2) = H2(x1, y, x2) =

0 and x2 = x2
1.

If H1(x1, y, x2) = x2 − ay − bx1 − c and H2(x1, y, x2) = x2 − dy −
ex1 − f are two hyperplanes of the third type, then if a 6= d, y can be
expressed as a linear function of x1, we get a degree two equation on x1

that cannot have three solutions. If a = d 6= 0, then x1 is fixed by the
equations of the hyperplanes, it gives x2 and y, and there is at most
one solution. If a = d = 0, then x1 is fixed, x2 = x2

1 too ; finally y is
not given by these three equations, but it must satisfy the remaining
one, that is : y3 = p5(x1). Thus we are in the situation described in
the lemma.

The study of the remaining cases is straightforward.

iii) if d = 4, again from the geometric interpretation of Riemann-
Roch theorem, we get that l(P + Q + R + S) = 1 or 2, depending on
whether P,Q,R, S are in general position or coplanar in P3 (note that
from the preceding lemma they can’t be all four collinear).

From these results we can deduce the following : assume as above
that D1 − d1P∞ ≡ D2 − d2P∞ with d2 ≥ d1 ; we have :

i) if d2 ≤ 2, we have equality : D1 − d1P∞ = D2 − d2P∞ ;
ii) if d2 = 3 and the three points are not as in the lemma, we have

again equality ; if they are as in the lemma then we can choose D1 = 0
and d1 = 0 since D2 − 3P∞ is the divisor of the function x1 − a ;

iii) if d2 = 4 and the four points are not coplanar, then we have
equality ; if they are coplanar, we can choose D1 such that d1 ≤ 3, since
we can find a function f in L(P + Q + R + S) such that f(P∞) = 0.

This study motivates the following definition :

Definition 2.1 Let Div∗(C) be the set of affine effective divisors of
degree less than or equal to four on C such that if deg D = 3 (resp.
deg D = 4) the three (resp. four) points of D are not collinear (resp.
coplanar) in the canonical model of C in P3.

From this definition and the preceding discussion we get immedi-
ately :

Proposition 2.1 The map :

φ : Div∗(C) → J(C)(k)
D 7→ D − deg(D)P∞
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is a bijection.

2.2 A coordinate system for the points of the Ja-
cobian

From now on we work over the plane model Y 3Z2 = Z5p5(X
Z ) of

C. Note that the morphism P3 → P2 given by X0 7→ Z, X1 7→ X,
X2 7→ X2, and Y 7→ Y restricts to a birational morphism from the
canonical model to the plane model, and to an isomorphism of the two
affine models of C\{P∞}.

We begin by pointing out two automorphisms of the rational func-
tion field of C K(C)/k(x), namely σ : y 7→ ζy and σ2, where ζ stands
for a primitive cubic root of unity. Note that to any affine point
P = (x, y) of C correspond the points (x, ζy) and (x, ζ2y), we de-
note respectively by σP and σ2P . Note that if P,Q,R are points as
in lemma 2.1, their images by the former isomorphism must be of the
form P, σP, σ2P .

We begin with some definitions.

Definition 2.2 The weight of a monomial in k[x, y], xiyj, is the in-
teger 3i+5j. The weight of a polynomial in k[x, y] is the maximum of
the weights of its monomials. A polynomial in k[x, y] is monic if the
coefficient of its term of greatest weight is 1.

Let D be an affine effective divisor. We denote by vD the monic
element in k[x, y] with minimum weight such that < vD >0� D. We
call it the interpolating function of D.

Example : For a generic divisor D of degree 3, we get vD =
a00 + a10x + a01y + a20x

2, for a generic divisor D of degree 4, vD =
a00 +a10x+a01y+a20x

2 +a11xy, and for a generic divisor D of degree
5, vD = a00 + a10x + a01y + a20x

2 + a11xy + a30x
3.

Remark:

• Note that the weight of a polynomial in k[x, y] is just the pole
order of the function it represents on the plane model of C.

