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Abstract

A generalization of Émery’s inequality for stochastic integrals is shown for
convolution integrals of the form (

∫

t

0
g(t − s)Y (s−) dZ(s))t>0, where Z is a

semimartingale, Y an adapted càdlàg process, and g a deterministic function.
The function g is assumed to be absolutely continuous with bounded deriva-
tive. The function g may also have jumps, provided that the jump sizes are
absolutely summable. The inequality is used to prove existence and unique-
ness of solutions of equations of variation-of-constants type. As a consequence,
it is shown that the solution of a semilinear delay differential equation with
functional Lipschitz diffusion coefficient and driven by a general semimartin-
gale satisfies a variation-of-constants formula.
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1 Introduction

The variation-of-constants formula is a key tool in the study of long term behavior
of semilinear stochastic differential equations. It describes the diffusion and non-
linearity in the drift as perturbations of a deterministic linear equation and thus
enables to reveal information on the long term behavior (see for instance [1, 11]). In
the case of stochastic delay differential equations driven by semimartingales, how-
ever, such a variation-of-constants formula seemed to be unknown. We will prove
in this paper a variation-of-constants formula for stochastic delay differential equa-
tions with linear drift and a functional Lipschitz diffusion coefficient driven by a
general semimartingale. Our proof includes the extension of several other important
results. In particular, we present an extension of Émery’s inequality for stochastic
integrals.

Consider the stochastic delay differential equation






dX(t) =

∫

(−∞,0]

X(t+ a)µ(da) dt+ F (X)(t−) dZ(t), t > 0,

X(t) = Φ(t), t 6 0,
(1.1)

where µ is a finite signed Borel measure on (−∞, 0], Z is a semimartingale, F is a
functional Lipschitz coefficient, and (Φ(t))t60 is a given suitable initial process. We
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want to show that the solution of (1.1) satisfies the variation-of-constants formula

X(t) =

∫ t

0

g(t− s) dJ(s) +

∫ t

0

g(t− s)F (X)(s−) dZ(s), t > 0, (1.2)

where the semimartingale J given by

J(t) = Φ(0) +

∫ t

0

∫

(−∞,−s]

Φ(s+ a)µ(da) ds (1.3)

contains the initial condition. The function g is the fundamental solution of the
underlying deterministic delay equation, that is,







g|′[0,∞) =

∫

(−∞,0]

g(•+ a)µ(da) Lebesgue a.e. on [0,∞),

g(0) = 1, g(t) = 0, t < 0.
(1.4)

It is well known (see [5]) that equation (1.4) has indeed a unique solution g with
the property that g|[0,∞) is absolutely continuous.

If a solution of (1.2) exists, it can be shown by a Fubini argument that it also
satisfies the original stochastic delay differential equation (1.1). Since (1.1) is known
to admit a unique solution, we infer that this solution then satisfies (1.2). Thus,
it remains to prove existence of solutions of (1.2). Our proof of existence (and
uniqueness) of solutions of (1.2) is an extension of the proof for stochastic differential
equations presented in [10]. The idea there is to use localization arguments in
order to reduce to a Banach fixed point argument in a suitable space of stochastic
processes. The key estimate to obtain a contraction is an inequality due to Émery,
see [4] or [10, Theorem V.3]. It says that for an adapted càdlàg process Y and a
semimartingale Z the size of the stochastic integral can be estimated by

∥

∥

∥

∥

∫ •

0

Y (s−) dZ(s)

∥

∥

∥

∥

Hr

6 ‖Y ‖Sp‖Z‖Hq , (1.5)

for certain suitable norms on spaces of processes and semimartingales.
It turns out that for the more general equations of variation-of-constants type

an extension of Émery’s inequality is needed, namely for integral processes of the
form

∫ •

0
g(•−s)Y (s−) dZ(s), where g is a deterministic function. We will show that

for a large class of functions g the inequality

∥

∥

∥

∥

∫ •

0

g(t− s)Y (s−) dZ(s)

∥

∥

∥

∥

Hr

6 R‖Y ‖Sp‖Z‖Hq (1.6)

holds, where R is a constant independent of Y and Z. We establish an even more
general inequality for integrals of the form

∫ •

0
Y (•, s−) dZ(s), where Y belongs to

a class of processes with two parameters.
With the inequality (1.6) we can prove that the variation-of-constants type equa-

tion

X(t) = J(t) +

∫ t

0

g(t− s)F (X)(s−) dZ(s), t > 0, (1.7)

has a unique (up to indistinguishability) adapted càdlàg solution X, for any semi-
martingales J and Z. The nonlinear coefficient F is here assumed to be functional
Lipschitz. With the aid of the solution of (1.7) we are then able to prove the next
variation-of-constants formula for stochastic delay differential equations. For ab-
breviation, we denote by D the space of all adapted càdlàg processes on a filtered
probability space that satisfies the usual conditions.
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Theorem 1.1. Let µ be a finite signed Borel measure on (−∞, 0] and let g : R → R

be the unique solution of (1.4) with g|[0,∞) absolutely continuous. Let F : D → D

be functional Lipschitz. Let J and Z be semimartingales. Then a process X ∈ D

satisfies

X(t) = J(t) +

∫ t

0

∫

(−s,0]

X(s+ a)µ(da) ds (1.8)

+

∫ t

0

F (X)(s−) dZ(s), t > 0,

if and only if it satisfies the variation-of-constants formula (1.2). Moreover, there
exists one and only one X ∈ D satisfying (1.8) and (1.2).

The outline of the paper is as follows. In order to make the paper self-contained,
Section 2 settles notation and briefly reviews the basic constructions and tools that
we need in the sequel. In Section 3 we prove an inequality of Emery type for
stochastic integrals of two parameter processes. Section 4 then derives the inequality
(1.6). Existence and uniqueness of solutions of equation (1.7) is discussed in Section
5. Finally in Section 6 we prove the variation-of-constants formula, Theorem 1.1.

2 Preliminaries

2.1 Processes

All random variables and stochastic processes are assumed to be defined on a fixed
filtered probability space (Ω,F , (Ft)t,P), where the filtration (Ft)t satisfies the
usual conditions (see [8, Definition 1.2.25]). Let I ⊂ [0,∞) be an interval and let
D(I) denote the set of all adapted processes (X(t))t∈I with paths that are almost
surely càdlàg (that is, right-continuous and the left limit exists at every t ∈ I
distinct from the left endpoint of I). If X,Y ∈ D(I) satisfy X(t) = Y (t) a.s. for
every t ∈ I, then they are indistinguishable, that is, X(t) = Y (t) for all t ∈ I a.s.
(see [8, Problem 1.1.5]). We will identify processes that are indistinguishable. Every
process X ∈ D(I) is jointly measurable from Ω × I → R (see [8, Remark 1.1.14]).
For a process X ∈ D(I), where 0 ∈ I, and a stopping time T we define the stopped
process XT by

(XT )(t)(ω) = X(t ∧ T (ω))(ω), ω ∈ Ω, t ∈ I,

and XT− by

(XT−)(t)(ω) =

{

X(t)(ω)1{06t<T (ω)} +X(t ∧ T (ω)−)(ω)1{t>T (ω)} if T (ω) > 0,
0 if T (ω) = 0,

ω ∈ Ω, t ∈ I. Here (X(t ∧ T (ω)−))(ω) = lims↑T (ω) X(t ∧ s)(ω) for ω ∈ Ω with
T (ω) > 0. Stopping times are allowed to attain the value ∞. The jumps of a
process X ∈ D(I), where I ⊂ [0,∞) is an interval with left endpoint a, are defined
by (∆X)(t) = X(t) − X(t−) for t ∈ I, t 6= a, and (∆X)(a) = X(a). Further, by
convention, X(a−) = 0.

