
Local Error Estimates for Moderately Smooth

ODEs and DAEs

Thorsten Sickenberger∗, Ewa Weinmüller†and Renate Winkler‡

Department of Analysis and Scientific Computing, Vienna University of Technology

Institute of Mathematics, Humboldt-University Berlin

Abstract

We discuss an error estimation procedure for the local errors of low order meth-
ods applied to solve initial value problems in ordinary differential equations (ODEs)
and index 1 differential-algebraic equations (DAEs). The proposed error estimation
strategy is based on the principle of Defect Correction. Here, we present how this
idea can be adapted for the estimation of local errors in case when the problem data
is only moderately smooth. Moreover, we illustrate the performance of the mesh
adaptation based on the error estimation developed in this paper.

1 Introduction

We consider initial value problems for ODEs of the form

x′(t) = f(t, x(t)), t ∈ J , x(t0) = x0, (1.1)

where J = [t0, tend], x : J → R
n, f : J × R

n → R
n, and assume that (1.1) has a unique

solution x = x(·; t0, x0).
In this paper we are interested in the design of error estimates for the local errors arising
during the numerical integration of classical ODEs and DAEs. The results developed here
shall also provide the necessary techniques for a further development in context of small
noise stochastic differential equations (SDEs).
Our main concern is to deal with only moderate smoothness of the problem data and of
the solution of (1.1). We are especially motivated by applications in electrical circuit simu-
lation, where the models often contain data with poor smoothness. In a consecutive paper
dealing with stochastic differential equations, we will focus our attention on the case of
small noise where the dominant part of the local error still exhibits deterministic behavior.

∗This work has been supported by the BMBF-project 03RONAVN.
†This work has been supported by the Austrian Science Fund Project P17253.
‡This work has been supported by the DFG Research Center MATHEON in Berlin.

1

Our ideas originate from the well-known principle of Defect Correction which can be
utilized to estimate local and global errors of discretization schemes in the context of
both, initial and boundary value problems in ODEs. Defect correction also constitutes
the acceleration technique called Iterated Defect Correction (IDeC). For the reader’s con-
venience, we now give a brief overview of this technique, referring to the literature for
further details.

1.1 Iterated Defect Correction

Since its introduction in the 1970’s, cf. [12], [27], [28], the idea of IDeC has been successfully
applied to various classes of differential equations. The method is carried out in the
following way: Compute a simple, basic approximation and form its defect w.r.t. the given
ODE via a piecewise interpolant. This defect is used to define an auxiliary, neighboring
problem whose exact solution is known. Solving the neighboring problem with the basic
discretization scheme yields a global error estimate. This can be used to construct an
improved approximation, and the procedure can be iterated. The fixed point of such an
iterative process corresponds to a certain collocating solution. Let

Γ := {t0 < t1 < . . . < ti < · · · < tN = tend} (1.2)

be a partition of the interval J . We denote the length of the subinterval [ti−1, ti] by
hi = ti − ti−1, i = 1, . . . , N . Let h be the maximal step-size of Γ, h := max1≤i≤N hi.
For the IVP (1.1) the IDeC procedure can be realized as follows: An approximate solution

x
[0]
Γ = (x

[0]
0 , x

[0]
1 , . . . , x

[0]
i , . . . , x

[0]
N) is obtained by some discretization method on the grid

Γ. For simplicity assume that x
[0]
Γ has been computed by the backward Euler scheme

(BEUL),

xi − xi−1

hi

= f(ti, xi), i = 1, . . . , N. (1.3)

Using the polynomial p[0](t) of degree ≤ N which interpolates the values of x
[0]
Γ , p[0](ti) =

xi, i = 0, . . . , N , we construct an auxiliary neighboring problem

x′(t) = f(t, x(t)) + d[0](t), x(t0) = x0, (1.4)

where d[0](t) denotes the defect w.r.t. (1.1),

d[0](t) :=
d

dt
p[0](t) − f(t, p[0](t)). (1.5)

We now solve (1.4) using the same numerical method as before to obtain an approximation

p
[0]
Γ for the exact solution p[0](t) of (1.4). Note that for (1.4) we know the global error

given by p
[0]
Γ − RΓp[0], where RΓ denotes the restriction operator [t0, tend] → Γ. Assuming

x
[0]
Γ to be a good approximation for RΓx and therefore p

[0]
Γ to be a good approximation

for x(t), we may expect d[0](t) to be small and the problems (1.1) and (1.4) to be closely
related. Consequently, the global error for the neighboring problem (1.4) should provide
a good estimate for the unknown error of the original problem (1.1). The approximation

2

p
[0]
Γ − RΓp[0] of the global error of the original problem can now be used to improve the

numerical solution of (1.1),

x
[1]
Γ := x

[0]
Γ − (p

[0]
Γ − RΓp[0]). (1.6)

The values x
[1]
Γ are used to define a new interpolating polynomial p[1](t) by requiring

p[1](ti) = x
[1]
i and p[1](t) defines a new neighboring problem analogous to (1.4). This pro-

cedure can be continued iteratively in an obvious manner. In practice one does not use one
interpolating polynomial for the whole interval [t0, tend]. Instead, piecewise functions com-
posed of polynomials of (moderate) degree m are used to specify the neighboring problem.
For sufficiently smooth data functions f(t, x) it can be shown that the approximations

x
[ν]
Γ satisfy

x
[ν]
i − x(ti) = O(hν+1), ν = 0, . . . , m − 1. (1.7)

One of the most attractive features of the IDeC procedure is, that its fixed point is a cer-
tain superconvergent collocation solution of (1.1). In [6] and [7] a variety of modifications
to this algorithm has been discussed. Some of these have been proposed only recently, and
together they form a family of iterative techniques, each with its particular advantages.

Clearly, in each step of the classical IDeC procedure, we obtain not only an improved
approximation x

[ν]
Γ for the exact solution values RΓx, but also an asymptotically correct

estimate p
[ν−1]
Γ − RΓp[ν−1] for the global error of the basic method x

[0]
Γ − RΓx:

(p
[ν]
i − p[ν](ti)) − (x

[0]
i − x(ti)) =

(p
[ν]
i − p[ν](ti)) − (x

[0]
i − x

[ν+1]
i)

︸ ︷︷ ︸

=0

−(x
[ν+1]
i − x(ti)) = O(hν+1), ν = 0, . . . , m − 1.

Similarly, in each step of the iteration the difference x
[ν]
Γ −x

[ν+1]
Γ can serve to estimate the

global error x
[ν]
Γ − RΓx of the current approximation x

[ν]
Γ ,

(x
[ν]
i − x

[ν+1]
i) − (x

[ν]
i − x(ti))

︸ ︷︷ ︸

=O(hν+1)

= −(x
[ν+1]
i − x(ti)) = O(hν+2), ν = 0, . . . , m − 1.

The DeC principle can also be used to estimate the global error of higher order schemes.
It was originally proposed by Zadunaisky in order to estimate the global error of Runge-
Kutta schemes. In this original version discussed in [9], [28], the error estimate for the
high-order method is obtained by applying the given scheme twice, to the analytical
problem (1.1) first, and to a properly defined neighboring problem next. In [12] and [27],
this procedure was modified in order to reduce the amount of computational work. Here,
the high-order method is carried out only to solve the original problem. Additionally,
a computationally cheap low-order method is used twice to solve the original and the
neighboring problem. We refer to [4] and [5] for further variants of the above error
estimation strategies.