• From the definition of vD and the isomorphism between the affine
parts of the canonical model and of the plane model, we can give
conditions so that D does not contain the images of three collinear
points or four coplanar points in the canonical model of C.
i) If deg D = 3, then D contains the images of three collinear
points in the canonical model if and only if vD writes x + a00.
ii) If deg D = 4, then D contains the images of four collinear
points in the canonical model if and only if vD writes x2 +a01y +
a10x + a00.
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Now we associate to each D in Div∗(C) a coordinate system : let
D = P1 + . . . + Pk, Pi(xi, yi) be in Div∗(C). We associate to D the
functions :

i) uD =
∏k

i=1(x− xi) ;
ii) the interpolating function vD ;
iii) wD =

∏k
i=1(y − yi).

Let us show that this coordinate system is “good”, i.e. that it
defines a bijection. To do this, we need to get rid of certain divisors.

Definition 2.3 We denote by Div∗,i(C) the set of affine effective di-
visors of degree i on C, and :

Div∗,50 (C) = {D ∈ Div∗,5(C),∀P,Q ∈ C, {P, σP, Q, σQ} /∈ Supp(D)}.

Let D(5) = ∪5
i=0Div∗,i(C), D0(5) = Div∗(C) ∪Div∗,50 (C).

Proposition 2.2 The map:

Φ : D0(5) → k[x]× k[x, y]× k[y]
D 7→ (uD, vD, wD)

is a bijection from D0(5) to its image.

The proof of this proposition is very similar to that of lemma 4 of
[EstReiChe].

2.3 A reduction algorithm

We have seen that if J(C) is the Jacobian of C, then every point of
J(C)(k) can be represented by D− dP∞, D ∈ Div∗(C). The aim of a
reduction algorithm is to solve the following problem :

from a divisor D − dP∞, d ∈ N, find a linearly equivalent divisor
D0 − d0P∞, with D0 ∈ Div∗(C).

Such an algorithm allows us to make additions in the Jacobian of
C: starting from two points of J(k) D1 − d1P∞ and D2 − d2P∞, we
apply the algorithm to D1+D2−(d1+d2)P∞ and find a representative
of the required form. It is also possible to estimate the order of the
former group computing multiples of a point P − P∞ of J(C)(k).

We can describe a first reduction algorithm. Let D − dP∞, n ≥ 0
a divisor of degree 0. Write D = D0 + E1 + . . . + Ek, with deg D0 = 5;
the divisor of the interpolating function vD0 = v1 can be written as:
< v1 >= D0 + D1 − nP∞ with n ≤ 9, since vP∞(v0) ≤ vP∞(x3) = 9,
and we get :

D0 − 5P∞ ≡ −D1 + (n− 5)P∞.

Applying the same process to D1, we get vD1 = v1 such that < v1 >=
D1 + D2 − n1P∞, with n1 ≤ n− 1, and finally:

D0 − 5P∞ ≡ D2 − n2P∞, n2 ≤ 4.
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Now choose E1 � D−D0, with degree 5−deg D2 > 0, and we apply the
preceding process to D3 = D2 + E1, etc... In this way we get a (finite)
sequence of divisors (D0, D1, . . . , D3k+2), and D3k+2− d3k+2P∞ is the
reduction of D.

Unfortunately this algorithm needs to factor several polynomials,
first to obtain D1 from v0, then to obtain D2 from v1, etc...; its com-
plexity is high. Thus we now give a second algorithm, relying on the
use of the resultant, and which performs the reduction mostly by solv-
ing 5× 5 linear systems.

The coordinate system allows us to modify the preceding algorithm
in such a way that we avoid most of the factorizations. Let us first
roughly describe the principal steps of the new algorithm. We keep
the same notations as in the former algorithm, and we set Φ(Dn) =
(un, vn, wn).

