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1. Introduction. We consider Itô stochastic differential equations (SDEs) of
the form

X(s)|tt0 =
∫ t

t0

f(X(s), s)ds +
∫ t

t0

G(X(s), s)dW (s), X(t0) = X0, (1.1)

for t ∈ J , where J = [t0, T ]. The drift and diffusion functions are given as f :
Rn × J → Rn, G = (g1, . . . , gm) : Rn × J → Rn×m. The process W is a m-
dimensional Wiener process on a given probability space (Ω,F , P ) with a filtration
(Ft)t∈J and X0 is a given Ft0-measurable initial value, independent of the Wiener
process and with finite second moments. It is assumed that there exists a path-wise
unique strong solution X(·) of (1.1).

In this paper the mean-square convergence properties of, in general, drift-implicit
linear multi-step methods with variable step-size (LMMs) are analysed w. r. t. the
approximation of the solution of (1.1). Although there is a well-developed conver-
gence analysis for discretization schemes for SDEs, less emphasis has been put on a
numerical stability analysis to estimate the effect of errors. Numerical stability allows
to conclude convergence from consistency. So, we aim for a numerical stability in-
equality for such schemes with variable step-size. Our approach is based on techniques
proposed in [2] in the context of equidistant grids.

Most common methods use fixed step-size and thus are not able to react to the char-
acteristics of a solution path. It is clear that an efficient integrator must be able
to change the step-size. However, changing the step-size with multi-step methods is
difficult, so we have to construct methods which are adjusted to variable grid points.
Only a few papers deal with adaptive step-size control; for an example for strong
approximation see [3, 5]. Certainly, for an adaptive algorithm we have to explain the
choice of suitable error estimates and step-size strategies. This will be the subject of
a separate paper.
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The structure of the paper is as follows. In Section 2 we introduce the class of SLMMs
considered and provide necessary definitions and useful facts. In Section 3 we deal
with variable step-size and we focus upon our main result of consistency, stability and
convergence in the mean-square sense. Additionally to the properties in the context
of equidistant grids we have to fulfill conditions for the maximum step-size on the grid
and for the step-size ratios of the sequence. In Section 4 we consider adaptive two-
step-Maruyama methods. Both the coefficients of such a scheme and the conditions
for their mean-square consistency actually depend on the step-size ratios. As an
application, we get some of the properties of deterministic LMMs for the SDEs with
small noise, i. e. SDEs that can be written in the form

X(s)|tt0 =
∫ t

t0

f(X(s), s)ds + ε

∫ t

t0

Ĝ(X(s), s)dW (s), X(t0) = X0, (1.2)

for t ∈ J , where ε ¿ 1 is a small parameter. The appendix contains the proof of
Theorem (3.2).

2. Definitions and preliminary results. We denote by | · | the Euclidian
norm in Rn and by ‖ · ‖ the corresponding induced matrix norm. The mean-square
norm of a vector-valued square-integrable random variable Z ∈ L2(Ω,Rn) , with E
the expectation with respect to P , will be denoted by

‖Z‖L2 := (E|Z|2)1/2 .

Consider a discretization t0 < t1 < . . . < tN = T of J with step-sizes h` :=
t` − t`−1, ` = 1, . . . , N . Let h := max1≤`≤N h` be the maximal step-size of the grid
and κ` = h`/h`−1, ` = 2, . . . , N the step-size ratios.

We discuss mean-square convergence of possibly drift-implicit stochastic linear multi-
step methods (SLMM) with variable step-size, which for ` = k, . . . , N, takes the form

k∑

j=0

α`,j X −̀j = h`

k∑

j=0

β`,j f(X −̀j , t −̀j) +
k∑

j=1

Γ`,j(X −̀j , t −̀j) It`−j ,t`−j+1 . (2.1)

The coefficients α`,j , β`,j and the diffusion terms Γ`,j actually depend on the ratios κj

for j = `−k+1, . . . , `. We require given initial values X0, . . . , Xk−1 ∈ L2(Ω,Rn) such
that X` is Ft`

-measurable for ` = 0, . . . , k−1. As in the deterministic case, usually
only X0 = X(t0) is given by the initial value problem and the values X1, . . . , Xk−1

need to be computed numerically. This can be done by suitable one-step methods,
where on has to be careful to achieve the desired accuracy. Every diffusion term
Γ`,j(x, t) It`−j ,t`−j+1 is a finite sum of terms each containing an appropriate function
G`,j of x and t multiplied by a multiple Wiener integral over [t`−j , t`−j+1], i.e. it takes
the general form

Γ`,j(x, t) It`−j ,t`−j+1 =
m∑

r=1

Gr
`,j(x, t) I

t`−j ,t`−j+1
r +

m∑
r1,r2=0

r1+r2>0

Gr1,r2
`,j (x, t) I

t`−j ,t`−j+1
r1,r2 + . . . .

A general multiple Wiener integral is given by

It,t+h
r1,r2,...,rj

(y) =
∫ t+h

t

∫ s1

t

. . .

∫ sj−1

t

y(X(sj), sj)dWr1(sj) . . . dWrj (s1), (2.2)
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where ri ∈ {0, 1, . . . , m} and dW0(s) = ds. If y ≡ 1 we write It,t+h
r1,r2,...,rj

. Note that the
integral It,t+h

r is simply the increment Wr(t+h)−Wr(t) of the scalar Wiener process
Wr. The term It,t+h denotes the collection of multiple Wiener integrals associated
with the interval [t, t+h]. It is known [7] that the multiple integrals have the properties

E(It,t+h
r1,...,rj

(·)|Ft) = 0 if at least one of the indices ri 6= 0, (2.3)

‖E(It,t+h
r1,...,rj

(·)|Ft)‖L2 = O(hl1+l2/2), (2.4)

where l1 is the number of zero indices ri and l2 the number of non-zero indices ri.

We point out that for β`,0 = 0, ` = k, . . . , N , the SLMM (2.1) is explicit, otherwise
it is drift-implicit. For the diffusion term we use an explicit discretization.

3. Mean-square convergence of stochastic linear multi-step methods
with variable step-size. We will consider mean-square convergence of SLMMs in
the sense discussed in Milstein and others [1, 7, 6, 9]. Note that in the literature the
term strong convergence is sometimes used synonymously for our expression mean-
square convergence.

Definition 3.1. We call the SLMM (2.1) for the approximation of the solution of
the SDE (1.1) mean-square convergent if the global error e` := X(t`)−X` satisfies

max
`=1,...,N

‖e`‖L2 → 0 as h → 0,

we say it is mean-square convergent with order γ (γ > 0) if the global error
satisfies

max
`=1,...,N

‖e`‖L2 ≤ C · hγ ,

with a grid-independent constant C > 0.

The mean-square convergence follows almost immediately with the notion of numerical
stability in the mean-square sense together with mean-square consistency.