3

1.2 Estimate for the local truncation error in the IDeC context

In [10] and [11] another variant of the IDeC procedure based on the estimation of the local
truncation error was introduced. Let us again consider problem (1.1) and its numerical
solution xΓ obtained by the backward Euler scheme (1.3). If we knew the exact values of
the local truncation error per unit step,

lus
i :=

x(ti) − x(ti−1)

hi

− f(ti, x(ti)), i = 1, . . . , N, (1.8)

and if we solved the perturbed BEUL scheme

yi − yi−1

hi

= f(ti, yi) + lus
i , i = 1, . . . , N, (1.9)

then we would recover the correct values of the solution, yi = x(ti), i = 1, . . . , N. In
practice we need to estimate the values of lus

i . For this purpose consider m adjacent
points to ti, say ti−m, ti−m+1, . . . , ti−1, and define a polynomial qi(t)

1 of degree ≤ m by
requiring qi(ti) = xi, i = i−m, . . . , i. Using this polynomial we now construct an auxiliary
problem,

x′
i(t) = f(t, xi(t)) + dus

i (t), t ∈ [ti−m, ti], xi(t0) = qi(t0), (1.10)

where

dus
i (t) := q′i(t) − f(t, qi(t)), i = 1, . . . , N. (1.11)

We again can expect that qi(t) is a good approximation for x(t) in the interval [ti−m, ti].
Outside of [ti−m, ti] the polynomial qi(t) may differ significantly from x(t). Therefore, we
could view (1.10) as a local neighboring problem for (1.1). Since qi(t) is the exact solution
of (1.10), we know the associated local truncation error at ti,

`us
i :=

qi(ti) − qi(ti−1)

hi

− f(ti, qi(ti)) − q′i(ti) + f(ti, qi(ti))

=
xi − xi−1

hi

− q′i(ti), i = 1, . . . , N, (1.12)

and thus we can use `us
i to estimate lus

i in (1.9). Obviously, this process can be iteratively
continued. However, in this paper, we are not interested in applying the related accelera-
tion procedure, but in using the above idea to reliably estimate local errors of numerical
methods for IVPs and consequently, to provide a basis for a step adaptation strategy.

We stress that we do not necessarily need to evaluate the defect in a way described in
(1.11). In fact, it turns out that a modified defect definition will be more suitable in
the case of very moderate smoothness in x. All we need is the property that `us

i is an
asymptotically correct error estimate for lus

i ,

`us
i = lus

i + O(h2
i), i = 1, . . . , N. (1.13)

1We denote this polynomial by qi and not by pi, as in the previous section, in order to underline that
it is a local approximation for x(t), t ∈ [ti−m, ti].

4

This requirement is motivated by the fact that for the backward Euler scheme both, `us
i

and lus
i are O(hi). Depending on the choice of dus

i condition (1.13) holds under different
smoothness requirements on x. It has been shown in [3] in context of equidistant grids
that x ∈ C5[t0, tend] is sufficient for dus

i specified via (1.11) to guarantee that (1.13) is
satisfied.
The following form of dus

i suits both, less smooth solutions of (1.1) and arbitrary grids,
see [4]:

dus
i :=

qi(ti) − qi(ti−1)

hi

−
1

2

(
f(ti−1, qi(ti−1)) + f(ti, qi(ti))

)

=
xi − xi−1

hi

−
1

2

(
f(ti−1, xi−1) + f(ti, xi)

)
=

1

2

(
f(ti, xi) − f(ti−1, xi−1)

)
.(1.14)

For x ∈ C2[t0, tend] we have

`us
i =

xi − xi−1

hi

− f(ti, xi) −
xi − xi−1

hi

+
1

2

(
f(ti−1, xi−1) + f(ti, xi)

)

=
1

2

(
f(ti−1, xi−1) − f(ti, xi)

)
. (1.15)

Recall that

lus
i :=

x(ti) − x(ti−1)

hi

− f(ti, x(ti)) = −
1

2
hix

′′(ti) + o(hi), (1.16)

and thus

`us
i − lus

i =
hi

2



x′′(ti) −
1

hi

(
f(ti, xi) − f(ti−1, xi−1)
︸ ︷︷ ︸

:=∆fi

)



 + o(hi) (1.17)

with

∆fi = (f(ti, xi) − f(ti, x(ti)
︸ ︷︷ ︸

=Ji(xi−x(ti))

)) − (f(ti−1, xi−1) − f(ti−1, x(ti−1))
︸ ︷︷ ︸

=Ji−1(xi−1−x(ti−1))

)

− (f(ti−1, x(ti−1)) − f(ti, x(ti))),

where Ji =
∫ 1

0
fx(ti, sxi + (1 − s)x(ti)) ds, Ji−1 =

∫ 1

0
fx(ti−1, sxi−1 + (1 − s)x(ti−1)) ds.

Here, we assume that the right-hand side f is continuously differentiable with respect to
x. From

xi − x(ti) = xi−1 − x(ti−1) + hif(ti, xi) − hix
′(ti−1) + O(h2

i)

= xi−1 − x(ti−1) + hif(ti, xi) − hif(ti, x(ti)) + hif(ti, x(ti))

− hi(x
′(ti) + O(hi)) + O(h2

i) = xi−1 − x(ti−1) + O(h2
i)

we have

∆fi = Ji(xi − x(ti)) − Ji−1(xi−1 − x(ti−1)) − (x′(ti−1) − x′(ti))

= Ji(xi−1 − x(ti−1) + O(h2
i)) − Ji−1(xi−1 − x(ti−1)) + hix

′′(ti) + o(hi)

= hix
′′(ti) + (Ji − Ji−1)(xi−1 − x(ti−1))

︸ ︷︷ ︸

=O(h2
i
)

+o(hi),

5

and consequently,

`us
i − lus

i =
hi

2

(

x′′(ti) −
1

hi

(
hix

′′(ti) + o(hi)
)
)

+ o(hi) = o(hi).

Using similar arguments one could show that for x ∈ C3[t0, tend],

`us
i − lus

i = O(h2
i)

holds.
Here, a remark is in order. In the above calculations we have taken advantage of the
fact that in (1.17), x′′ is approximated by differences of f -values. Note that the weighted
sum of f -values in (1.14) can be related to a certain quadrature rule, cf. [5]. The defect
evaluation in (1.14) can also be regarded as a substitution of the solution obtained from
the numerical scheme of order m− 1 = 1 into another scheme of higher order, in this case
of order m = 2. This idea is widely used in the design of error estimation procedures based
on residual control. Its generalization in context of multi-step schemes will be discussed
in the next section.
For the defect definition (1.11) we would have obtained

`us
i − lus

i =
hi

2
(x′′(ti) − q′′i (ti)) + O(h2

i), i = 1, . . . , N, (1.18)

which means that in this case x′′ would be approximated by q′′i , where qi is a polynomial
interpolating the values of xΓ. The different defect definitions (1.11) and (1.14) result in
canceling of f(ti, qi(ti)) terms in (1.12) and (xi − xi−1)/hi terms in (1.15), respectively.

2 Estimates of the local error via defect evaluation

2.1 Linear multi-step schemes

Consider a linear multi-step scheme for the ODE (1.1) carried out on the grid Γ,

k∑

j=0

αj,ixi−j = hi

k∑

j=0

βj,if(ti−j, xi−j), i = k, . . . N, (2.1)

with given initial values x0, x1, . . . , xk−1 ∈ R
n. Assume, for simplicity of notation, that

α0,i = 1. The local truncation error2 li of the scheme (2.1) is given by

li :=
k∑

j=0

αj,ix(ti−j) − hi

k∑

j=0

βj,if(ti−j, x(ti−j)), i = k, . . . N. (2.2)

The linear multi-step method (2.1) is called consistent of order p > 0 if |li| = O(hp+1),
where | · | denotes a vector norm in R

n.

2It is defined by substituting the values of the exact solution into the scheme. Note that now the
scaling of the numerical scheme is different from (1.3). The local truncation error, li, is related to the
local truncation error per unit step, lus

i
, by li = hil

us

i
.