For an interval I and a function f : I → R we define the total variation of f
over I as

VarI(f) = sup

m−1
∑

k=0

|f(tk+1)− f(tk)|

where the supremum is taken over all t0, . . . , tm ∈ I with t0 6 t1 6 · · · 6 tm
and all m ∈ N. A process X ∈ D(I) with paths that have almost surely finite
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total variation over each bounded subinterval of I will be called an FV-process and
VarI(X) is defined pathwise.

Let Lp denote the Lebesgue space Lp(Ω,F ,P), where 1 6 p 6∞. For a process
(X(t))t∈I define

‖X‖Sp(I) =

∥

∥

∥

∥

sup
t∈I
|X(t)|

∥

∥

∥

∥

Lp

(possibly ∞) and
Sp(I) = {X ∈ D(I) : ‖X‖Sp(I) <∞}.

If the interval of definition is clear from the context, we will simply write Sp and
‖•‖Sp .

2.2 Semimartingales

We adopt the definitions and notation of [2, 6, 7]. Recall that a process X ∈ D[0,∞)
is called a semimartingale if there exist a local martingale M and an FV-process A
such that X(t) = X(0) +M(t) +A(t) a.s. for all t > 0. For two semimartingales X
and Y we denote by [X,Y ] their covariation (see [2, VII.42] or [7, p. 519]). For any
semimartingale X the process [X,X] is positive and increasing (see [7, Theorem
26.6(ii)]). We denote [X,X]∞ = supt>0[X,X](t).

We will use the above terminology also for processes X ∈ D[a, b], where 0 6
a 6 b. We say that X ∈ D[a, b] is a local martingale (or semimartingale) if there
exists a local martingale (or semimartingale) Y ∈ D[0,∞) such that X(t) = Y (t)
for all t ∈ [a, b]. If X1, X2 ∈ D[a, b] are semimartingales and Y1, Y2 ∈ D[0,∞) are
semimartingales such that Xi(t) = Yi(t) for all t ∈ [a, b], i = 1, 2, then we define
[X1, X2](t) := [Y b

1 − Y a−
1 , Y b

2 − Y a−
2 ](t), t ∈ [a, b].

For a semimartingale Z ∈ D[a, b] with Z(a) = 0 we define

‖Z‖Hp[a,b] = inf{‖[M,M ](b)1/2 +Var[a,b](A)‖Lp : Z = M +A with (2.1)

M a local martingale, A an FV-process,

and M(a) = A(a) = 0}

(possibly ∞) and let

Hp[a, b] := {Z semimartingale : Z(a) = 0, ‖Z‖Hp[a,b] <∞}.

The space Hp[0,∞) is defined similarly by replacing the norm in (2.1) by

‖[M,M ]
1/2
∞ + Var[0,∞)(A)‖Lp . Observe that for any stopping time T and any

Z ∈ Hp[a, b] we have ZT− ∈ Hp[a, b] and ‖ZT−‖Hp 6 ‖Z‖Hp .

Theorem 2.1. Let 1 6 p <∞ and 0 6 a 6 b. The spaces (Sp[a, b], ‖•‖Sp[a,b]) and
(Hp[a, b], ‖•‖Hp[a,b]) are Banach spaces. Moreover, if Z ∈ Hp[a, b] then Z ∈ Sp[a, b]
and there exists a constant cp > 0 (independent of a and b) such that

‖Z‖Sp[a,b] 6 cp‖Z‖Hp[a,b] for all Z ∈ Hp[a, b].

Proof. It is said in [10, p.188–189] that ‖•‖Sp[0,∞) and ‖•‖Hp[0,∞) are norms. It is
straightforward that (Sp[0,∞), ‖•‖Sp[0,∞)) is complete. Completeness of Hp[0,∞)
endowed with ‖•‖Hp[0,∞) is mentioned in [2, VII.98(e)]. The sets {X ∈ Sp[0,∞) :

Xb = X, Xa− = 0} and {X ∈ Hp[0,∞) : Xb = X, Xa = 0} are closed subspaces
of Sp[0,∞) and Hp[0,∞), respectively, and they are isometrically isomorphic to
Sp[a, b] and Hp[a, b]. The existence of cp is the content of [10, Theorem V.2].

The next statement easily follows from [10, Theorem V.1, Corollary, p. 189–
190].
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Corollary 2.2. Let 1 6 p 6∞ and 0 6 a 6 b. If Z ∈ Hp[a, b], then [Z,Z](b)1/2 ∈
Lp and

‖[Z,Z](b)1/2‖Lp 6 ‖Z‖Hp[a,b].

Further, if M ∈ D[a, b] is a local martingale with M(a) = 0 and [M,M ](b)1/2 ∈ Lp,
then M ∈ Hp[a, b] and

‖M‖Hp[a,b] = ‖[M,M ](b)1/2‖Lp .

2.3 Stochastic integrals

We use the stochastic integral as presented in [2, 6, 7]. Let us summarize the
properties which we need. The predictable σ-algebra P is the σ-algebra in [0,∞)×Ω
generated by the processes (X(t))t>0 that are adapted to (Ft−)t>0 and which have
paths that are left-continuous on (0,∞). Here Ft− is the σ-algebra generated by Fs

with s < t if t > 0, and F0− := F0. A process X is predictable if (t, ω) 7→ X(t, ω) is
measurable with respect to the predictable σ-algebra. For an interval I containing
0, a process (X(t))t∈I is locally bounded if there exist stopping times Tk ↑ ∞, that
is, 0 = T0 6 T1 6 . . . with supk Tk =∞ a.s., such that for each k there is a constant
ck with, a.s., |XTk(t) −X(0)| 6 ck for all t ∈ I. For any process X ∈ D[0,∞) the
process t 7→ X(t−) is both predictable and locally bounded. We consider the class
E of processes of the form

H(t) = H−11{0}(t) +H01(0,t1](t) + · · ·+Hn−11(tn−1,∞)(t), t > 0, (2.2)

where H−1, H0 are F0-measurable and Hi are Fti
-measurable random variables for

i > 1 such that essup |Hi| < ∞ and where 0 = t0 6 t1 6 · · · 6 tn = ∞, n ∈ N.
For a semimartingale X and a process H given by (2.2) the stochastic integral is
defined by

(H•X)(t) =

∫ t

0

H(s) dX(s) :=

n
∑

i=1

Hi−1

(

X(ti ∧ t)−X(ti−1 ∧ t)
)

, t > 0.

The next theorem (see [2, VIII.3 and 9], [6, Theorem I.4.31 and I.4.33-37], or [7,
Theorem 26.4], and [7, Theorem 26.6(ii) and (v)]) extends the stochastic integral
to all locally bounded predictable processes.

Theorem 2.3. Let X be a semimartingale. The map H 7→ H•X on E has a unique
linear extension (also denoted by H 7→ H•X) on the space of all predictable locally
bounded processes into the space of adapted càdlàg processes such that if (Hn)n is
a sequence of predictable processes with |Hn(t)| 6 K(t) for all t > 0, n ∈ N and for
some locally bounded predictable process K and Hn(t)(ω) → H(t)(ω) for all t > 0,
ω ∈ Ω and for some process H, then

(Hn
•X)(t)→ (H•X)(t) in probability for all t > 0.

