
Scenario tree modelling

for multistage stochastic programs

H. Heitsch and W. Römisch

Humboldt-University Berlin

Institute of Mathematics

10099 Berlin, Germany

Abstract

An important issue for solving multistage stochastic programs consists in
the approximate representation of the (multivariate) stochastic input process in
the form of a scenario tree. In this paper, forward and backward approaches
are developed for generating scenario trees out of an initial fan of individual
scenarios. Both approaches are motivated by the recent stability result in [15]
for optimal values of multistage stochastic programs. They are based on upper
bounds for the two relevant ingredients of the stability estimate, namely, the
probabilistic and the filtration distance, respectively. These bounds allow to
control the process of recursive scenario reduction [13] and branching. Numerical
experience is reported for constructing multivariate scenario trees in electricity
portfolio management.
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1 Introduction

Multiperiod stochastic programs are often used to model practical decision processes
over time and under uncertainty, e.g., in finance, production, energy and logistics.
Their inputs are multivariate stochastic processes {ξt}

T
t=1 defined on some probability

space (Ω,F , IP ) and with ξt taking values in some IRd. The decision xt at t belonging
to IRmt is assumed to be nonanticipative, i.e., to depend only on (ξ1, . . . , ξt). This
property is equivalent to the measurability of xt with respect to the σ-field Ft ⊆ F ,
which is generated by ξt := (ξ1, . . . , ξt). Clearly, we have Ft ⊆ Ft+1 for t = 1, . . . , T −1.
Since at time t = 1 the input is known, we assume that F1 = {∅, Ω} and, without loss
of generality, that FT = F .
The multiperiod stochastic program is assumed to be of the form

min







IE

[

T
∑

t=1

〈bt(ξt), xt〉

]

∣

∣

∣

∣

∣

∣

xt ∈ Xt,
xt is Ft − measurable, t = 1, . . . , T,
At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T







, (1)
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where the subsets Xt of IRmt are nonempty and polyhedral, the cost coefficients bt(ξt)
belong to IRmt , the right-hand sides ht(ξt) are in IRnt, At,0 are fixed (nt, mt)-matrices
and At,1(ξt) are (nt, mt−1)-matrices, respectively. We assume that bt(·), ht(·) and At,1(·)
depend affinely linearly on ξt covering the situation that some of the components of bt

and ht, and of the elements of At,1 are random.
While the first and third groups of constraints in (1) have to be satisfied pointwise

with probability 1, the second group, the measurability, filtration or information con-
straints, are functional and non-pointwise at least if T > 2 and F1 $ Ft $ FT for some
1 < t < T . In the latter case (1) is called multistage. The presence of such qualitatively
different constraints constitutes the origin of both the theoretical and computational
challenges of multistage models.

The main computational approach to multistage stochastic programs consists in
approximating the stochastic process ξ = {ξt}

T
t=1 by a process having finitely many

scenarios exhibiting tree structure and starting at a fixed element ξ1 of IRd. This leads
to linear programming models that are very large scale in most cases and can be solved
by decomposition methods that exploit specific structures of the model. We refer to
[32, Chapter 3] for a recent survey.

Presently, there exist several approaches to generate scenario trees for multistage
stochastic programs (see [4] for a survey of ideas and methods until 2000). They are
based on several different principles. We mention here (i) bound-based constructions
[1, 8], (ii) Monte Carlo-based schemes [2, 33, 34] or Quasi Monte Carlo-based methods
[22, 21], (iii) EVPI-based sampling and reduction within decomposition schemes [3], (iv)
the moment-matching principle [17, 18], (v) probability metric based approximations
[10, 11, 16, 23]. Many of them require to prescribe the tree structure and offer different
strategies for selecting scenarios. We also mention the importance of evaluating the
quality of scenario trees and of a postoptimality analysis [4, 19].

In the present paper we study and extend the scenario tree generation technique
of [10, 11]. Its idea is to start with a good initial approximation of the underlying
stochastic input process ξ consisting of a fan ξ̂ of individual scenarios. These scenarios
might be obtained by sampling or resampling techniques based on parametric or non-
parametric stochastic models of ξ. Starting from ξ̂, a tree ξtr is constructed by deleting
and bundling scenarios recursively. While the recursive method described in [10, 11]
works backward in time, a forward method was recently proposed in [14]. The aim of
the paper is twofold: (i) For both (backward and forward) tree generation techniques
we derive error estimates for the Lr-distance ‖ξ̂−ξtr‖r. (ii) Upper bounds are obtained
for the filtration distance of ξ̂ and ξtr, which allow to recover the filtration structure of
the original input process ξ approximately. The use of the filtration distance together
with the selection of r ≥ 1 for the Lr-distance is motivated by the recent stability result
in [15] for multistage models. In this way, a (stability) theory-based heuristic is de-
veloped which generates a scenario tree that approximates the probability distribution
and the filtration structure of ξ simultaneously.

The backward and forward tree generation methods were implemented and tested
on real-life data in several practical applications, namely, for generating passenger
demand scenario trees in airline revenue management [20] and for load-price scenario
trees in electricity portfolio management [6]. Incorporating the filtration distance into
the backward or forward tree generation schemes has not been tested so far.
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Section 2 contains some prerequisites on distances of probability distributions and
random vectors, and a short introduction to scenario reduction. Section 3 records the
main stability result of [15], which provides the basis of our tree constructions. Section
4 contains the main results of our paper, in particular, the tree generation algorithms
and error estimates in terms of Lr- and filtration distances, respectively. In Section 5 we
discuss some numerical experience on backward and forward generation of load-inflow
scenario trees based on realistic data. Numerical results of a variant of the forward
tree construction with integrated filtration distance estimate are also presented.

2 Distances and scenario reduction

In earlier works on quantitative stability of stochastic programs without information
constraints, probability metrics for measuring the distance of probability distribu-
tions played a major role [25, 30]. In particular, distances given in terms of Monge-
Kantorovich mass transportation problems became relevant. They are of the form

inf
{

∫

Ξ×Ξ

c(ξ, ξ̃)η(dξ, dξ̃) : η ∈ P(Ξ × Ξ), π1η = P, π2η = Q
}

, (2)

where Ξ is a closed subset of some Euclidean space, π1 and π2 denote the projections
onto the first and second components, respectively, c is a nonnegative, symmetric and
continuous cost function, and P and Q belong to a set Pc(Ξ) of probability measures
on Ξ, which is chosen such that all occurring integrals are finite. Two types of cost
functions have been used in stability analysis [5, 31], namely,

c(ξ, ξ̃) := ‖ξ − ξ̃‖r (ξ, ξ̃ ∈ Ξ) (3)

and
c(ξ, ξ̃) := max{1, ‖ξ − ξ0‖

r−1, ‖ξ̃ − ξ0‖
r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ) (4)

for some r ≥ 1, ξ0 ∈ Ξ and a seminorm or a norm ‖ · ‖ in the Euclidean space
containing Ξ. In both cases, the set Pc(Ξ) may be chosen as the set Pr(Ξ) of all
probability measures on Ξ having absolute moments of order r. The cost (3) leads to
Lr-minimal metrics `r [27], which are defined by

`r(P, Q) := inf

{
∫

Ξ×Ξ

‖ξ − ξ̃‖rη(dξ, dξ̃) |η ∈ P(Ξ × Ξ), π1η = P, π2η = Q

}
1
r

(5)

and sometimes also called Wasserstein metrics of order r [9]. The mass transportation
problem (2) with cost (4) defines the Monge-Kantorovich functional µ̂r [24, 26]. A
variant of the functional µ̂r appears if, in its definition (2), the conditions η ∈ P(Ξ ×
Ξ), π1η = P, π2η = Q are replaced by η, which is a finite measure on Ξ × Ξ, such that

π1η−π2η = P −Q. The corresponding functionals
◦
µr turn out to be metrics on Pr(Ξ).