6

We identify (2.1) with a given solver routine providing an approximation for the solution
of (1.1). Our aim is to design an error estimate for the local truncation error of this
approximation which does not need more smoothness to work than the approximation
procedure itself. For this purpose we use an auxiliary scheme,

k̄∑

j=0

ᾱj,ix̄i−j = hi

k̄∑

j=0

β̄j,if(ti−j, x̄i−j), i = k̄, . . . N, (2.3)

with given values x0, x̄1, . . . , x̄k̄−1 ∈ R
n and ᾱ0,i = 1. As before, the local truncation error

of (2.3) is given as

l̄i :=
k̄∑

j=0

ᾱj,ix(ti−j) − hi

k̄∑

j=0

β̄j,if(ti−j, x(ti−j)), (2.4)

and the scheme (2.3) is of order p̄ if |l̄i| = O(hp̄+1) holds. In this section, we are particularly
interested in the case p = p̄.
We first discuss the properties of the defect, defined by

di :=
k̄∑

j=0

ᾱj,ixi−j − hi

k̄∑

j=0

β̄j,if(ti−j, xi−j), i = k, . . . N, (2.5)

obtained by substituting the approximations xi computed from (2.1) into the scheme
(2.3). Let us assume that the starting values for the schemes (2.1) and (2.3) are exact,
and denote the solutions computed after the first step by x?

i and x̄?
i respectively,

x?
i = −

k∑

j=1

αj,ix(ti−j) + hiβ0,if(ti, x
?
i) + hi

k∑

j=1

βj,if(ti−j, x(ti−j)), (2.6)

x̄?
i = −

k̄∑

j=1

ᾱj,ix(ti−j) + hiβ̄0,if(ti, x̄
?
i) + hi

k̄∑

j=1

β̄j,if(ti−j, x(ti−j)), (2.7)

for i = k, . . . N . For explicit schemes (β0,i = 0 and β̄0,i = 0) we immediately have

li = x(ti) − x?
i and l̄i = x(ti) − x̄?

i ,

but in general,

li = x(ti) − x?
i − hiβ0,i

(
f(ti, x(ti)) − f(ti, x

?
i)

)
=

(
I − hiβ0,iJi

)
(x(ti) − x?

i), (2.8)

and

l̄i = x(ti) − x̄?
i − hiβ̄0,i

(
f(ti, x(ti)) − f(ti, x̄

?
i)

)
=

(
I − hiβ̄0,iJ̄i

)
(x(ti) − x̄?

i). (2.9)

Here, Ji =
∫ 1

0
f ′

x(ti, sx(ti) + (1 − s)x?
i) ds, J̄i =

∫ 1

0
f ′

x(ti, sx(ti) + (1 − s)x̄?
i) ds, and f is

supposed to be differentiable with respect to x. The properties of the defect di from (2.5)
are formulated in the following lemma.

7

Lemma 2.1 Let f(t, x) be continuous and continuously differentiable with respect to x.
Let the step-size h be sufficiently small to guarantee that the matrix

(
I − hiβ0,iJi) is

nonsingular. Then the defect d?
i defined 3by

d?
i := x?

i +

k̄∑

j=1

ᾱj,ix(ti−j) − hiβ̄0,if(ti, x
?
i) − hi

k̄∑

j=1

β̄j,if(ti−j, x(ti−j)), (2.10)

satisfies

d?
i = l̄i − li + hi(β̄0,i − β0,i)Ji

(
I − hiβ0,iJi)

−1li. (2.11)

Proof: Using the definitions (2.10), (2.4) and the relation (2.8) we obtain

d?
i = x?

i − hiβ̄0,if(ti, x
?
i) +

k̄∑

j=1

ᾱj,ix(ti−j) − hi

k̄∑

j=1

β̄j,if(ti−j, x(ti−j))

= x?
i − hiβ̄0,if(ti, x

?
i) + l̄i − x(ti) + hiβ̄0,if(ti, x(ti))

= x?
i − x(ti) − hiβ̄0,i

(
f(ti, x

?
i) − f(ti, x(ti))

)
+ l̄i

=
(
I − hiβ̄0,iJi

)(
x?

i − x(ti)
)

+ l̄i

= −
(
I − hiβ̄0,iJi

)(
I − hiβ0,iJi

)−1
li + l̄i

= l̄i − li + hi

(
β̄0,i − β0,i

)
Ji

(
I − hiβ0,iJi

)−1
li .

�

Corollary 2.2 Let the suppositions of Lemma 2.1 be satisfied. Moreover, let the schemes
(2.1) and (2.3) be consistent of order p and p̄, respectively. For the case p = p̄, we
additionally assume that

li = ci x
(p+1)(ti) hp+1

i + o(hp+1
i), l̄i = c̄i x

(p+1)(ti) hp+1
i + o(hp+1

i), (2.12)

with constants ci 6= c̄i, which depend only on the ratios of step-sizes.
Then we have

(i) l̄i = d?
i + O(hp̄+2

i) , if p > p̄,

(ii) li = −d?
i + O(hp+2

i) , if p < p̄,

(iii) li =
ci

c̄i − ci

d?
i + o(hp+1

i), l̄i =
c̄i

c̄i − ci

d?
i + o(hp+1

i), if p = p̄.

Proof: Equation(2.11) immediately implies the properties (i), (ii), and (iii). �

Corollary 2.2 offers two options for designing an estimate `i for the local truncation error
li of (2.1): According to (ii) we may choose a higher order scheme (2.3) to evaluate di

given by (2.5) and set `i := −di. We then have `i − li = −(di − d?
i) + O(hp+2

i).

3d?

i
is obtained by substituting x?

i
from (2.6) into (2.3)

8

According to (iii) we may choose a scheme (2.3) with the same order p̄ = p to evaluate

di and set `i :=
ci

c̄i − ci

di. We then have `i − li =
ci

c̄i − ci

(di − d?
i) + o(hp+1

i).

In both cases `i can be considered as an asymptotically correct estimate for li only if
di −d?

i = o(hp+1
i), i.e., if |di −d?

i | is asymptotically smaller than the local truncation error
itself.

In Section 1.2 the defect structured as a weighted sum of f -values, see (1.14), proved
advantageous in the case when the solution x is only moderately smooth. To obtain this
structure for the defect (2.5) we choose an auxiliary scheme (2.3) with the same left-hand
side as (2.1), i.e., ᾱj,i = αj,i, j = 0, . . . , kmax, ᾱj,i = 0, j = kmax+1, . . . , k̄, where kmax is
the maximal index j with αj,i 6= 0 in (2.1). Obviously this yields

di =

k∑

j=0

αj,ixi−j − hi

k̄∑

j=0

β̄j,if(ti−j, xi−j) = hi

max(k,k̄)
∑

j=0

(βj,i − β̄j,i)f(ti−j, xi−j) . (2.13)

The structure of di displayed in (2.13) is crucial for the property that the difference
|di − d?

i | is asymptotically smaller than the local truncation error itself, because it pro-
vides an additional factor hi. For the local exact solution x(t; ti−k, xi−k) in d?

i , it follows
that |di−d?

i | = O(hp+2
i). The freedom to choose the auxiliary scheme (2.3) now reduces to

determine the coefficients β̄j,i, j = 0, . . . , k̄, which additionally have to fulfill consistency
conditions to ensure that the scheme (2.3) has at least the order of convergence p. In
Sections 2.2 and 2.3 we illustrate how this principle can be realized in the context of
first and second order schemes. In Section 2.4 we generalize this technique to specially
structured DAEs.

What we would like to control in praxis are the local errors (x(ti)−x?
i) =

(
I−hiβ0,iJi

)−1
li,

see (2.8). As long as the problem is not stiff, the values of hiJi are small compared to the
identity matrix I. In this case li itself is a good approximation to (x(ti) − x?

i). However,
for stiff problems the values of hiJi can become considerably large and therefore li should

be scaled by
(
I − hiβ0,iJi

)−1
or by an approximation to this matrix. Since

(
I − hiβ0,iJi

)

is the Jacobian of the discrete scheme (2.1) this matrix (or its good approximation) and
its factorization are usually available.

2.2 First order schemes

For the first order methods we assume the analytical solution x to be in C2[t0, tend]. Here
we deal only with one-step schemes which simplifies matters, since the coefficients and
the error constant are not step dependent. We first consider the forward Euler scheme.

Example 2.3 We identify the forward Euler scheme (FEUL) with (2.1). The related
local truncation error satisfies

li = lFEUL
i = x(ti) − x(ti−1) − hix

′(ti−1) =
h2

i

2
x′′(ti) + o(h2

i).

