
ERROR REDUCTION AND CONVERGENCE FOR ANADAPTIVE MIXED FINITE ELEMENT METHODCARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3Abstrat. An adaptive mixed �nite element method (AMFEM)is designed to guarantee an error redution, also known as satu-ration property: After eah re�nement step, the error for the �nemesh is stritly smaller than the error for the oarse mesh up toosillation terms. This error redution property is established herefor the Raviart-Thomas �nite element method with a redutionfator � < 1 uniformly for the L2 norm of the ux errors. Our re-sult allows for linear onvergene of a proper adaptive mixed �niteelement algorithm with respet to the number of re�nement levels.The adaptive algorithm does surprisingly not require any partiularmesh design unlike the onforming �nite element method. The newarguments are a disrete loal eÆieny and a quasi-orthogonalityestimate. The proof does neither rely on duality nor on regularity.1. IntrodutionAn adaptive �nite element method onsists of suessive loops of thefollowing sequene(1.1) SOLVE! ESTIMATE! MARK! REFINE:The a posteriori error ontrol in the step ESTIMATE has been de-veloped over the last deades (f. [1, 3, 6, 12, 17℄ and the referenestherein). The onvergene analysis of the full algorithm (1.1), however,is restrited to the onforming �nite element method [15, 16℄.This paper investigates onvergene properties of suh a loop for themixed �nite element method (MFEM) in a 2D model Poisson problem(1.2) f +�u = 0 in 
 and u = 0 on �
:Given a (oarse) mesh TH , a shape-regular triangulation of 
 into tri-angles, pH and uH approximate the exat ux p := ru 2 H(div;
)and the exat displaement �eld u 2 H10 (
) of (1.2). In step SOLVEone omputes (pH ; uH) 2 RT0(TH)� P0(TH) that satis�es the disreteproblem [(�; �)L2 abbreviates the L2 salar produt℄(pH ; qH)L2(
) + (uH ; div qH)L2(
) = 0 for all qH 2 RT0(TH);(div pH ; vH)L2(
) = �(f; vH)L2(
) for all vH 2 P0(TH):(1.3) 1



2 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3��� ��� ��� ��� ��� ����� ��� ����� ��� ������� ��� ������� ��� �������T bise(T) bise2`(T) bise2r(T) bise3(T) red(T) bise5(T)Figure 1. Possible re�nements of one triangle T in thestep REFINE.Details on the lowest-order Raviart-Thomas �nite element spae RT0(TH) [8℄ an be found below in Setion 2; P0(TH) denotes the pieewiseonstants. MATLAB implementations and doumentations of the stepSOLVE are provided in [5℄. In this paper, for the ease of the disussion,the step ESTIMATE is the postproessing to ompute the residual-based expliit error estimator [2, 9, 18℄(1.4) �H := (XE2EH �2E)1=2 with �2E := hEk[pH ℄Ek2L2(E):Here and throughout, [ph℄ denotes the jump [pH ℄ := pH jT+�pH jT� of thedisrete ux over an interior edge E := T+\T� of length hE := diam(E)shared by the two neighboring (losed) triangles T� 2 TH . Furthermorelet f!E := j!Ej�1 R!E f(x) dx denote the integral mean of f over thepath !E := int(T+ [ T�) of area j!Ej = jT+j+ jT�j and let EH denotethe set of all interior edges in TH .The bulk riterion in the step MARK was introdued and analyzed in[7, 11, 15℄ for displaement-based AFEMs. Here, it leads to a seletionof a subset M of edges EH suh that(1.5) ��2H � XE2M �2Efor some universal onstant 0 < � < 1. It ame muh as a surprise tothe authors that the step REFINE does not need any further spei�-ation or restrition. It suÆes when the output of REFINE satis�esthat, for eah marked edge E 2 M, its midpoint mid(E) is a new nodein the new triangulation Th.Typial re�nements of one triangle T 2 TH are displayed in Figure 1.We further set hT := diam(T ) and refer to kHfHkL2(
) as the �rst-order term given by(1.6) kHfHkL2(
) := � XT2TH h2T jT j�1j ZT f(x)dxj2�1=2



