
ERROR REDUCTION AND CONVERGENCE FOR ANADAPTIVE MIXED FINITE ELEMENT METHODCARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3Abstra
t. An adaptive mixed �nite element method (AMFEM)is designed to guarantee an error redu
tion, also known as satu-ration property: After ea
h re�nement step, the error for the �nemesh is stri
tly smaller than the error for the 
oarse mesh up toos
illation terms. This error redu
tion property is established herefor the Raviart-Thomas �nite element method with a redu
tionfa
tor � < 1 uniformly for the L2 norm of the 
ux errors. Our re-sult allows for linear 
onvergen
e of a proper adaptive mixed �niteelement algorithm with respe
t to the number of re�nement levels.The adaptive algorithm does surprisingly not require any parti
ularmesh design unlike the 
onforming �nite element method. The newarguments are a dis
rete lo
al eÆ
ien
y and a quasi-orthogonalityestimate. The proof does neither rely on duality nor on regularity.1. Introdu
tionAn adaptive �nite element method 
onsists of su

essive loops of thefollowing sequen
e(1.1) SOLVE! ESTIMATE! MARK! REFINE:The a posteriori error 
ontrol in the step ESTIMATE has been de-veloped over the last de
ades (
f. [1, 3, 6, 12, 17℄ and the referen
estherein). The 
onvergen
e analysis of the full algorithm (1.1), however,is restri
ted to the 
onforming �nite element method [15, 16℄.This paper investigates 
onvergen
e properties of su
h a loop for themixed �nite element method (MFEM) in a 2D model Poisson problem(1.2) f +�u = 0 in 
 and u = 0 on �
:Given a (
oarse) mesh TH , a shape-regular triangulation of 
 into tri-angles, pH and uH approximate the exa
t 
ux p := ru 2 H(div;
)and the exa
t displa
ement �eld u 2 H10 (
) of (1.2). In step SOLVEone 
omputes (pH ; uH) 2 RT0(TH)� P0(TH) that satis�es the dis
reteproblem [(�; �)L2 abbreviates the L2 s
alar produ
t℄(pH ; qH)L2(
) + (uH ; div qH)L2(
) = 0 for all qH 2 RT0(TH);(div pH ; vH)L2(
) = �(f; vH)L2(
) for all vH 2 P0(TH):(1.3) 1



2 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3��� ��� ��� ��� ��� ����� ��� ����� ��� ������� ��� ������� ��� �������T bise
(T) bise
2`(T) bise
2r(T) bise
3(T) red(T) bise
5(T)Figure 1. Possible re�nements of one triangle T in thestep REFINE.Details on the lowest-order Raviart-Thomas �nite element spa
e RT0(TH) [8℄ 
an be found below in Se
tion 2; P0(TH) denotes the pie
ewise
onstants. MATLAB implementations and do
umentations of the stepSOLVE are provided in [5℄. In this paper, for the ease of the dis
ussion,the step ESTIMATE is the postpro
essing to 
ompute the residual-based expli
it error estimator [2, 9, 18℄(1.4) �H := (XE2EH �2E)1=2 with �2E := hEk[pH ℄Ek2L2(E):Here and throughout, [ph℄ denotes the jump [pH ℄ := pH jT+�pH jT� of thedis
rete 
ux over an interior edge E := T+\T� of length hE := diam(E)shared by the two neighboring (
losed) triangles T� 2 TH . Furthermorelet f!E := j!Ej�1 R!E f(x) dx denote the integral mean of f over thepat
h !E := int(T+ [ T�) of area j!Ej = jT+j+ jT�j and let EH denotethe set of all interior edges in TH .The bulk 
riterion in the step MARK was introdu
ed and analyzed in[7, 11, 15℄ for displa
ement-based AFEMs. Here, it leads to a sele
tionof a subset M of edges EH su
h that(1.5) ��2H � XE2M �2Efor some universal 
onstant 0 < � < 1. It 
ame mu
h as a surprise tothe authors that the step REFINE does not need any further spe
i�-
ation or restri
tion. It suÆ
es when the output of REFINE satis�esthat, for ea
h marked edge E 2 M, its midpoint mid(E) is a new nodein the new triangulation Th.Typi
al re�nements of one triangle T 2 TH are displayed in Figure 1.We further set hT := diam(T ) and refer to kHfHkL2(
) as the �rst-order term given by(1.6) kHfHkL2(
) := � XT2TH h2T jT j�1j ZT f(x)dxj2�1=2
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illations read(1.7) os
H := (XE2EH h2Ekf � f!Ek2L2(!E))1=2:It is the milestone of this paper to prove the following error redu