9

Thus, the forward Euler scheme has the order of consistency p = 1 with the error constant
c = cFEUL = 1

2
. Choosing the auxiliary scheme as a linear one-step scheme with the same

left-hand side as the forward Euler scheme results in

x̄i − x̄i−1 = hi

(
β̄0f(ti, x̄i) + β̄1f(ti−1, x̄i−1)

)
,

where the coefficients β̄0, β̄1 have to fulfill the consistency condition β̄0 + β̄1 = 1 to ensure
that this scheme is at least consistent with order 1. Thus we arrive at the one-parameter
family of consistent linear one-step schemes with β̄0 = θ, β̄1 = (1 − θ) and the local
truncation error of the form

l̄i = lθi = x(ti)− x(ti−1)− hi

(
θx′(ti) + (1−θ)x′(ti−1)

)
=

(
1

2
− θ

)

h2
i x

′′(ti) + o(h2
i).

For θ 6= 1
2

the order is 1 and the error constant reads c̄ = cθ = (1
2
− θ). The defect di = dθ

i

from (2.5) is given by

dθ
i = xFEUL

i − xi−1 − hi

(
θf(ti, x

FEUL
i) + (1−θ)f(ti−1, xi−1)

)

= −hiθ
(
f(ti, x

FEUL
i) − f(ti−1, xi−1)

)
, (2.14)

and the error estimate `θ
i , the scaled defect, is

`θ
i =

c

cθ − c
dθ

i =
1
2

−θ
dθ

i =
1

2
hi

(
f(ti, x

FEUL
i) − f(ti−1, xi−1)

)
.

While dθ
i depends on the parameter θ, the error estimate `i = `θ

i does not. The same error
estimate could be obtained for θ = 1

2
which corresponds to the trapezoidal rule of order

2 related to (ii) in Corollary 2.2.
It is important to note that the value of f(ti, x

FEUL
i) necessary for the computation of `i

will be used in the next step of the integration procedure which means that we do not
face any additional evaluation of the right-hand side f .

Example 2.4 We now identify the backward Euler scheme with (2.1). Here the error
constant is c = cBEUL = −1

2
. For the auxiliary scheme (2.3) we have exactly the same

choices as in the previous example. Again, this results in an error estimate `i independent
of the free parameter θ. The most simple way to derive this error estimate is to set θ = 0
which means that (2.3) is the forward Euler scheme with the error constant c̄ = cFEUL = 1

2
.

Now, the defect di from (2.5) is given by

dFEUL
i = xBEUL

i − xi−1 − hif(ti−1, xi−1) = hi

(
f(ti, x

BEUL
i) − f(ti−1, xi−1)

)

and the resulting error estimate is

`i =
c

cFEUL − c
dFEUL

i = −
1

2
dFEUL

i = −
1

2
hi

(
f(ti, x

BEUL
i) − f(ti−1, xi−1)

)
.

As in example 2.3, the computation of `i does not cost any additional evaluations of the
right-hand side f .

10

2.3 Second order schemes

For the second order methods we assume the analytical solution x to be in C3[t0, tend].
Here we deal with two-step schemes of order 2 and the trapezoidal rule. In case of two-step
schemes we have to cope with coefficients and error constants that depend on the ratio
of the step-sizes κi = hi/hi−1. We first consider the two-step backward differentiation
formula (BDF2).

Example 2.5 We identify the BDF2

xi −
(κi + 1)2

2κi + 1
xi−1 +

κ2
i

2κi + 1
xi−2 = hi

κi + 1

2κi + 1
f(ti, xi) (2.15)

with (2.1). Its local truncation error satisfies

lBDF2
i = cBDF2

i h3
i x

′′′(ti) + o(h3
i), cBDF2

i = −
(κi + 1)2

6κi(2κi + 1)
.

Thus, the BDF2 has the order of consistency p = 2 with the error constant ci = cBDF2
i . We

choose the auxiliary scheme (2.3) as a linear two-step scheme with the same left-hand side
as (2.15) and parameters β̄0,i, β̄1,i, β̄2,i that have to fulfill the conditions for consistency of
order 2. As in Example 2.3 we obtain a one-parameter family of linear multi-step schemes.
The resulting error estimate `i has the same form for all schemes. We specify the free
parameter in such a way that the error constant of the resulting scheme satisfies

c̄i − cBDF2
i = 1

and obtain the following coefficients β̄:

β̄0,i = −
2κi

κi + 1
+

κi + 1

2κi + 1
, β̄1,i = 2κi and β̄2,i = −

2κ2
i

κi + 1
.

Now the defect di and the error estimate `i are given by

di = hi ·
(2κi

κi + 1
f(ti, x

BDF2
i) − 2κif(ti−1, xi−1) +

2κ2
i

κi + 1
f(ti−2, xi−2)

)

, (2.16)

`i = cBDF2
i di .

Remark 2.6 Note that di in (2.16) coincides with h3
i q′′f (t) , where qf (t) is the quadratic

polynomial that interpolates the values of f(ti, x
BDF2
i), f(ti−1, xi−1), f(ti−2, xi−2). This is

due to the fact, that d?
i has to approximate the term

h3
i x(3)(ti) = h3

i

d2

dt2
f(x(t), t)(ti)

with an accuracy of o(h3
i) by using only the three corresponding values of f . Since

this situation does not change for other second order schemes, the form of the resulting
estimate di for h3

i x(3)(ti) does not change either.

11

Example 2.7 We identify the implicit trapezoidal rule (ITR)

xi − xi−1 = hi ·
1

2

(
f(ti, xi) + f(ti−1, xi−1)

)

with (2.1). Its local truncation error lITR
i and error constant cITR satisfy

lITR
i = −

1

12
h3

i x
′′′(ti) + o(h3

i), cITR = −
1

12
.

We look for an auxiliary two-step scheme in the form x̄i− x̄i−1 = hi

∑2
j=0 β̄j,if(ti−j, x̄i−j) ,

where the coefficients β̄0,i, β̄1,i, β̄2,i have again to satisfy the conditions for consistency of
order 2. We specify the remaining free parameter such that c̄ − cITR = 1, i.e., c̄ = 11

12
.

This results in

β̄0,i =
1

2
−

2κi

κi + 1
, β̄1,i = 2κi +

1

2
and β̄2,i = −

2κ2
i

κi + 1
,

and provides the defect di and the error estimate `i of the form

di = hi ·
(2κi

κi + 1
f(ti, x

ITR
i) − 2κif(ti−1, xi−1) +

2κ2
i

κi + 1
f(ti−2, xi−2)

)

, (2.17)

`i = cITR di .

Example 2.8 Finally, we identify (2.1) with the explicit two-step Adams Bashforth
(AB2) scheme,

xi − xi−1 = hi ·
(
(
κi

2
+ 1)f(ti−1, xi−1) −

1

2
κif(ti−2, xi−2)

)
.

Its local truncation error and error constant satisfy

lAB2
i =

(1

4κi

+
1

6

)
h3

i x
′′′(ti) + o(h3

i), cAB2
i =

1

4κi

+
1

6
.

Note that the left-hand side of the two-step Adams Bashforth scheme coincides with that
of the trapezoidal rule in Example 2.7. Thus the auxiliary scheme has the same form.
Now, the coefficients become

β̄0,i = −
2κi

κi + 1
, β̄1,i =

5

2
κi + 1 and β̄2,i = −

2κ2
i

κi + 1
−

1

2
κi.