Let D be an affine effective divisor of degree n. If n < 5, there is
nothing to do. If n ≥ 5, choose D0 � D, deg D0 = 5, and compute
Φ(D) = (u0, v0, w0) if possible. ¿From it, we will (generally) obtain
Φ(D1) and Φ(D2), solving 5× 5 linear systems, without regard to the
supports of D1 or D2 (this would lead us to factorizations). Then from
Φ(D2) and E1, we compute Φ(D3), D3 = D2 + E1 solving 5× 5 linear
systems, etc... .

In this way we get a sequence (Φ(D0), . . . ,Φ(D3k+2)), and it re-
mains to obtain D3k+2 from Φ(D3k+2), with just one factorization : it
is the reduction of D.

We now make precise what we have just claimed.

Lemma 2.2 Let D0 ∈ Div∗,5(C). We can compute :
i) Φ(D0) if D0 ∈ Div∗,50 (C) ;
ii) Φ(D1) and Φ(D2) else.

Proof: Let D0 = P1 + . . . + P5, Pi(xi, yi). We consider two cases
depending on whether D0 is in Div∗,50 (C) or not:

i) We compute directly : u0 =
∏5

i=1(x−xi), and w0 =
∏5

i=1(y−yi);
finally we get v0 solving the system v0(Pi) = 0, 1 ≤ i ≤ 5, with v0 of
minimum weight.

ii) If D0 = P1 + σP1 + P2 + σP2 + P3.
Let us choose v0 = (x − x1)(x − x2)(x − x3); we obtain D1 =

σ2P1 + σ2P2 + σP3 + σ2P3 ; from this we deduce directly u1 and w1,
and v1 = r(x− x3), with r the equation of the line (σ2P1σ

2P2). If we
now set v2 = v1, we get the last two coordinates by the equations :

u2 =
(

Resy(v1, C)
u1

)m

; w2 =
(

Resx(v1, C)
w1

)m

, (1)

where Resy stands for the resultant with respect to y, C : y3−p5(x) = 0
the equation of C, and (∗)m means that we make the polynomial ∗
monic.
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Lemma 2.3 From Φ(D0), we can compute :
i) Φ(D1), Φ(D2) ;
ii) or D2 explicitly.

In the proof, we will need to consider several cases, depending on
the form of v0 ; the aim of the following lemma is to give equivalent
conditions for v0 to have a linear factor.

Lemma 2.4 Let D0 ∈ Div+,5
0 (C) ; the following conditions are equiv-

alent :
i) v0 = a00+a10x+a20x

2+a30x
3+a01y+a11xy has a linear factor;

ii) either D0 � P1 + P2 + P3 + P4, with Pj four colinear points, or
D0 � P1 + σP1 ;

iii) Res(a00 + a10x + a20x
2 + a30x

3, a01 + a11x) = 0.

Proof: (of lemma 2.3) : We make cases depending on v0 :
1) if v0 is linear (i.e. a20 = a30 = a11 = 0), then < v0 >= D0 −

5P∞ ≡ 0, and there is nothing to do : D1 = D2 = 0 ;
2) if v0 has a linear factor, we consider separately the two cases in

ii) of lemma 2.4 :
a) if D0 contains four collinear points, v0 = (x − x5)r, with r

the equation of the line through the four points. Let M be the fifth
intersection point of r = 0 with C. Then xM is the root of the linear
polynomial :

LM =
Resy(r, C)(x− x5)

u0
.

If r depends on x, we get yM solving r(xM , y) = 0, and y5 is the root
of the linear polynomial :

L5 =
w0(y − yM )
Resx(r, C)

.

If this is not so, r = y − y0, yM = y0 and y5 is the only root of
w0/(y − y0)4 linear.

Finally, once we have M and P5 explicitly, we clearly know D1 =
M + σP5 + σ2P5 and D2 = σM + σ2M + P5 explicitly.

b) else D0 � P1 + σP1, and v0 = c1(x− x1) ; we obtain u1 and w1

from formulae (1) and (2), σ2P1(x1, ζ
2y1), and ζ2y1 is a root of:

L =
w1

gcd(Resx(c1, C), w1)

if the denominator has degree 3. If its degree is less than 3, we must
have c1(σ2P1) = 0, and we get ζ2y1 solving the (linear with respect to
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y) equation c1(x1, y) = 0. Once we know σ2P1, we obtain v1 solving
the system : {

v1(σ2P1) = 0 up to order n
Resy(v1,c1)
(x−x1)n−1 = λ u1

(x−x1)n

with n−1 the multiplicity of σ2P1 on c1, and λ a non zero constant
making v1 monic.