ERROR REDUCTION AND CONVERGENCE FOR AMFEM 3while the data osillations read(1.7) osH := (XE2EH h2Ekf � f!Ek2L2(!E))1=2:It is the milestone of this paper to prove the following error redutionproperty (1.8).Theorem 1.1 (error redution property). Let ph and pH be the MFEMux approximations to p with respet to Th and TH . Then, there existpositive onstants � < 1 and C depending only on � and on the shaperegularity of Th and TH suh that(1.8) kp� phk2L2(
) � �kp� pHk2L2(
)+C�kHfHkL2(
)+osH � osH :The remaining part of this paper is organized as follows. Setion 2disusses several aspets of AMFEM as well as partiularities and gen-eralizations of our analysis. Setion 3 presents the neessary details onthe notation. The key ingredients of the proof are the strit disreteloal eÆieny, the quasi-orthogonality, and an estimate for the uxes,of Setion 4 and 5. The proof of the error redution property (1.8)onludes the paper in Setion 6.2. CommentsSome remarks are given before the subsequent setions are devotedto the tehnial details of the proof of Theorem 1.1.2.1. Data osillations. For f 2 H1(
), we note that the data osil-lation (1.7) is of quadrati order and so of higher order when omparedto the �rst-order errors kp�pHkH(div) or ku�uHkL2(
) or the �rst-orderdata term kHfHkL2(
).Hene, Theorem 1.1 asserts that the error on the �ne mesh is boundedby a fator �1=2 times the error on the oarse mesh plus higher-orderterms.We also point out that the osillations (1.7) of f are path-orientedwhile those in the reliability and eÆieny estimate of Theorem 3.2below are element-oriented (and so possibly smaller than (1.7)).It is an important property of the data osillation that the mesh-sizesenter expliitly. Given 0 < # < 1 and a oarse mesh TH , it is thereforeeasy to design a �ne mesh Th with osillations osh � # osH whereosh and osH denote the data osillation of the �ne and oarse mesh,respetively. The same remark applies to kHfHkL2(
).



4 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;32.2. A onvergent AMFEM. In order to guarantee linear onver-gene in terms of the re�nement levels, suppose that (1.1) is employedsuessively. At the re�nement level j, there is an MFEM solution pjwith error ej := kp�pjkL2(
) with respet to a mesh Tj and and a dataosillation osj suh that (1.8) reads(2.1) e2j+1 � � e2j + C dj for j = 0; 1; 2; : : :where dj abbreviates the data term (kHjfHjkL2(
) + osj) osj withrespet to Tj. Moreover, suppose that MARK provides (1.5) plus (pos-sibly) additional re�nements to guarantee(2.2) dj+1 � % dj for j = 0; 1; 2; : : :with some universal onstant 0 < % < 1 (this is always possible asindiated at the end of the previous subsetion).Mathematial indution proves that (2.1)-(2.2) implye2j � �j e20 + Cd0 j�1Xk=0 �k%j�1�k and dj � d0%jand so R-linear onvergene (with any redution fator between maxf�,%g1=2 and 1):(2.3) e2j � �j e20 + Cd0 jmaxf�; %gj�1 for j = 1; 2; : : :2.3. Numerial Experiments. Numerial experiments throughoutthe literature are frequently based on the element-oriented maximumriterion in the step MARK, i.e., one marks an element T if the esti-mator �T assoiated with T satis�es Tol � �T and Tol is � times thelargest of suh ontributions. In the ontext of AMFEM, data osil-lations have not been involved so far. We refer to [5℄ for algorithmidetails and MATLAB routines and to [2, 10, 18, 13℄ for empirial ex-amples.It is the authors' overall impression that the AMFEM is very robustin hanging algorithmi details in pratie. The numerial experimentsin [15, 16℄ with a realization of (2.1)-(2.2) from the previous subsetionfor onforming AFEM antiipate that the new algorithms perform asoptimal as the frequently employed ones. But there is no mathematialjusti�ation for that.2.4. Optimal Complexity. The adaptive algorithm is linear onver-gent with respet to the number of re�nement steps. This does notimply any ontrol of the number of degrees of freedom. Based on addi-tional oarsening steps, there exists an algorithm of optimal omplexityfor the onforming AFEM [7℄. The authors antiipate that their results