Finally,

di = hi ·
(2κi

κi + 1
f(ti, x

AB2
i) − 2κif(ti−1, xi−1) +

2κ2
i

κi + 1
f(ti−2, xi−2)

)

, (2.18)

`i = cAB2
i di . (2.19)

12

Remark 2.9 Throughout this paper we are interested in providing an asymptotically
correct estimate for the local truncation error li of the scheme (2.1). The error estimates
discussed so far rely on the assumption that the leading term in

li = ci hp+1
i x(p+1)(ti) + o(hp+1

i)

does not vanish and therefore the asymptotic behavior of li does not change. Unfortu-
nately, at least in case of oscillatory solutions, there always exist time points t̂ where the
derivative x(p+1)(t̂) vanishes4. In the vicinity of such points our error estimates will tend
to underestimate the true size of the error, often leading to incorrect step-size prediction
and step rejections afterwards.
In order to remedy this situation we assume more smoothness and take the next higher
derivative into consideration. Let us assume that x ∈ Cp+2[t0, tend] and that we have the
following representation of the local truncation error of a pth order method (2.1):

li = c
[p+1]
i hp+1

i x(p+1)(ti) + c
[p+2]
i hp+2

i x(p+2)(ti) + o(hp+2
i)

Subsequently, we choose the auxiliary scheme (2.3) in such a way that c̄
[p+1]
i − c

[p+1]
i = 1

holds. From Lemma 2.1 we conclude

d?
i = l̄i − li + O(hi li)

= hp+1
i x(p+1)(ti) +

(

c̄
[p+2]
i − c

[p+2]
i

)

︸ ︷︷ ︸

γi

hp+2
i x(p+2)(ti) + O(hi li) + o(hp+2

i),

d?
i−1 =

hp+1
i

κp+1
i

x(p+1)(ti−1) +
(

c̄
[p+2]
i−1 − c

[p+2]
i−1

) hp+2
i

κp+2
i

x(p+2)(ti−1) + O(hi li−1) + o(hp+2
i),

and therefore

d?
i − κp+1

i d?
i−1 = hp+1

i (x(p+1)(ti) − x(p+1)(ti−1))

+hp+2
i

(
γix

(p+2)(ti) −
γi−1

κi

x(p+2)(ti−1)
)

+ O(hi li) + o(hp+2
i),

or equivalently

d?
i − κp+1

i d?
i−1

hp+2
i

=
(x(p+1)(ti) − x(p+1)(ti−1))

hi

(2.20)

+
(
γix

(p+2)(ti) −
γi−1

κi

x(p+2)(ti−1)
)

+ O(li/h
p+1
i) + o(1).

It is clear that d?
i /h

p+1
i approximates x(p+1)(ti) with order of accuracy O(hi). On the other

hand the term (d?
i −κp+1

i d?
i−1)/h

p+2
i is a reasonable approximation for x(p+2)(ti) only under

certain conditions. First of all li has to behave at least as o(hp+1
i) which is true when the

derivative x(p+1)(ti) is nearly zero. Secondly, the term
(
γix

(p+2)(ti)−
γi−1

κi
x(p+2)(ti−1)

)
has

to be appropriately small. This is guaranteed in case when the last p steps have been

4For example the third derivative vanishes at points where the curvature of the solution becomes
extremal.

13

executed with constant step-size.

Motivated by the above arguments we propose to extent the error estimate `i to `ext
i

by a heuristic term that only comes into play in the vicinity of time points t̂ where
componentwise (for ν = 1, . . . , n) x

(p+1)
ν (t̂) = 0,

`ext
i,ν :=

{

c
[p+1]
i di,ν if c

[p+1]
i di,ν > c

[p+2]
i (di,ν − κp+1

i di−1,ν),

c
[p+1]
i di,ν + c

[p+2]
i (di,ν − κp+1

i di−1,ν) else.
(2.21)

Even if the term (di − κp+1
i di−1) arising in (2.21) does not approximate the value of

h
[p+2]
i x(p+2)(ti), it prevents the error estimate from almost vanishing and consequently,

it stops the overgrowth of the predicted step-size. The above extension has been imple-
mented in our code and it proved to work very dependably in practice.

2.4 Index 1 DAEs

In this section we discuss how the ideas of the previous sections can be applied to DAEs
of the form

Ax′(t) − f(t, x(t)) = 0, t ∈ J , (2.22)

where A is a constant singular n × n matrix. Due to the singularity of the matrix A, the
system (2.22) involves constraints. The solution components lying in ker A, we call them
the algebraic components, are never subject to differentiation and the inherent dynamics
of the system live only in a lower dimensional subspace. DAEs are usually classified by
their index. The literature on DAEs contains a number of different definitions of this term
pointing to different properties of the considered DAEs. Fortunately, they widely coincide
in characterizing the special type of DAEs (2.22) to be of index 1. We assume here that
the DAE (2.22) has index 1 in the sense that the constraints are locally solvable for the
algebraic variables. Then the DAE (2.22) involves a coupling of a nonlinear equation
solving task and an integration task.

To be more precise we will distinguish the differential and algebraic solution components
as well as the constraints by means of projectors5

Q onto ker A, P := I − Q along ker A, R along im A.

We split the solution into differential and algebraic components,

x = Px + Qx =: u + v, x ∈ R
n, u ∈ im P, v ∈ im Q .

In a correct formulation of the problem the differential operator should be applied only to
the components Px. This is realized by writing A(Px)′ instead of Ax′ and searching for

5Any matrix Q is a projector iff Q2 = Q. It projects onto its image and along its kernel.

14

solutions in the space of functions C1
ker A := {x ∈ C(J , Rn) : Px ∈ C1(J , Rn)}, which is

independent of the special choice of the projector P (see e.g. [13]). In this setting, we deal
with a DAE with properly stated leading term in the sense of [18], where the matrices A
and P are well-matched.

By applying the projectors (I−R) and R, we split the original system (2.22) into a set of
differential equations and constraints:

A(Px)′(t) − (I−R)f(t, x(t)) = 0 (2.23)

Rf(t, x(t)) = 0. (2.24)

Due to the index-1 assumption one can theoretically solve the constraints (2.24) for the
algebraic components Qx = v,

Rf(t, u + v) = 0, Av = 0 ⇐⇒ v = v̂(t, u),

and insert v into the system (2.23). Finally, the system is scaled by a reflexive generalized
inverse A− with AA− = I−R, A−A = P , or equivalently, by some non-singular matrix H
with HA = P . This yields a so-called inherent regular ODE for the differential components
u,

u′ − A−f(t, u + v̂(t, u)) = 0. (2.25)

It can be shown that imP is an invariant subspace of (2.25), and that (2.25) together with
x(t) = u(t) + v̂(t, u(t)), is equivalent to (2.22). In contrast to this analytical decoupling,
numerical schemes for DAEs should be directly applicable to the original problem (2.22).
We refer to the monographs [2, 8, 13, 15, 17] or to the review papers [20, 21, 22] for a
detailed analysis of DAEs and their numerics.

2.4.1 Linear multi-step schemes

The straightforward generalization of linear multi-step schemes (2.1) to DAEs (2.22) re-
sults in

A

k∑

j=0

αj,ixi−j − hi

k∑

j=0

βj,if(ti−j, xi−j) = 0, i = k, . . . N. (2.26)

The above equations contain the following constraints

k∑

j=0

βj,iRf(ti−j, xi−j) = 0, i = k, . . . N, (2.27)

that result by applying projector R. They represent a recursion in Rf(ti, xi), i = k, . . .N .
For consistent initial values (i.e. Rf(ti, xi) = 0, i = 0, . . . k − 1) and implicit methods ,
i.e. β0,i 6= 0, it follows immediately that Rf(ti, xi) = 0, i = k, . . . N . This means that
the exactly computed iterates xi satisfy the constraints Rf(ti, xi) = 0. However, already
small perturbations in the initial values or in the right-hand sides of (2.27) would cause

15

a disastrous error amplification if the recursion (2.27) was not stable. The stability of
(2.27) is therefore necessary for a well-posed discretized problem. Forcing the iterates to
satisfy the constraints is the key issue that guarantees that a theoretical decoupling of the
discrete scheme (2.29) leads to the same result as the corresponding discretization of the
inherent regular ODE (2.25),

k∑

j=0

αj,iui−j − hi

k∑

j=0

βj,iA
−f(ti−j, ui−j + v̂(ti−j, ui−j)) = 0, i = k, . . . N. (2.28)

One of the best known methods for the integration of DAEs is the BDF, which, applied
to the DAE (2.22), takes the form

A
k∑

j=0

αj,ixi−j − hiβ0,if(ti, xi) = 0, i = k, . . .N. (2.29)

This scheme involves the constraint Rf(ti, xi) = 0 that replaces recursion (2.27). It
guarantees consistent iterates xi even if the initial values were inconsistent.
Other linear multi-step schemes may need to be realized in a modified way to guarantee
a numerically stable formulation. To this aim, more structural information has to be
exploited. One option is to use different discretizations of the differential and constraint

part of the DAE (2.22). For the case of explicitly given constraints, i.e. A =

(
A1

0

)

and

f =

(
f1

f2

)

, where A1 has the full row rank, this can be done via

A1

k∑

j=0

αj,ixi−j − hi

k∑

j=0

βj,if1(ti−j, xi−j) = 0 ,

f2(ti, xi) = 0 .