tionproperty (1.8).Theorem 1.1 (error redu
tion property). Let ph and pH be the MFEM
ux approximations to p with respe
t to Th and TH . Then, there existpositive 
onstants � < 1 and C depending only on � and on the shaperegularity of Th and TH su
h that(1.8) kp� phk2L2(
) � �kp� pHk2L2(
)+C�kHfHkL2(
)+os
H � os
H :The remaining part of this paper is organized as follows. Se
tion 2dis
usses several aspe
ts of AMFEM as well as parti
ularities and gen-eralizations of our analysis. Se
tion 3 presents the ne
essary details onthe notation. The key ingredients of the proof are the stri
t dis
retelo
al eÆ
ien
y, the quasi-orthogonality, and an estimate for the 
uxes,of Se
tion 4 and 5. The proof of the error redu
tion property (1.8)
on
ludes the paper in Se
tion 6.2. CommentsSome remarks are given before the subsequent se
tions are devotedto the te
hni
al details of the proof of Theorem 1.1.2.1. Data os
illations. For f 2 H1(
), we note that the data os
il-lation (1.7) is of quadrati
 order and so of higher order when 
omparedto the �rst-order errors kp�pHkH(div) or ku�uHkL2(
) or the �rst-orderdata term kHfHkL2(
).Hen
e, Theorem 1.1 asserts that the error on the �ne mesh is boundedby a fa
tor �1=2 times the error on the 
oarse mesh plus higher-orderterms.We also point out that the os
illations (1.7) of f are pat
h-orientedwhile those in the reliability and eÆ
ien
y estimate of Theorem 3.2below are element-oriented (and so possibly smaller than (1.7)).It is an important property of the data os
illation that the mesh-sizesenter expli
itly. Given 0 < # < 1 and a 
oarse mesh TH , it is thereforeeasy to design a �ne mesh Th with os
illations os
h � # os
H whereos
h and os
H denote the data os
illation of the �ne and 
oarse mesh,respe
tively. The same remark applies to kHfHkL2(
).
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onvergent AMFEM. In order to guarantee linear 
onver-gen
e in terms of the re�nement levels, suppose that (1.1) is employedsu

essively. At the re�nement level j, there is an MFEM solution pjwith error ej := kp�pjkL2(
) with respe
t to a mesh Tj and and a dataos
illation os
j su
h that (1.8) reads(2.1) e2j+1 � � e2j + C dj for j = 0; 1; 2; : : :where dj abbreviates the data term (kHjfHjkL2(
) + os
j) os
j withrespe
t to Tj. Moreover, suppose that MARK provides (1.5) plus (pos-sibly) additional re�nements to guarantee(2.2) dj+1 � % dj for j = 0; 1; 2; : : :with some universal 
onstant 0 < % < 1 (this is always possible asindi
ated at the end of the previous subse
tion).Mathemati
al indu
tion proves that (2.1)-(2.2) implye2j � �j e20 + Cd0 j�1Xk=0 �k%j�1�k and dj � d0%jand so R-linear 
onvergen
e (with any redu
tion fa
tor between maxf�,%g1=2 and 1):(2.3) e2j � �j e20 + Cd0 jmaxf�; %gj�1 for j = 1; 2; : : :2.3. Numeri
al Experiments. Numeri
al experiments throughoutthe literature are frequently based on the element-oriented maximum
riterion in the step MARK, i.e., one marks an element T if the esti-mator �T asso
iated with T satis�es Tol � �T and Tol is � times thelargest of su
h 
ontributions. In the 
ontext of AMFEM, data os
il-lations have not been involved so far. We refer to [5℄ for algorithmi
details and MATLAB routines and to [2, 10, 18, 13℄ for empiri
al ex-amples.It is the authors' overall impression that the AMFEM is very robustin 
hanging algorithmi
 details in pra
ti
e. The numeri
al experimentsin [15, 16℄ with a realization of (2.1)-(2.2) from the previous subse
tionfor 
onforming AFEM anti
ipate that the new algorithms perform asoptimal as the frequently employed ones. But there is no mathemati
aljusti�
ation for that.2.4. Optimal Complexity. The adaptive algorithm is linear 
onver-gent with respe
t to the number of re�nement steps. This does notimply any 
ontrol of the number of degrees of freedom. Based on addi-tional 
oarsening steps, there exists an algorithm of optimal 
omplexityfor the 
onforming AFEM [7℄. The authors anti