3.1. Numerical stability in the mean-square sense. We assume that the
scheme (2.1) for the SDE (1.1) satisfies the following properties:

(A1) the function f : Rn×J → Rn satisfies a uniform Lipschitz condition with
respect to x:

|f(x, t)− f(y, t)| ≤ Lf |x− y|, ∀x, y ∈ Rn, t ∈ J , (3.1)

where Lf is a positive constant;
(A2) the functions Γ`,j : Rn × J → Rn×mΓ satisfies a uniform Lipschitz condi-

tion with respect to x:

|Γ`,j(x, t)− Γ`,j(y, t)| ≤ LΓ`,j
|x− y|, ∀x, y ∈ Rn, t ∈ J , (3.2)

where LΓ`,j
is a positive constant;

(A3) and the functions Γ`,j : Rn × J → Rn×mΓ satisfies a linear growth condi-
tion with a positive constant KΓ`,j

in the form

|Γ`,j(x, t)| ≤ KΓ`,j
(1 + |x|2) 1

2 , ∀x ∈ Rn, t ∈ J . (3.3)
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(A4) the coefficients α`,j = αj(κ`−k+1, . . . , κ`) are continuous in a neighbourhood
of (1, . . . , 1), fulfil 1 +

∑k
j=1 α`,j = 0 for all ` and the underlying constant

step-size formula satisfy Dahlquist’s root condition, i.e.
(i) the roots of the characteristic polynomial of (2.1)

ρ(ζ) = α0(1, . . . , 1)ζk + α1(1, . . . , 1)ζk−1 + . . . αk(1, . . . , 1) (3.4)

lie on or within the unit circle and
(ii) the roots on the unit circle are simple.

Conditions (A1) - (A3) are standard assumptions for analyzing stochastic differential
systems, condition (A4) is known [4] in the context of deterministic variable step-size
multi-step methods. We now formulate and prove our main theorem on numerical
stability. Additionally to the properties in the context of equidistant grids we have
to fulfill conditions for the maximum step-size on the grid and for the step-size ratios
of the sequence.

Theorem 3.2. Assume that (A1) - (A4) hold for the scheme (2.1). Then there
exists constants κ,K (κ < 1 < K), a ≥ 0, h0 > 0 and a stability constant S > 0
such that the following holds true for each grid {t0, t1, . . . , tN} having the property
h :=max`=1,...,N h` ≤ h0, h·N ≤ a·(T − t0) and κ ≤ h`/h`−1 ≤ K for all `:

For all Ft`
-measurable, square-integrable initial values X`, X̃` for ` = 0, . . . , k − 1 and

all Ft`
-measurable perturbations D` having finite second moments the system (2.1)

and the perturbed discrete system

k∑

j=0

α`,j X̃ −̀j = h`

k∑

j=0

β`,j f(X̃ −̀j , t −̀j)+
k∑

j=1

Γ`,j(X̃ −̀j , t −̀j)It`−j ,t`−j+1 +D`,(3.5)

` = k, . . . , N , have unique solutions {X`}N
`=0, {X̃`}N

`=0, and the mean-square norm of
their differences e` = X` − X̃` can be estimate by

max
`=1,...,N

‖e`‖L2 ≤ S
{

max
`=0,...,k−1

‖e`‖L2 + max
`=k,...,N

(‖R`‖L2

h
+

√∑k
j=1 ‖Sj,`−j+1‖2L2√

h

)}
,

(3.6)
where D` = R` +

∑k
j=1 Sj,`−j+1 and Sj,`−j+1 is F`−j+1-measurable with

E(Sj,`−j+1|Fti−j ) = 0 for ` = k, . . . , N and j = 1, . . . , k.

The proof is divided into several parts and given in the appendix. First, we show
the existence of unique solutions of the perturbed discrete system. Second, we show
that the second moments of these solutions exists, and, third, we derive a stability
inequality.

If scheme (2.1) for the SDE (1.1) fulfils the assertion of Theorem 3.2, we call it
numerically stable in the mean-square sense.

3.2. Mean-square consistency. Different notions of errors for pathwise ap-
proximation are studied in the literature. We recall the notions from [2] and define
the local error as the defect that is obtained when the exact solution values are inserted
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into the numerical scheme, i.e. the local error of SLMM (2.1) for the approximation
of the solution of the SDE (1.1) is given as

L` :=
k∑

j=0

α`,j X(t −̀j)− h`

k∑

j=0

β`,j f(X(t −̀j), t −̀j)−
k∑

j=1

Γ`,j(X(t −̀j), t −̀j)It`−j ,t`−j+1 ,

` = k, . . . , N, (3.7)
L` := X(t`)−X`, ` = 0, . . . , k − 1. (3.8)

In order to exploit the adaptivity and independence of the stochastic terms arising on
disjoint subintervals we represent the local error in the form

L` = R` + S` =: R` +
k∑

j=1

Sj,`−j+1, ` = k, . . . , N, (3.9)

where each Sj,`−j+1 is Ft`−j+1-measurable with E(Sj,`−j+1|Ft`−j
) = 0 for ` = k, . . . , N

and j = 1, . . . , k as in [2]. Note that the representation (3.9) is not unique.

Definition 3.3. We call the SLMM (2.1) for the approximation of the solution of
the SDE (1.1) mean-square consistent if the local error L` satisfies

h−1
` ‖E(L`|Ft`−k

)‖L2 → 0 for h` → 0, and h
−1/2
` ‖L`‖L2 → 0 for h` → 0; (3.10)

and mean-square consistent of order γ (γ > 0), if the local error L` satisfies

‖E(L`|Ft`−k
)‖L2 ≤ c̄ · hγ+1

` and ‖L`‖L2 ≤ c · hγ+ 1
2

` , ` = k, . . . , N , (3.11)

with constants c, c̄ > 0 only depending on the SDE and its solution.

Subsequently we assume that the conditions of theorem 3.2 are fulfilled. In order to
prove mean-square convergence of order γ it is then sufficient to find a representation
(3.9) of the local error L` such that

‖E(R`)‖L2 ≤ c̄ · hγ+1
` and ‖S`‖L2 ≤ c · hγ+ 1

2
` , ` = k, . . . , N , (3.12)

with constants c , c̄ > 0 only depending on the SDE and its solution. Together the
condition (3.12) imply the estimates

‖E(L`|Ft`−k
)‖L2 ≤ O(hγ+1

` ) and ‖L`‖L2 ≤ O(hγ+ 1
2

` ) , ` = k, . . . , N .

4. Local error analysis. To analyse the local error L` of a discretization scheme
for the SDE (1.1) and to achieve a suitable representation (3.9) we want to derive ap-
propriate Itô-Taylor expansions, where we take special care to separate the multiple
stochastic integrals over the different subintervals of integration.