They are called Fortet-Mourier metrics of order r [24]. The convergence of sequences

of probability measures with respect to both metrics `r and
◦
µr is equivalent to their

weak convergence and the convergence of their r-th order absolute moments.
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For stochastic programs containing information constraints the situation is different.
Examples (e.g., [15, Example 2.6]) show that a stability analysis based only on distances
of probability distributions may fail. In the recent paper [15] quantitative stability of
multistage stochastic programs (1) is proved with respect to the sum of two distances,
namely, the norm

‖ξ‖r :=

(

T
∑

t=1

IE[‖ξt‖
r]

)
1
r

in Lr(Ω,F , IP ; IRs) with s := Td for the Ξ-valued random inputs and the so-called
information or filtration distance. The latter is defined in terms of the norm ‖ · ‖r′ with
r′ depending on r. Its precise definition is given in Section 3.

Let ξ and ξ̃ be random vectors on some probability space (Ω,F , IP ) with probability
distributions P and Q. Since the probability distribution η̄ of the pair (ξ, ξ̃) of two
Ξ-valued random vectors is feasible for the minimization problem (5), we have

`r(P, Q) ≤ ‖ξ − ξ̃‖r. (6)

Moreover, since an optimal solution η∗ ∈ P(Ξ×Ξ) of the mass transportation problem
(5) always exists (cf. [24, Theorem 8.1.1]), there are a probability space and a pair
of Ξ-valued random vectors, a so-called optimal coupling, defined on it, such that the
probability distribution of the pair is just η∗ (e.g., [24, Theorem 2.5.1]). Hence, equality
is valid in (6) on some probability space. This fact justifies the name Lr-minimal metric
for `r.

Now, let ξ and ξ̃ be discrete random vectors with scenarios ξi with probabilities pi,
i = 1, . . . , N , and ξ̃j with probabilities qj, j = 1, . . . , M , respectively. Then we have

`r
r(P, Q) = min

{

∑

i,j

ηij‖ξ
i − ξ̃j‖r : ηij ≥ 0,

∑

i

ηij = qj,
∑

j

ηij = pi

}

, (7)

i.e., `r
r(P, Q) is the optimal value of a linear transportation problem. A case of particular

interest consists in the situation that M < N and that the scenarios of Q form a subset
{ξj}j 6∈J of the scenario set {ξi : i = 1, . . . , N} of P . One might first wish to solve the
problem of finding the best approximation of P with respect to `r by a probability
measure QJ supported by the (scenario) set {ξj}j 6∈J , i.e., to determine the minimal
distance DJ and an optimal solution {q̄j : j 6∈ J} such that `r(P, QJ) is minimized on
the simplex {q : qj ≥ 0,

∑

j 6∈J qj = 1}. From [5, Theorem 2] we conclude

Lemma 2.1 Let J be a nonempty subset of {1, . . . , N}. Then the identity

DJ = min
{

`r(P, QJ) : qi ≥ 0,
∑

i6∈J

qi = 1
}

=
(

∑

j∈J

pj min
i6∈J

‖ξi − ξj‖r
) 1

r

(8)

holds and the minimum is attained at q̄i = pi +
∑

j∈Ji

pj, i 6∈ J , where Ji := {j ∈ J |i =

i(j)} and i(j) belongs to arg min
i6∈J

‖ξi − ξj‖ for every j ∈ J (optimal redistribution).
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Let the probability space be defined by Ω = {ω1, . . . , ωN}, F be the power set of Ω
and IP (ωi) = pi, i = 1, . . . , N . If the random vector ξJ is defined by

ξJ(ωi) :=

{

ξi , i 6∈ J,
ξi(j) , j ∈ J,

where i(j) is defined as in Lemma 2.1, we obtain

‖ξ − ξJ‖
r
r =

∑

j∈J

pj‖ξ
i − ξi(j)‖r =

∑

j∈J

pj min
i6∈J

‖ξi − ξj‖r = Dr
J .

Hence, the distance `r(P, QJ) is minimal if QJ is the probability distribution of ξJ .
Consequently, scenario reduction with respect to the Lr-minimal distance may alter-
natively be considered with respect to the norm ‖ ·‖r on this specific probability space.

Using the explicit formula (8), the optimal reduction problem for a scenario index
set J with prescribed cardinality |J | = N − n from P is given by the combinatorial
optimization model

min
{

DJ =
∑

j∈J

pj min
i6∈J

‖ξi − ξj‖r : J ⊂ {1, ..., N}, |J | = N − n
}

. (9)

For the two extremal cases n = N − 1 and n = 1 the problem (9) is of the form

min
l∈{1,...,N}

pl min
i6=l

‖ξl − ξi‖r (n = N − 1) and min
u∈{1,...,N}

N
∑

j=1
j 6=u

pj‖ξ
u − ξj‖r (n = 1),

and easily solvable. Their solutions J = {l∗} and J = {1, . . . , N}\{u∗} arise as the re-
sult of two different processes: Backward reduction and forward selection. Both process
ideas may be extended and lead to the following two heuristics for finding approximate
solutions of (9). Their results are the index sets J [N−n] and J [n], respectively, of deleted
scenarios and have cardinality N − n.

Algorithm 2.2 (Backward reduction)

Step [0]: J [0] := ∅ .

Step [i]: li ∈ arg min
l 6∈J [i−1]

∑

k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

‖ξk − ξj‖r,

J [i] := J [i−1] ∪ {li} .

Step [N-n+1]: Optimal redistribution.

Algorithm 2.3 (Forward selection)

Step [0]: J [0] := {1, . . . , N}.

Step [i]: ui ∈ arg min
u∈J [i−1]

∑

k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

‖ξk − ξj‖r,

J [i] := J [i−1] \ {ui} .

Step [n+1]: Optimal redistribution.

These heuristics were studied in [13] for different cost functions c. There it is shown
that both algorithms exhibit polynomial complexity. Although the algorithms do not
lead to optimality in general, the performance evaluation of their implementations in
[13] is very encouraging.
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3 Stability of multistage models

Here, we record the main result of the recent paper [15]. We assume that the stochastic
input process ξ belongs to the Banach space Lr(Ω,F , IP ; IRs) and r ≥ 1. The multistage
model (1) is regarded as an optimization problem in the space Lr′(Ω,F , IP ; IRm) with
m =

∑T

t=1 mt and endowed with the norm

‖x‖r′ :=

(

T
∑

t=1

IE[‖xt‖
r′]

)
1
r′

(1 ≤ r′ < ∞) or ‖x‖∞ := max
t=1,...,T

ess sup ‖xt‖,

where the number r′ is defined by

r′ :=















r
r−1

, if only costs are random

r , if only right-hand sides are random
r = 2 , if only costs and right-hand sides are random
∞ , if all technology matrices are random and r = T.

(10)

Let us introduce some notations. Let F denote the objective function defined on
Lr(Ω,F , IP ; IRs) × Lr′(Ω,F , IP ; IRm) → IR by F (ξ, x) := IE[

∑T

t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt|At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x = (x1, x2, . . . , xT ) ∈ ×T
t=1Lr′(Ω,Ft, IP ; IRmt)|x1 ∈ X1, xt ∈ Xt(xt−1; ξt)}

the set of feasible elements of (1) with input Ξ. Then the multistage stochastic program
(1) may be rewritten as

min{F (ξ, x) : x ∈ X (ξ)}. (11)

Furthermore, let v(ξ) denote its optimal value and let, for any α ≥ 0,

lα(F (ξ, ·)) := {x ∈ X (ξ) : F (ξ, x) ≤ v(ξ) + α}

denote the α-level set of the stochastic program (11) with input ξ.
The following conditions are imposed on (11):

(A1) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃−ξ‖r ≤ δ, any
t = 2, . . . , T and any x1 ∈ X1, xτ ∈ Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, the set Xt(xt−1; ξ̃t)
is nonempty (relatively complete recourse locally around ξ).
(A2) The optimal value v(ξ) of (11) is finite and the objective function F is level-
bounded locally uniformly at ξ, i.e., for some α > 0 there exists a δ > 0 and a bounded
subset B of Lr′(Ω,F , IP ; IRm) such that lα(F (ξ̃, ·)) is nonempty and contained in B for
all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.
(A3) ξ ∈ Lr(Ω,F , IP ; IRs) for some r ≥ 1.

