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Abstract We first show that Lipschitz mappings transform measurable sets into
measurable sets. Then we prove the following theorem:

Let E ⊆ Rn be open, and let φ : E → Rn be continuous. If φ is differentiable at
x0 ∈ E, then

lim
r→0

λn(φ(Br(x0)))

λn(Br)
=

∣∣∣ det φ′(x0)
∣∣∣.

From this result the change of variables formula for injective and locally Lipschitz
mappings is easily derived by using the Radon-Nikodym theorem. We finally discuss
the transformation of Lp functions by Lipschitz mappings.
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Notations

x = (x1, . . . , xn) ∈ Rn

|x| =
( n∑

i=1

x2
i

)1/2

, |x|∞ = max
i=1,...,n

|xi|

Br(x0) = {x ∈ Rn | |x− x0| < r}
Qr(x0) = {x ∈ Rn | |x− x0|∞ < r}

λn = Lebesgue measure in Rn

∇u =
( ∂u

∂x1

, . . . ,
∂u

∂xn

)
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1. Transformation of Measurable Sets

It is well-known that continuous mappings can fail to transform sets of measure zero
onto sets of measure zero. For instance, the Cantor singular function is continuous and
maps the Cantor ternary set on a set of measure 1 1).

The following definition excludes this situation.

Let E ⊆ Rm be a measurable set.

1.1 Definition A mapping φ : E → Rn is said to satisfy Lusin’s (N)-condition [briefly:
(N)-condition] if

A ⊆ E, λm(A) = 0 =⇒ λn(φ(A)) = 0.

1.2 Remark For a mapping φ : E → Rn the following conditions are equivalent:

1◦ φ satisfies the (N)-condition;

2◦ A ⊂ E, λm(A) = 0 =⇒ φ(A) is measurable.

Indeed, implication 1◦ =⇒ 2◦ is obvious.
To prove implication 2◦ =⇒ 1◦, assume there exists A ⊆ E, λm(A) = 0 such that

λn(φ(A)) > 0. Then there exists a non-measurable subset B0 ⊂ φ(A). Define

A0 := {x ∈ A | φ(x) ∈ B0}.

The Lebesgue measure being complete, it follows that A0 is measurable, and thus
λn(A0) = 0. By 2◦, B0 = φ(A0) is measurable, a contradiction.

1.3 Theorem Let φ : E → Rn be a mapping.

1. Let φ be continuous in E and satisfy the (N)-condition. Then

F ⊆ E measurable =⇒ φ(F ) measurable.

2. Assume

1) the set φ(E) is measurable,

2) φ is injective,

3) φ−1 : φ(E) → E is continuous in φ(E) and satisfies the (N)-condition.

1)A brief discussion of the Cantor ternary set and the Cantor singular function can be found in
http://www.math.hu-berlin.de/∼jnaumann/cantor.ps
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Let u : φ(E) → R̄ be measurable. Then

u ◦ φ : E → R̄

is measurable.

Proof 1 The measurability of F is equivalent to the existence of sets Fi (i ∈ N) and
A such that

Fi is closed (i ∈ N), λn(A) = 0, F =
( ∞⋃

i=1

Fi

)
∪ A.

The sets Fi ∩ Bk(0) (k ∈ N) are compact. Hence φ(Fi ∩ Bk(0)) is compact and thus
Borel. On the other hand, the (N)-condition implies that φ(A) is a Lebesgue null set.
Therefore

φ(F ) =
( ∞⋃

i=1

φ(Fi)
)
∪ φ(A)

is measurable.

2 The measurability of u : φ(E) → R̄ means that for every a ∈ R the set

{y ∈ φ(E) | u(y) > a}
is measurable. Observing 3), from 1 it follows that the sets

φ−1({y ∈ φ(E) | u(y) > a}), a ∈ R
are measurable.

Finally, it readily seen that, for any a ∈ R,

{x ∈ E | (u ◦ φ)(x) > a} = φ−1({y ∈ φ(E) | u(y) > a}).
Hence the set on the left hand side is measurable.

2. Lipschitz Mappings

2.1 Definition

1. Let E ⊆ Rm be a set, let φ : E → Rn be a mapping.

1.1 φ is called Lipschitz continuous [briefly: Lipschitz] if there exists L = const < +∞
such that

|φ(x)− φ(x′)| ≤ L|x− x′| ∀x, x′ ∈ E 2)

2)We denote the Euclidean norm in Rm and Rn by the same symbol | · |. An analogous remark refers
to the norm | · |∞.
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1.2 Let m = n. φ is called bi-Lipschitz continuous [briefly: bi-Lipschitz] if there exists
L = const < +∞ such that

1
L
|x− x′| ≤ |φ(x)− φ(x′)| ≤ L|x− x′| ∀x, x′ ∈ E.

2. Let E ⊆ Rm be open. A mapping φ : E → Rn is called locally Lipschitz continuous
[briefly: locally Lipschitz] if





for every compact K ⊂ E there exists LK = const < +∞ such that

|φ(x)− φ(x′)| ≤ LK |x− x′| ∀x, x′ ∈ K.

2.2 Remark The constant L in Definition 2.1/1 is called a Lipschitz constant for
φ with respect to the norm | · |. An analogous notation is used for locally Lipschitz
mappings.