ERROR REDUCTION AND CONVERGENCE FOR AMFEM 5arry over to the present situation, beause it is the universal oarsen-ing step that yields the ontrol of the degrees of freedom. Numerialwisdom, however, tells that oarsening is not needed in pratie leavingan open gap between theory and pratie.2.5. Generalizations. The arguments below are illustrated by a sim-ple 2D model example only, but they apply to more general boundaryvalue problems as well. In the presene of Neumann boundary dataor for non-onstant oeÆients, the data osillations apply to suhterms as well. The arguments are not restrited to 2D; for instane,Lemma 3.1 also holds true in 3D [5℄.The use of alternative re�nement indiators [10, 18℄ is also possible aslong as they are globally reliable and loally ontrolled by the residual-based estimators.2.6. Uzawa Algorithms. The well-established Uzawa algorithm forthe iterative solution of the mixed problem on the ontinuous levelonsists of two steps: a Poisson solve and and update formula. Thesubstitute of the Poisson solve by some AFEM allows a perturbation ofthe onvergene on the ontinuous level [4℄. The advantage is that evenunstable �nite element shemes an be employed. The disadvantageis the possibly slow onvergene of the Uzawa algorithm relative tomultilevel solver [13℄.3. Notation and PreliminariesThroughout this paper suppose that TH and Th are two shape regulartriangulations of the planar Lipshitz domain 
 with polygonal bound-ary �
 into triangles where Th is some re�nement of TH suh that there�nement T jTh := fK 2 Th : K � Tg of eah element T in TH isdepited in Figure 1. Moreover, let pH 2 RT0(TH) denote the disreteMFEM solution on the oarse triangulation TH . A regular triangula-tion T in triangles, d = 2, is a set of losed triangles T of positive areajT j suh that any two distint triangles T1 and T2 are either disjointT1 \ T2 = ; or share exatly one vertex z, T1 \ T2 = fzg, or have oneedge E = T1 \ T2 in ommon. The set of all edges is denoted by E ,the set of nodes is denoted by N . Eah edge is assoiated to a lengthhE := diam(E) and a unit normal and unit tangential vetor �E and�E. The subindies H and h refer to the oarse and �ne triangulationTH and Th, respetively. The words mesh and triangulation are usedas synonyms of eah other.



6 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3The Raviart-Thomas MFEM spae and the pieewise onstant spaereadRT0(TH) := fqH 2 H(div;
) : 8T 2 TH 9a 2 R2 9b 2 R 8x 2 T;qH(x) = a + b xg;P0(TH) := fvH 2 L1(
) : 8T 2 TH 9a 2 R 8x 2 T; vH(x) = ag:[Analogous notation for Th is not displayed℄. The Crouzeix-RaviartFEM spae on TH readsV NH := fvH 2 P1(TH) : vH ontinuous at mid(E) for E 2 EHand vH(mid(E)) = 0 for E 2 E with E � �
g:Sine V NH 6� H1(
), the distributional gradient of vh 2 V NH is di�erentfrom its elementwise gradient DHvH 2 P0(TH)d.Let uNH denote the Crouzeix-Raviart FEM solution of(DHuNH ; DHvNH )L2(
) = (fH ; vNH )L2(
) for all vNH 2 V NH :The disrete uxes pNH := DHuNH and pH from (1.3) are related.Lemma 3.1 ([14, 5℄). Let fT� := RT� f(x) dx=jT�j and let xT� :=mid(T�) denote the baryenter of T�. Then there holdspH jT�(x) = DHuNH jT� � 12fT�(x� xT�) for x 2 T�: �In this ontext, fH 2 P0(TH) and fh 2 P0(Th) denote the pieewiseintegral means, e.g., fH jT := fT := RT f(x)dx=jT j for T 2 TH .Theorem 3.2 (reliability and eÆieny [2, 9℄). With (1.4) and (1.7),there holds �H . kp� pHkL2(
) . �H + osH :Here and throughout this paper, A . B abbreviates A � CB witha mesh-size independent, generi onstant C > 0. Finally, A � Babbreviates A . B . A. The paper adopts standard notation forLebesgue and Sobolev spaes and norms.4. Disrete Loal EffiienyThis setion provides the �rst of two main arguments for error re-dution. Unlike for onforming AFEM, there is no request on furtherrestrition in REFINE.



