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Abstract 
 
We consider an optimal control problem described by a second order elliptic boundary value problem, 
jointly nonlinear in the state and control, with control and state constraints, where the state constraints 
and cost functionals involve also the state gradient. Since this problem may have no classical solutions, 
it is also formulated in the relaxed form.  The classical problem is discretized by using a finite element 
method for state approximation, while the controls are approximated by elementwise constant, or 
linear, or multilinear, controls. Various necessary conditions for optimality are given for the classical 
and the relaxed problem, in the continuous and the discrete case. We then study the behavior in the 
limit of discrete optimality, and of discrete extremality and admissibility. Next, we apply a penalized 
gradient projection method to each discrete problem, and also a progressively refining version of this 
method to the continuous classical problem. We prove that accumulation points of sequences generated 
by the first method are extremal for the discrete problem, and that strong classical (resp. relaxed) 
accumulation points of sequences of discrete controls generated by the second method are admissible 
and weakly extremal classical (resp. relaxed) for the continuous classical (resp. relaxed) problem. 
Finally, numerical examples are given. 
 
Keywords. Optimal control, nonlinear elliptic systems, state constraints, discretization, finite elements, 
discrete penalized gradient projection method, progressive refining. 
 
 
1   Introduction 
 
We consider an optimal control problem described by a second order elliptic 
boundary value problem, which is jointly nonlinear in the state and control, with 
control and state constraints, where the state constraints and cost functionals involve 
also the gradient of the state. The problem is discretized by using a Galerkin finite 
element method with continuous elementwise linear basis functions for state 
approximation, while the controls are approximated by (not necessarily continuous) 
elementwise constant, or linear, or multilinear, controls. Various necessary conditions 
for optimality are given for the classical and the relaxed problem, in the continuous 
and the discrete case. Under appropriate assumptions, we prove that strong 
accumulation points in  of sequences of optimal (resp. admissible and extremal) 
discrete controls are optimal (resp. admissible and weakly extremal classical) for the 
continuous classical problem, and that relaxed accumulation points of sequences of 
optimal (resp. admissible and extremal) discrete controls are optimal (resp. admissible 
and weakly extremal relaxed) for the continuous relaxed problem. We then apply a 
penalized gradient projection method to each discrete problem, and also a 
corresponding discrete method to the continuous classical problem, which 
progressively refines the discretization during the iterations, thus reducing computing 
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time and memory. We prove that accumulation points of sequences generated by the 
first method are extremal for the discrete problem, and that strong classical (resp. 
relaxed) accumulation points of sequences of discrete controls generated by the 
second method are admissible and weakly extremal classical (resp. relaxed) for the 
continuous classical (resp. relaxed) problem. Finally, numerical examples are given. 
For approximation and optimization methods applied to distributed optimal control 
problems, see e.g. [2], [5,6], [8-12], [16-18], and the references therein. 
 
 
2. The continuous optimal control problems 
 
Let  be a bounded domain in , with Lipschitz boundary Γ . Consider the 
nonlinear elliptic state equation 

Ω d

(2.1)    in ( , ( ), ( )) 0Ay f x y x w x+ = ,Ω  
(2.2)    on , ( ) 0y x = Γ
where  is the formal second order elliptic differential operator A

(2.3)  
1 1

: ( / )[ ( ) /
d d

i ij j
j i

Ay x a x y x
= =

= − ∂ ∂ ∂ ∂∑∑ ].

The constraints on the control are ( )w x U∈  in Ω , where U  is a compact subset of 
ν , the state constraints are 

(2.4)    m p( ) : ( , ( ), ( ), ( )) 0,m mG w g x y x y x w x dx
Ω

= ∇ =∫ 1,..., ,=  

(2.5)    ( ) : ( , ( ), ( ), ( )) 0,m mG w g x y x y x w x dx
Ω

= ∇ ≤∫ 1,..., ,m p q= +

,

 

and the cost functional is 
(2.6)  0 0( ) : ( , ( ), ( ), ( )) .G w g x y x y x w x dx

Ω
= ∇∫

The state equation will be interpreted in the following weak form 
(2.7) ,  and    y V∈ ( , ) ( , ( ), ( )) ( ) ( , ( )) ( ) ,a y v b x y x w x v x dx f x w x v x dx

Ω Ω
+ =∫ ∫ v V∀ ∈

where  is the usual bilinear form associated with  and defined on V V  ( , )a ⋅ ⋅ A ×

(2.8) 
, 1

( , ) : ( ) .
d

ij
i j i j

y va y v a x dx
x xΩ

=

∂ ∂
=

∂ ∂∑ ∫  

Defining the set of classical controls 
(2.9) 2: { : ( ) measurable from to } ( ) ( )W w x w x w U L L∞= Ω ⊂ Ω ⊂ Ω , 
the continuous classical optimal control problem  is to minimize  subject to 

 and to the above state constraints. 
P 0G

w W∈
 

It is well known that such nonconvex optimal control problems may have no 
classical solutions, but reformulated in the so-called relaxed form, they have a 
solution in an extended space under weak assumptions. Next, we define the set of 
relaxed controls (or Young measures; for the relevant theory, see [19], [15]) 
(2.10) 1

1: { : ( ) weakly measurable} ( , ( )) ( , ( ))*wR r M U r L M U L C U∞= Ω→ ⊂ Ω ≡ Ω , 
where ( )M U  (resp. 1( )M U ) is the set of Radon (resp. probability) measures on U . 
The set R  is endowed with the relative weak star topology, and R  is convex, 
metrizable and compact. If each classical control ( )w ⋅  is identified with its associated 
Dirac relaxed control ( )( ) : wr δ ⋅⋅ = , then W  may also be considered as a subset of R , 
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and  is thus dense in W R . For a given 1 1( ; ( )) ( ; ( ))L C U L C Uφ ∈ Ω = Ω  (or 
( , ; )B Uφ ∈ Ω , where ( , ; )B UΩ  is the set of Caratheodory functions in the sense of 