The following stability result for optimal values of multistage stochastic programs
is proved as [15, Theorem 2.1]. Its main observation is that the optimal value of
a multistage model depends continuously on the stochastic input process if both its
probability distribution and its filtration are approximated with respect to the Lr-
distance and the filtration distance defined by (13), respectively.
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Theorem 3.1 Let (A1), (A2) and (A3) be satisfied and X1 be bounded.
Then there exist positive constants L, α and δ such that the estimate

|v(ξ) − v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃)) (12)

holds for all random elements ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ. Here, Df(ξ, ξ̃)
denotes the filtration distance of ξ and ξ̃ defined by

Df(ξ, ξ̃) := sup
ε∈(0,α]

inf
x∈lε(F (ξ,·))

x̃∈lε(F (ξ̃,·))

T−1
∑

t=2

max{‖xt − IE[xt|F̃t]‖r′, ‖x̃t − IE[x̃t|Ft]‖r′}, (13)

where Ft and F̃t denote the σ-fields genarated by ξt and ξ̃t, and IE[·|Ft] and IE[·|F̃t],
t = 1, . . . , T , the corresponding conditional expectations, respectively.

An example in [15] shows that the filtration distance Df is indispensable for The-
orem 3.1 to hold. The filtration distance of two stochastic processes vanishes if their
filtrations coincide, in particular, if the model is two-stage (i.e., T = 2). If solutions of
(11) with inputs ξ and ξ̃ exist, the filtration distance is of the simplified form

Df(ξ, ξ̃) = inf
x∈l0(F (ξ,·))

x̃∈l0(F (ξ̃,·))

T−1
∑

t=2

max{‖xt − IE[xt|F̃t]‖r′, ‖x̃t − IE[x̃t|Ft]‖r′}. (14)

For example, solutions of (11) exist if Ω is finite or if 1 < r′ < ∞ implying that the
spaces Lr′ are finite-dimensional or reflexive Banach spaces (hence, the level sets are
compact or weakly sequentially compact).

Theorem 3.1 is valid for any choice of the underlying probability space such that
there exists a version of ξ with its probability distribution. The right-hand side of
(12) is minimal if the probability space is selected such that both norms ‖ · ‖r and
‖ · ‖r′ coincide with the corresponding Lr-minimal and Lr′-minimal distances (cf. the
discussion in Section 2). However, for deriving estimates of the filtration distance,
specific probability spaces might be more appropriate (see Section 4.3).

4 Constructing scenario trees

Let ξ be the original stochastic process on some probability space (Ω,F , IP ) with
parameter set {1, . . . , T} and state space IRd. We aim at generating a scenario tree ξ̃tr

such that
‖ξ − ξ̃tr‖r and Df(ξ, ξ̃tr) (15)

are small and, hence, the optimal values v(ξ) and v(ξ̃tr) are close to each other according
to Theorem 3.1. Since this problem is hardly solvable in general, we replace ξ by a
(good) finitely discrete approximation. This approximation is again denoted by ξ and
its scenarios by ξi = (ξi

1, . . . , ξ
i
T ) with probabilities pi, i = 1, . . . , N . We assume that

all scenarios coincide at the first time period t = 1, i.e., ξ1
1 = . . . = ξN

1 =: ξ∗1 . Hence,
they form a fan of invidual scenarios. Such a fan may be regarded as a scenario tree
with root node at t = 1 having N branches at the root and consisting of 1 + (T − 1)N

7
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Figure 1: Example of a fan of individual scenarios with T = 4 and N = 7

nodes. If such a scenario fan is inserted into a multiperiod stochastic program (1), the
model is two-stage as all σ-fields Ft, t = 2, . . . , T , coincide.

In this section we develop algorithmic procedures that produce scenario trees ξ̃tr

with root node ξ∗1 , less nodes than the original fan and that allow for constructive
estimates of the Lr-norm ‖ξ − ξ̃tr‖r and the corresponding filtration distance. Here,
r ≥ 1 is determined such that the optimal values of the underlying multistage stochastic
program satisfy an estimate of the form (12) in Theorem 3.1. The idea of the algorithm
consists in forming clusters of scenarios based on scenario reduction on the time horizon
{1, . . . , t} recursively for decreasing and increasing time t, respectively.
To this end, the Lr-seminorm ‖ · ‖r,t on Lr(Ω,F , IP ; IRs) (with s = Td) given by

‖ξ‖r,t :=
(

IE[‖ξ‖r
t ]
)

1
r

=
(

N
∑

i=1

pi‖ξ
i‖r

t

)
1
r

(16)

is needed at step t. Here, we denote by ‖ · ‖t a seminorm on IRs that is defined by
‖ξ‖t := ‖(ξ1, . . . , ξt, 0, . . . , 0)‖ for each ξ = (ξ1, . . . , ξT ) ∈ IRs.

4.1 Backward tree construction

Setting ξ̄T+1 := ξ, recursive scenario reduction on {1, . . . , t} for decreasing t leads to
stochastic processes ξ̄t having scenarios {ξ̄t,i := ξi}i∈It

with It ⊂ I := {1, . . . , N} and
increasing cardinality |It|. We obtain a chain of index sets

I1 = {i∗} ⊆ I2 ⊆ · · · ⊆ It−1 ⊆ It ⊆ · · · ⊆ IT ⊆ IT+1 := I

and denote the index set of deleted scenarios at t by Jt := It+1 \It for each t = 1, . . . , T .
The probabilities πi

t of the scenarios ξ̄t,i for i ∈ It are set by πi
T+1 := pi for i ∈ IT+1

and further defined according to the optimal redistribution rule (see Lemma 2.1) for
the norm ‖ · ‖t, i.e.,

πi
t = πi

t+1 +
∑

j∈Jt,i

πj
t+1 (i ∈ It), (17)

where

Jt =
⋃

i∈It

Jt,i, Jt,i := {j ∈ Jt : i = it(j)} and it(j) ∈ arg min
i∈It

‖ξi − ξj‖t. (18)

8



At time t we obtain the scenario clusters Īt,i := {i, j : j ∈ Jt,i} for each i ∈ It that
form a partition of IT , i.e., IT = ∪i∈It

Īt,i. The cardinality of Īt,i corresponds to the
branching degree of scenario i at t. If |Īt,i| = 1, i.e., Jt,i = ∅, scenario i will not branch
at t. Lemma 2.1 also implies

‖ξ̄t+1 − ξ̄t‖r
r,t =

∑

j∈Jt

πj
t+1 min

i∈It

‖ξi − ξj‖r
t (19)

for t = 1, . . . , T . The final scenario tree ξ̃tr consists of |IT | scenarios ξ̃j with probabilities
πj

T for j ∈ IT . Each of its components ξ̃j
t is a node of degree |Īt,j| = 1 + |Jt,j| with

probability πj
t and belongs to the set {ξi

t}i∈It
. The corresponding index i ∈ It is given

by i = αt(j), where the index mappings αt : I → It are defined recursively by setting
αT+1 to be the identity and

αt(j) :=

{

it(αt+1(j)) , αt+1(j) ∈ Jt,
αt+1(j) , otherwise,

(20)

for j ∈ I and t = T, . . . , 1. We obtain the following estimate for the Lr-distance of ξ
and ξ̃tr.