Moreover, for every locally bounded predictable processes H and K the following
statements hold:

(a) H•X is a semimartingale;

(b) K(H•X) and (KH)•X are indistinguishable;

(c) ∆(H•X) and H∆X are indistinguishable and (H•X)(0) = ∆(H•X)(0) =
H(0)X(0);

5



(d) if X is a local martingale then H•X is a local martingale and

[H•X,H•X](t) =

∫ t

0

H(s)2 d[X,X](s) for all t > 0;

(e) if X is of bounded variation then H•X is of bounded variation and

Var[0,∞)(H•X) 6 sup
t>0

|H(t)|Var[0,∞)(X);

(f) if T is a stopping time, then 1[0,T ]•X = XT and (H•X)T = (H1[0,T ])•X =
H•XT up to indistinguishability.

It follows that the stochastic integral
∫ t

0
H(s−) dX(s), t > 0, is well defined

for any H ∈ D[0,∞) and any semimartingale X. If X is an FV-process and H ∈

D[0,∞), then the stochastic integral
∫ t

0
H(s−) dX(s) equals the pathwise defined

Stieltjes integral, where the convergence of the Riemann-Stieltjes sums holds only
in the sense of convergence of nets that are indexed by the set of partitions directed
by the refinement relation.

The precise formulation of Émery’s inequality reads as follows (see [4] or [10,
Theorem V.3]).

Theorem 2.4 (Émery’s inequality). Let p, q, r ∈ [1,∞] be such that 1
p +

1
q = 1

r (with the convention that 1
∞ = 0). Let T > 0. For every process

(Y (t))t∈[0,T ] in Sp[0, T ] and every semimartingale (Z(t))t∈[0,T ] in Hq[0, T ] the pro-

cess (
∫ •

0
Y (s−) dZ(s))t∈[0,T ] is in Hr[0, T ] and

∥

∥

∥

∥

∫ •

0

Y (s−) dZ(s)

∥

∥

∥

∥

Hr[0,T ]

6 ‖Y ‖Sp[0,T ]‖Z‖Hq [0,T ].

In Section 3 and Section 6 we need the following stochastic Fubini theorem,
which we collect from [10].

Theorem 2.5. Let (A,A) be a measurable space and let µ be a finite signed measure
on A. Let Φ: A× [0,∞)× Ω→ R be an A⊗ P-measurable map, where P denotes
the predictable σ-algebra in [0,∞) × Ω. Let Z be a semimartingale with Z(0) = 0.
If for each a ∈ A the process Φ(a, •) is locally bounded, then

(i) for every a ∈ A there exists an adapted càdlàg version (Ia(t))t>0 of the
stochastic integral

(
∫ t

0

Φ(a, s) dZ(s)

)

t>0

such that the map (a, t, ω) 7→ Ia(t, ω) is A× B([0,∞))⊗F-measurable;

(ii) if moreover the process
∫

A
Φ(a, •)2|µ|(da) is locally bounded, then a.s.

∫

A

(
∫ t

0

Φ(a, s) dZ(s)

)

µ(da) =

∫ t

0

(
∫

A

Φ(a, s)µ(da)

)

dZ(s), t > 0,

where for the inner integral at the left hand side the versions of (i) are chosen.

Proof. Due to [10, Theorem IV.15, p.134], [10, Corollary IV.44, p.159] yields (i).
Observe that the measurability conditions yield that the process

∫

A
Φ(a, •)2|µ|(da)

is predictable. Assertion (ii) follows therefore by linearity from [10, Theorem IV.46,
p.169], again due to [10, Theorem IV.15, p.134].
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3 A class of processes with two parameters

In this section we prove the next theorem.

Theorem 3.1. Let 1 6 p 6∞, 1 6 q 6∞, and 1 6 r <∞ be such that 1
p +

1
q = 1

r .

Let T > 0 and let (Y (t, s))t,s∈[0,T ] be a process such that Y (t, •) is an adapted càdlàg
process for every t ∈ [0, T ] and such that there exists a process (Y1(t, s))t,s∈[0,T ] with

Y (t, s−) = Y (0, s−) +

∫ t

0

Y1(u, s) du for all t ∈ [0, T ] a.s.

for each s ∈ [0, T ], where (t, s, ω) 7→ Y1(t, s, ω) is B([0, T ]) ⊗ P-measurable,

sups∈[0,T ]

∫ T

0
Y1(u, s)

2 du < ∞ a.s.,
∫ T

0
Y1(u, •)

2 du is a locally bounded process,
and supu∈[0,T ] ‖Y1(u, •)‖Sp[0,T ] < ∞. Then for every Z ∈ Hq[0, T ] the process
∫ •

0
Y (•, s−) dZ(s) is a semimartingale and

∥

∥

∥

∥

∫ •

0

Y (•, s−) dZ(s)

∥

∥

∥

∥

Hr[0,T ]

6 Γp(Y )‖Z‖Hq [0,T ],

where
Γp(Y ) = ‖Y (•, •−)‖Sp[0,T ] + (1 + cr)T sup

t∈[0,T ]

‖Y1(t, •)‖Sp[0,T ]. (3.1)

If Γp(Y ) <∞, then
∫ •

0
Y (•, s−) dZ(s) ∈ Hr[0, T ].

We use the convention that
∫ •

0
Y (•, s−) dZ(s) denotes the process

(
∫ t

0
Y (t, s−) dZ(s))t∈[0,T ] and, similarly, Y (•, •−) denotes (Y (t, t−))t∈[0,T ].
Throughout the section let p, q, r, T , and (Y (t, s))t,s∈[0,T ] and (Y1(t, s))t,s∈[0,T ]

be as in Theorem 3.1. Let further Z ∈ D[0, T ] be a semimartingale with Z = M+A,
M(0) = A(0) = 0, where M is a local martingale with [M,M ](T )1/2 ∈ Lq and A an
FV-process with Var[0,T ](A) ∈ Lq. We divide the proof of Theorem 3.1 into several

lemmas. We will consider the integral process
∫ •

0
Y (•, s−) dZ(s), substitute Y1, and

apply stochastic Fubini. We begin by estimating the quadratic variation and total
variation of the ensuing terms.

Lemma 3.2. The map s 7→ Y (s, s−) is a predictable locally bounded process and

[
∫ •

0

Y (s, s−) dM(s),

∫ •

0

Y (s, s−) dM(s)

]

(T ) 6 sup
s∈[0,T ]

|Y (s, s−)|2[M,M ](T ).

Proof. As (s, ω) 7→ Y (0, s−, ω) is P-measurable and (t, s, ω) 7→ Y1(t, s, ω) is
B([0, T ]) ⊗ P-measurable, we have that (t, s, ω) 7→ Y (t, s−, ω) is B([0, T ]) ⊗ P-
measurable. Hence (s, ω) 7→ Y (s, s−, ω) is P-measurable. Further, (Y (0, s))s∈[0,T ] is

adapted and càdlàg, so that Y (0, •−) is locally bounded, and (
∫ s

0
Y1(u, s) du)s∈[0,T ]

is locally bounded since (
∫ T

0
Y1(u, s)

2 du)s∈[0,T ] is locally bounded. Hence
(Y (s, s−))s∈[0,T ] is locally bounded. The inequality follows from Theorem
2.3(d).

Lemma 3.3. The process
∫ •

0
Y (•, s−) dA(s) is an FV-process and

Var[0,T ]

(
∫ •

0

Y (•, s−) dA(s)

)

6 sup
s∈[0,T ]

(

|Y (s, s−)|+Var[s,T ](Y (•, s−))
)

Var[0,T ](A).
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Proof. If we consider the stochastic integrals as pathwise Stieltjes integrals we find
for a partition 0 = t0 6 t1 6 · · · 6 tn = T a.s.

m−1
∑

k=0

∣

∣

∣

∣

∣

∫ T

0

(

1[0,tk+1](s)Y (tk+1, s−)− 1[0,tk](s)Y (tk, s−)
)

dA(s)

∣

∣

∣

∣

∣

6 Var[0,T ](A) sup
s∈[0,T ]

Var[0,T ]

(

1[0,•](s)Y (•, s−)
)

.