ipate that their results
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arry over to the present situation, be
ause it is the universal 
oarsen-ing step that yields the 
ontrol of the degrees of freedom. Numeri
alwisdom, however, tells that 
oarsening is not needed in pra
ti
e leavingan open gap between theory and pra
ti
e.2.5. Generalizations. The arguments below are illustrated by a sim-ple 2D model example only, but they apply to more general boundaryvalue problems as well. In the presen
e of Neumann boundary dataor for non-
onstant 
oeÆ
ients, the data os
illations apply to su
hterms as well. The arguments are not restri
ted to 2D; for instan
e,Lemma 3.1 also holds true in 3D [5℄.The use of alternative re�nement indi
ators [10, 18℄ is also possible aslong as they are globally reliable and lo
ally 
ontrolled by the residual-based estimators.2.6. Uzawa Algorithms. The well-established Uzawa algorithm forthe iterative solution of the mixed problem on the 
ontinuous level
onsists of two steps: a Poisson solve and and update formula. Thesubstitute of the Poisson solve by some AFEM allows a perturbation ofthe 
onvergen
e on the 
ontinuous level [4℄. The advantage is that evenunstable �nite element s
hemes 
an be employed. The disadvantageis the possibly slow 
onvergen
e of the Uzawa algorithm relative tomultilevel solver [13℄.3. Notation and PreliminariesThroughout this paper suppose that TH and Th are two shape regulartriangulations of the planar Lips
hitz domain 
 with polygonal bound-ary �
 into triangles where Th is some re�nement of TH su
h that there�nement T jTh := fK 2 Th : K � Tg of ea
h element T in TH isdepi
ted in Figure 1. Moreover, let pH 2 RT0(TH) denote the dis
reteMFEM solution on the 
oarse triangulation TH . A regular triangula-tion T in triangles, d = 2, is a set of 
losed triangles T of positive areajT j su
h that any two distin
t triangles T1 and T2 are either disjointT1 \ T2 = ; or share exa
tly one vertex z, T1 \ T2 = fzg, or have oneedge E = T1 \ T2 in 
ommon. The set of all edges is denoted by E ,the set of nodes is denoted by N . Ea
h edge is asso
iated to a lengthhE := diam(E) and a unit normal and unit tangential ve
tor �E and�E. The subindi
es H and h refer to the 
oarse and �ne triangulationTH and Th, respe
tively. The words mesh and triangulation are usedas synonyms of ea
h other.



6 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3The Raviart-Thomas MFEM spa
e and the pie
ewise 
onstant spa
ereadRT0(TH) := fqH 2 H(div;
) : 8T 2 TH 9a 2 R2 9b 2 R 8x 2 T;qH(x) = a + b xg;P0(TH) := fvH 2 L1(
) : 8T 2 TH 9a 2 R 8x 2 T; vH(x) = ag:[Analogous notation for Th is not displayed℄. The Crouzeix-RaviartFEM spa
e on TH readsV NH := fvH 2 P1(TH) : vH 
ontinuous at mid(E) for E 2 EHand vH(mid(E)) = 0 for E 2 E with E � �
g:Sin
e V NH 6� H1(
), the distributional gradient of vh 2 V NH is di�erentfrom its elementwise gradient DHvH 2 P0(TH)d.Let uNH denote the Crouzeix-Raviart FEM solution of(DHuNH ; DHvNH )L2(
) = (fH ; vNH )L2(
) for all vNH 2 V NH :The dis
rete 
uxes pNH := DHuNH and pH from (1.3) are related.Lemma 3.1 ([14, 5℄). Let fT� := RT� f(x) dx=jT�j and let xT� :=mid(T�) denote the bary
enter of T�. Then there holdspH jT�(x) = DHuNH jT� � 12fT�(x� xT�) for x 2 T�: �In this 
ontext, fH 2 P0(TH) and fh 2 P0(Th) denote the pie
ewiseintegral means, e.g., fH jT := fT := RT f(x)dx=jT j for T 2 TH .Theorem 3.2 (reliability and eÆ
ien
y [2, 9℄). With (1.4) and (1.7),there holds �H . kp� pHkL2(
) . �H + os
H :Here and throughout this paper, A . B abbreviates A � CB witha mesh-size independent, generi
 
onstant C > 0. Finally, A � Babbreviates A . B . A. The paper adopts standard notation forLebesgue and Sobolev spa
es and norms.4. Dis
rete Lo
al Effi
ien
yThis se
tion provides the �rst of two main arguments for error re-du
tion. Unlike for 
onforming AFEM, there is no request on furtherrestri
tion in REFINE.