Let Cs,s−1 denote the class of functions form Rn×J to Rn having continuous partial
derivations up to order s− 1 and, in addition, continuous partial derivations of order
s with respect to the first variable.
Let CK denote the class of functions from Rn×J to Rn that satisfies a linear growth
condition (A3).
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We introduce operators Λ0 and Λr, r = 1, . . . , m, defined on C2,1 and C1,0, respec-
tively, by

Λ0y = y′t + y′xf +
1
2

m∑
r=1

n∑

i,j=1

y′′xixj
grigrj , Λry = y′xgr , r = 1, . . . ,m, (4.1)

and remind the reader of the notation for multiple Wiener integrals (2.2). Using these
operators the Itô formula for a function y in C2,1 and the solution X of (1.1) reads

y(X(t), t) = y(X(t0), t0) + It0,t
0 (Λ0y) +

m∑
r=1

It0,t
r (Λry), t ∈ J . (4.2)

4.1. Two-step-Maruyama schemes for general SDEs. We consider linear
two-step-Maruyama schemes with variable step-size, thus we have for ` = 2, . . . , N

2∑

j=0

α`,jX`−j = h`

2∑

j=0

β`,jf(X`−j , t`−j)+
2∑

j=1

γ`,j

m∑
r=1

gr(X`−j , t`−j) I
t`−j ,t`−j+1
r , (4.3)

where the coefficients α`,j , β`,j and γ`,j actually depend on the ratio κ` = h`/h`−1.

We apply the Itô-formula (4.2) on the corresponding intervals to the drift coefficient
f and trace back the values to the point t`−2 to obtain

f(X(t`−1), t`−1) = f(X(t`−2), t`−2) + I
t`−2,t`−1
0 (Λ0f) +

m∑
r=1

It`−2,t`−1
r (Λrf), (4.4)

f(X(t`), t`) = f(X(t`−2), t`−2) + I
t`−2,t`−1
0 (Λ0f) + I

t`−1,t`

0 (Λ0f)

+
m∑

r=1

It`−2,t`−1
r (Λrf) +

m∑
r=1

It`−1,t`
r (Λrf). (4.5)

For the general SDE (1.1) we have the following result.

Lemma 4.1. Assume that the coefficients f, gr, r = 1, . . . , m of the SDE (1.1) belong
to the class C2,1 with Λ0f, Λ0gr,Λrf, Λqgr ∈ CK for r, q = 1, . . . ,m. Then the local
error (3.7) of the stochastic 2-step scheme (4.3) allows the representation

L` = R◦` + S◦1,` + S◦2,`−1, ` = 2, . . . , N, (4.6)

where R◦` , S
◦
j,`, j = 1, 2 are Ft`

-measurable with E(S◦j,`|Ft`−1) = 0 and

R◦` =
[ 2∑

j=0

α`,j

]
X(t`−2) +

[
α`,0 +

1
κ`

(α`,0 + α`,1)−
2∑

j=0

β`,j

]
h`f(X(t`−2), t`−2) + R̃◦` ,

S◦1,` =
[
α`,0 − γ`,1

] m∑
r=1

gr(X(t`−1), t`−1)It`−1,t`
r + S̃◦1,`,

S◦2,`−1 =
[
(α`,0 + α`,1)− γ`,2

] m∑
r=1

gr(X(t`−2), t`−2)It`−2,t`−1
r + S̃◦2,`−1

with

‖R̃◦`‖L2 = O(h2
`), ‖S̃◦1,`‖L2 = O(h`), ‖S̃◦2,`−1‖L2 = O(h`). (4.7)
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Corollary 4.2. Let the coefficients f, gr, r = 1, . . . , m, of the SDE (1.1) satisfy
the assumptions of Lemma 4.1 and suppose they are Lipschitz continuous with respect
to their first variable. Let the stochastic linear two-step scheme with variable step-size
(4.3) are stable and the coefficients satisfy the consistency conditions

2∑

j=0

α`,j =0, α`,0+
1
κ`

(α`,0+α`,1)=
2∑

j=0

β`,j , α`,0 =γ`,1, α`,0+α`,1 =γ`,2. (4.8)

Then the global error of the scheme (4.3) applied to (1.1) allows the expansion

max
`=0,...,N

‖X(t`)−X`‖L2 = O(h1/2) +O(max
`=0,1

‖X(t`)−X`‖L2)

where h := max`=2,...,N h`.
Proof. (of Corollary 4.2) By Lemma 4.1 we have the representation (4.6) for the local
error. Applying the consistency conditions (4.8) yields

R◦` = R̃◦` , S◦1,` = S̃◦1,`, S◦2,`−1 = S̃◦2,`−1, ` = 2, . . . , N.

As the scheme (4.3) satisfies the conditions of Theorem 3.2, it is numerically stable in
the mean-square sense. Now the assertion follows from the estimates (4.7) by means
of the stability inequality.

Proof. (of Lemma 4.1) To derive a representation of the local error in the form (4.6) we
evaluate and resume the deterministic parts at the point (X(t`−2), t`−2) and separate
the stochastic terms carefully over the different subintervals [t`−2, t`−1] and [t`−1, t`].
This ensures the independence of the random variables. It does make the calculations
more messy, though. By rewriting

2∑

j=0

α`,jX(t`−j) = α`,0

(
X(t`)−X(t`−1)

)
+(α`,0+α`,1)

(
X(t`−1)−X(t`−2)

)
+

( 2∑

j=0

α`,j

)
X(t`−2),

we can express the local error (3.7) as

L` = α`,0

(
X(t`)−X(t`−1)

)
+ (α`,0 + α`,1)

(
X(t`−1)−X(t`−2)

)
+

2∑

j=0

α`,jX(t`−2)

−h`

2∑

j=0

β`,jf(X(t`−j), t`−j)−
2∑

j=1

γ`,jG(X(t`−j), t`−j)∆W`−j+1.

The SDE (1.1) implies the identities

X(t`−1)−X(t`−2) =
∫ t`−1

t`−2

f(X(s), s)ds +
m∑

r=1

∫ t`−1

t`−2

gr(X(s), s)dWr(s)

= h`−1f(X(t`−2), t`−2) + I
t`−2,t`−1
00 (Λ0f) +

m∑
r=1

I
t`−2t`−1
r0 (Λrf)

+
m∑

r=1

gr(X(t`−2), t`−2)It`−2,t`−1
r +

m∑
r=1

I
t`−2,t`−1
0r (Λ0gr) +

m∑
r,q=1

It`−2,t`−1
qr (Λqgr),



8 TH. SICKENBERGER

and, additionally using (4.4),

X(t`)−X(t`−1) =
∫ t`

t`−1

f(X(s), s)ds +
m∑

r=1

∫ t`

t`−1

gr(X(s), s)dWr(s)

= h`

{
f(X(t`−2), t`−2) + I

t`−2,t`−1
0 (Λ0f) +

m∑
r=1

It`−2,t`−1
r (Λrf)

}

+ I
t`−1,t`

00 (Λ0f) +
m∑

r=1

I
t`−1t`

r0 (Λrf)

+
m∑

r=1

gr(X(t`−1), t`−1)It`−1,t`
r +

m∑
r=1

I
t`−1,t`

0r (Λ0gr) +
m∑

r,q=1

It`−1,t`
qr (Λqgr).