Finally, v2 = v1 and we get u2 and w2 from (1).
3) if v0 has no linear factor
a) if a30 = a11 = 0, v0 = a00 + a10x + a20x

2 + a01y, thus v0 has to
meet C at a sixth point P6 we get from (1) : we must have u1 = x−x6

and w1 = y − y6 on the one hand and v1 = u1 on the other. Thus
D1 = P6, D2 = σP6 + σ2P6 and we get D2 explicitely this way.

b) else the resultant in lemma 2.4 is non zero, and it is the deter-
minant of the linear (since the interpolating functions are linear in y)
system :

Resy(v0, v1) = λu1.

Note that if v0 has no term x3, it suffices to look for v1 among the
polynomials b00+b10x+b20x

2+b01y, and the system has four equations
in this case. Finally we get u1, u2, w1, w2 with the help of formulae
(1).

We can now justify the last step :

Lemma 2.5 Suppose we know also D2 and E1, or Φ(D1), Φ(D2) and
E1 explicitly; then we can compute Φ(D3), D3 = D2 + E1, or Φ(D4)
and Φ(D5).

Proof: Suppose we know D2 explicitly ; we just have to solve the
following 5× 5 linear system :

v3(Pi) = 0, Pi ∈ Supp(D3)

the same way as to obtain Φ(D0) from D0 ; if D3 /∈ Div∗,50 (C), we get
Φ(D4) and Φ(D5) directly.

Anyway, if E1 = Q1 + . . . + Qk, we have :

u3 = u2

k∏
i=1

(x− xQi
), w3 = w2

k∏
i=1

(y − yQi
).

In the second case, we have to solve :{
v3(Qi) = 0 1 ≤ i ≤ k
Resy(v2, v3) = λu2

λ chosen to obtain v3 monic.
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If v2(Qi) 6= 0, this system is invertible and we solve it. Else we get
two cases :

v2(Q1) = 0 ⇒ u2(xQ1) = 0 or u1(xQ1) = 0.

In the first case, we add the equation v3(Qi) = 0 up to order 2, and
we divide the two parts of the second equation by x− xQ1 :

v3(Q1) = 0 up to order 2
v3(Qi) = 0 2 ≤ i ≤ k
Resy(v2,v3)

x−xQ1
= λ u2

x−xQ1

In the second case, we get rid of equation v3(Q1) = 0, and we
multiply the second part of the second equation by (x− xQ1) :{

v3(Qi) = 0 2 ≤ i ≤ k
Resy(v2, v3) = λu2(x− xQ1)

following this process with u1 := u1
x−xQ1

until u1 has no more zero at
one of the Qi.

Example : Let p = 31,

P1 := [23, 27], P2 := [7, 18], P3 := [14, 28]

and C : y3 = x5 − 1. The reduction of the following divisor

D = 2(P1 + P2 + P3)

is
D′ = Q1 + Q2 + Q3 + Q4,

where
Q1 = [α, 21α3 + α2 + 11α + 13],

Q2 = [2α3 + α2 + 22α + 11, 28α3 + 8α2 + 10α + 16]

Q3 = [3α3 + 6α2 + 10α + 4, 7α3 + 20α2 + 10α + 6]

Q4 = [26α3 + 24α2 + 29α + 7, 6α3 + 2α2 + 23],

and where α is a root of

x4 + 9x3 + 23x2 + 18x + 25.
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Math. Soc., VI. 73, pp.487-495; =œuvres Scientifiques[1952d], vol.
II, pp. 63-71.

[Yui] Yui, N. Norms of algebraic numbers. Journal of Number Theory,
vol. 47 pp.106-129 (1994).