Since all norms on Rn are equivalent to each other, the passage from | · | to any other
norm on Rn only amounts to a different numerical value of a Lipschitz constant.

We now show that Lipschitz mappings transform measurable sets into measurable
sets. More precisely, we have

2.3 Theorem Let n ≥ m. Assume

E ⊆ Rm measurable, φ : E → Rn Lipschitz,

or
E ⊆ Rm open, φ : E → Rn locally Lipschitz.

Then
F ⊆ E measurable =⇒ φ(F ) measurable.

Proof It suffices to prove that φ satisfies the (N)-condition. Then the claim follows
from Theorem 1.3/1.

Let E ⊆ Rm be measurable. By assumption,

|φ(x)− φ(x′)|∞ ≤ L|x− x′|∞ ∀x, x′ ∈ E, (L = const < +∞).(2.1)

Let A ⊆ E with λm(A) = 0. Given any ε > 0, there exist cubes Q(k) ⊂ Rm such that

A ⊆
∞⋃

k=1

Q(k),

∞∑

k=1

λm(Q(k)) ≤ ε.(2.2)

We may write

Q(k) = Qrk
(ξk) :=

{
x ∈ Rm

∣∣∣ |x− ξk|∞ < rk

}
, k ∈ N.
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From (2.1) it follows that

|φ(x)− φ(ξk)|∞ ≤ L|x− ξk|∞ < Lrk ∀x ∈ Q(k)

i.e. φ(Q(k)) ⊆ QLrk
(φ(ξk)) [cube in Rn] for all k ∈ N. Now (2.2) implies

φ(A) ⊆
∞⋃

k=1

φ(Q(k)) ⊆
∞⋃

k=1

QLrk
(φ(ξk)).

Clearly, λn(QLrk
) = (2Lrk)

n = Ln(2rk)
n−mλm(Q(k)). Observing that 2rk ≤ ε

1
m for all

k ∈ N (cf. (2.2)), we obtain

∞∑

k=1

λn(QLrk
) = Ln

∞∑

k=1

(2rk)
n−mλm(Q(k)) ≤ Lnε

n
m
−1

∞∑

k=1

λm(Q(k)) ≤ Lnε
n
m .

Thus, λn(φ(A)) = 0.
To prove the second claim, let E ⊆ Rm be an open set. By assumption, for every

compact K ⊂ E there exists LK = const < +∞ such that

|φ(x)− φ(x′)|∞ ≤ LK |x− x′|∞ ∀x, x′ ∈ K.

Let (Ei) (i ∈ N) be a sequence of open bounded subsets of Rm such that

Ei ⊂ Ēi+1 ⊂ (i ∈ N), E =
∞⋃
i=1

Ei.

Given any A ⊂ E with λm(A) = 0, we have λm(A ∩ Ei) = 0 for all i ∈ N. The mapping

φ|Ēi
: Ēi → Rn

being Lipschitz, from the preceding part it follows that λn(φ(A∩Ei)) = 0 for all i ∈ N.

Observing that A =
∞⋃
i=1

(A ∩ Ei), we obtain

λn(φ(A)) ≤
∞∑
i=1

λn(φ(A ∩ Ei)) = 0.

Throughout the remainder of the paper, let m = n.

Let E ⊆ Rn be open. The mapping φ : E → Rn 3) is said to be differentiable at
x0 ∈ E if there exists an (n× n)-matrix A(x0) such that

φ(x0 + h) = φ(x0) + A(x0)h + ω(x0; h) ∀h ∈ Rn, (x0 + h) ∈ E,

3)We write

φ =




φ1

...
φn


 .
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where

A(x0) =




∂φ1

∂x1

(x0) · · · ∂φ1

∂xn

(x0)

. . . . . . . . . . . . . . . . . . . . . .

∂φn

∂x1

(x0) · · · ∂φn

∂xn

(x0)




,

and

lim
h→0

ω(x0; h)

|h| = 0.

A(x0) is called the Jacobi matrix and usually denoted by φ′(x0).

The following result is fundamental to our approach to the change of variables formula.

2.4 Theorem Let E ⊆ Rn be open. Let φ : E → Rn be locally Lipschitz continuous.
If φ is differentiable at x0 ∈ E then

lim
r→0

λn(φ(Br(x0)))

λn(Br)
=

∣∣∣ det φ′(x0)
∣∣∣.

Proof First, by the continuity of φ, the set φ(Br(x0)) is Borel and thus measurable.

We fix a ball BR0(x0) ⊂ E. Let L0 := LBR0
(x0) denote a Lipschitz constant for φ

with respect to BR0(x0):

|φ(x)− φ(x′)| ≤ L0|x− x′| ∀x, x′ ∈ BR0(x0).

We consider the two cases

det φ′(x0) = 0 and det φ′(x0) 6= 0

separately.

det φ′(x0) = 0 We prove:

lim sup
r→0

λn(φ(Br(x0)))

λn(Br)
= 0.(2.3)

This implies the claim.