Inserting this and the expansions (4.4), (4.5) into the local error formula and reorder-
ing the terms, yields

L` =
[ 2∑

j=0

α`,j

]
X(t`−2) +

[
h`α`,0 + h`−1(α`,0 + α`,1)− h`

2∑

j=0

β`,j

]
f(X(t`−2), t`−2) + R̃◦`

+
[
α`,0 − γ`,1

] m∑
r=1

gr(X(t`−1), t`−1)It`−1,t`
r + S̃◦1,`

+
[
(α`,0 + α`,1)− γ`,2

] m∑
r=1

gr(X(t`−2), t`−2)It`−2,t`−1
r + S̃◦2,`−1,

where

R̃◦` = α`,0

{
h`I

t`−2,t`−1
0 (Λ0f) + I

t`−1,t`

00 (Λ0f)
}

+ (α`,0 + α`,1)I
t`−2,t`−1
00 (Λ0f)

−h`β`,0

{
I

t`−2,t`−1
0 (Λ0f) + I

t`−1,t`

0 (Λ0f)
}− h`β`,1I

t`−2,t`−1
0 (Λ0f), (4.9)

S̃◦1,` =
m∑

r=1

(
α`,0I

t`−1,t`

r0 (Λrf)− h`β`,0I
t`−1,t`
r (Λrf)

)
+ α`,0

m∑
r=1

I
t`−1,t`

0r (Λ0gr)

+ α`,0

m∑
r,q=1

It`−1,t`
qr (Λqgr)), (4.10)

S̃◦2,`−1 = h`(α`,0 − β`,0 − β`,1)
m∑

r=1

It`−2,t`−1
r (Λrf) + (α`,0 + α`,1)

m∑
r=1

I
t`−2,t`−1
r0 (Λrf)

+(α`,0 + α`,1)
m∑

r=1

I
t`−2,t`−1
0r (Λ0gr) + (α`,0 + α`,1)

m∑
r,q=1

It`−2,t`−1
qr (Λqgr). (4.11)

Finally, the estimates (4.7) are derived by means of (2.3) and (2.4), where the last
terms in (4.10) and (4.11) determine the order O(h`).

Example 4.3. As examples we give stochastic variants of the trapezoidal rule, the
two-step Adams-Bashforth (AB) and the backward differential formulae (BDF) with
variable step-sizes. The trapezoidal rule, also known as stochastic Theta method with
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θ = 1
2 , is the one-step scheme with the coefficients α`,0 = 1, α`,1 =−1, β`,0 = β`,1 =

1
2 , γ`,1 =1, α`,2 =β`,2 =γ`,2 = 0 independent of the step-size ratio κ` = h`/h`−1 and
reads

X` −X`−1 = h`
1
2
(
f(X`, t`) + f(X`−1, t`−1)

)
+

m∑
r=1

gr(X −̀1, t −̀1) It −̀1,t`
r . (4.12)

The Adams-Bashforth scheme is given as

X` −X`−1 = h`

(
κ` + 2

2
f(X`−1, t`−1)− κ`

2
f(X`−2, t`−2)

)

+
m∑

r=1

gr(X −̀1, t −̀1) It −̀1,t`
r (4.13)

where α`,0 =1, α`,1 =−1, β`,0 = κ`+2
2 , β`,1 =−κ`

2 , γ`,1 =1 and β`,2 = α`,2 = γ`,2 =0.
The two-step BDF takes the form

X` − (κ` + 1)2

2κ` + 1
X`−1 +

κ2
`

2κ` + 1
X`−2 = h`

κ` + 1
2κ` + 1

f(X`, t`)

+
m∑

r=1

gr(X −̀1, t −̀1) It −̀1,t`
r − κ2

`

2κ` + 1

m∑
r=1

gr(X −̀2, t −̀2) It −̀2,t −̀1
r .(4.14)

Here one has α`,0 = 1, α`,1 = − (κ`+1)2

2κ`+1 , α`,2 = κ2
`

2κ`+1 , β`,0 = κ`+1
2κ`+1 , β`,1 = β`,2 = 0,

and γ`,1 = 1, γ`,2 = − κ2
`

2κ`+1 .

4.2. Consistency of two-step-Maruyama schemes for small noise SDEs.
To be able to exploit the effect of the small parameter ε in the expansions of the local
error we introduce operators Λf

0 , Λ̂0 and Λ̂r, r = 1, . . . ,m defined on C2,1 and C1,0,
respectively, by

Λf
0y := y′t + y′xf, Λ̂0y :=

1
2

m∑
r=1

n∑

i,j=1

y′′xixj
ĝriĝrj , Λ̂ry := y′xĝr . (4.15)

In terms of the original definition (4.1) we have

Λ0y = Λf
0y + ε2Λ̂0y and Λry = εΛ̂ry. (4.16)

Lemma 4.4. Assume that the coefficients f, ĝr, r = 1, . . . , m of the small noise
SDE (1.2), as well as Λf

0f = f ′xf + f ′t belong to the class C2,1 with Λ0f, Λ0ĝr, Λ̂rf,

Λ̂q ĝr, Λ0Λ
f
0f, Λ̂rΛ

f
0f ∈ CK for r, q = 1, . . . , m. Let the stochastic 2-step scheme with

variable step-size (4.3) satisfy the consistency conditions (4.8). Then the local error
(3.7) of the method (4.3) for the small noise SDE (1.2) allows the representation

L` = R3
` + S3

1,` + S3
2,`−1, ` = 2, . . . , N, (4.17)

where R3
` , S3

j,`, j = 1, 2 are Ft`
-measurable with E(S3

j,`|Ft`−1) = 0, and

R3
` =

[
(

1
κ2

`

+
2
κ`

+1)α`,0 +
1
κ2

`

α`,1 − (
2
κ`

+2)β`,0 − 2
κ`

β`,1

]h2
`

2
(Λf

0f)(X(t`−2), t`−2) + R̃3
` ,

S3
1,` = S̃◦1,` + S̃3

1,`,

S3
2,`−1 = S̃◦2,`−1 + S̃3

2,`−1,
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where

‖R̃3
` ‖L2 = O(h3

` + ε2h2
`), ‖S̃3

1,`‖L2 = O(εh5/2
` ), ‖S̃3

2,`−1‖L2 = O(εh5/2
` ). (4.18)

The terms S̃◦1,`, S̃
◦
2,`−1 are given by (4.10, 4.11) in the proof of Lemma 4.1 and satisfy

here

‖S̃◦1,`‖L2 = O(ε2h` + εh
3/2
` ), ‖S̃◦2,`‖L2 = O(ε2h` + εh

3/2
` ). (4.19)