For general DAEs (2.22) a related stable scheme can be formulated using R,

A
k∑

j=0

αj,ixi−j − hi

k∑

j=0

βj,i(I − R)f(ti−j, xi−j) + Rf(ti, xi) = 0. (2.30)

Note, that the solution of (2.30) also satisfies (2.26).
Another possibility is to use the projector P and to consider the scheme, see [13],

P
(

k∑

j=0

αj,ixi−j − hi

k∑

j=0

βj,iyi−j

)
+ Qyi = 0,

Ayi − f(ti, xi) = 0. (2.31)

For implicit methods this can be equivalently written as

A
1

β0,i

(
k∑

j=0

1

hi

αj,ixi−j −

k∑

j=1

βj,iyi−j

)
− f(ti, xi) = 0,

P
1

β0,i

(
k∑

j=0

1

hi

αj,ixi−j −

k∑

j=1

βj,iyi−j

)
= yi . (2.32)

16

Again, note that the solution of (2.31) or(2.32) also satisfies (2.26).

The local truncation error li, defined as before by substituting the values of the exact
solution into the scheme (2.26), is now given by

li := A
k∑

j=0

αj,ix(ti−j) − hi

k∑

j=0

βj,if(ti−j, x(ti−j)), i = k, . . . N, (2.33)

and satisfies the relation

li = A(x(ti)−x?
i)−hiβ0,i

(
f(ti, x(ti))−f(ti, x

?
i)

)
=

(
A−hiβ0,iJi

)
(x(ti)−x?

i), (2.34)

where, as before, x?
i is the result of a step with exact starting values x(ti−j), j = 1, . . . , k,

and Ji =
∫ 1

0
fx(ti, sx

?
i + (1 − s)x(ti)) ds. Let us emphasize that the constraint part of li

always vanishes, i.e., Rli = 0, and that li is related to the local truncation error linh
i of

the discretized inherent ODE (2.28) by linh
i = A−li and Alinh

i = li. The local truncation
error linh

i of (2.28) is independent of the scaling of the given DAE and can be represented
by an asymptotic expansion

linh
i = ci (Px)(p+1)(ti) hp+1

i + o(hp+1
i), (2.35)

provided that the applied linear multistep scheme is of order p and that Px ∈ Cp+1.
The local truncation error li defined by (2.33) depends on the scaling of the DAE (2.22).
Instead of (2.12) or (2.35) we have

li = ci (Ax)(p+1)(ti) hp+1
i + o(hp+1

i) = ci A(Px)(p+1)(ti) hp+1
i + o(hp+1

i), (2.36)

provided that Ax ∈ Cp+1, or equivalently, Px ∈ Cp+1. Approximations to linh
i will esti-

mate the local error in the dynamic solution components Px(ti), while an approximation
to li will approximate the local error of Ax(ti). An approximation to the local error in the

complete solution vector x(ti) can be defined via the identity x(ti)−x?
i =

(
A−hiβ0,iJi

)−1
li.

The matrix
(
A − hiβ0,iJi

)
is the Jacobian of (2.26) and it is nonsingular for sufficiently

small step-sizes hi, cf. [13].
As before in context of ODEs, we use a second linear multi-step method with coefficients
ᾱj,i, β̄j,i, and analyze the defect di of the computed iterates with respect to this second
scheme.

Lemma 2.10 Let the DAE (2.22) be of index 1 and let f(t, x) be continuous and continu-
ously differentiable with respect to x. Let the step-size h be sufficiently small to guarantee
that the matrix

(
A − hiβ0,iJi) is nonsingular. Then the defect d?

i defined by

d?
i := A(x?

i +

k̄∑

j=1

ᾱj,ix(ti−j)) − hiβ̄0,if(ti, x
?
i) − hi

k̄∑

j=1

β̄j,if(ti−j, x(ti−j)), (2.37)

satisfies

d?
i = l̄i − li − hi(β̄0,i − β0,i)Ji

(
A − hiβ0,iJi)

−1li. (2.38)

17

The proof is fully analogous to that of Lemma 2.1 �

Since the DAE (2.22) is of index 1, (A − βhiJi)
−1(I − R) = O(1) holds and hence an

analogue version of Corollary 2.2 applies.

Corollary 2.11 Let the suppositions of Lemma 2.10 be satisfied. Let the schemes (2.1)
and (2.3) be consistent of order p and p̄, respectively. For the case p = p̄, we additionally
assume that

li = ci (Ax)(p+1)(ti) hp+1
i + o(hp+1

i), l̄i = c̄i (Ax)(p+1)(ti) hp+1
i + o(hp+1

i),

with constants ci 6= c̄i, which depend only on the ratios of step-sizes.
Then we have

(i) l̄i = d?
i + O(hp̄+2

i) , if p > p̄,

(ii) li = −d?
i + O(hp+2

i) , if p < p̄,

(iii) li =
ci

c̄i − ci

d?
i + o(hp+1

i), l̄i =
c̄i

c̄i − ci

d?
i + o(hp+1

i), if p = p̄.

The above corollary enables us to proceed as in the ODE case and use

di := A(

k̄∑

j=0

ᾱj,ix(ti−j)) − hi

k̄∑

j=0

β̄j,if(ti−j, x(ti−j)) (2.39)

to derive an estimate `i of the local error li of (2.26). Again, we choose an auxiliary
scheme with ᾱj,i = αj,i and c̄i − ci = 1. With these settings the representations for the
defects di and the estimates of the local error `i remain unchanged.

Recall that `i approximates the local error in Ax now. Depending on the available infor-
mation we can monitor different quantities to satisfy accuracy requirements:

i) control ei := (A − β0,iJi)
−1`i := (A − β0,iJi)

−1cidi to match a given tolerance for x,

iia) control ei := `i := cidi to match a given tolerance for Ax, or

iib) control ei := A−`i := A−cidi to match a given tolerance for Px.

3 Step-size Control

Here we give the algorithmic details for a step-size control that is based on the results
developed in the previous sections. We exemplify this for the important subclass of second
order schemes, in particular for the implicit trapezoidal rule (ITR, k := 1) and the two-
step backward differentiation formula (BDF2, k := 2).

18

3.1 Initialization

Since the initial value problem itself does not supply enough information to start a multi-
step scheme any practical realization of such a scheme needs to address the problem of
the necessary initialization. In the literature, see e.g. [8, 25], several more or less heuristic
strategies to start the integration have been proposed. The first step always has to be
computed by means of a one-step scheme. In the context of a variable step-size, variable
order implementation of the BDF2 the first step is carried out using the implicit Euler
scheme, where the step-size has to be chosen in such a way that the estimated local error
matches the given tolerance.
For the numerical experiments in Section 4 we performed the first step by means of the
trapezoidal rule, which is the only linear one-step scheme of order 2, but while estimating
its local error we faced a problem: The formula (2.17) providing such estimate requires
the knowledge of two preceding values of the right-hand side. However, with the iterate
x1 obtained from the ITR-step with step-size h1 only one preceding value of the right-
hand side is available. Therefore, we used componentwise the estimated local error of the
implicit (or explicit) Euler schemes instead,

∣
∣`EUL

1,ν

∣
∣ =

h1

2
|fν(t1, x1) − fν(t0, x0) |, ν = 1, . . . , n,

to control the stepsize according to a given tolerance. Since an estimate which is correct
for a first order scheme is used in context of a second order method, the first step may
become unnecessarily small. Alternatively, one may perform two steps of the ITR with
step-sizes h1 and h2 = h1 and estimate the local error of the ITR step componentwise by

∣
∣`ITR

2,ν

∣
∣ =

h1

12
|f(t2, x2)ν − 2f(t1, x1)ν + f(t0, x0)ν|, ν = 1, . . . , n.

Finally, both steps are accepted if this estimate satisfies the tolerance, or else they are
rejected and repeated with a smaller step-size predicted from (3.6).
After the first step has been accepted and a step-size for the next step has been fixed the
following algorithm can be carried out for any second order one-step or two-step method.
The algorithm is described in terms of the DAE problem (2.22), but comprises also the
ODE case by setting A := I.