Theorem 4.1 Let the stochastic process ξ with fixed initial node ξ∗
1 , scenarios ξi and

probabilities pi, i = 1, . . . , N , be given. Let ξ̃tr be the stochastic process with scenarios
ξ̃i = (ξ∗1 , ξ

α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξi

T ) and probabilities πi
T for i ∈ IT . Then we have the

estimate

‖ξ − ξ̃tr‖r ≤
T
∑

t=2

(

∑

j∈Jt

πj
t+1 min

i∈It

‖ξi − ξj‖r
t

)
1
r

. (21)

Proof: Let ξ̂τ be the stochastic process having scenarios ξ̂τ,i and probabilities πi
T for

i ∈ IT , where

ξ̂τ,i
t :=

{

ξ
αt(i)
t , t ≥ τ,

ξ
ατ (i)
t , t < τ,

for τ = 1, . . . , T . The processes ξ̂τ are illustrated in Figure 2, where ξ̂τ corresponds to
the (T − τ + 2)-th picture for τ = 2, . . . , T . According to the above constructions we
have ξ̂T = ξ̄T and ξ̂1 = ξ̃tr. Next we show for t = 1, . . . , T − 1 that

‖ξ̂t+1 − ξ̂t‖r = ‖ξ̄t+1 − ξ̄t‖r,t. (22)

We have
‖ξ̂t+1 − ξ̂t‖r =

∑

i∈IT

πi
T ‖ξ̂

t+1,i − ξ̂t,i‖r. (23)

Since the final T−t components of the elements ξ̂t+1,i and ξ̂t,i are identical, the norm ‖·‖
may be replaced by the seminorm ‖ · ‖t in (23). Moreover, since the first t components

of ξ̂t+1,i and ξ̂t,i are ξ
αt+1(i)
τ and ξ

αt(i)
τ , respectively, τ = 1, . . . , t, we have

∑

i∈IT

πi
T‖ξ̂

t+1,i − ξ̂t,i‖r =
∑

i∈IT

πi
T ‖ξ

αt+1(i) − ξαt(i)‖r
t .
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Since αt(j) = αt+1(j) holds for αt+1(j) /∈ Jt (see (20)), we obtain

∑

i∈IT

πi
T ‖ξ

αt+1(i) − ξαt(i)‖r
t =

∑

i∈IT
αt+1(i)∈Jt

πi
T‖ξ

αt+1(i) − ξαt(i)‖r
t .

With (20) and (19) the latter sum may be rewritten as

∑

i∈IT
αt+1(i)∈Jt

πi
T‖ξ

αt+1(i) − ξαt(i)‖r
t =

∑

j∈Jt

∑

k∈IT
αt+1(k)=j

πk
T‖ξ

αt+1(k) − ξαt(k)‖r
t

=
∑

j∈Jt

(

∑

k∈IT
αt+1(k)=j

πk
T

)

‖ξj − ξit(j)‖r
t

=
∑

j∈Jt

πj
t+1‖ξ

j − ξit(j)‖r
t = ‖ξ̄t+1 − ξ̄t‖r

r,t.

Hence, the proof of (22) for t = 1, . . . , T is complete.
Finally, we prove (21) by applying repeatedly the triangle inequality for ‖ · ‖r, using
(22) and the identities ξ = ξ̄T+1, ξ̂T = ξ̄T and ξ̂1 = ξtr.

‖ξ − ξ̃tr‖r ≤ ‖ξ − ξ̂T‖r + ‖ξ̂T − ξ̃tr‖r

≤ ‖ξ̄T+1 − ξ̄T‖r +
T−1
∑

k=1

‖ξ̂T−k+1 − ξ̂T−k‖r

=

T−1
∑

k=0

‖ξ̄T−k+1 − ξ̄T−k‖r,T−k

=
T
∑

t=2

‖ξ̄t+1 − ξ̄t‖r,t ,

where for t = 1 the summand vanishes. Together with the representation (19) of ‖·‖r,t,
the proof is complete. �

The preceding result allows to estimate the quality of scenario trees that are gen-
erated by the backward tree construction algorithm. For example, if the tree structure
is stagewise fixed, say, to decreasing numbers Nt ≤ N as t decreases from T to 1, the
algorithm selects almost best possible candidates for deletion and Theorem 4.1 allows
to estimate the quality of the tree. In addition, the estimate (21) provides the possi-
bility to quantify the relative error at time t and, hence, to modify the structure. If
the tree structure is free, the following flexible algorithm allows to generate a variety
of scenario trees satisfying a given accuracy tolerance with respect to the Lr-distances.

Algorithm 4.2 (backward tree construction)
Let N scenarios ξi with probabilities pi, i = 1, . . . , N , fixed root ξ∗1 ∈ IRd, r ≥ 1, and

tolerances ε, εt, t = 2, . . . , T , be given such that
T
∑

t=2

εt ≤ ε.
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Figure 2: Illustration of the backward tree construction for an example including T=5
time periods starting with a scenario fan containing N=58 scenarios

Step 0: Set ξ̄T+1 := ξ and IT+1 = {1, . . . , N}. Determine an index set IT ⊆ IT+1 and
a stochastic process ξ̄T with |IT | scenarios such that ‖ξ̄T+1 − ξ̄T‖r ≤ εT .

Step t: Determine an index set IT−t ⊆ IT−t+1 and a stochastic process ξ̄T−t with |IT−t|
scenarios such that ‖ξ̄T−t+1 − ξ̄T−t‖r,T−t ≤ εT−t.

Step T-1: Construct the stochastic process ξ̃tr having |IT | scenarios ξ̃j, j ∈ IT , such

that ξ̃j
t := ξ

αt(j)
t , t = 1, . . . , T , where αt(·) is defined by (20).

While the first picture in Figure 2 illustrates the original fan ξ, the second one corre-
sponds to the situation after the reduction Step 0 and the third, fourth and fifth one
to the Steps 1–3, respectively. The final picture corresponds to the final Step 4 and
illustrates the scenario tree ξ̃tr.

Corollary 4.3 Let a stochastic process ξ with fixed initial node ξ∗
1, scenarios ξi and

probabilities pi, i = 1, . . . , N , be given. If ξ̃tr is constructed according to Algorithm 4.2,
we have

‖ξ − ξ̃tr‖r ≤
T
∑

t=2

εt ≤ ε.

11



Proof: This is a direct consequence of the estimate (21) in Theorem 4.1, which reads

‖ξ − ξ̃tr‖r ≤
T
∑

t=2

‖ξ̄t+1 − ξ̄t‖r,t. �

If the Algorithm 4.2 is used to generate scenario trees in practical applications, one
has to select r > 1 and the tolerances εt, t = 1, . . . , T . Often there are good reasons
for selecting r according to the properties of the original process ξ and the desired
approximation quality of the solutions expressed by the norm ‖ · ‖r′. The choice of
the tolerances εt, however, is essentially open so far. Clearly, branching at t occurs
more often if εt gets larger and εt = 0 leads to no branching of scenarios at time
t. Some experience on selecting the tolerances is reported in Section 5.1, where the
(non-vanishing) tolerances are chosen according to the exponential rule (45).

4.2 Forward tree construction

The forward selection procedure determines recursively stochastic processes ξ̂t having
scenarios ξ̂t,i endowed with probabilities pi, i ∈ I := {1, . . . , N}, and partitions Ct =
{C1

t , . . . , C
Kt

t } of I, i.e., such that

Ck
t ∩ Ck′

t = ∅ ∀k 6= k′ and

Kt
⋃

k=1

Ck
t = I. (24)

The elements of such a partition Ct will be called (scenario) clusters. The initialization
of the procedure consists in setting ξ̂1 = ξ, i.e., ξ̂1,i = ξi, i ∈ I, and C1 = {I}. At step
t (with t > 1) every cluster Ck

t−1, i.e., every scenario subset {ξ̂t−1,i}i∈Ck
t−1

, is considered

separately and subjected to scenario reduction with respect to the seminorm ‖ · ‖t as
described in Section 2. This leads to index sets Ik

t and Jk
t of remaining and deleted

scenarios, respectively, where
Ik
t ∪ Jk

t = Ck
t−1

and

Jk
t =

⋃

i∈Ik
t

Jk
t,i, Jk

t,i := {j ∈ Jk
t : i = ikt (j)} and ikt (j) ∈ arg min

i∈Ik
t

‖ξ̂t−1,i − ξ̂t−1,j‖r
t .