Without any loss of generality, we may assume that
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φ′(x0)ξ ∈ Rn−1 × {0} ∀ξ ∈ Rn(2.4)

||
Indeed, det φ′(x0) = 0 is equivalent to the linear dependence of the rows of φ′(x0). Without any loss

of generality, we may assume that

n−1∑

i=1

αi
∂φi

∂xj
(x0) =

∂φn

∂xj
(x0) (j = 1, . . . , n)

for reals α1, . . . , αn−1. Define

M :=




1 0 · · · 0 0
0 1 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 1 0
−α1 −α2 · · · −αn−1 1




,

and
Ψ(x) := Mφ(x), x ∈ E.

Clearly, Ψ is locally Lipschitz in E, and

λn(Ψ(F )) = | detM | λn(φ(F )) = λn(φ(F ))

for every measurable set F ⊆ E. Next, Ψ′(x0) = Mφ′(x0), where

Mφ′(x0) =




∂φ1

∂x1
(x0) · · · ∂φ1

∂xn
(x0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂φn−1

∂x1
(x0) · · · ∂φn−1

∂xn
(x0)

0 · · · 0




.

Thus
(Ψ′(x0)ξ)n [= the n-th component] = 0 ∀ξ ∈ Rn. ||

Let ε > 0. By the differentiability of φ at x0, there exists an R1 = R1(ε) > 0 such that

|φ(x)− φ(x0)− φ′(x0)(x− x0)| ≤ ε|x− x0| ∀x ∈ BR1(x0)

(without loss of generality, we may assume that R1 ≤ R0). By (2.4), (φ′(x0)(x−x0))n = 0
for all x ∈ Rn.

Let 0 < r ≤ R1. We obtain
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|φn(x)− φn(x0)| = |φn(x)− φn(x0)− (φ′(x0)(x− x0))n|
≤ |φ(x)− φ(x0)− φ′(x0)(x− x0)|
≤ ε|x− x0|
< ε r(2.5)

for all x ∈ Br(x0). On the other hand, from

|φ(x)− φ(x0)| ≤ L0|x− x0| < L0r ∀x ∈ Br(x0)

it follows that

φ(Br(x0)) ⊂ BL0r(φ(x0)).(2.6)

Observing that BL0r(φ(x0)) ⊂ QL0r(φ(x0)), from (2.5) and (2.6) we obtain

φ
(
Br(x0)

)
⊂

{
y ∈ Rn

∣∣∣|yi − φi(x0)| < L0r (i = 1, . . . , n− 1), |yn − φn(x0)| < εr
}

.

Hence
λn(φ(Br(x0))) ≤ (2L0r)

n−1 · 2εr = 2nLn−1
0 rnε,

i.e.
λn(φ(Br(x0)))

λn(Br)
≤ 2nLn−1

0

λn(B1)
· ε ∀ 0 < r ≤ R1.

Whence (2.3).

det φ′(x0) 6= 0 We prove

(2.71) lim inf
r→0

λn(φ(Br(x0)))

λn(Br)
≥ | det φ′(x0)|;

(2.72) lim sup
r→0

λn(φ(Br(x0)))

λn(Br)
≤ | det φ′(x0)|.

These inequalities imply the claim.
To begin with, we note that the matrix φ′(x0) is invertible. Then

C0 := sup
|ξ|=1

∣∣∣[φ′(x0)]
−1ξ

∣∣∣

is a positive real number.
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Proof of (2.71) Let 0 < ε < 1. There exists R2 = R2(ε) > 0 such that

|φ(x0 + h)− φ(x0)− φ′(x0)h| ≤ ε

C0

|h| ∀ h ∈ BR2(0)

(as above, we may assume that R2 ≤ R0).
Let 0 < r ≤ R2. Given y ∈ B(1−ε)r(0), for h ∈ Br(0) define

Ty(h) := y − [φ′(x0)]
−1(φ(x0 + h)− φ(x0)− φ′(x0)h).

Clearly, Ty is continuous. Moreover, for any h ∈ Br(0),

|Ty(h)| ≤ |y|+ C0|φ(x0 + h)− φ(x0)− φ′(x0)h|
< (1− ε)r + ε|h|
≤ r,

i.e. Ty(h) ∈ Br(0).

By the Brouwer fixed point 4) theorem, there exists h∗ ∈ Br(0) such that

h∗ = Ty(h
∗) = −

[
φ′(x0)

]−1(
φ(x0 + h∗)− φ(x0)− φ′(x0)h

∗
)

+ y

= −
[
φ′(x0)

]−1(
φ(x0 + h∗)− φ(x0)− φ′(x0)y

)
+ h∗,

i.e.

φ(x0 + h∗)− φ(x0)− φ′(x0)y = 0.

Since |h∗| = |Ty(h
∗)| < r, we obtain

φ(x0) + φ′(x0)y = φ(x0 + h∗) ∈ φ
(
Br(x0)

)
.(2.8)

To conclude the proof of (2.71), define

E :=
{

φ(x0) + φ′(x0)y
∣∣∣ y ∈ B(1−ε)r(0)

}
.

Then (2.8) means E ⊆ φ(Br(x0)). It follows

λn(φ(Br(x0))) ≥ λn(E)

= λn[φ′(x0)(B(1−ε)r(0))]

= | det φ′(x0) | λn(B(1−ε)r)

= | det φ′(x0) | (1− ε)nλn(Br).