3.2 Step-size control algorithm

Let two initial values x0, x1 at time points t0, t1 = t0 +h1, an absolute and a relative
tolerance aTol, rTol and the step-size h2 be given. Set i := 2.

1) Solve the system consisting of

A
2∑

j=0

αj,ixi−j = hi

2∑

j=0

βj,if(ti−j, xi−j), (3.1)

or (2.30) or (2.32) for xi, where the parameters αj,i and βj,i are chosen to provide a
second order two-step scheme (including the ITR with α2,i = β2,i = 0).

19

2) Compute

di = hi ·
(2κi

κi + 1
f(ti, xi) − 2κif(ti−1, xi−1) +

2κ2
i

κi + 1
f(ti−2, xi−2)

)

,

and componentwise (for ν = 1, . . . , n)

`ext
i,ν :=

{

c
[3]
i di,ν if c

[3]
i di,ν > c

[4]
i (di,ν − κ3

i di−1,ν),

c
[3]
i di,ν + c

[4]
i (di,ν − κ3

i di−1,ν) else.
(3.2)

Depending on the problem setting and the available information define

a) ei := (A − β0,iJi)
−1`ext

i and x̂ := x, (3.3)

b) ei := `ext
i and x̂ := Ax, (3.4)

or, for DAEs only,

c) ei := A−`ext
i and x̂ := Px. (3.5)

Compute componentwise (for ν = 1, . . . , n)

Tolν := aTol + rTol · |x̂i,ν|.

3) Apply a control strategy predicting the new step-size hnew to match the tolerance
multiplied by a safety factor fac, say fac = 0.7. For example, the elementary
control

hnew

hi

:= min
ν=1,...,n

(
fac · Tolν

ei,ν

) 1

p+1

, (3.6)

or the proportional integral control PI34 [14]

hnew

hi

:= min
ν=1,...,n

{ (
fac · Tolν

ei,ν

) 0.3
p+1

(
ei−1,ν

ei,ν

) 0.4
p+1 }

. (3.7)

with p := 2 (the order of the scheme).

4) If ei,ν ≤ Tolν for all ν = 1, . . . , n, then accept the step. If ti > T then stop, else set
i := i + 1, hi := hnew and go to 1.
If ei,ν > Tolν for at least one component ν ∈ {1, . . . , n}, then reject the step and
repeat it with the smaller step-size, i.e. set hi := hnew and go to 1.

20

4 Numerical Experiments

The strategies discussed in the previous sections have been implemented for the ITR and
the BDF2 and tested extensively on a set of ODEs and DAEs. By means of three model
examples we now illustrate how the procedure performed. We start with a simple test
problem. Our aim is to compare the results of the above algorithm with those where the
extended local error estimate (3.2) was replaced by the simpler formula `i,ν := c

[3]
i di,ν, see

Remark 2.9. Next, we consider the so-called ”Brusselator”, a two dimensional nonlinear
system exhibiting periodic solutions. Finally, we present results for a low-dimensional
electronic circuit model. In all examples we have chosen the scaling of the local error
estimates (3.3). In the first example we have applied only the elementary control (3.6)
with fac = 0.7, in the other examples we used the control (3.7) with fac = 0.7.

Example 4.1 Consider the scalar initial value problem

x′(t) = λ(x(t) − g(t)) + g′(t), x(0) = g(0), t ∈ [0, 10], (4.1)

where g(t) = sin(t) and λ = −100. Its solution g is displayed in Figure 1.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

solution x

Figure 1: Solution x(t) = g(t) = sin(t) of (4.1)

Simulation results for the ITR and the BDF2 computed without and with the exten-
sion (2.9) are presented in Figure 2 and Figure 3, respectively. In both cases the tolerance
parameters were set to aTol = rTol = 10−4. The step-sizes are displayed in the upper
part of the figures, the accepted step-sizes are connected by a solid line, the rejected ones
are indicated by ×. In the lower part of the figures the tolerance (dotted line), the local
truncation error estimates (solid line), and the true local error x(ti)−x∗

i (dashed line) are
compared. In Figure 2 the related error estimate is set to (1− β0,iλ)−1`i, and in Figure 3
to (1 − β0,iλ)−1`ext

i . In Figure 3, × in the dotted line for the tolerance indicates the use
of the extended formula.

10
−1

10
0

 39 steps + 14 rejected = 53
stepsize
rejected

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

local error estimate
x(t

i
) − x

i
*

TOL

10
−1

10
0

 50 steps + 12 rejected = 62
stepsize
rejected

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

local error estimate
x(t

i
) − x

i
*

TOL

Figure 2: Step-size and local error estimate (1 − β0,iλ)−1`i for the ITR (left) and the
BDF2 (right)

21

10
−1

10
0

 42 steps + 10 rejected = 52
stepsize
rejected

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

local error estimate
x(t

i
) − x

i
*

TOL

10
−1

10
0

 49 steps + 9 rejected = 58
stepsize
rejected

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

local error estimate
x(t

i
) − x

i
*

TOL

Figure 3: Step-size and local error estimate (1 − β0,iλ)−1`ext
i for the ITR (left) and the

BDF2 (right)

We observe that the error estimate (1 − β0,iλ)−1`i = (1 − β0,iλ)−1c
[3]
i di decreases signifi-

cantly when the third derivative of the solution tends to zero at t = π/2+kπ, k = 0, 1, . . .,
cf. Figure 2. At these points the step-size becomes unreasonably small. Consequently,
more rejected steps, and even twice rejected steps result for both schemes. The BDF2
method requires generally smaller steps due to its larger error constant. This behavior
can also be observed for lower tolerances. By using the extension (3.2) the error estimate
can be prevented from vanishing and the predicted step-sizes are well related to the actual
size of the local error (Figure 3). The unnecessary step rejections are avoided.

Example 4.2 We now consider a two-dimensional system called Brusselator, cf. [16], a
mathematical model for a certain chemical reaction,

x′
1(t) = 1 + x2

1(t)x2(t) − 4x1(t),

x′
2(t) = 3x1(t) − x2

1(t)x2(t),

with initial values x1(0) = 1.5, x2(0) = 3 and t ∈ [0, 12]. The solution components are
plotted in Figure 4.

0 2 4 6 8 10 12
0

2

4

6

solution x
1

solution x
2

Figure 4: Solution components for the Brusselator

We have executed the above algorithm with three different values for the tolerance, aTol =
rTol = 10−2, 10−3, 10−4, the local error estimate (3.3) and the control (3.7) for both the
ITR and the BDF2. In Figure 5, the step-sizes, the error estimate and the tolerance are
presented.
As one would expect, the step-size decreases significantly in regions where the solution
changes more rapidly. Many step rejections are observed when the step-size has to be
significantly reduced. It is not easy to prevent this behavior, because the step size pro-
posed by formula (3.6) is, apart from the safety factor fac, increased after a step has
been accepted. A more pessimistic choice of the safety factor fac can help to prevent
these step rejections, but enhances the overall number of steps. The ratio of rejected to
accepted steps becomes smaller with smaller tolerances.