Proof. We have from Lemma 4.1, if the consistency conditions (4.8) are satisfied, the
representation

L` = R̃◦` + S̃◦1,` + S̃◦2,`−1, ` = 2, . . . , N,

where R̃◦` , S̃◦1,`, S̃◦2,`−1 are given by (4.9, 4.10, 4.11). Splitting Λ0f = Λf
0f + ε2Λ̂0f

immediately yields R̃◦` = R̃◦f` + ε2R̂◦` with

R̃◦f` := (α`,0 − β`,0 − β`,1)h`I
t`−2,t`−1
0 (Λf

0f) + (α`,0 + α`,1)I
t`−2,t`−1
00 (Λf

0f)

+α`,0I
t`−1,t`

00 (Λf
0f)− h`β`,0I

t`−1,t`

0 (Λf
0f) (4.20)

R̂◦` := (α`,0 − β`,0 − β`,1)h`I
t`−2,t`−1
0 (Λ̂0f) + (α`,0 + α`,1)I

t`−2,t`−1
00 (Λ̂0f)

+α`,0I
t`−1,t`

00 (Λ̂0f)− h`β`,0I
t`−1,t`

0 (Λ̂0f). (4.21)

We note that (4.21) appears with the factor ε2 in the local error representation, thus
yielding the O(ε2h2

`) term in the estimate of ‖R̃3
` ‖L2 in (4.18) . We concentrate on

developing R̃◦f` in more detail. Applying the Itô-formula (4.2) to Λf
0f(X(s), s) for

s ∈ [t`−2, t`−1] and integrating yields

I
t`−2,s
0 (Λf

0f) = (s− t`−2)Λ
f
0f(X(t`−2), t`−2) + I

t`−2,s
00 (Λ0Λ

f
0f) + ε

m∑
r=1

I
t`−2,s
r0 (Λ̂rΛ

f
0f).

For s = t`−1 we obtain

I
t`−2,t`−1
0 (Λf

0f) = h`−1Λ
f
0f(X(t`−2), t`−2)+I

t`−2,t`−1
00 (Λ0Λ

f
0f)+ε

m∑
r=1

I
t`−2,t`−1
r0 (Λ̂rΛ

f
0f).

for the first integral in (4.20) . Integrating again we obtain for the second integral in
(4.20)

I
t`−2,t`−1
00 (Λf

0f) = h2
`−1
2 Λf

0f(X(t`−2), t`−2)+I
t`−2,t`−1
000 (Λ0Λ

f
0f)+ε

m∑
r=1

I
t`−2,t`−1
r00 (Λ̂rΛ

f
0f).

Both the other integrals are over the interval [t`−1, t`] with step-size h`. In the anal-
ogous expressions for these the term Λf

0f(X(t`−1), t`−1) has to be substituted by

Λf
0f(X(t`−1), t`−1) = Λf

0f(X(t`−2), t`−2)+I
t`−2,t`−1
0 (Λ0Λ

f
0f)+ε

m∑
r=1

I
t`−2,t`−1
r (ΛrΛ

f
0f).

Then we obtain from (4.20)

R̃◦f` =
[
(h`h`−1 +

h2
`−1

2
+

h2
`

2
)α`,0 +

h2
`−1

2
α`,1 − (h`h`−1 − h2

`)β`,0 − h`h`−1β`,1

]
Λf

0f(X(t`−2), t`−2)

+ R̃3f
` + S̃3

1,` + S̃3
2,`

=
[
(

1
κ2

`

+
2
κ`

+ 1)α`,0 +
1
κ2

`

α`,1 − (
2
κ`

+ 2)β`,0 − 2
κ`

β`,1

]h2
`

2
Λf

0f(X(t`−2), t`−2)

+ R̃3f
` + S̃3

1,` + S̃3
2,`,
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where

R̃3f
` = (α`,0 − 2β`,0)

h2
`

2
I

t`−2,t`−1
0 (Λ0Λ

f
0f)

+ (α`,0 − β`,0 − β`,1)h`I
t`−2,t`−1
00 (Λ0Λ

f
0f)− β`,0h`I

t`−1,t`

00 (Λ0Λ
f
0f)

+ (α`,0 + α`,1)I
t`−2,t`−1
000 (Λ0Λ

f
0f) + α`,0I

t`−1,t`

000 (Λ0Λ
f
0f),

S̃3
1,` = α`,0ε

m∑
r=1

I
t`−1,t`

r00 (Λ̂rΛ
f
0f)− h`β`,0ε

m∑
r=1

I
t`−1,t`

r0 (Λ̂rΛ
f
0f),

S̃3
2,` = (α`,0− 2β`,0)

h2
`

2
ε

m∑
r=1

It`−2,t`−1
r (Λ̂rΛ

f
0f) + (α`,0− β`,0− β`,1)h`ε

m∑
r=1

I
t`−2,t`−1
r0 (Λ̂rΛ

f
0f)

+ (α`,0 + α`,1)ε
m∑

r=1

I
t`−2,t`−1
r00 (Λ̂rΛ

f
0f).

We arrive at R̃3
` = R̃3f

` + ε2R̂◦` . Finally, the estimates (4.18) are derived by means of
(2.3) and (2.4).

Corollary 4.5. Let the coefficients f, ĝr, r = 1, . . . , m, of the SDE (1.2) satisfy
the assumptions of Lemma 4.4 and suppose they are Lipschitz continuous with respect
to their first variable. Let the stochastic linear two-step scheme with variable step-size
(4.3) are stable, the coefficients satisfy the consistency conditions (4.8) and

(
1
κ2

`

+
2
κ`

+1
)

α`,0 +
1
κ2

`

α`,1 −
(

2
κ`

+2
)

β`,0 − 2
κ`

β`,1 = 0. (4.22)

Then the global error of the scheme (4.3) applied to (1.2) allows the expansion

max
`=0,...,N

‖X(t`)−X`‖L2 = O(h2 + εh + ε2h1/2) +O(max
`=0,1

‖X(t`)−X`‖L2) .

Proof. Lemma 4.4 stated the representation (4.17) for the local error. Applying
the consistency condition (4.22) yields R3

` = R̃3
` and by (4.18) we have ‖R3

` ‖L2 =
O(h3

` + ε2h2
`). The stochastic terms S3

1,`, S3
2,`−1 are dominated by S̃◦1,`, S̃◦2,`−1 and

thus are of order of magnitude O(ε2h` + εh
3/2
` ). As the scheme (4.3) satisfies the

conditions (A1) - (A4), it is numerically stable in the mean-square sense. Applying
the stability inequality (3.6) to the representation (4.17) of the local error yields the
assertion.

We remark that the schemes (4.12), (4.13) and (4.14) satisfy the assumptions and the
consistency conditions of corollary 4.5. Thus, these schemes are numerically stable in
the mean-square sense and we can expect order 2 behavior if the term O(h2) of the
global error dominates the term O(εh + ε2h1/2).
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Appendix A. For the proof of Theorem (3.2) we need a discrete version of Gronwall’s
lemma.