4)Proofs of the Brouwer fixed point theorem can be found, for instance, in Deimling [2; p.17],
Fonseca/Gangbo [4; p. 51] and Traynor [23].
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Thus

λn(φ(Br(x0)))

λn(Br)
≥ | det φ′(x0)|(1− ε)n ∀ 0 < r ≤ R1.

Whence (2.71).

Proof of (2.72). Define the affine-linear mapping

T x := φ(x0) + φ′(x0)(x− x0), x ∈ Rn.

For 0 < r ≤ R1 and x ∈ Br(x0) consider

x̃ := x +
[
φ′(x0)

]−1(
φ(x)− φ(x0)− φ′(x0)(x− x0)

)
.

We obtain

|x̃− x0| ≤ |x− x0|+ C0|φ(x)− φ(x0)− φ′(x0)(x− x0)|
≤ |x− x0|+ ε|x− x0|
< (1 + ε)r,

i.e. x̃ ∈ B(1+ε)r(x0). By the definition of T and x̃,

φ(x) = φ(x0) + (φ(x)− φ(x0))

= φ(x0) + φ′(x0)(x̃− x0)

= T x̃.

Hence
φ
(
Br(x0)

)
⊆ T

(
B(1+ε)r(x0)

)
.

This inclusion implies

λn

(
φ(Br(x0))

)
≤ λn

(
T (B(1+ε)r(x0))

)

= λn

(
φ′(x0)(B(1+ε)r(x0))

)

= | det φ′(x0) | (1 + ε)nλn(Br),

i.e.
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λn(φ(Br(x0)))

λn(Br)
≤ | det φ′(x0) | (1 + ε)n ∀ 0 < r ≤ R1.

Now (2.72) follows.

Remark 2.5 The above argument for proving the inclusion

{φ(x0) + φ′(x0)y
∣∣∣ y ∈ B(1−ε)r(0)} ⊆ φ(Br(x0))

(cf. (2.8)) via a fixed point of Ty, has been submitted to the author by J. Malý. In a
technically slightly different way, this inclusion is also established in Rudin [19; p. 152].
See also Reshetnyak [18; pp. 98-99].

3. The Change of Variables Formula

Preliminaries

We begin with stating three theorems which are well-known from real analysis. To-
gether with Theorem 2.4 they form the basis of the present approach to the change of
variables formula.

Theorem I (Rademacher) Let E ⊆ Rn be open. For every Lipschitz function f :
E → R there exist a set A ⊂ E and measurable functions gi : E r A (i = 1, . . . , n), such
that

λn(A) = 0,

f(x + h) = f(x) +
n∑

i=1

gi(x)hi + σ(x; h) ∀ x ∈ E r A, ∀h ∈ Rn, (x + h) ∈ E,

where

lim
h→0

σ(x; h)

|h| = 0 ∀ x ∈ E r A.

The functions gi are the partial derivatives of f with respect to xi in E r A; clearly,

|gi(x)| ≤ L ∀ x ∈ E r A,

where L is a Lipschitz constant for f (i = 1, . . . , n).

Theorem II (Lebesgue) Let E ⊆ Rn be open. For every locally integrable function
f : E → R there holds

lim
r→0

1

λn(Br)

∫

Br(x)

f(y)dλn = f(x) for a. e. x ∈ E.(3.1)
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Those x ∈ E for which (3.1) holds, are called Lebesgue points of f .

Let E ⊆ Rn be a (fixed) measurable set. Define

A := {F ⊆ E | F measurable }.
The family of sets A is a σ-algebra. We note a special case of the Radon-Nidodym
theorem which is suitable for our purposes.

Theorem III Let µ : A → [0, +∞] be a measure. Assume

1) A ∈ A, λn(A) = 0 ⇒ µ(A) = 0;

2) there exist Ki ∈ A (i ∈ N) such that:

Ki ⊂ Ki+1 ⊂ E, µ(Ki) < +∞ (i ∈ N), E =
∞⋃
i=1

Ki.

Then there exists a measurable function D : E → [0, +∞] such that

µ(F ) =

∫

F

D(x)dλn ∀ F ∈ A.

The function D is called the Radon-Nikodym derivative of µ with respect to λn

and denoted by
dµ

dλn

:

dµ

dλn

= D.

Change of Variables: Special Case

The following result forms the basis for the proof of the Change of Variables Formula
below.

3.1 Theorem Let E ⊆ Rn be open. Let φ : E → Rn be injective and locally Lipschitz.
Then

λn(φ(F )) =

∫

F

| det φ′(x)|dλn(3.2)

for all measurable subsets F ⊆ E.
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By Theorem 2.3, φ(F ) is measurable whenever F ⊆ E is measurable.

Proof We divide the proof into three steps.

Step 1: Application of Theorem III Define

A :=
{

F ⊆ E
∣∣∣ F measurable

}
,

µ(F ) := λn(φ(F )), F ∈ A.

Clearly, µ(F ) ≥ 0 for all F ∈ A. Let F =
∞⋃
i=1

Fi (disjoint union), Fi ∈ A (i ∈ N). The

mapping φ being injective, we have

φ(F ) =
∞⋃
i=1

φ(Fi) disjoint.

It follows

µ(F ) = λn(φ(F )) =
∞∑
i=1

λn(φ(Fi)) =
∞∑
i=1

µ(Fi).