Next we define a mapping αt : I → I such that

αt(j) =

{

ikt (j) , j ∈ Jk
t , k = 1, . . . , Kt−1,

j , otherwise.
(25)

Then the scenarios of the stochastic process ξ̂t = {ξ̂t
τ}

T
τ=1 are defined by

ξ̂t,i
τ =

{

ξ
ατ (i)
τ , τ ≤ t,
ξi
τ , otherwise,

(26)

with probabilities pi for each i ∈ I. The processes ξ̂t are illustrated in Figure 3, where
ξ̂t corresponds to the t-th picture for t = 1, . . . , T . The partition Ct at time t is defined
by

Ct = {α−1
t (i) : i ∈ Ik

t , k = 1, . . . , Kt−1}, (27)
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Figure 3: Illustration of the forward tree construction for an example including T=5
time periods starting with a scenario fan containing N=58 scenarios

i.e., each element of the index sets Ik
t defines a new cluster and the partition Ct is a

refinement of the partition Ct−1. The scenario sets It, scenario clusters Īt,i and cluster
probabilities πi

t in the description of the backward reduction procedure in the preceding
subsection have now the form

It :=

Kt−1
⋃

k=1

Ik
t

Īt,i := {i, j : j ∈ Jk
t,i} = Ck

t and πi
t =

∑

j∈Ck
t

pj if i ∈ Ik
t for some k = 1, . . . , Kt−1.

The branching degree of scenario i at t coincides with the cardinality of Īt,i.

Finally, the scenarios and their probabilities of the scenario tree ξ̃tr := ξ̂T are given
by the structure of the final partition CT , i.e., they are of the form

ξ̃k = (ξ∗1 , ξ
α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξ

αT (i)
T ) and πi

T if i ∈ Ck
T

for each k = 1, . . . , KT . Furthermore, we have the following error estimate with respect
to the Lr-norm.
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Theorem 4.4 Let the stochastic process ξ with fixed initial node ξ∗
1 , scenarios ξi and

probabilities pi, i = 1, . . . , N , be given. Let ξ̃tr be the stochastic process with scenarios
ξ̃k = (ξ∗1 , ξ

α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξ

αT (i)
T ) and probabilities πk

T if i ∈ Ck
T , k = 1, . . . , KT .

Then we have the estimate

‖ξ − ξ̃tr‖r ≤
T
∑

t=2





Kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

‖ξi
t − ξj

t ‖
r





1
r

. (28)

Proof: We recall that ξ̂1 = ξ and ξ̂T = ξ̃tr and obtain

‖ξ − ξ̃tr‖r ≤
T
∑

t=2

‖ξ̂t − ξ̂t−1‖r,

using the triangle inequality of ‖ · ‖r. Since the scenarios of ξ̂t and ξ̂t−1 coincide on
{t + 1, . . . , T}, the latter estimate may be rewritten as

‖ξ − ξ̃tr‖r ≤
T
∑

t=2

‖ξ̂t − ξ̂t−1‖r,t. (29)

By definition of ξ̂t and ξ̂t−1 we have ξ̂t,i
τ = ξ̂t−1,i

τ for all τ = 1, . . . , t − 1. Hence, we
obtain

‖ξ̂t − ξ̂t−1‖r
r,t =

N
∑

i=1

pi‖ξ̂
t,i − ξ̂t−1,i‖r

t =

Kt−1
∑

k=1

∑

j∈Ck
t−1

pj‖ξ̂
t,j
t − ξ̂t−1,j

t ‖r

=

Kt−1
∑

k=1

∑

j∈Ck
t−1

pj‖ξ
αt(j)
t − ξj

t ‖
r =

Kt−1
∑

k=1

∑

j∈Jk
t

pj‖ξ
ikt (j)
t − ξj

t ‖
r

=

Kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

‖ξi
t − ξj

t ‖
r,

using, in addition, the partition property (24) and the definitions (25) of the mappings
αt and ikt . Inserting the latter result into (29) completes the proof. �

The error estimate in Theorem 4.4 is very similar to that in Theorem 4.1. Both
estimates allow to quantify the relative error of the t-th construction step. As in
the previous section, we provide a flexible algorithm that allows to generate a variety
of scenario trees satisfying a given approximation tolerance with respect to the Lr-
distance.

Algorithm 4.5 (forward tree construction)
Let N scenarios ξi with probabilities pi, i = 1, . . . , N , fixed root ξ∗1 ∈ IRd and probability

distribution P , r ≥ 1, and tolerances ε, εt, t = 2, . . . , T , be given such that
T
∑

t=2

εt ≤ ε.
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Step 1: Set ξ̂1 := ξ and C1 = {{1, . . . , N}}.

Step t: Let Ct−1 = {C1
t−1, . . . , C

Kt−1

t−1 }. Determine disjoint index sets Ik
t and Jk

t such
that Ik

t ∪ Jk
t = Ck

t−1, the mapping αt(·) according to (25) and a stochastic process

ξ̂t having N scenarios ξ̂t,i with probabilities pi according to (26) and such that
‖ξ̂t − ξ̂t−1‖r,t ≤ εt. Set Ct = {α−1

t (i) : i ∈ Ik
t , k = 1, . . . , Kt−1}.

Step T+1: Let CT = {C1
T , . . . , CKT

T }. Construct a stochastic process ξ̃tr having KT

scenarios ξ̂k such that ξ̂k
t := ξ

αt(i)
t if i ∈ Ck

T , k = 1, . . . , KT , t = 1, . . . , T .

While the first picture in Figure 3 illustrates the original fan ξ, the second, third,
fourth and fifth ones correspond to the situation after the Steps 2–5. The final picture
corresponds to Step 6 and illustrates the scenario tree ξ̃tr.

Corollary 4.6 Let a stochastic process ξ with fixed initial node ξ∗
1, scenarios ξi and

probabilities pi, i = 1, . . . , N , be given. If ξ̃tr is constructed by Algorithm 4.5, we have

‖ξ − ξ̃tr‖r ≤
T
∑

t=2

εt ≤ ε.

Proof: This is a direct consequence of (29). �

When using Algorithm 4.5, the selection of r > 1 should be done according to the
same reasons as mentioned at the end of Section 4.1. The choice of the tolerances εt,
however, is different. Here, it is suggested to choose nonincreasing εt, t = 2, . . . , T .
The smaller εt is, the more branchings occur at t. Some experience on selecting the
tolerances is provided by the rule (46) in Section 5.2.

4.3 Estimating filtration distances

Let ξ be the (discrete) approximation of the original stochastic process and ξ̃ = ξ̃tr be
the process obtained by means of one of the tree construction approaches in Sections
4.1 and 4.2, respectively. So far we are able to estimate the first ingredient ‖ξ − ξ̃tr‖r

of the stability estimate (12) in Theorem 3.1. Here, we derive estimates for the second
ingredient Df(ξ, ξ̃tr) and develop strategies for controlling the tree generation process
by bounding both distances.

Next, we consider two stochastic processes ξ and ξ̃ given in the form of scenario
trees. We assume that conditions (A1) and (A2) of Section 3 are satisfied and derive
estimates for the bound

Df(ξ, ξ̃)≤















T−1
∑

t=2

max
{

IE[‖xt − IE[xt|F̃t]‖
r′ ], IE[‖x̃t − IE[x̃t|Ft]‖

r′]
}

1
r′

, 1 ≤ r′ < ∞

T−1
∑

t=2

max
{

‖xt − IE[xt|F̃t]‖∞, ‖x̃t − IE[x̃t|Ft]‖∞
}

, r′ = ∞
(30)

of the filtration distance of ξ and ξ̃, respectively, defined by (13). Here, x and x̃ are
solutions of (11) with inputs ξ and ξ̃, respectively, and r′ is defined by (10).
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To this end, we assume that ξ = {ξt}
T
t=1 and ξ̃ = {ξ̃t}

T
t=1 are defined on the probability

space (Ω,F , IP ) with Ω = {ω1, . . . , ωN}, F denoting the power set of Ω and IP (ωi) =
pi, i = 1, . . . , N . Let It and Ĩt denote the index set of realizations of ξt and ξ̃t,
respectively. Furthermore, let Et and Ẽt denote families of nonempty elements of Ft

and F̃t, respectively, that form partitions of Ω and generate the corresponding σ-fields.
We set Ets := {ω ∈ Ω : (ξ1(ω), . . . , ξt(ω)) = (ξs

1, . . . , ξ
s
t )}, s ∈ It, and Ẽts := {ω ∈ Ω :