By continuity of Y (•, s−),

Var[0,T ]

(

1[0,•](s)Y (•, s−)
)

6 |Y (s, s−)|+Var[s,T ]

(

Y (•, s−)
)

,

and we obtain the desired inequality. Since (
∫ T

0
Y1(u, s)

2 du)s∈[0,T ] has a.s. bounded
paths and Y (0, •) is càdlàg, it follows that sups∈[0,T ] |Y (s, s−)| < ∞ a.s. Thus
∫ •

0
Y (•, s−) dA(s) is an FV-process.

In the next lemma we need Émery’s inequality for integrands that are not càdlàg.
It is easy to verify that Émery’s proof in [4] establishes the inequality

∥

∥

∥

∥

∫ •

0

V (s) dZ(s)

∥

∥

∥

∥

Hr[0,T ]

6 ‖V ‖Sp[0,T ]‖Z‖Hq [0,T ]. (3.2)

for any predictable process (V (t))t∈[0,T ] with ‖V ‖Sp <∞ and any Z ∈ Hq.

Lemma 3.4. The process
∫ •

0

(∫ u

0
Y1(u, s) dM(s)

)

du is an FV-process with

∥

∥

∥

∥

Var[0,T ]

(
∫ •

0

(
∫ u

0

Y1(u, s) dM(s)

)

du

)
∥

∥

∥

∥

Lr

6 crT sup
u∈[0,T ]

‖Y1(u, •)‖Sp‖M‖Hq .

Proof. With aid of a well known inequality from the theory of Bochner integration
(see [3, Lemma III.11.16(b) and Theorem III.2.20]) and Émery’s inequality (3.2) we
obtain

∥

∥

∥

∥

∥

∫ T

0

∣

∣

∣

∣

∫ u

0

Y1(u, s) dM(s)

∣

∣

∣

∣

du

∥

∥

∥

∥

∥

Lr

6

∫ T

0

∥

∥

∥

∥

∫ u

0

Y1(u, s) dM(s)

∥

∥

∥

∥

Lr

du

6

∫ T

0

∥

∥

∥

∥

∫ •

0

Y1(u, s) dM(s)

∥

∥

∥

∥

Sr

du 6 cr

∫ T

0

∥

∥

∥

∥

∫ •

0

Y1(u, s) dM(s)

∥

∥

∥

∥

Hr

du

6 crT sup
u∈[0,T ]

‖Y1(u, •)‖Sp ‖M‖Hq .

In particular,
∫ •

0
|
∫ u

0
Y1(u, s−) dM(s)|du is a.s. bounded. For absolutely continuous

functions the total variation is given by the L1-norm of the weak derivative and thus
the assertions follow.

Lemma 3.5. The process
∫ •

0
Y (•, s−) dZ(s) is a semimartingale and

∫ •

0

Y (•, s−) dZ(s) =

(
∫ •

0

Y (s, s−) dM(s)

)

+

(
∫ •

0

Y (•, s−) dA(s) +

∫ •

0

∫ u

0

Y1(u, s) dM(s) du

)

,

where the process inside the first pair of parentheses is a local martingale and the
process inside the second pair of parentheses an FV-process.
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Proof. We will use the stochastic Fubini Theorem 2.5. Let t ∈ [0, T ]. The process

(a, s, ω) 7→ 1[s,T ](a)Y1(a, s) is B([0, T ])⊗P-measurable, so
∫ t

0
1[•,T ](a)Y1(a, •)

2 da is

predictable. The latter process is also locally bounded, as
∫ t

0
Y1(a, •)

2 da is locally
bounded. Hence we obtain a.s.

∫ t

0

(

∫ ϑ

0

1[s,T ](a)Y1(a, s) dM(s)

)

da

=

∫ ϑ

0

(
∫ t

0

1[s,T ](a)Y1(a, s) da

)

dM(s) for all ϑ ∈ [0, T ].

For ϑ = t the right hand side equals

∫ t

0

Y (t, s−) dM(s)−

∫ t

0

Y (s, s−) dM(s).

As both sides are adapted càdlàg processes, the desired identity is established.
Lemma 3.2, Theorem 2.3(d), and Lemmas 3.3 and 3.4 complete the proof.

Proposition 3.6. We have

∥

∥

∥

∥

∫ •

0

Y (•, s−) dZ(s)

∥

∥

∥

∥

Hr[0,T ]

6 Γp(Y )‖[M,M ](T )1/2 +Var[0,T ](A)‖Lq ,

where Γp(Y ) ∈ [0,∞] is given by (3.1).

Proof. First observe that

∥

∥

∥

∥

∥

∫ T

0

sup
s∈[0,T ]

|Y1(t, s)|dt

∥

∥

∥

∥

∥

Lp

6

∫ T

0

∥

∥

∥

∥

∥

sup
s∈[0,T ]

|Y1(t, s)|

∥

∥

∥

∥

∥

Lp

dt =

∫ T

0

‖Y1(t, •)‖Sp dt,

which is clear for p =∞ and similar to the first step in the proof of Lemma 3.4 for
p <∞. Hence

∥

∥

∥

∥

∥

sup
s∈[0,T ]

Var[0,T ](Y (•, s))

∥

∥

∥

∥

∥

Lp

=

∥

∥

∥

∥

∥

sup
s∈[0,T ]

∫ T

0

|Y1(t, s)|dt

∥

∥

∥

∥

∥

Lp

6

∫ T

0

‖Y1(t, •)‖Sp dt 6 T sup
t∈[0,T ]

‖Y1(t, •)‖Sp .

Next, Lemmas 3.2–3.5 together with Hölder’s inequality and Corollary 2.2 yield

∥

∥

∥

∥

∫ •

0

Y (•, s−) dZ(s)

∥

∥

∥

∥

Hr[0,T ]

6

∥

∥

∥

∥

∥

[
∫ •

0

Y (s, s−) dM(s),

∫ •

0

Y (s, s−) dM(s)

]1/2

(T )

+Var[0,T ]

(

∫ •

0

Y (•, s−) dA(s) +

∫

(0,•]

(
∫ u

0

Y1(u, s) dM(s)

)

du

)∥

∥

∥

∥

∥

Lr

6 Γp(Y )‖[M,M ](T )1/2 +Var[0,T ](A)‖Lq .

Finally, Theorem 3.1 follows from Proposition 3.6 by taking the infimum over
the semimartingale representations Z = M +A.
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4 Application to convolutions

This section concerns an Émery inequality for convolutions of the form

∫ t

0

g(t− s)Y (s−) dZ(s), t ∈ [0, T ],

where g is a deterministic function, Y an adapted càdlàg process, and Z a semi-
martingale. If the function g is right-continuous, then the integral is well defined.

Let W 1,∞[a, b] denote the space of absolutely continuous functions h from the
interval [a, b] into R whose derivative h′ is in L∞[a, b]. Let further the vector space
of pure jump functions of bounded variation PJBV [a, b] consist of all j : [a, b]→ R

such that

j(t) =

∞
∑

i=1

αi1[ti,b](t), t ∈ [a, b], (4.1)

for some ti ∈ [a, b] and αi ∈ R, i ∈ N, with
∑∞

i=1 |αi| <∞.