Thus, µ is a measure on the σ-algeba A.
We verify conditions 1) and 2) of Theorem III. First, let A ∈ A, λn(A) = 0. Since φ

satisfies the (N)-condition, we obtain λn(φ(A)) = 0 5) Second, let Ki (i ∈ N) be compact
subsets of E such that

Ki ⊂ Ki+1 (i ∈ N), E =
∞⋃
i=1

Ki.

The continuity of φ implies the compactness of φ(Ki). Hence

µ(Ki) = λn(φ(Ki)) < +∞ ∀i ∈ N.

We now apply Theorem III to obtain a measurable function D : E → [0, +∞] such that

µ(F ) =

∫

F

D(x)dλn ∀F ∈ A.(3.3)

The function D is locally integrable in E. Indeed, for any compact set K ⊂ E there holds

∫

K

D(x)dλn = µ(K) = λn(φ(K)) < +∞.

Step 2: Proof of D = | det φ′|. Define

5)Combine Remark 1.2 and theorem 2.3, or look at the proof of Theorem 2.3.
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E1 :=
{

x ∈ E
∣∣∣ φ is differentiable at x

}
,

E2 :=
{

x ∈ E
∣∣∣ lim

r→0

1

λn(Br)

∫

Br(x)

D(y)dλn = D(x)
}

.

Then

λn(E r E1) = 0 (Theorem I) ,

λn(E r E2) = 0 (Theorem II) .

Now, from Theorem 2.4 and (3.3) it follows that

lim
r→0

1

λn(Br)

∫

Br(x)

D(y)dλn = lim
r→0

λn(φ(Br(x)))

λn(Br)
= | det φ′(x)|

for all x ∈ E1. Thus

D(x) = | det φ′(x)| ∀x ∈ E1 ∩ E2.

Step 3: Proof of (3.2) Let F ⊆ E be any measurable set. We have

F =
(
F ∩ (E1 ∩ E2)

)
∪

(
F r (F ∩ (E1 ∩ E2))

)
,

F r
(
F ∩ (E1 ∩ E2)

)
⊆ E r (E1 ∩ E2).

Clearly, λn

(
F r (F ∩ (E1 ∩ E2))

)
= 0. Finally, with D = | det φ′| at hand, (3.3) gives

λn(φ(F )) =

∫

F∩(E1∩E2)

D(x)dλn =

∫

F∩(E1∩E2)

| det φ′(x)|dλn

=

∫

F

| det φ′(x)|dλn.
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Change of Variables: General Case

From Theorem 3.1 we now derive

3.2 Theorem (Change of Variables Formula) Let E ⊆ Rn be open. Let φ : E → Rn

be injective and locally Lipschitz.
1. Let u : E → [0, +∞] be measurable. Then u ◦ φ−1 is measurable, and

∫

φ(F )

u(φ−1(y))dλn =

∫

F

u(x)| det φ′(x)|dλn(3.4)

for all measurable subsets F ⊆ E.
2. Let v : E → R̄ be measurable. Then v ◦ φ−1 is integrable over φ(E) if and only if

v(·)| det φ′(·)| is integrable over E. In either case,

∫

φ(F )

v(φ−1(y))dλn =

∫

F

v(x)| det φ′(x)|dλn(3.5)

for all measurable subsets F ⊆ E.

Proof 1 Define E1 := φ(E), φ1 := φ−1. By Theorem 1.3/1, E1 is measurable. Next,
we have

1) φ1(E1) is measurable,

2) φ1 is injective,

3) φ−1
1 : φ1(E1) → E1 is locally Lipschitz.

Then from Theorem 1.3/2 it follows that

u ◦ φ1 : E1 → [0, +∞]

is measurable.
We prove (3.4) for F = E. Given any measurable function u : E → [0, +∞], there

exist functions uk : E → [0, +∞] (k ∈ N) such that

uk(x) =

mk∑

l=1

a
(k)
l χ

E
(k)
l

(x), x ∈ E,

where a
(k)
l ∈ [0, +∞[, E

(k)
l ⊂ E measurable (l = 1, . . . , mk) and E =

mk⋃

l=1

E
(k)
l disjoint, and

uk(x) ≤ uk+1(x) ≤ . . . ≤ u(x) (k ∈ N), lim
k→∞

uk(x) = u(x) ∀x ∈ E.
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Observing that χF ◦ φ−1 = χφ(F ) for any F ⊆ E, we find

∫

φ(E)

uk

(
φ−1(y)

)
dλn =

mk∑

l=1

a
(k)
l

∫

φ(E)

χ
E

(k)
l

(
φ−1(y)

)
dλn

=

mk∑

l=1

a
(k)
l

∫

φ(E)

χ
φ(E

(k)
l )

(y)dλn

=

mk∑

l=1

a
(k)
l λn

(
φ(E

(k)
l )

)

=

mk∑

l=1

a
(k)
l

∫

E
(k)
l

| det φ′(x)|dλn [by Theorem 3.1]

=

∫

E

uk(x)| det φ′(x)|dλn (k ∈ N).

Applying the Monotone Convergence Theorem to both sides we obtain
∫

φ(E)

u
(
φ−1(y)

)
dλn =

∫

E

u(x) | det φ′(x)|dλn.