(ξ̃1(ω), . . . , ξ̃t(ω)) = (ξ̃s
1, . . . , ξ̃

s
t )}, s ∈ Ĩt. For the t-th summand of the bound (30) we

introduce the notation

Dt(ξ, ξ̃) :=







max
{

IE[‖xt − IE[xt|F̃t]‖
r′], IE[‖x̃t − IE[x̃t|Ft]‖

r′ ]
} 1

r′

, 1 ≤ r′ < ∞

max
{

‖xt − IE[xt|F̃t]‖∞, ‖x̃t − IE[x̃t|Ft]‖∞
}

, r′ = ∞

and obtain for 1 ≤ r′ < ∞

Dt(ξ, ξ̃)
r′ = max

{

N
∑

i=1

pi‖xt(ωi) − IE[xt|F̃t](ωi)‖
r′,

N
∑

i=1

pi‖x̃t(ωi) − IE[x̃t|Ft](ωi)‖
r′
}

= max

{

∑

s∈Ĩt

∑

ωi∈Ẽts

pi

∥

∥

∥
xt(ωi) −

∑

ωj∈Ẽts

pjxt(ωj)

∑

ωj∈Ẽts

pj

∥

∥

∥

r′

,

∑

s∈It

∑

ωi∈Ets

pi

∥

∥

∥
x̃t(ωi) −

∑

ωj∈Ets

pjx̃t(ωj)

∑

ωj∈Ets

pj

∥

∥

∥

r′
}

For r′ = ∞ we have

Dt(ξ, ξ̃) = max
{

max
i=1,...,N

‖xt(ωi) − IE[xt|F̃t](ωi)‖, max
i=1,...,N

‖x̃t(ωi) − IE[x̃t|Ft](ωi)‖
}

= max

{

max
s∈Ĩt

max
ωi∈Ẽts

∥

∥

∥
xt(ωi) −

∑

ωj∈Ẽts

pjxt(ωj)

∑

ωj∈Ẽts

pj

∥

∥

∥
,

max
s∈It

max
ωi∈Ets

∥

∥

∥
x̃t(ωi) −

∑

ωj∈Ets

pjx̃t(ωj)

∑

ωj∈Ets

pj

∥

∥

∥

}

.

Now, we return to the special case considered in this paper that ξ is a fan of individual
scenarios {ξi : i = 1, . . . , N} and ξ̃ = ξ̃tr a scenario tree with IT scenarios. Hence,
we have Ft = F for t = 2, . . . , T and the second item of the maximum defining
Dt(Ft, F̃t)

r′ vanishes. Using the notation of Section 4 we denote by It again the index
set of realizations of the scenario tree ξ̃tr at time t, by Īt,i = {i} ∪ It,i, i ∈ It the
scenario clusters at t, by πi

t the (node) probability of ξ̃i
t, i.e., πi

t =
∑

j∈Īt,i
pj, and by pj

the probability of scenario ξj for j = 1, . . . , N . Since ωj ∈ Ẽts is equivalent to j ∈ Īt,s,
we obtain

Dt(ξ, ξ̃)
r′ =

∑

i∈It

∑

j∈Īt,i

pj

∥

∥

∥
xj

t −
1

πi
t

∑

k∈Īt,i

pkx
k
t

∥

∥

∥

r′

(1 ≤ r′ < ∞) (31)
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Dt(ξ, ξ̃) = max
i∈It

max
j∈Īt,i

∥

∥

∥
xj

t −
1

πi
t

∑

k∈Īt,i

pkx
k
t

∥

∥

∥
(r′ = ∞), (32)

where xi
t, i = 1, . . . , N , are the t-th components of the solution scenarios of the two-

stage models with input ξ (having scenarios ξj, j = 1, . . . , N). Starting from (31), (32)
the following estimates are valid.

Theorem 4.7 Let (A1) and (A2) be satisfied. Let the stochastic process ξ have sce-
narios ξi with probabilities pi, i = 1, . . . , N , and ξ̃tr be a scenario tree with index set
It of realizations and scenario clusters Īt,i at t. Then the distance of their filtrations
allows the estimates

Df(ξ, ξ̃) ≤



















T−1
∑

t=2

(

∑

i∈It

∑

j∈Īt,i

pj(π
i
t)

r′−1 max
k∈Īt,i

‖xk
t − xj

t‖
r′
)

1
r′

, 1 ≤ r′ < ∞

T−1
∑

t=2

max
i∈It

max
j,k∈Īt,i

‖xk
t − xj

t‖ , r′ = ∞

(33)

Df(ξ, ξ̃) ≤ K















T−1
∑

t=2

(

∑

i∈It

∑

j∈It,i

pj‖x
j
t − xi

t‖
r′
) 1

r′

, 1 ≤ r′ < ∞

T−1
∑

t=2

max
i∈It

max
j∈It,i

‖xj
t − xi

t‖ , r′ = ∞

(34)

for any solution x of (11) with input ξ and some constant K > 0.

Proof: Let x be a solution of (11) with input ξ, which exists according to (A1) and
(A2). The proof is carried out for the case 1 ≤ r′ < ∞. In case r′ = ∞ the estimates
follow by immediate modifications. To derive (33), we start from (31) and obtain

Dt(ξ, ξ̃)
r′ =

∑

i∈It

∑

j∈Īt,i

pj

πi
t

∥

∥

∥

∑

k∈Īt,i

pk(x
k
t − xj

t )
∥

∥

∥

r′

≤
∑

i∈It

∑

j∈Īt,i

pj

πi
t

(

∑

k∈Īt,i

pk‖x
k
t − xj

t‖
)r′

≤
∑

i∈It

∑

j∈Īt,i

pj

πi
t

(πi
t)

r′ max
k∈Īt,i

‖xk
t − xj

t‖
r′

For the second estimate we consider for any i ∈ It the index αt(i) defined by (20) and
(25), respectively. Starting again from (31) we get

Dt(ξ, ξ̃)
r′ ≤

∑

i∈It

∑

j∈Īt,i

pj

(

‖xj
t − x

αt(i)
t ‖ +

∑

k∈Īt,i

pk

πi
t

‖x
αt(i)
t − xk

t ‖
)r′

≤ K̄
∑

i∈It

∑

j∈Īt,i

pj

(

‖xj
t − x

αt(i)
t ‖r′ +

∑

k∈Īt,i

(pk

πi
t

)r′

‖x
αt(i)
t − xk

t ‖
r′
)

≤ K̄
∑

i∈It

(

∑

j∈Īt,i

pj‖x
j
t − x

αt(i)
t ‖r′ + πi

t

(πi
t)

r′−1

(πi
t)

r′

∑

k∈Īt,i

pk‖x
αt(i)
t − xk

t ‖
r′
)
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= 2K̄
∑

i∈It

∑

j∈Īt,i

pj‖x
j
t − x

αt(i)
t ‖r′

= 2K̄
∑

i∈It

∑

j∈It,i

pj‖x
j
t − xi

t‖
r′,

where the identity αt(i) = i for each i ∈ It is used in the final step and K̄ > 0 is some
constant depending on r′ and the maximum of the cardinalities of It,i. �

The upper bound on the filtration distance contains only nontrivial summands at
pairs (t, i), where Jt,i 6= ∅ or, in other words, where scenario i branches at time t. The
relevant contribution of such pairs (t, i) to the filtration bound amounts to

bt,i :=







∑

j∈It,i

pj‖x
j
t − xi

t‖
r′ , 1 ≤ r′ < ∞

max
j∈It,i

‖xj
t − xi

t‖ , r′ = ∞
(35)

Hence, the term (35) has to be controlled during the whole (backward or forward) tree
construction process. Roughly speaking, this means that scenario i may branch at t
only if bt,i is sufficiently small. More precisely, both Algorithms 4.2 and 4.5 should be
extended by incorporating the condition

Bt :=







∑

i∈It

bt,i ≤ εr′

f,t , 1 ≤ r′ < ∞

max
i∈It

bt,i ≤ εf,t , r′ = ∞
(36)

with some filtration tolerance εf,t into their step t for t = 2, . . . , T − 1. Unfortunately,
the solution process {xt}

T
t=1 of the two-stage model is hardly available in general and

only available at certain extra cost. Hence, reducing scenarios of the fan ξ with respect
to ‖ · ‖r (cf. Section 2), computing the solution of (11) with reduced input fan and
estimating the bounds Bt might be a suitable alternative.