Theorem 4.1. Let 1 6 p 6∞, 1 6 q 6∞, and 1 6 r <∞ be such that 1
p +

1
q = 1

r .

Let T > 0. If g : [0, T ] → R is such that g = h + j with h ∈ W 1,∞[0, T ] and
j ∈ PJBV [0, T ], then there exists a constant R > 0 such that for every Y ∈ Sp[0, T ]
and every Z ∈ Hq[0, T ] we have

∫ •

0
g(•− s)Y (s−) dZ(s) ∈ Hr[0, T ] and

∥

∥

∥

∥

∫ •

0

g(•− s)Y (s−) dZ(s)

∥

∥

∥

∥

Hr[0,T ]

6 R‖Y ‖Sp[0,T ]‖Z‖Hq [0,T ].

If j is given by (4.1), then we have

R = |h(0)|+ (1 + cr)T‖h
′‖∞ +

∞
∑

i=1

|αi|,

where cr is the constant of Theorem 2.1.

The proof is divided into the next two lemmas. We will first study absolutely
continuous functions g by means of Theorem 3.1 and then consider pure jump
functions. We write Hr as shorthand for Hr[0, T ], Sp for Sp[0, T ], etc.

Lemma 4.2. Let 1 6 p 6∞, 1 6 q 6∞, and 1 6 r <∞ be such that 1
p + 1

q = 1
r .

Let T > 0. If g : [0, T ] → R is absolutely continuous with derivative g′ ∈ L∞[0, T ],
then for every Y ∈ Sp and every Z ∈ Hq one has

∫ •

0
g(•−s)Y (s−) dZ(s) ∈ Hr and

∥

∥

∥

∥

∫ •

0

g(•− s)Y (s−) dZ(s)

∥

∥

∥

∥

Hr

6

(

|g(0)|+ (1 + cr)T‖g
′‖∞

)

‖Y ‖Sp‖Z‖Hq .

Proof. We begin by extending g by setting g(t) := g(0) for t ∈ (−∞, 0). Then g is
absolutely continuous on (−∞, T ], g′(t) = 0 for t < 0, and the supremum norms of
g and g′ are not changed by the extension. Define

Y (t, s) := g(t− s)Y (s) and Y1(t, s) := g′(t− s)Y (s−), t, s ∈ [0, T ].

Since g is continuous, Y (t, •) is an adapted càdlàg process for every t ∈ [0, T ].
Further, Y1(•, s) ∈ L∞[0, T ] a.s. and for t ∈ [0, T ],

∫ t

0

Y1(u, s) du =

∫ t

0

g′(u− s)Y (s−) du = Y (t, s−)− Y (0, s−).
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Also, (t, s, ω) 7→ Y1(t, s, ω) is B([0, T ])⊗P-measurable,
∫ T

0
Y1(u, •)

2 du =
∫ T

0
g′(u−

•)2 duY (•−)2 has a.s. bounded paths and is a locally bounded process, and

sup
u∈[0,T ]

‖Y1(u, •)‖Sp 6 ‖g′‖∞‖Y ‖Sp <∞.

Moreover, Γp(Y ) 6
(

|g(0)| + (1 + cr)T‖g
′‖∞

)

‖Y ‖Sp < ∞. Hence, an application

of Theorem 3.1 completes the proof.

The next lemma concerns pure jump functions.

Lemma 4.3. Let 1 6 p 6∞, 1 6 q 6∞, and 1 6 r <∞ be such that 1
p + 1

q = 1
r .

Let T > 0 and let g : [0, T ]→ R be given by

g(t) =
∞
∑

i=1

αi1[ti,T ](t), t ∈ [0, T ],

where ti ∈ [0, T ] and αi ∈ R, i ∈ N, are such that
∑∞

i=1 |αi| < ∞. Then for every
Y ∈ Sp and every Z ∈ Hq one has

∫ •

0
g(•− s)Y (s−) dZ(s) ∈ Hr and

∥

∥

∥

∥

∫ •

0

g(•− s)Y (s−) dZ(s)

∥

∥

∥

∥

Hr

6

(

∞
∑

i=1

|αi|

)

‖Y ‖Sp‖Z‖Hq .

Proof. Let Y ∈ Sp and Z ∈ Hq. Observe that g is a càdlàg function. For m ∈ N let

gm(t) :=

m
∑

i=1

αi1[ti,T ](t), t ∈ [0, T ].

Émery’s inequality (Theorem 2.4) yields

∥

∥

∥

∥

∫ •

0

gm(•− s)Y (s−) dZ(s)

∥

∥

∥

∥

Hr

6

m
∑

i=1

|αi|

∥

∥

∥

∥

∥

∫ (•−ti)
+

0

Y (s−) dZ(s)

∥

∥

∥

∥

∥

Hr

6

m
∑

i=1

|αi|‖Y ‖Sp‖Z‖Hq .

If we apply for n > m the previous inequality to gn − gm instead of gm, we obtain
that (gn(•− s)Y (s−) dZ(s))n is a Cauchy sequence in Hr. As Hr is complete
(Theorem 2.1), it follows that

∫ •

0
gn(• − s)Y (s−) dZ(s) converges in Hr to some

H ∈ Hr. For fixed t ∈ [0, T ] we have

|(gm(t− s)− g(t− s))Y (s−)| 6 ‖gm − g‖∞|Y (s−)|

for 0 6 s 6 t and ‖gm − g‖∞ → 0 as m→∞. Hence by Theorem 2.3,

∫ s

0

gm(t− u)Y (u−) dZ(u)→

∫ s

0

g(t− u)Y (u−) dZ(u)

in probability for all s ∈ [0, t], and in particular for s = t. It follows that H(t) =
∫ t

0
g(t− u)Y (u−) dZ(u) and that the desired inequality holds.
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5 Existence for equations of variation-of-constants

type

In this section we will exploit the extended Émery inequality to show existence and
uniqueness for stochastic equations of variation-of-constants type. We follow the
proof of existence and uniqueness for stochastic differential equations as given in
[10].

Definition 5.1. Let I ⊂ [0,∞) be an interval. A map F : D(I) → D(I) is called
functional Lipschitz if there exists an increasing (finite) process (K(t))t∈I such that
for all X,Y ∈ D(I),

(i) XT− = Y T− =⇒ F (X)T− = F (Y )T− for every stopping time T ,

(ii) |F (X)(t)− F (Y )(t)| 6 K(t) sups∈I∩[0,t] |X(s)− Y (s)| a.s. for all t ∈ I.

Recall that equalities of processes such as in (i) are meant up to indistinguisha-
bility. It is contained in (ii) that a functionally Lipschitz map F is well-defined
this way. Indeed, if X and Y in D(I) are indistinguishable, then (ii) yields that
F (X)(t) = F (Y )(t) a.s. for all t ∈ I and hence F (X) and F (Y ) are indistinguish-
able.

We will establish the next result by a sequence of lemmas.

Theorem 5.2. Let (Z(t))t>0 be a semimartingale, let J ∈ D, let F : D → D be a
functional Lipschitz map, and let g : [0,∞) → R be such that g|[0,T ] = h + j with
h ∈W 1,∞[0, T ] and j ∈ PJBV [0, T ] for every T > 0. Then the equation

X(t) = J(t) +

∫ t

0

g(t− s)F (X)(s−) dZ(s), t > 0,

has a unique (up to indistinguishability) solution X ∈ D. If J is a semimartingale,
then so is X.