To prove (3.4) for any measurable subset F ⊆ E, we note that the product u · χF is a
non-negative measurable function. Again using that χφ(F ) = χF ◦ φ−1, we obtain

∫

φ(F )

u
(
φ−1(y)

)
dλn =

∫

φ(E)

u
(
φ−1(y)

)
χφ(F )(y)dλn

=

∫

φ(E)

u
(
φ−1(y)

)
χF

(
φ−1(y)

)
dλn

=

∫

E

u(x)χF (x)| det φ′(x)|dλn

=

∫

F

u(x)| det φ′(x)|dλn.

2 To begin with, we note that the measurability of v is equivalent to the measurability
of both v+ and v− 6). Analogously as in part 1, we see that the functions v ◦ φ−1 and
v± ◦ φ−1 are measurable.

6)t+ := max{t, 0}, t− := max{−t, 0}, t ∈ R.
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Applying (3.4) to v+ and v− gives

(3.5’)

∫

φ(E)

v±
(
φ−1(y)

)
dλn =

∫

E

v±(x)| det φ′(x)|dλn.

We obtain: the functions v+ ◦ φ−1 are integrable over φ(E) if and only if the func-
tion v+(·)| det φ′(·)| and v−(·)| det φ′(·)| are integrable over E. Thus, if either of these
conditions is satisfied, (3.5) follows from (3.5’).

3.3 Corollary: Let E ⊆ Rn be open and let φ : E → Rn be injective and locally Lip-
schitz. Let

F0 := {x ∈ E | det φ′(x) = 0}.
Then

λn(φ(F0)) = 0.

Proof The function x 7→ detφ′(x) is defined for a. e. x ∈ E (cf. Theorem I above). It
can be extended to a measurable function on all of E. Hence F0 is measurable.

The claim follows from Theorem 3.2/1.

Remarks 1. Our approach to the Change of Variables Formula (Theorem 3.2) is
similar to that of ÃLojasiewicz [11; pp. 199-201] 7). The same idea of proof of that
theorem is developed in Rudin [19; pp. 153-155].

Entirely different proofs of Theorem 3.2 which do not make use of the Radon/Nikodym
theorem, can be found in Gariepy/Ziemer [5; pp. 326-335] and Leinfelder/Simader
[10], Simader [21] (φ injective and locally bi-Lipschitz).

2. The Change of Variables Formula continues to hold when φ is only approximately
totally differentiable a. e. in E. Then the Banach indicatrix of φ (= the counting func-
tion of φ over E) is involved in this formula (cf. HajÃlasz [8], Giaquinta/Modica/Sou-
ček [6; pp. 75-79, 215-216, 219-220]).

3. The statement of Corollary 3.3 is a variant of Sard’s theorem 8). This theorem is
true without the injectivity of the mapping φ (cf. e. g. Gariepy/Ziemer [5; pp. 210-211]
(n = 1) and Lukeš/Malý [12; p. 116]).

The following result has been proved by Varberg [24] (cf. also the literature quoted
therein).

7)Essentially the same approach to this theorem within the realm of C1-mappings is presented in
Günther, P. ; Beyer, K.; Gottwald, S.; Wünsch, V.: Grundkurs Analysis, Teil 3. BSB B.G.
Teubner Verlagsgesellschaft, Leipzig 1973; pp. 96-99.

8)Sard, A.: The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc. 48
(1942), 883-890.
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Let E ⊆ Rn and let φ : E → Rn be a mapping. Let F ⊆ E be any measurable subset
where φ is differentiable. Then the set φ(F ) is measurable and

λn(φ(F )) ≤
∫

F

|detφ′(x) | dλn.

This result has been established for locally Lipschitz mappings in Claesson/Hör-
mander [1; p. 60].

4. A presentation of the change of voriables formula within the framework of area and
coarea formulas can be found in Evans/Gariepy [3].

4. Transformation of Lp Functions

Throughout this section, let 1 ≤ p < +∞.

4.1 Theorem
1. Let E ⊆ Rn be open. Let φ : E → Rn be injective and locally Lipschitz. Then, for
every u ∈ Lp(E),

u ◦ φ−1 : φ(E) → R̄ is measurable,

‖u ◦ φ−1‖Lp(φ(E)) ≤
(

ess sup | det φ′|
) 1

p‖u‖Lp(E).
E

2. Let E ⊆ Rn. Suppose that φ : E → Rn satisfies the following conditions:

1) φ(E) is open,

2) φ is injective,

3) φ−1 is locally Lipschitz 9).

Then, for every v ∈ Lp(φ(E)),

v ◦ φ : E → R̄ is measurable,

‖v ◦ φ‖Lp(E) ≤
(
ess sup | det(φ−1)′|

) 1
p‖v‖Lp(φ(E))

φ(E)

Proof 1 Let u ∈ Lp(E). By Theorem 3.2/1, the functions u ◦ φ−1 and |u ◦ φ−1|p are
measurable. From (3.4) it follows that

9)From 1), 2), 3) it follows that E is Borel.
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∫

φ(E)

|u
(
φ−1(y)

)
|pdλn =

∫

E

|u(x)|p| det φ′(x)|dλn

≤ ess sup | det φ′|
∫

E

|u(x)|pdλn.
E

Whence the claim.