Nevertheless, it is of considerable interest to derive bounds on the filtration distance
that are based on input information only. This requires to derive estimates for the
distance of any two scenarios of some solution x of (11) with input ξ. To this end,
we assume that only costs and right-hand sides are random in (11). We consider the
scenario-based stochastic program with input ξ

min







〈b1(ξ
∗
1), x1〉 +

N
∑

i=1

pi

T
∑

t=2

〈bt(ξ
i
t), x

i
t〉

∣

∣

∣

∣

∣

∣

xi
t ∈ Xt, t = 1, . . . , T,

At,0x
i
t + At,1x

i
t−1 = ht(ξ

i
t),

t = 2, . . . , T, i = 1, . . . , N







, (37)

which is indeed two-stage and represents a linear program. Furthermore, the minimiza-
tion decomposes into first- and second-stage variables leading to the following form of
the two-stage program (37)

min
{

〈b1(ξ
∗
1), x1〉 +

N
∑

i=1

piΦ(ξi, x1) | x1 ∈ X1

}

, (38)
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where the optimal value function Φ is extended real-valued and defined on Ξ × X1 by

Φ(z, x1) :=inf
{

T
∑

t=2

〈bt(zt), xt〉 | xt ∈ Xt, At,0xt + At,1xt−1 = ht(zt), t = 2, . . . , T
}

(39)

for any pair (z, x1) ∈ Ξ × X1. Exploiting Lipschitz stability properties of solutions to
the linear program on the right-hand side of (39) together with ideas of the proof of
Theorem 4.7 leads to the following estimate of the filtration distance.

Theorem 4.8 Assume that only costs and right-hand sides are random in (11) and
that (A1) and (A2) are satisfied. Then there exists a constant L̂ > 0 such that the
filtration distance allows the estimate

Df(ξ, ξ̃) ≤ L̂











(

∑

i∈I2

∑

j∈I2,i

pj‖ξ
j − ξi‖r′

)
1
r′

, 1 ≤ r′ < ∞

max
i∈I2

max
j∈I2,i

‖ξj − ξi‖ , r′ = ∞ .
(40)

Proof: Due to (A1) and (A2) there exists a solution x∗ of (11) with input ξ. Let us
consider the parametric linear program

min
{

T
∑

t=2

〈bt(zt), xt〉 | xt ∈ Xt, At,0xt + At,1xt−1 = ht(zt), t = 2, . . . , T
}

, (41)

with parameter z ∈ Ξ, where x1 = x∗
1 is fixed. Let S(z) denote the solution set of

the linear program (41). Conditions (A1) and (A2) imply that S(ξj) is nonempty for
every j = 1, . . . , N . Since the functions bt(·) and ht(·), t = 2, . . . , N , are affinely linear,
dom S is convex polyhedral (cf. [35]) and the multifunction S is polyhedral (cf. [28]).
Hence, S is locally upper Lipschitz continuous at each z ∈ dom S [28, Proposition 1]
and, thus, it is upper Lipschitz continuous on each bounded subset B of dom S. Setting
B := conv{ξ1, . . . , ξN} there exists a constant L̄ > 0 such that

S(ξ) ⊆ S(ξj) + L̄‖ξ − ξj‖ (42)

holds for all ξ ∈ B and j = 1, . . . , N . For each i ∈ I2 and some xi ∈ S(ξi) we select
elements xj ∈ S(ξj) according to (42) such that

‖xi − xj‖ ≤ L̄‖ξi − ξj‖

for each j ∈ Ī2,i. Then, the stochastic process x having scenarios (x∗
1, x

i
2, . . . , x

i
T ) with

probabilities pi, i = 1, . . . , N , is a solution of (11) with input ξ. With the solution x at
hand we are ready to estimate the filtration distance by using a similar idea as in the
proof of Theorem 4.7. This time we use the indices α2(i) instead of αt(i) and obtain
in case 1 ≤ r′ < ∞ that

Df(ξ, ξ̃) ≤ K̂
(

T−1
∑

t=2

Dt(ξ, ξ̃)
r′
)

1
r′
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≤ K̂K̄
(

T−1
∑

t=2

∑

i∈It

∑

j∈Īt,i

pj‖x
j
t − x

α2(i)
t ‖r′

)
1
r′

= K̂K̄
(

T−1
∑

t=2

∑

i∈I2

∑

j∈Ī2,i

pj‖x
j
t − xi

t‖
r′
) 1

r′

= K̂K̄
(

∑

i∈I2

∑

j∈Ī2,i

pj‖x
j − xi‖r′

)
1
r′

≤ K̂K̄L̄
(

∑

i∈I2

∑

j∈I2,i

pj‖ξ
j − ξi‖r′

)
1
r′

,

where K̂ := (T − 2)
1
r and K̄ is the same constant as in the proof of Theorem 4.7.

Setting L̂ := K̂K̄L̄ completes the proof for 1 ≤ r′ < ∞. Immediate modifications of
the above proof lead to the desired estimate for r′ = ∞. �

The theorem supports one of the standard conjectures in scenario tree generation,
namely, that the first time period after the deterministic first stage plays a major role.
The estimate (40) advises that every cluster Ī2,i has to be chosen such that the term

b∗2,i :=







∑

j∈I2,i

pj‖ξ
j − ξi‖r′ , 1 ≤ r′ < ∞

max
j∈I2,i

‖ξj − ξi‖ , r′ = ∞
(43)

is small enough. In many practical cases this condition will imply that the cardinality
of I2,i remains relatively small and that of I2 large. Notice that the distance of scenarios
is measured with respect to the whole time horizon. The latter fact represents the main
difference to the estimates of the Lr-distance in the Theorems 4.1 and 4.4. This means
that scenario i ∈ I2 should admit branching at t = 2 only if the distance of ξi and each
scenario ξj that branches from i, i.e., j ∈ I2,i, is not too large, i.e., b∗2,i defined in (43)
is small. More precisely, both Algorithms 4.2 and 4.5 should be modified such that
clusters I2,i, i ∈ I2, are prescribed at t = 2 satisfying the condition

B∗
2 :=







∑

i∈I2

b∗2,i ≤ εr′

f , 1 ≤ r′ < ∞

max
i∈I2

b∗2,i ≤ εf , r′ = ∞
(44)

for some filtration tolerance εf . If (44) is satisfied, the further branching behavior at
time periods t with 2 < t ≤ T is controlled via the existing tests in both algorithms.
Finally, we note that estimating the filtration distance via (33) in Theorem 4.7 seems
to be preferable whenever a two-stage solution or a reduced version of it, i.e., an (ap-
proximate) solution of the two-stage approximation to the original problem, is available
at reasonable costs.

5 Numerical experience

The Algorithms 4.2 and 4.5 have been tested on data provided by the French company
Electricité de France (EDF). The data contain a finite number of scenarios representing
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realizations of a bivariate stochastic process whose components are electrical load and
water inflow (i.e., right-hand sides of linear constraints) for a time horizon of two
years. The time horizon was discretized with three time steps per day, where each
time step is associated with a set of hours during which the demand does not change
much. Table 1 and 2 show the discretization of the data for the time horizon of two
years and provide the number of scenarios, the total number of time periods and the
corresponding number of nodes of the initial scenario fan. The first node (root node)
corresponds to the mean value of all scenarios at time period t = 1. The weekly
amounts of water inflows were uniformly distributed to the corresponding time steps
of the week.