Given constants 1 6 p < ∞, t0 > 0, and R > 0, we will use the following
property of a function g : [0, t0]→ R:

g is càdlàg and for every Y ∈ Sp[0, t0] and Z ∈ H∞[0, t0] we have
∫ •

0
g(•− s)Y (s−) dZ(s) ∈ Hp[0, t0] and

‖
∫ •

0
g(•− s)Y (s−) dZ(s)‖Hp[0,t0] 6 R‖Y ‖Sp[0,t0]‖Z‖H∞[0,t0].

(5.1)

Lemma 5.3. Let 1 6 p < ∞, let t0 > 0, and let J ∈ Sp[0, t0]. Let F :
D[0, t0] → D[0, t0] be functional Lipschitz as in Definition 5.1 with F (0) = 0 and
supt∈[0,t0] |K(t)| 6 k a.s. for some constant k. Let g : [0, t0]→ R be a function and
R > 0 be a constant such that (5.1) is satisfied. Let Z ∈ H∞[0, t0] be such that
‖Z‖H∞[0,t0] 6 1/2γ, where γ = cpkR. Let T be a stopping time. Then the equation

X(t) = JT−(t) +

(
∫ •

0

g(•− s)F (X)(s−) dZ(s)

)T−

(t), 0 6 t 6 t0,

has a unique solution X in Sp[0, t0] and ‖X‖Sp[0,t0] 6 2‖J‖Sp[0,t0].

Proof. Define

Λ(X)(t) := J(t) +

∫ t

0

g(t− s)F (X)(s−) dZ(s), t ∈ [0, t0], X ∈ Sp[0, t0].
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By the assumption (5.1), the assumption F (0) = 0, and the fact that Hp ⊂ Sp we
have that Λ(X) ∈ Sp for every X ∈ Sp. Further, for X,Y ∈ Sp we have

Λ(X)− Λ(Y ) =

∫ •

0

g(•− s)
(

F (X)(s−)− F (Y )(s−)
)

dZ(s) ∈ Hp.

Moreover, due to assumption (5.1),

‖Λ(X)T− − Λ(Y )T−‖Hp 6 ‖Λ(X)− Λ(Y )‖Hp

6 R‖F (X)− F (Y )‖Sp‖Z‖H∞ 6
1

2cpk
k‖X − Y ‖Sp ,

so ‖Λ(X)T− − Λ(Y )T−‖Sp 6 cp‖Λ(X)T− − Λ(Y )T−‖Hp 6 1
2‖X − Y ‖Sp . Since Sp

is complete, we find a unique fixed point X ∈ Sp of Λ(•)T−. This X is the solution
as asserted, and

‖X − J‖Sp = ‖Λ(X)T− − Λ(0)T−‖Sp 6
1

2
‖X‖Sp ,

so that ‖X‖Sp 6 ‖X − J‖Sp + ‖J‖Sp 6 1
2‖X‖Sp + ‖J‖Sp and hence ‖X‖Sp 6

2‖J‖Sp .

Definition 5.4. (see [10, p.192]) Let I = [0,∞) or I = [a, b] for some 0 6 a 6 b.
Let Z ∈ H∞(I), and α > 0. Then Z is called α-sliceable, denoted by Z ∈ S(α),
if there exist stopping times 0 = T0 6 T1 6 · · · 6 Tk such that Z = ZTk− and
‖(Z − ZTi)Ti+1−‖H∞(I) 6 α for i = 0, . . . , k − 1.

Theorem 5.5. (see [10, Theorem V.5, p.192]) Let Z ∈ D[0,∞) be a semimartingale
with Z(0) = 0 a.s.

(i) If α > 0, Z ∈ S(α), and T is a stopping time, then ZT ∈ S(α) and ZT− ∈
S(α).

(ii) For every α > 0 there exist stopping times Tk ↑ ∞ , that is, 0 = T0 6 T1 6 · · ·
and supk Tk =∞ a.s., such that ZTk− ∈ S(α) for all k.

It follows that for every α > 0, t0 > 0, and Z ∈ H∞[0, t0] there exist stopping
times Tk ↑ ∞ such that ZTk− ∈ S(α) for all k.

The next lemma extends Lemma 5.3 to more general semimartingales.

Lemma 5.6. The existence and uniqueness assertions of Lemma 5.3 remain true
if the condition ‖Z‖H∞ 6 1/(2γ) is relaxed to Z ∈ S(1/(2γ)).

Proof. Let S0, S1, . . . , S` be stopping times such that 0 = S0 6 S1 6 · · · 6 S`,
Z = ZS`−, and ‖(Z − ZSi)Si+1−‖H∞ 6 1/2γ for 0 6 i 6 `− 1 (these exist because
Z ∈ S(1/2γ)). Let Ti := Si ∧ T , i = 0, . . . , `. Then 0 = T0 6 T1 6 · · · 6 T` and
‖(Z − ZTi)Ti+1−‖H∞ = ‖((Z − ZSi)Si+1−)T−‖H∞ 6 1/2γ. We argue by induction
on i. If the equation stopped at Ti− has a unique solution, we first show that
the equation stopped at Ti has a unique solution and then we show existence and
uniqueness for the equation stopped at Ti+1−.

Suppose that i ∈ {0, . . . , `− 1} is such that the equation

X(t) = JTi−(t) +

(
∫ •

0

g(•− s)F (X)(s−) dZTi−(s)

)Ti−

(t), 0 6 t 6 t0, (5.2)

has a unique solution X ∈ Sp. In order to simplify notation, we extend F (U)(t) :=
F (U)(t0), J(t) := J(t0), and Z(t) := Z(t0) for t > t0 and U ∈ D[0, t0]. Further we
interpret [c, b] = ∅ if c > b. Let

Y := X +

(

∆J(Ti) + ∆
(

∫ •

0

g(•− s)F (X)(s−) dZ(s)
)

(Ti)

)

1[Ti,t0].

Observe that Y Ti− = XTi− and Y Ti = Y .
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B Claim: Y is the unique solution in Sp of

V (t) = JTi(t) +

(
∫ •

0

g(•− s)F (V )(s−) dZTi(s)

)Ti

(t), 0 6 t 6 t0. (5.3)

Proof. We have Y Ti− = XTi−, so F (Y )Ti− = F (X)Ti− and

JTi(t) +

(
∫ •

0

g(•− s)F (Y )(s−) dZ(s)

)Ti

(t)

= X(t) + ∆J(Ti)1[Ti,t0](t)

+ ∆

(
∫ •

0

g(•− s)F (X)(s−) dZ(s)

)

(Ti)1[Ti,t0](t)

= Y (t), 0 6 t 6 t0,

so Y satisfies (5.3). Further,

∥

∥

∥

∥

∥

sup
s∈[0,t0]

|Y (s)|

∥

∥

∥

∥

∥

Lp

6 ‖X‖Sp + ‖J‖Sp + 2R‖F (X)‖Sp‖Z‖H∞ ,

so Y ∈ Sp. To see uniqueness, suppose that V ∈ Sp is another solution of (5.3).
Then V Ti− satisfies the equation for X, so V Ti− = XTi− = Y Ti−. From (5.3) it
is clear that V = V Ti and that

V Ti − V Ti− =

(

∆J(Ti) + ∆

(
∫ •

0

g(•− s)F (X)(s−) dZ(s)

)

(Ti)

)

1[Ti,t0]

= Y Ti − Y Ti−,

so that V = Y .