2 Define
E1 := φ(E), φ1 := φ−1.

Then E1 is open, and φ1 is injective and locally Lipschitz.
Let v ∈ Lp(E1). By 1,

v ◦ φ−1
1 : φ1(E1) → R̄ is measurable,

‖v ◦ φ−1
1 ‖Lp(φ1(E1)) ≤

(
ess sup | det φ′1|

) 1
p‖v‖Lp(E1).

E1

The second part of Theorem 4.1 is proved.

4.2 Corollary Let E ⊆ Rn be open. Let φ : E → Rn be bi-Lipschitz. Then:

u ∈ Lp(φ(E)) ⇔ u ◦ φ ∈ Lp(E);

there holds
c1‖u‖Lp(φ(E)) ≤ ‖u ◦ φ‖Lp(E) ≤ c2‖u‖Lp(φ(E)),

where

c1 =
(
ess sup | det φ′|

) 1
p

E

c2 =
(
ess sup

1

| det φ′|
) 1

p

E

Remarks 1. The following conditions on E and φ are sufficient for φ(E) to be open.

Let E ⊆ Rn be open. Let φ : E → Rn be injective and continuous. Then φ(E) is open.

This statement is the well-known Brouwer Open Mapping Theorem. Proofs of
this theorem can be found in Deimling [2; p. 23], Greenberg/Harper [7; p. 110] and
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Simader [21] (φ injective and locally Lipschitz).

2. Transformation of Lp-functions The following result is a variant of Theorem 4.1/2.

Let E, F ⊆ Rn be open sets. Let φ : E → F be a bijective mapping such that

1) φ is continuous on E;

2) |φ−1(y)− φ−1(ȳ)|∞ ≤ L1|y − ȳ|∞ ∀y, ȳ ∈ F (L1 =const).

Then, for every v ∈ Lp(F ) (1 ≤ p < +∞),

v ◦ φ : E → R̄ is measurable,

‖v ◦ φ‖Lp(E) ≤
(

(2L1)
n

λn(B1)

)1/p

‖v‖Lp(F ).

This result has been proved in Nečas [15; pp. 65-66] by using the mollification vρ of

v, estimating the Riemann sums for the integral

∫

E

|vρ ◦φ|pdx and then carrying out the

passage to limit ρ → 0.

Appendix: More about Lipschitz Mappings

A.1 Extension of Lipschitz Mappings

Let E ⊂ Rm be a set.

1.1 Let ‖ · ‖ be any norm on Rm. Let φ : E → R be Lipschitz, i.e.

|φ(x)− φ(y)| ≤ L‖x− y‖ ∀x, y ∈ E (L = const).

Define
φ̃(x) := sup

ξ∈E
(φ(ξ)− L‖x− ξ‖), x ∈ Rm.

Then
φ̃(x) = φ(x) ∀x ∈ E, |φ̃(x)− φ̃(x)| ≤ L‖x− y‖ ∀x, y ∈ Rm.

Indeed, the first property of φ̃ follows immediately from its definition. To establish
the second one, let x, y ∈ Rm. For any ξ ∈ E,
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φ(ξ)− L‖x− ξ‖ = (φ(ξ)− L‖y − ξ‖) + L‖y − ξ‖ − L‖x− ξ‖
≤ φ̃(y) + L‖x− y‖.

Thus
φ̃(x) ≤ φ̃(y) + L‖x− y‖.

Interchanging the role of x and y, the second property of φ̃ is easily seen.
Hence, without any loss of generality, real-valued Lipschitz mappings can be

assumed to be defined on the whole Rm.
Next, let φ : Rm → R be Lipschitz with constant L. The mapping φ can be ”‘cut

off”’ as follows:

φ̄(x) :=




−L if φ(x) ≤ L,
φ(x) if −L < φ(x) < L,
L if φ(x) ≥ L.

Then
|φ̄(x)| ≤ L ∀x ∈ Rm, |φ̄(x)− φ̄(y)| ≤ L‖x− y‖ ∀x, y ∈ Rm.

1.2 Let both Rm and Rn (n > 1) be furnished with the norm | · |∞ 10). Let φ : E → Rn

be Lipschitz, i.e.

|φ(x)− φ(y)|∞ ≤ L|x− y|∞ ∀x, y ∈ E (L = const < +∞).

Writing φ = (φ1, . . . , φn), it follows that

|φi(x)− φi(y)| ≤ L|x− y|∞ ∀x, y ∈ E (i = 1, . . . , n).

Let φ̃i : Rm → R (i = 1, . . . , n) denote the extension of φi according to 1.1. We
obtain a mapping φ̃ = (φ̃1, . . . , φ̃n) with the following properties: φ̃(x) = φ(x) for all
x ∈ E, and

|φ̃(x)− φ̃(y)|∞ = max{|φ̃1(x)− φ̃1(y)|, . . . , |φ̃n(x)− φ̃n(y)|} ≤ L|x− y|∞
for all x, y ∈ Rm.

1.3 Let now both Rm and Rn (n > 1) be furnished with the (Euclidean) norm | · |.
Let φ : E → Rn be Lipschitz with constant L. Again writing φ = (φ1, . . . , φn) we obtain

10)Recall that |x|∞ := max{|x1|, . . . , |xk|}, x = (x1, . . . , xk) ∈ Rk
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|φi(x)− φi(y)| ≤ |φ(x)− φ(y)| ≤ L|x− y| ∀ x, y ∈ E (i = 1, . . . , n).