Lemma A.1. Let a`, ` = 1, . . . , N , and C1, C2 be nonnegative real numbers and
assume that the inequalities

a` ≤ C1 + C2
1
N

`−1∑

i=1

ai ` = 1, . . . , N

are valid. Then we have max`=1,...,N a` ≤ C1 exp (C2).

Proof. (of Theorem (3.2))
Part1 (Existence of a solution X̃`): We consider scheme (3.5). If the right hand side
does not depend on the variable X`, the new iterate X̃` is given explicitly. Otherwise,
the new iterate X̃` is given by (3.5) only implicity as the solution of the fixed point
equation

X = h`β`,0f(X, t`) + h`

k∑

j=1

β`,jf(X̃ −̀j , t −̀j) + B` =: η`(X; X̃`−1, . . . , X̃`−k, B`),

where B` = −
k∑

j=1

α`,j X̃ −̀j +
k∑

j=1

Γ`,j(X̃ −̀j , t −̀j)It`−j ,t`−j+1 + D`.

is a known Ft`
-measurable random variable. The function η`(x; z1, . . . , zk, b) is glob-

ally contractive with respect to x, since, due to the global Lipschitz condition (A1),

|η`(x; z1, . . . , zk, b)− η`(x̃, z1, . . . , zk, b)| = |h` β`,0 (f(x, t`)− f(x̃, t`))|
≤ h` β`,0 Lf |x− x̃| ≤ 1

2
|x− x̃| ∀h` ≤ h ≤ h0 ≤ 1

2 β`,0 Lf

Thus, η`(·; z1, . . . , zk, b) has a globally unique fixed point x = ξ`(z1, . . . , zk, b), and
ξ`(X̃`−1, . . . , X̃`−k, B`) gives the unique solution X̃` of (3.5). Moreover, ξ` depends
Lipschitz-continuously on z1, . . . , zk and b since

|ξ`(z1, . . . , zk, b)− ξ`(z̃1, . . . , z̃k, b̃)|
= |η`(ξ`(z1, . . . , zk, b); z1, . . . , zk, b)− η`(ξ`(z̃1, . . . , z̃k, b̃), z̃1, . . . , z̃k, b̃)|

≤ h`Lf

k∑

j=1

β`,j |zj − z̃j |+ h`β`,0Lf |ξ`(z1, . . . , zk, b)− ξ`(z̃1, . . . , z̃k, b̃)|+ |b− b̃|

≤ h β`,∗ Lf

k∑

j=1

|zj − z̃j |+ 1
2
|ξ`(z1, . . . , zk, b)− ξ`(z̃1, . . . , z̃k, b̃)|+ |b− b̃|

|ξ`(z1, . . . , zk, b)− ξ`(z̃1, . . . , z̃k, b̃)|

≤ 2 h β`,∗ Lf

k∑

j=1

|zj − z̃j |+ 2|b− b̃|, where β`,∗ := max
j=1,...,k

β`,j .

Part 2 (Existence of finite second moments E|X̃`|2 < ∞): Assume that E|X̃`−j |2 < ∞
for j = 1, . . . , k. We compare X̃` = ξ`(X̃`−1, . . . , X̃`−k, B`) with the deterministic
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value X0
` := ξ`(0, . . . , 0, 0). Using the Lipschitz continuity of the implicit function ξ`

we obtain

|X̃` −X0
` | = |ξ`(X̃`−1, . . . , X̃`−k, B`)− ξ`(0, . . . , 0, 0)| ≤ 2 h β`,∗ Lf

k∑

j=1

|X̃`−j |+ 2|B`|,

‖X̃`‖L2 ≤ ‖X̃` −X0
` ‖L2 + ‖X0

` ‖L2 ≤ 2 h β`,∗ Lf

k∑

j=1

‖X̃`−j‖L2 + 2‖B`‖L2 + ‖X0
` ‖L2

It remains to show that ‖B`‖L2 < ∞, which follows from

‖
k∑

j=1

Γ`,j(X̃ −̀j , t −̀j)It`−j ,t`−j+1‖L2

≤ h
1/2
`

k∑

j=1

LΓ`,j
‖X̃`−j‖L2 + ‖

k∑

j=1

Γ`,j(0, t −̀j)It`−j ,t`−j+1‖L2 < ∞

Part 3 (Stability inequality): We will follow the route of rewriting the k-step recur-
rence equation as a one-step recurrence equation in a higher dimensional space (see
e.g. [2][4, Chap.III.4][8, Chap.8.2.1]).
For X` and X̃` being the solutions of (2.1) and (3.5), respectively, let the n-dimensional
vector E` be defined as the difference X`−X̃`. We have with E0, . . . , Ek−1 ∈ L2(Ω,Rn)
for ` = k, . . . , N, the recursion

E` = −
k∑

j=1

α`,j E`−j + h`

k∑

j=0

β`,j ∆f`−j

︸ ︷︷ ︸
=:∆φ`

+
k∑

j=1

∆Γ`,j It`−j ,t`−j+1

︸ ︷︷ ︸
=:∆ψ`

−D`,

where
∆f`−j := f(X`−j , t`−j)− f(X̃`−j , t`−j)

∆Γ`,j := Γ`,j(X`−j , t`−j)− Γ`,j(X̃`−j , t`−j).

We rearrange this k-step recursion in the space L2(Ω,Rn) to a one-step recursion in
L2(Ω,Rk×n). Together with the trivial identities E`−1 = E`−1, . . . E`−k+1 = E`−k+1

we obtain



E`

E`−1

...
E`−k+1




︸ ︷︷ ︸
=: E`

=




−α`,1I · · · · · · −α`,kI
I 0

. . . . . .
I 0




︸ ︷︷ ︸
=: A`




E`−1

E`−2

...
E`−k




︸ ︷︷ ︸
=: E`−1

+




∆φ`

0
...
0




︸ ︷︷ ︸
=: ∆Φ`

+




∆ψ`

0
...
0




︸ ︷︷ ︸
=: ∆Ψ`

+




−D`

0
...
0




︸ ︷︷ ︸
=: D`

or, in compact form

E` = A`E`−1+∆Φ`+∆Ψ`+D` , ` = k, . . . , N and Ek−1 = (−Dk−1,−Dk−2, . . . ,−D0)T ,

where E` ∈ L2(Ω,Rk×n), ` = k−1, . . . , N . The vector Ek−1 consists of the perturba-
tions to the initial values. We now trace back the recursion in E` to the initial vector
Ek−1. For ` = k, . . . , N we have



14 TH. SICKENBERGER

E` = A`E`−1 + ∆Φ` + ∆Ψ` +D`

= A`(A`−1E`−2 + ∆Φ`−1 + ∆Ψ`−1 +D`−1) + ∆Φ` + ∆Ψ` +D`

= A`A`−1E`−2 + (∆Φ` +A`∆Φ`−1) + (∆Ψ` +A`∆Ψ`−1) + (D` +A`D`−1)
...