ERROR REDUCTION AND CONVERGENCE FOR AMFEM 7Theorem 4.1 (Strit disrete loal eÆieny). Suppose that E = �T+\�T� 2 EH is an edge in TH [shared by the triangles T+; T� 2 TH ℄ andbiseted in the re�nement, i.e. E = E1 [ E2 62 Eh and mid(E) =E1 \ E2 2 Nh for two distint E1; E2 2 Eh. Then there holdsh1=2E k[pH ℄kL2(E) . kph � pHkL2(!E) + hEkf � f!EkL2(!E):The remaining part of this setion is devoted to the proof of Theo-rem 4.1. Observe that [pH ℄ � �E = 0 for the unit normal vetor �E?Esine pH 2 H(div;
). Therefore, denoting by �E?�E the tangentialvetor, the jump[pH ℄ := (pH jT+ � pH jT�) along E = T+ \ T�(and formally [pH ℄ := 0 along E � �
) satis�esk[pH ℄kL2(E) = k[pH ℄ � �EkL2(E):Taking into aount that [pH ℄ � �E is an aÆne funtion along the edgeE, we have([pH ℄ � �E)(x) = � + � � (x�mid(E)) for all x 2 Ewith �xed � 2 R and � 2 R2 .Lemma 4.2. There holdsh1=2E k�kL2(E) . kph � pHkL2(!E):Proof. Let 'E denote the nodal basis funtion in the onforming P1FEM spae with respet to the node mid(E) and with respet to the�ne mesh Th. Then, qh := Curl'E belongs to P0(Th) \H(div;
) withdiv qh � 0. Sine � = RE[pH ℄ � �E ds=hE, one deduesZE �'E ds = ZE[pH ℄ � �E'E ds = (pH ; qh)L2(
)with an elementwise integration by parts. Sine qh = Curl'E 2RT0(Th) is an admissible test funtion, the disrete MFEM problemwith respet to the �ne mesh Th redues to(ph; qh)L2(
) = 0:Altogether, one obtains the key identity� ZE 'E ds = (pH � ph; qh)L2(
):The shape regularity allows the estimateshE . ZE 'E ds and kqhkL2(!E) . 1:



8 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3The foregoing key identity therefore leads to the assertion:hEk�k2L2(E) = h2E(ZE 'E ds)�2(� ZE 'E ds)2. (pH � ph; qh)2L2(
)� kqhk2L2(!E)kph � pHk2L2(!E). kph � pHk2L2(!E): �Lemma 4.3. There holdsj�j � 12(jT+j�1 + jT�j�1)1=2kf � f!EkL2(!E):Proof. The di�erenes of the representation formula of Lemma 3.1 forx 2 E lead to � = 12(fT� � fT+) �E 2 R2 :Consider the pieewise onstant funtiong(x) := 8<: �jT+j�1 for x 2 T+;+jT�j�1 for x 2 T�;0 for x 62 !Eand notie R!E g(x) dx = 0. The de�nition of the pieewise integralmeans fT� := RT� f(x) dx=jT�j then implies the identityfT� � fT+ = (g; f)L2(!E):Sine (g; 1)L2(
) = 0 and f!E is onstant on !E,fT� � fT+ = (g; f � f!E)L2(!E):Cauhy's inequality and kgk2L2(!E) = jT+j�1+jT�j�1 onlude the proof:2j�j � (jT+j�1 + jT�j�1)1=2kf � f!EkL2(!E): �The proof of Theorem 4.1 immediately follows from Lemma 4.2 and4.3: Sine � and � � (� �mid(E)) are L2(E) orthogonal, there holdshEk[pH ℄k2L2(E) = hEk[pH ℄ � �Ek2L2(E)= hEk�k2L2(E) + hEk� � (� �mid(E))k2L2(E). kph � pHk2L2(!E) + h�1E k � �mid(E))k2L2(E)kf � f!Ek2L2(!E): �



ERROR REDUCTION AND CONVERGENCE FOR AMFEM 95. Quasi-OrthogonalityThe seond main argument for error redution is a generalization ofthe Galerkin orthogonality in the onforming AFEM [11, 15, 16℄.Theorem 5.1 (Quasi-orthogonality). There holdsj(p� ph; pH � ph)L2(
)j . kH(fh � fH)kL2(
)� �kp� phkL2(
) + kp� pHkL2(
) + kHfHk�L2(
) :Theorem 5.1 is an immediate onsequene of Lemma 5.4 and 5.5below. Throughout the rest of this setion set pNh := DhuNh for theCrouzeix-Raviart FEM solution uNh in V Nh with respet to Th.Lemma 5.2. There holds(p� pNh ; pH � ph)L2(
) = (u� uNh ; fH � fh)L2(
):Proof. Sine p = Du, � div pH = fH , and � div ph = fh, the assertionfollows from an elementwise integration by parts. The edge ontribu-tions vanish indeed: Given any E 2 Eh the resulting boundary termover E reads ZE[u� uNh ℄(pH � ph) � �E ds:This is zero beause of RE[u � uNh ℄ ds = 0 by onstrution of V Nh andsine pH ��E and ph��E are ontinuous from both sides of E and onstantalong E. �Lemma 5.3. There holdsj(u� uNh ; fH � fh)L2(
)j . kH(fh � fH)kL2(
)� �kp� pNHkL2(
) + kpNh � pNHkL2(
)�:Proof. To estimate (u�uNh ; fH�fh)L2(
) notie that RT (fH�fh) dx = 0for any T 2 TH . Hene, for some eNH 2 P0(TH) witheNH jT := ZT (u(x)� uNH(x)) dx=jT jand eNH := u� uNH a Poinar�e inequality on T shows in totalj(u� uNH ; fH � fh)L2(
)j = j(eNH � eNH ; fH � fh)L2(
)j� 1=� kp� pNHkL2(
)kH(fh � fH)kL2(
):The remaining term reads (uNH � uNh ; fH � fh)L2(
) and is analyzedseparately for eah T 2 TH . In fat, let V Nh (T ) := fvhjT : vh 2 P1(ThjT )



10 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3ontinuous at mid(E) for all E 2 Ehg and notie uNH � uNh 2 V Nh (T ).Moreover, for any vh 2 V Nh (T ) set%1(vh) := minw2R kvh � wkL2(T ) and %2(vh) := hTkDhvhkL2(T ):This de�nes two semi-norms %1, %2 on the �nite-dimensional spaeV Nh (T ). Consequently, %1 � %2. Therein, the equivalene onstantsare independent of hT aording to a saling argument (transform toa referene triangle Tref �rst and notie that there exists a �nite num-ber of possible re�nements only, ompute the onstants, and transformbak). In partiular, for some average  := RT (uNH � uNh ) dx=jT j,j(uNh � uNH; fh � fH)L2(T )j = j(uNH � uNh � ; fH � fh)L2(T )j� %1(uNH � uNh )kfh � fHkL2(T ). kDh(uNH � uNh )kL2(T )khT (fh � fH)kL2(T ):The sum over all T 2 TH shows thatj(uNH � uNh ; fH � fh)L2(
)j . kpNh � pNHkL2(
) kH(fh � fH)kL2(
): �Lemma 5.4. There holdsj(p� pNh ; pH � ph)L2(
)j . kH(fh � fH)kL2(
)� �kp� phkL2(
) + kp� pHkL2(
) + kHfHkL2(
) + khfhkL2(
)�:Proof. The ombination of Lemma 5.2|5.3 readily givesj(p� pNh ; pH � ph)L2(
)j . kH(fh � fH)kL2(
)� �kp� pNHkL2(
) + kpNh � pNHkL2(
)�:An immediate onsequene of Lemma 3.1 is that��� kp� pNHkL2(
) � kp� pHkL2(
) ���2 � XT2TH jfT j2k � �xTk2L2(T )� kHfHk2L2(
):A similar estimate also holds true with H replaed by h. The ombina-tion of those two estimates with a triangular inequality onludes theproof of the lemma. �Lemma 5.5. There holdsj(pNh � ph; pH � ph)L2(
)j . khfhkL2(
) kh(fh � fH)kL2(
):



