DC MetaData for:FrameworkFor The A Posteriori Error Analysis Of Nonconforming Finite Elements
Nonconforming finite element method
a posteriori error estimate
quadrilateral finite elements
FrameworkFor The A Posteriori Error Analysis Of Nonconforming Finite Elements
Carsten Carstensen
Carstensen
Carsten
Jun Hu
Hu
Jun
Antonio Orlando
Orlando
Antonio
Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 15
Carsten Carstensen
,
Jun Hu
,
Antonio Orlando
Preprint series:
Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 15
MSC 2000
- 65N30 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods
-
65N15 Error bounds
Abstract
This paper establishes a unified framework for the a posteriori error analysis of a large class of nonconforming finite element methods. The theory assures reliability and efficiency of explicit residual error estimates up to data oscillations under the conditions $(H1)-(H2)$ and applies to several nonconforming finite elements: the Crouzeix-Raviart triangle element, the Han parallelogram element, the nonconforming rotated (NR) parallelogram element of Rannacher and Turek, the constrained NR parallelogram element of Hu and Shi, the $P_1$ element on parallelograms due to Park and Sheen, and the DSSY parallelogram element.
This document is well-formed XML.