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t dis
rete lo
al eÆ
ien
y). Suppose that E = �T+\�T� 2 EH is an edge in TH [shared by the triangles T+; T� 2 TH ℄ andbise
ted in the re�nement, i.e. E = E1 [ E2 62 Eh and mid(E) =E1 \ E2 2 Nh for two distin
t E1; E2 2 Eh. Then there holdsh1=2E k[pH ℄kL2(E) . kph � pHkL2(!E) + hEkf � f!EkL2(!E):The remaining part of this se
tion is devoted to the proof of Theo-rem 4.1. Observe that [pH ℄ � �E = 0 for the unit normal ve
tor �E?Esin
e pH 2 H(div;
). Therefore, denoting by �E?�E the tangentialve
tor, the jump[pH ℄ := (pH jT+ � pH jT�) along E = T+ \ T�(and formally [pH ℄ := 0 along E � �
) satis�esk[pH ℄kL2(E) = k[pH ℄ � �EkL2(E):Taking into a

ount that [pH ℄ � �E is an aÆne fun
tion along the edgeE, we have([pH ℄ � �E)(x) = � + � � (x�mid(E)) for all x 2 Ewith �xed � 2 R and � 2 R2 .Lemma 4.2. There holdsh1=2E k�kL2(E) . kph � pHkL2(!E):Proof. Let 'E denote the nodal basis fun
tion in the 
onforming P1FEM spa
e with respe
t to the node mid(E) and with respe
t to the�ne mesh Th. Then, qh := Curl'E belongs to P0(Th) \H(div;
) withdiv qh � 0. Sin
e � = RE[pH ℄ � �E ds=hE, one dedu
esZE �'E ds = ZE[pH ℄ � �E'E ds = (pH ; qh)L2(
)with an elementwise integration by parts. Sin
e qh = Curl'E 2RT0(Th) is an admissible test fun
tion, the dis
rete MFEM problemwith respe
t to the �ne mesh Th redu
es to(ph; qh)L2(
) = 0:Altogether, one obtains the key identity� ZE 'E ds = (pH � ph; qh)L2(
):The shape regularity allows the estimateshE . ZE 'E ds and kqhkL2(!E) . 1:



8 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3The foregoing key identity therefore leads to the assertion:hEk�k2L2(E) = h2E(ZE 'E ds)�2(� ZE 'E ds)2. (pH � ph; qh)2L2(
)� kqhk2L2(!E)kph � pHk2L2(!E). kph � pHk2L2(!E): �Lemma 4.3. There holdsj�j � 12(jT+j�1 + jT�j�1)1=2kf � f!EkL2(!E):Proof. The di�eren
es of the representation formula of Lemma 3.1 forx 2 E lead to � = 12(fT� � fT+) �E 2 R2 :Consider the pie
ewise 
onstant fun
tiong(x) := 8<: �jT+j�1 for x 2 T+;+jT�j�1 for x 2 T�;0 for x 62 !Eand noti
e R!E g(x) dx = 0. The de�nition of the pie
ewise integralmeans fT� := RT� f(x) dx=jT�j then implies the identityfT� � fT+ = (g; f)L2(!E):Sin
e (g; 1)L2(
) = 0 and f!E is 
onstant on !E,fT� � fT+ = (g; f � f!E)L2(!E):Cau
hy's inequality and kgk2L2(!E) = jT+j�1+jT�j�1 
on
lude the proof:2j�j � (jT+j�1 + jT�j�1)1=2kf � f!EkL2(!E): �The proof of Theorem 4.1 immediately follows from Lemma 4.2 and4.3: Sin
e � and � � (� �mid(E)) are L2(E) orthogonal, there holdshEk[pH ℄k2L2(E) = hEk[pH ℄ � �Ek2L2(E)= hEk�k2L2(E) + hEk� � (� �mid(E))k2L2(E). kph � pHk2L2(!E) + h�1E k � �mid(E))k2L2(E)kf � f!Ek2L2(!E): �
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ond main argument for error redu
tion is a generalization ofthe Galerkin orthogonality in the 
onforming AFEM [11, 15, 16℄.Theorem 5.1 (Quasi-orthogonality). There holdsj(p� ph; pH � ph)L2(
)j . kH(fh � fH)kL2(
)� �kp� phkL2(
) + kp� pHkL2(
) + kHfHk�L2(
) :Theorem 5.1 is an immediate 
onsequen
e of Lemma 5.4 and 5.5below. Throughout the rest of this se
tion set pNh := DhuNh for theCrouzeix-Raviart FEM solution uNh in V Nh with respe
t to Th.Lemma 5.2. There holds(p� pNh ; pH � ph)L2(
) = (u� uNh ; fH � fh)L2(
):Proof. Sin
e p = Du, � div pH = fH , and � div ph = fh, the assertionfollows from an elementwise integration by parts. The edge 
ontribu-tions vanish indeed: Given any E 2 Eh the resulting boundary termover E reads ZE[u� uNh ℄(pH � ph) � �E ds:This is zero be
ause of RE[u � uNh ℄ ds = 0 by 
onstru
tion of V Nh andsin
e pH ��E and ph��E are 
ontinuous from both sides of E and 
onstantalong E. �Lemma 5.3. There holdsj(u� uNh ; fH � fh)L2(
)j . kH(fh � fH)kL2(
)� �kp� pNHkL2(
) + kpNh � pNHkL2(
)�:Proof. To estimate (u�uNh ; fH�fh)L2(
) noti
e that RT (fH�fh) dx = 0for any T 2 TH . Hen
e, for some eNH 2 P0(TH) witheNH jT := ZT (u(x)� uNH(x)) dx=jT jand eNH := u� uNH a Poin
ar�e inequality on T shows in totalj(u� uNH ; fH � fh)L2(
)j = j(eNH � eNH ; fH � fh)L2(
)j� 1=� kp� pNHkL2(
)kH(fh � fH)kL2(
):The remaining term reads (uNH � uNh ; fH � fh)L2(
) and is analyzedseparately for ea
h T 2 TH . In fa
t, let V Nh (T ) := fvhjT : vh 2 P1(ThjT )
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ontinuous at mid(E) for all E 2 Ehg and noti
e uNH � uNh 2 V Nh (T ).Moreover, for any vh 2 V Nh (T ) set%1(vh) := minw2R kvh � wkL2(T ) and %2(vh) := hTkDhvhkL2(T ):This de�nes two semi-norms %1, %2 on the �nite-dimensional spa
eV Nh (T ). Consequently, %1 � %2. Therein, the equivalen
e 
onstantsare independent of hT a

ording to a s
aling argument (transform toa referen
e triangle Tref �rst and noti
e that there exists a �nite num-ber of possible re�nements only, 
ompute the 
onstants, and transformba
k). In parti
ular, for some average 
 := RT (uNH � uNh ) dx=jT j,j(uNh � uNH; fh � fH)L2(T )j = j(uNH � uNh � 
; fH � fh)L2(T )j� %1(uNH � uNh )kfh � fHkL2(T ). kDh(uNH � uNh )kL2(T )khT (fh � fH)kL2(T ):The sum over all T 2 TH shows thatj(uNH � uNh ; fH � fh)L2(
)j . kpNh � pNHkL2(
) kH(fh � fH)kL2(
): �Lemma 5.4. There holdsj(p� pNh ; pH � ph)L2(
)j . kH(fh � fH)kL2(
)� �kp� phkL2(
) + kp� pHkL2(
) + kHfHkL2(
) + khfhkL2(
)�:Proof. The 