Random variable Discretization Number time steps
electrical load 3 per day 2 184
water inflow weekly 104

Table 1: Discretization of the two-year time horizon

Number
scenarios 456
time periods 2 184
initial nodes 995 449

Table 2: Dimension of the initial scenario fan

To test the scenario tree construction approach, we performed test series for the
Algorithms 4.2 and 4.5 to generate scenario trees such that branching is allowed at all
time steps, and branching is only allowed at the beginning of a week, respectively. To
measure the distances between the original and approximate probability distributions
r = 1 and a relative tolerance εrel := ε

εmax
were used in all test runs. Here, εmax denotes

the best possible distance between the probability distribution of the initial scenario
fan and the distribution of one of its scenarios endowed with unit mass. All test runs
were performed on a PC with a 3 GHz Intel Pentium CPU and 1 GByte main memory.

5.1 Results of backward tree construction

For the backward variant of scenario tree construction individual tolerances εt at
branching points were chosen recursively such that

εT = ε · (1 − q), q ∈ (0, 1) and εt = q · εt+1, t = T − 1, . . . , 2. (45)

According to our numerical experience a choice of q ∈ (0, 1) closer to 1 leads to a higher
number of remaining scenarios and branching points (stages). Choosing q closer to 0
leads to the opposite effect. For the test runs of Algorithm 4.2 we used q = 0.95. The
Tables 3 and 4 display the numerical results for the test series and different relative
tolerances.

The second and third columns compare the sizes of the initial scenario fan and the
constructed scenario tree in terms of the numbers of scenarios and nodes, respectively.
The last but one column contains the number of stages, i.e., the number of time periods
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εrel Scenarios Nodes Stages Time (sec)

0.10 442 584 270 151 172.86
0.20 429 371 046 150 129.11
0.30 417 268 201 146 117.42
0.40 405 193 014 135 110.83
0.50 393 140 536 115 106.30

Table 3: Results for backward tree construction without branching restriction

εrel Scenarios Nodes Stages Time (sec)

0.10 442 589 575 88 118.47
0.20 429 397 047 83 110.65
0.30 416 293 403 86 108.40
0.40 405 219 714 83 106.15
0.50 393 170 520 81 105.16

Table 4: Results for backward tree construction with weekly branching restriction

 0  210  420  630  840  1050  1260  1470  1680  1890  2100

 0  210  420  630  840  1050  1260  1470  1680  1890  2100

Figure 4: Scenario trees obtained with εrel = 0.2/0.5 and weekly branching structure
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where branching occurs. The computing times for constructing the trees can be found
in the last column. The computing time already contains the CPU time of (about) 100
seconds for computing the distances of scenarios, which are needed in all test runs.

It turns out that for a small relative tolerance an approximate scenario tree that
contains only 50% of the original nodes can be constructed. The pictures of Figure
4 show the structure of two generated scenario trees with weekly branching structure
and epsilon tolerances εrel = 0.2 and εrel = 0.5, respectively.

5.2 Results of forward tree construction

In a second series of tests, scenario trees were constructed out of the EDF data by Al-
gorithm 4.5. In case of forward tree construction, individual tolerances εt at branching
points were chosen such that

εt =
ε

T

[

1 + q

(

1

2
−

t

T

)]

, t = 2, . . . , T, (46)

where q ∈ [0, 1] is a parameter that affects the branching structure of the constructed
trees very similar to q in case of backward reduction. For the test runs we used q = 0.6.

The Tables 5 and 6 provide numerical results for Algorithm 4.5. Just as before,
the tables correspond to the series of tests, i.e., the first one contains results for trees
without branching restriction and the second one by allowing branching only at the
beginning of a week.

The numerical results illustrate that the forward variant of scenario tree construc-
tion performs as well as the backward version. Nevertheless, a comparison discloses
noticeable differences. Namely, it turns out that, for small relative tolerances, the
trees obtained by backward tree construction contain less nodes than in the forward
case. For increasing relative tolerances the forward construction algorithm provides
trees containing (much) less nodes than the backward counterpart. This is due to the
fact that the error estimate (21) in Section 4.1 is derived by employing the triangle
inequality extensively and, hence, is more pessimistic than (28).

Figure 5 shows the generated scenario trees with weekly branching structure for
εrel = 0.4 and εrel = 0.5. For these trees it turns out that about 15% of all nodes
are sufficient to guarantee 60% accuracy, while 6% of the nodes still guarantee 50%
accuracy.

5.3 Tree construction and filtration distances

Finally, we want to discuss the effects of incorporating the filtration distance into the
scenario tree construction approach. Here, we concentrate on the situation that only
the input information is available and, hence, the upper bound (40) of the filtration
distance with r′ = 1 is employed. In our implementation, we modified Algorithm 4.5
of forward tree construction such that instead of Step 2 sets I2 and I2,i, i ∈ I2, are
determined which satisfy the condition (44), i.e.,

∑

i∈I2

∑

j∈I2,i

pj‖ξ
j − ξi‖ ≤ εf. (47)
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εrel Scenarios Nodes Stages Time (sec)

0.10 378 743 087 129 108.11
0.20 305 529 994 162 109.15
0.30 216 289 324 161 114.18
0.40 145 138 175 121 134.11
0.50 93 67 696 84 202.42

Table 5: Results for forward tree construction without branching restriction

εrel Scenarios Nodes Stages Time (sec)

0.10 389 746 613 49 106.53
0.20 300 509 103 57 106.84
0.30 228 310 653 64 107.59
0.40 163 151 809 69 109.78
0.50 92 60 501 46 119.12

Table 6: Results for forward tree construction with weekly branching restriction

 0  210  420  630  840  1050  1260  1470  1680  1890  2100

 0  210  420  630  840  1050  1260  1470  1680  1890  2100

Figure 5: Scenario trees obtained with εrel = 0.4/0.5 and weekly branching structure
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εrel εf,rel Scenarios Nodes Stages Time (sec)
0.10 0.15 299 588 489 33 104.26
0.10 0.20 304 592 112 36 104.11
0.20 0.25 168 281 456 21 104.17
0.20 0.30 180 297 564 42 103.96
0.30 0.35 75 144 009 7 104.26
0.30 0.40 106 138 899 31 104.27
0.40 0.45 43 71 915 6 104.99
0.40 0.50 68 68 581 28 105.22
0.50 0.55 24 29 305 9 107.84
0.50 0.60 38 29 496 22 109.31

Table 7: Results of forward tree construction with incorporated filtration distance

 0  210  420  630  840  1050  1260  1470  1680  1890  2100

 0  210  420  630  840  1050  1260  1470  1680  1890  2100

Figure 6: Scenario trees obtained with εrel/εf,rel = 0.2/0.3, and εrel/εf,rel = 0.3/0.4
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Here, the filtration tolerance εf is selected to be greater than the current total tolerance
ε of the forward tree construction Algorithm 4.5. Table 7 displays numerical results
for different tolerances ε and εf of ‖ξ − ξ̃tr‖r and Df(ξ, ξ̃tr), respectively. In both cases
we used the relative tolerances εrel = ε

εmax
(first column) and εf,rel = εf

εmax
(second

column). The individual tolerances εt of the construction method were chosen by
formula (46) with parameter q̄ = 0.4. Figure 6 shows the influence of the (relative)
filtration tolerance on the tree structure. A comparison with Figure 5 shows that the
cardinality of I2 is clearly larger in Figure 6. This effect is due to imposing condition
(47) at t = 2. Condition (47) also leads to a smaller number of branchings and stages.

6 Conclusions

In many applications of stochastic programming the available statistical data allows to
generate a large fan of individual scenarios including their probabilities, which is con-
sidered as a good representation of the underlying stochastic process. In this paper,
we developed a methodology for constructing scenario trees out of a fan of individ-
ual scenarios such that the probability distribution and the filtration structure of the
original stochastic process is approximately recovered. The approximation quality is
measured in terms of an Lr-distance for the input distributions and of a distance for
the input filtrations. The latter is given as an Lr′-distance of optimal solutions and
their conditional expectations. The use of the two different measures is advised by
a stability result for multistage stochastic programs, which also suggests the choice
of r and r′ according to structural properties of the optimization model. Algorithms
are developed and implemented that allow to construct scenario trees such that both
distance measures are satisfied relative to presribed tolerances. Some computational
experience is provided and discussed. Further test runs, an evaluation of the algorithms
and a description of the implementation is projected for a subsequent paper.
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