=
( ∏̀

j=k

Aj

)
Ek−1 +

`−k∑

i=0

( ∏̀

j=`−i+1

Aj

)
∆Φ`−i +

`−k∑

i=0

( ∏̀

j=`−i+1

Aj

)
∆Ψ`−i +

`−k∑

i=0

( ∏̀

j=`−i+1

Aj

)
D`−i

=
( ∏̀

j=k

Aj

)
Ek−1 +

∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Φi +

∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Ψi +

∑̀

i=k

( ∏̀

j=i+1

Aj

)
Di .

A crucial point for the subsequent calculations is to find a scalar product inducing
a matrix norm such that this norm of the matrix product A`+i · · · A` for all ` and
i ≥ 0 is less than or equal to 1 (see e.g. [4, Chap.III.4,Lemma 4.4 and Chap.III.5,
Theorem 5.5].
In [2] it is shown in detail for constant matrices Aj = A, that this is possible if
the eigenvalues of the Frobenius matrix A lie inside the unit circle of the complex
plane and are simple if their modulus is equal to 1. Assumption (A4) implies that
this property holds true for each Aj . The eigenvalues of the companion matrix A
of the constant step-size formula are the roots of the characteristic polynomial ρ
(3.4) and due to the assumption that Dahlquist’s root condition is satisfied they
have the required property. Then there exists a non-singular matrix C with a block-
structure like A such that ‖C−1AC‖2 ≤ 1, where ‖ · ‖2 denotes the spectral matrix
norm that is induced by the Euclidian vector norm in Rk×n. And, by continuity,
we have ‖C−1AjC‖2 ≤ 1 which implies that ‖C−1A` · · · A`−iC‖2 ≤ 1 for all ` and
i = k − 1, . . . , `, if κ`, . . . , κ`−k are sufficiently close to 1.
We can thus choose a scalar product for X ,Y ∈ Rk×n as

〈X ,Y〉∗ := 〈C−1X , C−1Y〉2

and then have | · |∗ as the induced vector norm on Rk×n and ‖ · ‖∗ as the induced
matrix norm with ‖A` · · · A`−i‖∗ = ‖C−1A` · · · A`−iC‖2 ≤ 1. We also have

〈X ,Y〉∗ = X TC−T C−1Y = X T C∗Y with C∗ = C−TC−1 = (c∗ijIn)i,j=1,...,k.

Due to the norm equivalence there are constants c∗, c∗ > 0 such that

|X |22 ≤ c∗|X |2∗ and |X |2∗ ≤ c∗|X |2∞ ∀X ∈ Rk×n ,

where |X |22 =
∑

j=1,...,k |xj |2, |X |∞ = maxj=1,...,k |xj | for X = (xT
1 , . . . , xT

k )T .

For the special vectors X =(xT , 0, . . . , 0)T and Y=(yT , 0, . . . , 0)T with X ,Y ∈ Rk×n

and x, y ∈ Rn, one has 〈X ,Y〉∗ = c∗11〈x, y〉2 = c∗11x
T y, where c∗11 is given by the

matrix C∗.
We now apply |.|2∗ to estimate |E`|2∗ and, later, E|E`|2∗. We start with

|E`|2∗ ≤ 4
{
|
( ∏̀

j=k

Aj

)
Ek−1|2∗

︸ ︷︷ ︸
1)

+ |
∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Φi|2∗

︸ ︷︷ ︸
2)

+ |
∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Ψi|2∗

︸ ︷︷ ︸
3)

+ |
∑̀

i=k

( ∏̀

j=i+1

Aj

)
Di|2∗

︸ ︷︷ ︸
4)

}
.
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For the term labelled 1) we have |( ∏`
j=kAj

)Ek−1|2∗ ≤ |Ek−1|2∗ , and thus

E|
( ∏̀

j=k

Aj

)
Ek−1|2∗ ≤ E|Ek−1|2∗ . (A.1)

For the term labelled 2) we have

|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Φi|2∗ ≤ (`− k + 1)

∑̀

i=k

|
( ∏̀

j=i+1

Aj

)
∆Φi|2∗ ≤ N

∑̀

i=k

|∆Φi|2∗ ≤
aT

h
c∗11

∑̀

i=k

|∆φi|2

=
aT

h
c∗11

∑̀

i=k

|hi

k∑

j=0

βj∆fi−j |2 =
aT

h
c∗11h

2
∑̀

i=k

|
k∑

j=0

βj∆fi−j |2 = haTc∗11
∑̀

i=k

|
k∑

j=0

βj∆fi−j |2

≤ h a T c∗11 (k+1)
∑̀

i=k

k∑

j=0

|βi,j ∆fi−j |2 ≤ h a T c∗11 (k+1) L2
f

∑̀

i=k

k∑

j=0

β2
i,j |Ei−j |2

= h a T c∗11(k+1) L2
f

∑̀

i=k

{β2
i,0|Ei|2 + β2

i,1|Ei−1|2 +
k∑

j=2

β2
i,j |Ei−j |2}

≤ h a T c∗11 (k+1) L2
f

{
β2

`,0|E`|2 − βk−1,0|Ek−1|2) +
∑̀

i=k

{(β2
i−1,0 + β2

i,1)|Ei−1|2 +
k∑

j=2

β2
i,j |Ei−j |2}

}

≤ h a T c∗11 (k+1) L2
f

{
β2

`,0 |E`|2 +
∑̀

i=k

{β2
i−1,0 |Ei−1|2 +

k∑

j=1

β2
i,j |Ei−j |2}

}

≤ h a T c∗11 (k+1) L2
f

{
β2

`,0|E`|2 +
∑̀

i=k

c∗β |Ei−1|2∗
}

≤ h a T c∗11 (k+1) L2
f

{
c∗β2

`,0 |E`|2∗ + Cβ c∗
`−1∑

i=k−1

|Ei|2∗
}

,

where Cβ = 2 ·maxj=0,...,k;i=k,...,N βi,j and h ·N ≤ a T . Hence,

E|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Φi|2∗ ≤ h K T c∗11 (k+1) L2

f

{
c∗ β2

`,0 E|E`|2∗ + Cβ c∗
`−1∑

i=k−1

E|Ei|2∗
}

.

(A.2)
We will now treat the term labelled 3). For that purpose we introduce the notation
∆Ψj,i−j := ((∆Γj,i−jI

ti−j ,ti−j+1)T , 0, . . . , 0)T . Using this we can write

∆Ψi = ((∆ψi)T , 0, . . . , 0)T = ((
k∑

j=1

∆Γj,i−j Iti−j ,ti−j+1)T , 0, . . . , 0)T =
k∑

j=1

∆Ψj,i−j

and

|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Ψi|2∗ = |

∑̀

i=k

( ∏̀

j=i+1

Aj

) k∑

j=1

∆Ψj,i−j |2∗.