Let us introduce DiU := (U − UTi)Ti+1− and G(U) = F (Y + U) − F (Y ),
U ∈ D[0, t0]. Consider the equation

U(t) =

(

DiJ(t) +

(
∫ •

0

g(•− s)F (Y )(s−) dZTi+1−(s)

)Ti+1−

(t) (5.4)

−

(
∫ •

0

g(•− s)F (Y )(s−) dZ(s)

)Ti∧Ti+1−

(t)

)

+

(
∫ •

0

g(•− s)G(U)(s−) dDiZ(s)

)Ti+1−

(t), 0 6 t 6 t0,

B Claim: (a) equation (5.4) has a unique solution U in Sp, and (b) the process
V := U + Y Ti+1− is the unique solution of

V (t) = JTi+1−(t) +

(
∫ •

0

g(•− s)F (V )(s−) dZTi+1−(s)

)Ti+1−

(t), 0 6 t 6 t0.

Proof. (a) Observe that the sum of the first three terms of (5.4) is a member of
Sp, G is functional Lipschitz with G(0) = 0 and satisfying the same estimates
as F , and

‖DiZ(s)‖H∞ = ‖(Z − ZTi)Ti+1−‖H∞ < 1/2γ.

Now apply Lemma 5.3.
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(b) From (5.4) it is clear that U = UTi+1− and UTi− = 0. Consequently,
F (Y + U)Ti− = F (Y )Ti−. Due to (5.3) we can easily check that

U + Y Ti+1− = JTi+1− +

(
∫ •

0

g(•− s)F (Y + U)(s−) dZTi+1−(s)

)Ti+1−

.

For any solution V , the process V − Y Ti+1− satisfies (5.4) and therefore equals
U .

We conclude that if equation (5.2) has a unique solution X in Sp, then the
equation (5.2) with Ti replaced by Ti+1 has a unique solution in Sp as well. As for
i = 0, X = 0 is the unique solution X in Sp, we find that there exists a unique
solution V ∈ Sp of (5.2) with i = `.

Finally, let

X(t) := JT−(t) +

(
∫ •

0

g(•− s)F (V )(s−) dZ(s)

)T−

(t), t ∈ [0, t0].

Because T` = T ∧ S` and ZS`− = Z we have XT`− = V and hence
(
∫ •

0

g(•− s)F (X)(s−) dZ(s)

)T−

(t) =

(
∫ •

0

g(•− s)F (XT`−)(s−) dZT`−(s)

)T−

=

(
∫ •

0

g(•− s)F (V )(s−) dZ(s)

)T−

= X(t)− JT−(t), t ∈ [0, t0].

We will increase the generality of the assumptions building on Lemma 5.6 in
Proposition 5.8 below. The next lemma is needed in the proof of Proposition 5.8.

Lemma 5.7. Let Y ∈ D[0,∞) and let Z ∈ D[0,∞) be a semimartingale. Let
1 6 p < ∞ and let g : [0,∞) → R be a function such that for every t0 > 0 there
exists a constant R > 0 such that (5.1) is satisfied. Then

(
∫ t

0

g(t− s)Y (s−) dZ(s)

)

t>0

is a semimartingale.

Proof. By convention, Y (0−) = 0, so we may assume Z(0) = 0. Observe that there
exist stopping times Tk ↑ ∞ such that Y Tk− ∈ Sp[0,∞) for all k. Use Theorem 5.5
to choose the stopping times Tk such that also ZTk− ∈ H∞[0,∞) for each k. Then
for each t0 > 0, (

∫ •

0
g(•− s)Y Tk−(s−) dZTk−(s))t∈[0,t0] ∈ Hp[0, t0]. Hence

(
∫ •

0

g(•− s)Y (s−) dZ(s)

)Tk∧t0−

=

(
∫ •

0

g(•− s)Y Tk−(s−) dZTk−(s)

)Tk∧t0−

equals a stopped semimartingale. It follows that
∫ •

0
g(•− s)Y (s−) dZ(s) is a local

semimartingale and hence a semimartingale by [6, Proposition I.4.25(a) and (b)].

Proposition 5.8. Let Z be a semimartingale, J ∈ D[0,∞), and let F : D[0,∞)→
D[0,∞) be functional Lipschitz. Let g : [0,∞)→ R be a function such that for every
t0 > 0 there exists a constant R > 0 such that (5.1) is satisfied. Then

X(t) = J(t) +

∫ t

0

g(t− s)F (X)(s−) dZ(s), (5.5)

t > 0, has a unique solution X in D[0,∞). If J is a semimartingale, then so is X.
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Proof. We use the notation of Definition 5.1. As F (X)(0−) = 0 for all X, we may
assume that Z(0) = 0. We begin by replacing J by J +

∫ •

0
g(•− s)F (0)(s−) dZ(s)

and F by F (•)− F (0). Thus we may assume that F (0) = 0.

B Claim: Let t0 > 0. Suppose that |K(t, ω)| 6 k for a.e. ω and all 0 6 t 6 t0.
Let S be a stopping time. Then there is a unique process X ∈ D such that

X(t) = JS−(t) +

(
∫ •

0

g(•− s)F (X)(s−) dZ(s)

)S−

(t), 0 6 t 6 t0. (5.6)

Proof. Let R > 0 be a constant corresponding to t0 such that (5.1) is satisfied.
Let γ := cpkR. For every stopping time T such that JT− ∈ S2 and ZT− ∈
S(1/2γ), Lemma 5.6 says that there is a unique XT ∈ S2 such that

XT = (JT−)S− +

(
∫ •

0

g(•− s)F (XT )(s−) dZ
T−(s)

)S−

.

By uniqueness we have for any two such stopping times T1 and T2 that XT3−
T1

=

XT3−
T2

, where T3 = T1 ∧ T2. Due to Theorem 5.5, there exist stopping times

T` ↑ ∞ such that JT`− ∈ S2 and ZT`− ∈ S(1/2γ) for all `. Define

X(t) :=
∞
∑

`=1

XT`
(t)1[T`−1,T`)(t), 0 6 t 6 t0.

Then (X(t))t>0 is an adapted càdlàg process and XS− = X. Further, for ` > 1,
we have XT`− = XT`

and by (i) of Definition 5.1,

(

(

J +

∫ •

0

g(•− s)F (X)(s−) dZ(s)

)S−
)T`−

= (JT`−)S− +

(

(
∫ •

0

g(•− s)F (XT`
)(s−) dZ(s)

)T`−
)S−

= XT`
= XT`−.

It follows that X satisfies (5.6).

To show uniqueness, let Y be another adapted càdlàg solution of (5.6). There
exist stopping times S` ↑ ∞ with Y S`− ∈ S2 for all `. Then Y (S`∧T`)− satisfies
the same equation as XS`−

T`
and by uniqueness we obtain Y (S`∧T`)− = XS`−

T`
=

X(S`∧T`)−. Since sup` S` ∧ T` =∞ a.s., it follows that X = Y . ¤
Next, fix t0 > 0. For n = 1, 2, 3, . . . define the stopping time

Tn(ω) := inf{t ∈ [0, t0] : K(t, ω) > n}, ω ∈ Ω,

where inf ∅ :=∞. Then Tn ↑ ∞. Define

Fn(X)(t) := F (X)Tn−(t), 0 6 t 6 t0, X ∈ D[0, t0], n = 1, 2, . . . .

Then Fn : D[0, t0] → D[0, t0] is functional Lipschitz, |Fn(X)(t) − Fn(Y )(t)| 6
n sup06s6t |X(s) − Y (s)|, for all X,Y ∈ D[0, t0], and Fn(0) = 0. By the first
claim, there exists therefore for each n a unique Xn ∈ D[0, t0] such that

Xn(t) = JTn−(t) +

(
∫ •

0

g(•− s)Fn(Xn)(s−) dZ(s)

)Tn−

(t), 0 6 t 6 tn.
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Then by uniqueness, XTn−
m = Xn for every m > n. Define

X(t) :=

∞
∑

n=1

Xn(t)1[Tn−1,Tn)(t), 0 6 t 6 t0.