22

10
−1

10
0

 51 steps + 4 rejected = 55
stepsize
rejected

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

local error estimate
TOL

10
−1

10
0

 62 steps + 7 rejected = 69
stepsize
rejected

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

local error estimate
TOL

10
−1

10
0

 84 steps + 8 rejected = 92
stepsize
rejected

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

local error estimate
TOL

10
−1

10
0

 108 steps + 8 rejected = 116
stepsize
rejected

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

local error estimate
TOL

10
−1

10
0

 154 steps + 6 rejected = 160

stepsize
rejected

0 2 4 6 8 10 12
10

−5

10
−4

local error estimate
TOL

10
−1

10
0

 206 steps + 1 rejected = 207
stepsize
rejected

0 2 4 6 8 10 12
10

−5

10
−4

local error estimate
TOL

Figure 5: Brusselator: Step-size and local error estimate for the ITR (left) and the BDF2
(right), rTol = aTol = 10−2 (top), 10−3 (middle) , and 10−4 (bottom)

R2

R1

u3
C1 u2

V

u1

C2

Figure 6: The RC generator circuit

23

Example 4.3 As an example for a system of DAEs we consider the model of a resistor-
capacitor (RC) generator proposed in [29]. It can be used to trigger an electric oscillation
by varying the capacities. The equivalent circuit diagram is given in Figure 6. The
resonance frequency of the RC generator depends on the amplifier V , the resistances Ri

(i = 1, 2) and the capacities Ci (i = 1, 2). By Kirchhoff’s Law we have

C2u
′
1 + (G1 + G2)u1 − G1u3 = 0,

C1u
′
2 − C1u

′
3 + G1u1 − G1u3 = 0,

f(u1) − u2 = 0,
(4.2)

where u1, u2 and u3 are the voltages at the corresponding nodes, see Figure 6, Gi = R−1
i ,

i = 1, 2, and f is the characteristic of the amplifier V . We set f(u) = arctan(5u), Ci = 1
[F] and Gi = 1 [1/Ω], (i = 1, 2) and obtain





1 0 0
0 1 −1
0 0 0





︸ ︷︷ ︸

:=A





u1

u2

u3





′

−





−(G1 + G2)u1 + G1u3

−G1u1 + G1u3

− arctan(u1) + u2



 =





0
0
0



 . (4.3)

Therefore

ker A = span{





0
1
1



}, im A = span{





1
0
0



 ,





0
1
0



}.

In this example the matrix A is a projector itself. Hence we may choose the projectors
as follows: P = I − Q = A = I − R. The generalized inverse A− is given by A− := A.
Consistent initial values have to satisfy the constraint u2(0) = f(u1(0)). The solution for
the consistent initial value u1(0) = 0.4, u2(0) = f(u1(0)) = arctan(0.4), u3(0) = 0.6 on
the time-interval J = [0, 12] is given in Figure 7. Simulation results for three different

-1

 0

 1

time t1086420

u1
u2
u3

Figure 7: Solution components for the RC generator circuit

values of the tolerance, aTol = rTol = 10−2, 10−3, 10−4, the local error estimate (3.3),
and the control (3.7) for the ITR and the BDF2 are presented in Figure 8.

References

[1] U. Ascher, R.M.M. Mattheij, and R.D. Russell, Numerical Solution of Boundary Value

Problems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1988.

24

10-1

100

34 steps + 3 rejected
controlled stepsize
rejected

10-4

10-3

10-2

time t1086420

maximum local error estimate
maximum TOL

10-1

100

46 steps + 10 rejected
controlled stepsize
rejected

10-4

10-3

10-2

time t1086420

maximum local error estimate
maximum TOL

10-1

100

64 steps + 15 rejected
controlled stepsize
rejected

10-5

10-4

10-3

time t1086420

maximum local error estimate
maximum TOL

10-1

100

84 steps + 20 rejected
controlled stepsize
rejected

10-5

10-4

10-3

time t1086420

maximum local error estimate
maximum TOL

10-1

100

121 steps + 23 rejected
controlled stepsize
rejected

10-6

10-5

10-4

time t1086420

maximum local error estimate
maximum TOL

10-1

100

159 steps + 25 rejected
controlled stepsize
rejected

10-6

10-5

10-4

time t1086420

maximum local error estimate
maximum TOL

Figure 8: RC generator circuit: Step-size and local error estimate for the ITR (left) and
the BDF2 (right), rTol = aTol = 10−2 (top), 10−3 (middle), and 10−4 (bottom)

25

[2] U. Ascher and L. Petzold. Computer methods for ordinary differential equations and

differential-algebraic equations. SIAM, Philadelphia, 1998.

[3] W. Auzinger, R. Frank, F. Macsek, Asymptotic error expansions for stiff equations: the

implicit Euler scheme, SIAM J. Numer. Anal., 27 (1990), pp. 67–104.

[4] W. Auzinger, O. Koch, and E. Weinmüller, Efficient collocation schemes for singular bound-

ary value problems, Numer. Algorithms 31 (2002), pp. 5–25.

[5] W. Auzinger, O. Koch, and E. Weinmüller, New variants of defect correction for boundary

value problems in ordinary differential equations, in Current Trends in Scientific Computing,
Z. Chen, R. Glowinski, K. Li (eds), Publ. of AMS, Cont. Math. Series, 329 (2003), pp. 43–50.

[6] W. Auzinger, O. Koch, W. Kreuzer, H. Hofstätter, and E. Weinmüller, Superconvergent

defect correction algorithms, to appear in the Proceedings of the 4th WSEAS International
Conference ASCOMS ’04, Cancun, Mexico.

[7] W. Auzinger, W. Kreuzer, H. Hofstätter, and E. Weinmüller, Modified defect correction

algorithms for ODEs. Part I: general theory, submitted to Numer. Algorithms.

[8] K. Brenan, S. Campbell and L. Petzold, Numerical solution of initial-value problems in

differential-algebraic equations , North-Holland, New York, 1989.

[9] R. Frank, Schätzungen des globalen Diskretisierungsfehlers bei Runge-Kutta-Methoden,
ISNM 27 (1975), pp. 45–70.

[10] R. Frank, J. Hertling, and C. Überhuber, Iterated Defect Correction Based on Estimates of

the Local Discretization Error, Technical Report No. 18 (1976), Department for Numerical
Analysis, Vienna University of Technology, Austria.

[11] R. Frank, J. Hertling, and C. Überhuber, An extension of the applicabilty of iterated defect

correction, Math. of Comp. 31 (1977), pp. 907–915.

[12] R. Frank, and C. Überhuber, Iterated defect correction for differential equations, Part I:

theoretical results, Computing 20 (1978), pp. 207–228.

[13] E. Griepentrog and R. März. Differential-Algebraic Equations and Their Numerical Treat-

ment. Teubner-Texte Math. 88. Teubner, Leipzig, 1986.

[14] K. Gustafsson, M. Lundh and G. Söderlind, A PI stepsize control for the numerical solution

of ordinary differential equations, BIT, vol 28 (1988), pp. 270–287.

[15] E. Hairer, C. Lubich, and M. Roche. The numerical solution of differential-algebraic systems

by Runge-Kutta methods. Springer, Berlin, 1989.

[16] E. Hairer, S.P. Nørsett, and G. Wanner, Solving ordinary differential equations I, Second

Edition, Springer-Verlag, Berlin-Heidelberg-New York, 2000.

[17] E. Hairer and G. Wanner. Solving ordinary differential equations II, Stiff and differential-

algebraic problems. Springer, Berlin, second, rev. edition, 1996.

[18] I. Higueras and R. März. Differential Algebraic Equations with properly stated leading terms,

Computers and Mathematics with Applications 48 (2204), pp. 215–235.

26

[19] H. Hofstätter and O. Koch, Defect correction for geometric integrators, in the Proceedings
of APLIMAT 2004, pp. 465-470.

[20] R. März. Numerical methods for differential-algebraic equations, Acta Numerica 1992,
pp. 141–198.

[21] R. März. EXTRA-ordinary differential equations: Attempts to an analysis of differential-

algebraic systems, Progress in Mathematics 168 (1998), pp. 313–334.

[22] L. Petzold. Numerical solution of differential-algebraic equations, in Theory and numerics
of ordinary and partial differential equations, Oxford Univ. Press, New York, (1995), pp 123–
142.

[23] W. Römisch and R. Winkler. Stepsize control for mean-square numerical methods for

stochastic differential equations with small noise, to appear in SIAM J. Sci. Comp.

[24] K. H. Schild, Gaussian collocation via defect correction, Numer. Math. 58 (1990), pp. 369–
386.

[25] L. F. Shampine, Numerical solution of ordinary differential equations, Chapman and Hall,
London, 1994.

[26] H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations,
Springer-Verlag, Berlin-Heidelberg-New York, 1973.

[27] H. J. Stetter, The defect correction principle and discretization methods, Numer. Math.,
29 (1978), pp. 425–443.

[28] P. E. Zadunaisky, On the estimation of errors propagated in the numerical integration of

ODEs, Numer. Math., 27 (1976), pp. 21–39.

[29] Q. Zheng, Ein Algorithmus zur Berechnung nichtlinearer Schwingungen bei DAEs, Ham-
burger Beiträge zur Angewandten Mathematik, (1988).

27