ombination of Lemma 5.2|5.3 readily givesj(p� pNh ; pH � ph)L2(
)j . kH(fh � fH)kL2(
)� �kp� pNHkL2(
) + kpNh � pNHkL2(
)�:An immediate 
onsequen
e of Lemma 3.1 is that��� kp� pNHkL2(
) � kp� pHkL2(
) ���2 � XT2TH jfT j2k � �xTk2L2(T )� kHfHk2L2(
):A similar estimate also holds true with H repla
ed by h. The 
ombina-tion of those two estimates with a triangular inequality 
on
ludes theproof of the lemma. �Lemma 5.5. There holdsj(pNh � ph; pH � ph)L2(
)j . khfhkL2(
) kh(fh � fH)kL2(
):



ERROR REDUCTION AND CONVERGENCE FOR AMFEM 11Proof. Let xH 2 P0(TH ;R2) and xh 2 P0(Th;R2) denote the pie
ewise
enter of inertia, e.g. xH jT := mid(T ) for T 2 TH . Then, Lemma 3.1results in pH(x)� pNH(x) = �12fH (x� xH) for x 2 
plus a 
orresponding equation with H repla
ed by h. Then,(pNh � ph; pH � ph)L2(
) = 12(fh(� � xh); pNH � pNh )L2(
)+ 14(fh(� � xh); fh(� � xh)� fH(� � xH))L2(
):The �rst term on the right-hand side vanishes be
ause pNH � pNh is
onstant and RT (x� xT ) dx = 0 for ea
h T 2 Th. The same argumentshows (fh(� � xh); xH � xh)L2(
) = 0. There remains4(pNh � ph; pH � ph)L2(
) = (fh(� � xh); (fh � fH)(� � xh))L2(
):An elementwise Cau
hy inequality in the previous identity 
on
ludesthe proof. �6. Proof of Error Redu
tion PropertyThis se
tion is devoted to the proof of the error redu
tion property(1.8) in Theorem 1.1.The proof starts with the reliability from Theorem 3.2 and 
ontinueswith the bulk 
riterion (1.5), i.e.,(6.1) �2 := XE2EH hEk[pH ℄k2L2(E) . XE2MhEk[pH ℄k2L2(E)for the set M of marked edges. This leads tokp� pHk2L2(
) . �2 + os
2H . XE2MhEk[pH ℄k2L2(E) + os
2H :The dis
rete lo
al eÆ
ien
y of Theorem 4.1 plus the �nite overlap ofthe edge-pat
hes (!E : E 2 EH) showkp� pHk2L2(
) . XE2M kph� pHk2L2(!E) + os
2H � kph� pHk2L2(
) + os
2H :With some 
onstant 
1, this readskp� pHk2L2(
) � 
1kph � pHk2L2(
) + 
1 os
2HOn the other hand,kph� pHk2L2(
) = kp� pHk2L2(
)�kp� phk2L2(
)� 2(p� ph; ph� pH)L2(
)



12 CARSTEN CARSTENSEN1 AND R.H.W. HOPPE2;3and the last term 
an be bounded with the quasi-orthogonality. Withsome 
onstant 
2, Theorem 5.1 leads tokph � pHk2L2(
) � kp� pHk2L2(
) � kp� phk2L2(
)+ 
2(kp� phkL2(
) + kp� pHkL2(
) + kHfHkL2(
)) os
H :The 
ombination with the pre
eding inequality plus a Young inequalityyield
1kp� phk2L2(
)� (
1 � 1)kp� pHk2L2(
) + 
1 os
2H+ 
2
1�kp� phkL2(
) + kp� pHkL2(
) + kHfHkL2(
)� os
H� 14kp� phk2L2(
) + (
1 � 1=2)kp� pHk2L2(
)+ 
4�kHfhkL2(
) + os
H� os
H :This proves(
1�1=4)kp�phk2L2(
) � (
1�1=2)kp�pHk2L2(
)+
4(kHfhkL2(
)+os
H) os
Hand so the theorem with � = (
1 � 1=2)=(
1 � 1=4) and C = 
4=(
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