Then X ∈ D[0, t0] and XTn− = Xn for n = 1, 2, . . .. Further, Fn(Xn)
Tn− =

F (X)Tn−, so

XTn− = JTn− +

(
∫ •

0

g(•− s)F (X)(s−) dZ(s)

)Tn−

,

for each n. HenceX satisfies (5.5) for 0 6 t 6 t0. Moreover, X is the unique solution
of the latter equation. Indeed, if V is a solution as well, then V Tn− satisfies the
defining equation for Xn and therefore V Tn− = Xn = XTn− for all n. This implies
V = X.

Finally, we can vary t0 and glue solutions together to obtain a uniqueX ∈ D such
that (5.5) holds for all t > 0. It follows from Lemma 5.7 that X is a semimartingale
whenever J is a semimartingale.

Theorem 5.2 follows from Theorem 4.1 and Proposition 5.8. Notice that the
function g in Theorem 5.2 need not be continuous. In this way Theorem 5.2 gener-
alizes [9].

6 Variation-of-constants formula for SDDE with

linear drift

It is the aim of this section to prove Theorem 1.1. It is well known that (1.4) has
a unique solution g : R → R with g|[0,∞) absolutely continuous (see [5]). Then
∫

(−∞,0]
g(• + a)µ(da) is bounded on [0, T ] and hence g|[0,T ] ∈ W 1,∞[0, T ] for every

T > 0.
The proof of Theorem 1.1 proceeds as follows. Due to Theorem 5.2, there exists

a solution of (1.2). By means of a stochastic Fubini argument, we will show that
this solution also satisfies (1.8). As equation (1.8) has only one solution, we then
know that the solutions of (1.8) and (1.2) coincide and the proof is complete. The
Fubini argument is given next.

Lemma 6.1. Let µ be a finite signed Borel measure on (−∞, 0] and let g : R → R be
the solution of (1.4) with g|[0,∞) absolutely continuous. Let F : D[0,∞)→ D[0,∞)
be functional Lipschitz. Let (Z(t))t>0 and (J(t))t>0 be semimartingales. If X ∈
D[0,∞) satisfies

X(t) = g(t)X(0) +

∫ t

0

g(t− s) dJ(s) (6.1)

+

∫ t

0

g(t− s)F (X)(s−) dZ(s), t > 0,

then

X(t) = X(0) + J(t) +

∫ t

0

∫

(−s,0]

X(s+ a)µ(da) ds

+

∫ t

0

F (X)(s−) dZ(s), t > 0,
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Proof. Observe that we may assume that Z(0) = 0 and J(0) = 0. We will first
apply stochastic Fubini twice to prove the identity

∫ T

0

∫

(−∞,0]

∫ (s+a)+

0

g(s+ a−m)F (X)(m−) dZ(m)µ(da) ds (6.2)

=

∫ T

0

g(T −m)F (X)(m−) dZ(m)−

∫ T

0

F (X)(m−) dZ(m),

for any T > 0 and any X ∈ D. Since we will only evaluate g on (−∞, T ], we
may assume that g is bounded. Fix an s ∈ [0, T ]. The map (a, t, ω) 7→ g(s + a −
t)F (X)(t−)(ω) is bounded and B((−∞, 0]) ⊗ P-measurable, where P denotes the
predictable σ-algebra. Further, the process F (X)(•−) is predictable and locally
bounded, the function g is Borel measurable and bounded, and

∫

(−∞,0]

g(s+ a− •)2F (X)(•−)2|µ|(da) 6 ‖g‖2∞|µ|((−∞, 0])F (X)(•−)2.

The stochastic Fubini theorem (Theorem 2.5) therefore yields that

∫

(−∞,0]

(
∫ t

0

g(s+ a−m)F (X)(m−) dZ(m)

)

µ(da)

=

∫ t

0

(

∫

(−∞,0]

g(s+ a−m)µ(da)F (X)(m−)

)

dZ(m) a.s.

for every t > 0. Since g(ϑ) = 0 for ϑ < 0, the inner integral at the left hand side
of the previous equality runs only up to (s + a)+ if t > s. The map (s,m, ω) 7→
∫

(−∞,0]
g(s + a −m)µ(da)F (X)(m−) is measurable with respect to B([0, T ]) ⊗ P,

because (s,m) 7→
∫

(−∞,0]
g(s+ a−m)µ(da) is B([0, T ])⊗P-measurable. Moreover,

for each s > 0 the processes
∫

(−∞,0]
g(s+a−•)µ(da)F (X)(•−) and

∫ T

0
(
∫

(−∞,0]
g(s+

a − •)µ(da)F (X)(•−))2 ds are locally bounded, since g is bounded, µ is a finite
measure, and F (X)(•−) is locally bounded. Hence, again by the stochastic Fubini
theorem (Theorem 2.5), we have

∫ T

0

(

∫ t

0

∫

(−∞,0]

g(s+ a−m)µ(da)F (X)(m−) dZ(m)

)

ds

=

∫ t

0

(

∫ T

0

∫

(−∞,0]

g(s+ a−m)µ(da)F (X)(m−) ds

)

dZ(m) a.s.

for every t > 0. Next, we substitute t = T in the previous equality, use that g(ϑ) = 0
for ϑ < 0, and rewrite the right hand side by observing that for m > 0,

∫ T

m

∫

(−∞,0]

g(s+ a−m)µ(da) ds =

∫ T−m

0

g′(s) ds = g(T −m)− 1.

Thus we arrive at the identity (6.2).
Similarly, we have for any T > 0 that

∫ T

0

∫

(−∞,0]

∫ (s+a)+

0

g(s+ a−m) dJ(m)µ(da) ds (6.3)

=

∫ T

0

g(T −m) dJ(m)−

∫ T

0

dJ(m).
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Next assume that X ∈ D satisfies (6.1). Set X(t) := 0 for t < 0. Then

X(u) = g(u)X(0) +

∫ u+

0

g(u− s) dJ(s)

+

∫ u+

0

g(u− s)F (X)(s−) dZ(s), for all u ∈ R.

Therefore,

∫ t

0

∫

(−s,0]

X(s+ a)µ(da) ds =

∫ t

0

∫

(−∞,0]

X(s+ a)µ(da) ds

=

∫ t

0

∫

(−∞,0]

g(s+ a)µ(da) dsX(0)

+

∫ t

0

∫

(−∞,0]

∫ (s+a)+

0

g(s+ a−m) dJ(m)µ(da) ds

+

∫ t

0

∫

(−∞,0]

∫ (s+a)+

0

g(s+ a−m)F (X)(m−) dZ(m)µ(da) ds

=

∫ t

0

g′(s) dsX(0) +

∫ t

0

g(t−m) dJ(m)− J(t)

+

∫ t

0

g(t−m)F (X)(m−) dZ(m)−

∫ t

0

F (X)(m−) dZ(m)

=
(

g(t)− 1
)

X(0) +

∫ t

0

g(t−m) dJ(m)− J(t)

+

∫ t

0

g(t−m)F (X)(m−) dZ(m)−

∫ t

0

F (X)(m−) dZ(m)

= X(t)−X(0)− J(t)−

∫ t

0

F (X)(m−) dZ(m),

for all t > 0. Here the third equality is justified by the identities (6.2) and (6.3),
which yields the assertion.
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Théorie des martingales, Édition entièrement refondue, Hermann, Paris, 1980.

[3] N. Dunford and J.T. Schwartz, Linear Operators, Part 1: General Theory,
Wiley Interscience, New York, 1957.
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