ERROR REDUCTION AND CONVERGENCE FOR AMFEM 11Proof. Let xH 2 P0(TH ;R2) and xh 2 P0(Th;R2) denote the pieewiseenter of inertia, e.g. xH jT := mid(T ) for T 2 TH . Then, Lemma 3.1results in pH(x)� pNH(x) = �12fH (x� xH) for x 2 
plus a orresponding equation with H replaed by h. Then,(pNh � ph; pH � ph)L2(
) = 12(fh(� � xh); pNH � pNh )L2(
)+ 14(fh(� � xh); fh(� � xh)� fH(� � xH))L2(
):The �rst term on the right-hand side vanishes beause pNH � pNh isonstant and RT (x� xT ) dx = 0 for eah T 2 Th. The same argumentshows (fh(� � xh); xH � xh)L2(
) = 0. There remains4(pNh � ph; pH � ph)L2(
) = (fh(� � xh); (fh � fH)(� � xh))L2(
):An elementwise Cauhy inequality in the previous identity onludesthe proof. �6. Proof of Error Redution PropertyThis setion is devoted to the proof of the error redution property(1.8) in Theorem 1.1.The proof starts with the reliability from Theorem 3.2 and ontinueswith the bulk riterion (1.5), i.e.,(6.1) �2 := XE2EH hEk[pH ℄k2L2(E) . XE2MhEk[pH ℄k2L2(E)for the set M of marked edges. This leads tokp� pHk2L2(
) . �2 + os2H . XE2MhEk[pH ℄k2L2(E) + os2H :The disrete loal eÆieny of Theorem 4.1 plus the �nite overlap ofthe edge-pathes (!E : E 2 EH) showkp� pHk2L2(
) . XE2M kph� pHk2L2(!E) + os2H � kph� pHk2L2(
) + os2H :With some onstant 1, this readskp� pHk2L2(
) � 1kph � pHk2L2(
) + 1 os2HOn the other hand,kph� pHk2L2(
) = kp� pHk2L2(
)�kp� phk2L2(
)� 2(p� ph; ph� pH)L2(
)



12 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3and the last term an be bounded with the quasi-orthogonality. Withsome onstant 2, Theorem 5.1 leads tokph � pHk2L2(
) � kp� pHk2L2(
) � kp� phk2L2(
)+ 2(kp� phkL2(
) + kp� pHkL2(
) + kHfHkL2(
)) osH :The ombination with the preeding inequality plus a Young inequalityyield1kp� phk2L2(
)� (1 � 1)kp� pHk2L2(
) + 1 os2H+ 21�kp� phkL2(
) + kp� pHkL2(
) + kHfHkL2(
)� osH� 14kp� phk2L2(
) + (1 � 1=2)kp� pHk2L2(
)+ 4�kHfhkL2(
) + osH� osH :This proves(1�1=4)kp�phk2L2(
) � (1�1=2)kp�pHk2L2(
)+4(kHfhkL2(
)+osH) osHand so the theorem with � = (1 � 1=2)=(1 � 1=4) and C = 4=(1 �1=4). �Referenes[1℄ Ainsworth, M. and Oden, J.T. (2000). A Posteriori Error Estimation in FiniteElement Analysis. Wiley, Chihester.[2℄ Alonso, A. (1996). Error estimators for a mixed method. Numer. Math., 74,4, 385{395.[3℄ Babuska, I. and Strouboulis, T. (2001). The Finite Element Method and itsReliability. Clarendon Press, Oxford.[4℄ B�ansh, E. and Morin, P. and Nohetto, R.H. (2002). An adaptive Uzawa FEMfor the Stokes problem: Convergene without the inf-sup ondition. SIAM J.Numer. Anal., 40, 4, 1207{1229.[5℄ Bahriawati, C. and Carstensen, C. Three Matlab implementations ofthe lowest-order Raviart-Thomas MFEM with a posteriori error ontrol.Newton Institute Preprint NI03069-CPD available at http://www.newton.am.a.uk/preprints/NI03069.pdf[6℄ Bangerth, W. and Rannaher, R. (2003). Adaptive Finite Element Methodsfor Di�erential Equations. Letures in Mathematis. ETH-Z�urih. Birkh�auser,Basel.[7℄ Binev, P. and Dahmen, W. and DeVore, R. (2004). Adaptive Finite ElementMethods with Convergene Rates. Numer. Math., 97, 2, 219{268.[8℄ Brezzi, F. and Fortin, M. (1991). Mixed and hybrid �nite element methods.Springer Series in Computational Mathematis, Springer-Verlag, New York,15, x+350.[9℄ Carstensen, C. (1997). A posteriori error estimate for the mixed �nite elementmethod. Math. Comp., 66, 218, 465{476.
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