By 1.1, each component φi can be extended to a Lipschitz mapping φ̃i : Rm → R
with the same constant L (i = 1, . . . , n). It follows

|φ̃(x)− φ̃(y)| =
( n∑

i=1

(φi(x)− φi(y))2

)1/2

≤ √
nL|x− y|

for all x, y ∈ Rm.

We note a sharper extension result. To this end, for a Lipschitz mapping φ : E → Rn,
define

Lip(φ) := sup

{ |φ(x)− φ(y)|
|x− y|

∣∣∣ x, y ∈ E, x 6= y

}
.

The following result holds.

A1. Theorem (Kirszbraun11)) Let φ : E → Rn be Lipschitz. Then there exists a
mapping φ̂ : Rn → Rn such that

φ̂(x) = φ(x) ∀x ∈ E, Lip(φ̂) = Lip(φ).

A.2 Equivalent Characterization of the Local Lipschitz Conti-
nuity

We have the following

A2. Theorem Let E ⊆ Rm be open. For a mapping φ : E → Rn the following two
statements are equivalent:

1◦ φ is locally Lipschitz;

11)See Kirszbraun, M. D.: Über die zusammenziehende und Lipschitzsche Transformationen. - Fund.
Math. 22(1934), 77-108. This result is also proved in Federer, H.: Geometric measure theory. -
Springer-Verlag, Berlin 1969 (p. 201). We note that the example on p. 202 of this book shows that
Kirszbraun’s theorem fails when Rm is furnished with the norm | · |∞, while Rn is furnished with the
Euclidean norm | · |.

An extension theorem for real-valued, uniformly continuous functions with a rather general modulus
of continuity is proved in Dibenedetto, E.: Real analysis. Birkhäuser, Boston, Basel 2002 (pp.
197-198).
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2◦ for every x ∈ E there exists a ball Br(x) such that

Br(x) ⊂ E, sup
y,y′∈Br(x)

y 6=y′

|φ(y)− φ(y′)|
|y − y′| < +∞.

A.3 Lipschitz Continuity and Differentiability a. e.

Theorem I (Chap. 3) has been proved by Rademacher [17] under conditions on φ which
are slightly weaker than the Lipschitz continuity 12).

There are several different proofs of Rademacher’s theorem. Krushkov [9] and
Morrey [14; p. 65] proved this theorem by using the notion of weak derivative and the
mollification of integrable functions. By using only techniques from Lebesgue measure
and integration theory, Rademacher’s theorem has been proved by Saint-Pierre [20]
and Nekvinda/Zaj́ıček [16] (cf. also Zaj́ıček [25]).

Rademacher’s theorem has been sharpened by Stepanov [22]:

Let E ⊆ Rm be open. Let the mapping φ : E → R satisfy

E0 :=

{
x ∈ E

∣∣∣ lim sup
y∈E,y→x

|φ(y)− φ(x)|
|y − x| < +∞

}
6= ∅.

Then φ is differentiable a. e. in E0.

Proofs of Stepanov’s theorem may be also found in ÃLojasiewicz [11; pp. 208-
209] and Malý [13]. The following weaker version of this theorem has been proved by
Väisälä (Lectures on n-dimensional quasiconformal mappings. Lecture Notes Math.
229, Springer-Verlag 1971; pp. 97-99):

Let E ⊆ Rm be open. Let φ : E → R. Assume

1) φ is continuous on E;

2) the partial derivatives
∂φ

∂xi

exist a. e. on E (i = 1, . . . , m);

3) lim sup
y∈E,y→x

|φ(y)− φ(x)|
|y − x| < +∞ for a. e. x ∈ E.

Then φ is differentiable a. e. on E.

12)In [17; p. 340], Rademacher remarked that C. Carathéodory obtained a certain version of this
differentiability result. Cf. Carathéodory, C.: Vorlesungen über reelle Funktionen. B. G.
Teubner, Leipzig, Berlin 1917; 2. Aufl. 1927; reprinted: Chelsea Publ. Comp., New York 1968.
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Remark Let E ⊆ Rn be open. Let u ∈ C1(E). Given any x ∈ E, we fix a cube Qr(x)
such that Qr(x) ⊂ E. Then, for all y, y′ ∈ Qr(x),

|u(y)− u(y′)| =
∣∣∣

n∑
i=1

1∫

0

Diu(y′ + t(y − y′))dt(yi − y′i)
∣∣∣

≤ max
z∈Qr(x)

|∇u(z)||y − y′|.

Thus, u is locally Lipschitz in E (cf. Theorem A.2).
We finally note that a C1-function with uniformly bounded gradient can fail to be

(globally) Lipschitz. Indeed, there exist a domain E ⊂ R2 and a function u ∈ C1(E)
such that

• sup
x∈E

|∇u(x)| < +∞,

• there exist xk, x̂k ∈ E (k ∈ N) such that:

u(xk)− u(x̂k) = const 6= 0 ∀ k ∈ N, |xk − x̂k| → 0 as k →∞.

Whence |u(xk)− u(x̂k)|
|xk − x̂k| → +∞ as k →∞.
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