Every ∆Ψj,i−j is Fti−j+1-measurable and E(∆Ψj,i−j |Fti−j ) = 0. We can now reorder
the last term above such that we have a sum of terms where each term contains all
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multiple Wiener integrals over just one subinterval. The expectation of products of
terms from different subintervals vanishes, hence we obtain

E|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Ψi|2∗ = E|

∑̀

i=k

( ∏̀

j=i+1

Aj

) k∑

j=1

∆Ψj,i−j |2∗

= E|
( ∏̀

j=k+2

Aj

)
∆Ψk,0|2∗

+
( ∏̀

j=k+2

Aj

)
∆Ψk,1 +

( ∏̀

j=k+1

Aj

)
∆Ψk−1,1|2∗

...
+ E|A`−2k+1∆Ψk,k−1 +A`−2k+2∆Ψk−1,k−1 + . . . +A`−k∆Ψ1,k−1|2∗
...

+ E|A0∆Ψk,`−k +A1∆Ψk−1,`−k + . . . +Ak−1∆Ψ1,`−k|2∗
...

+ E|
( ∏̀

j=`+1

Aj

)
∆Ψ2,`−2 +

(∏̀

j=`

Aj

)
∆Ψ1,`−2|2∗

+E|
( ∏̀

j=`+1

Aj

)
∆Ψ1,`−1|2∗

≤ k
∑̀

i=k

k∑

j=1

E|∆Ψj,i−j |2∗ = k c∗11
∑̀

i=k

k∑

j=1

E|∆Γj,i−j Iti−j ,ti−j+1 |2

≤ k c∗11
∑̀

i=k

k∑

j=1

E‖∆Γj,i−j‖2 E|Iti−j ,ti−j+1 |2

≤ h k c∗11 L2
Γ

∑̀

i=k

k∑

j=1

E|Ei−j |2 ≤ h k c∗11 L2
Γ c∗

∑̀

i=k

|Ei−1|2∗.

Thus, for the term labelled 3), we obtain

E|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
∆Ψi|2∗ ≤ h k c∗11 L2

Γ c∗
`−1∑

i=k−1

|Ei|2∗. (A.3)

We will, for a shorter notation, deal with the term labelled 4), i. e. the perturbations
Di in Di, after obtaining an intermediate result. Using (A.1), (A.2) and (A.3) and
setting L0 := a L2

f (k + 1) c∗11 T c∗ β2
0 and L := L2

f (k + 1) c∗11 T c∗β + L2
Γ k c∗11 c∗,

we have now arrived at

E|E`|2∗ ≤ 4
{
E|Ek−1|2∗+h L0E|E`|2 +h L

`−1∑

i=k−1

E|Ei|2∗+E|
∑̀

i=k

A`−iDi|2∗
}

, ` = k, . . . , N.

If necessary we choose a bound h0 on the step-size such that 4·h·L0 < 1
2 holds for all
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h < h0 and conclude that

E|E`|2∗ ≤ 8
{
E|Ek−1|2∗ + h L

`−1∑

i=k−1

E|Ei|2∗ + E|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
Di|2∗

}

= 8 E|Ek−1|2∗ + 8 E|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
Di|2∗ + 8 h L

`−1∑

i=k−1

E|Ei|2∗

≤ 8 E|Ek−1|2∗ + 8 E|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
Di|2∗ + 8 L

aT

N

`−1∑

i=k−1

E|Ei|2∗.

We now apply Gronwalls Lemma with a` := 0, ` = 1, . . . , k− 2 and a` := E|E`|2∗, ` =
k − 1, . . . , N , and obtain the intermediate result

max
`=k−1,...,N

E|E`|2∗ ≤ Ŝ
{
E|Ek−1|2∗ + E|

∑̀

i=k

( ∏̀

j=i+1

Aj

)
Di|2∗

}
, Ŝ := 8 exp(8LaT ) . (A.4)

It remains to deal with the term labelled 4), i. e. the perturbations Di in Di. We
decompose Di, and, analogously, Di into

Di = Ri + Si = Ri +
k∑

j=1

Sj,i−j+1, Di = Ri + Si = Ri +
k∑

j=1

Sj,i−j+1,

where Sj,i−j+1 is Fti−j+1 -measurable with E(Sj,i−j+1|Fti−j ) = 0 for i = k, . . . , N
and j = 1, . . . , k. Then E〈A`1Sj1,i1 ,A`2Sj2,i2〉∗ = 0 for i1 6= i2, and by similar
computations as above we obtain

E|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
Di|2∗ = E|

∑̀

i=k

( ∏̀

j=i+1

Aj

)
(Ri +

k∑

j=1

Sj,i−j+1)|2∗

≤ 2 E|
∑̀

i=k

( ∏̀

j=i+1

Aj

)
Ri|2∗ + 2 E|

∑̀

i=k

( ∏̀

j=i+1

Aj

) k∑

j=1

Sj,i−j+1|2∗

≤ 2 (`−k+1)
∑̀

i=k

E|
( ∏̀

j=i+1

Aj

)
Ri|2∗ + 2 k

∑̀

i=k

k∑

j=1

E|
( ∏̀

j=i+1

Aj

)
Sj,i−j+1|2∗

≤ 2
(a T

h

∑̀

i=k

E|Ri|2∗ + k
∑̀

i=k

k∑

j=1

E|Sj,i−j+1|2∗
)

= 2
∑̀

i=k

(a T

h
E|Ri|2∗ + k

k∑

j=1

E|Sj,i−j+1|2∗
)
.

Inserting this into the intermediate result (A.4) we obtain

max
`=k−1,...,N

E|E`|2∗ ≤ Ŝ
{
E|Ek−1|2∗ + 2

∑̀

i=k

(a T

h
E|Ri|2∗ + k

k∑

j=1

E|Sj,i−j+1|2∗
)}

,

and thus max
`=k−1,...,N

E|E`|2

≤ c∗Ŝ
{

c∗ max
`=0,...,k−1

E|E`|2 + 2 c∗11 max
`=k,...,N

(a2T 2

h2
E|R`|2 +

kaT

h

k∑

j=1

E|Sj,`−j+1|2
)}

.
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Taking the square root yields the final estimate

max
`=k−1,...,N

‖E`‖L2

≤
√

c∗Ŝ




√

c∗ max
`=0,...,k−1

‖E`‖L2 +
√

2c∗11 max
`=k,...,N


aT

h
‖R`‖L2 +

√√√√kaT

h

k∑

j=1

‖Sj,`−j+1‖2L2








≤ S



 max

`=0,...,k−1
‖E`‖L2 + max

`=k,...,N


‖R`‖L2

h
+

√∑k
j=1 ‖Sj,`−j+1‖2L2√

h






 ,

which completes the proof.
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