Warga [19]) and  (in particular, for ( , ( ))wr L M U∞∈ Ω r R∈ ), we shall use the notation 

(2.11) ( , ( )) : ( , ) ( )( ),
U

x r x x u r x duφ φ= ∫  

and ( , ( ))x r xφ  is thus linear (under convex combinations, for ) in . A 
sequence (  converges to r  in 

r R∈ r
)kr R∈ R  iff 

(2.12) lim ( , ( )) ( , ( ))kk
x r x dx x r x dxφ φ

Ω Ω→∞
=∫ ∫ , 

for every , or 1( ; ( ))L C Uφ ∈ Ω ( , ; )B Uφ ∈ Ω , or ( )C Uφ ∈ Ω× . 
We denote by ⋅  the Euclidean norm in , by n

∞
⋅  the norm in , 

by  and 

( , )nL∞ Ω

( , )⋅ ⋅ ⋅  the inner product and norm in , and by  and 2 ( ; )nL Ω 1( , )⋅ ⋅
1

⋅  the 

inner product and norm in the Sobolev space 1
0: (V H )= Ω . We can now formulate the 

relaxed problem as follows. The relaxed state equation (in weak form) is given by 
(2.13)    and     y V∈ ( , ) ( , ( ), ( )) ( ) 0,a y v f x y x r x v x dx

Ω
+ =∫ ,v V∀ ∈  

the control constraint is , and the relaxed functionals are r R∈
(2.14)    ( ) : ( , ( ), ( ), ( )) ,m mG r g x y x y x r x dx

Ω
= ∇∫ 0,... .m q=  

The continuous relaxed optimal control Problem P  is to minimize  subject to 
the constraints 

0 ( )G r

(2.15) ,       r R∈ ( ) 0,mG r = 1,..., ,m p= ( ) 0,mG r ≤  1,..., .m p q= +  
In the sequel, we shall make some of the following assumptions. 

 
Assumptions 2.1 The coefficients  satisfy the ellipticity condition ija

(2.16)    2
0

, 1 1

( ) ,
d d

ij i j i
i j i

a x z z zα
= =

≥∑ ∑ , ,i jz z∀ ∈  ,x∈Ω  

with 0 0α > , , which implies that ( )ija L∞∈ Ω

(2.17) 1 1
( , )a y v y vα≤

1
,   2

2 1
( , ) ,a v v vα≥    , ,y v V∀ ∈  

for some 1 20, 0α α≥ > .  
Assumptions 2.2 The functions f  and yf  are defined on UΩ× × , measurable for 
fixed , continuous for fixed ,y u x , and satisfy 
(2.18) 0( ,0, ) ( ),f x u xφ≤    ( , )x u U∀ ∈Ω× , 

where , with ,  (e.g. 0 ( )sLφ ∈ Ω 2s ≥ / 2s n≥ 2s = , for 1, 2,3n = ), and 
(2.19) 1 10 ( , , ) ( ) (y )f x y u x yφ η≤ ≤ ,   ( , , ) ,x y u U∀ ∈Ω× ×  

where 1η  is an increasing function from [0, )+∞  to [0, )+∞ ,  if the 
functionals  depend on , and  

1 ( )Lφ ∞∈ Ω

mG y∇ 1 ( )sLφ ∈ Ω  otherwise. 
Assumptions 2.3 The functions  are defined on mg 1 ,d U+Ω× ×  measurable for fixed 

, continuous for fixed , ',y y u x , and satisfy 

(2.20) 2
0 0( , , ', ) ( ) ' ,m mg x y y u x yψ β≤ + m  

1( , , ', ) dx y y u U+∀ ∈Ω× ×  with 'y C≤ ,    
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where , , 'C C> 1
0 ( )m Lψ ∈ Ω 0 0mβ ≥ . 

Assumptions 2.4 The functions  are defined on ', ,m my myg g g 1 'd U+Ω× × , where  
is an open set containing the compact set U , measurable on  for fixed 

, continuous on 

'U
Ω

1( , ', ) 'dy y u U+∈ × 1 'd U+ ×  for fixed x∈Ω , and  satisfy ',my myg g

(2.21) 
2( 1)

1 1( , , ', ) ( ) ' ,my m mg x y y u x y
ρ
ρψ β
−

≤ +  

(2.22) ' 2( , , ', ) ( ) ' ,my m mg x y y u x yψ β≤ + 2  

(2.23) 3 3( , , ', ) ( ) ' ,mu m mg x y y u x yψ β≤ +  
1( , , ', ) 'dx y y u U+∀ ∈Ω× × ,   with 'y C≤ , 

where , 'C C< 2 ( )im Lψ ∈ Ω , 0imβ ≥ , [1, )ρ ∈ ∞  if 1 or 2n = , 2:
2

n
n

ρ σ< =
−

 if . 3n ≥

 
The following theorem follows directly form Theorem 3.1 in [3]. 

 
Theorem 2.1 Under Assumptions 2.1-2, for every relaxed control , the state 
equation has a unique solution 

r R∈
: ry y V Cα ( )= ∈ ∩ Ω , for some (0,1)α ∈ . Moreover, 

there exists constants ,C C  such that 
(2.24) 

1r ry y C
∞

+ ≤ ,  r C
y Cα ≤ ,  for every r R∈ . 

 
The following proposition is a simple generalization of Proposition 2.1 in [7], 

and will be useful in the sequel. It can be proved by using the (possible) convergence 
, the fact that a converging sequence in kr → r sL  is dominated (in norm a.e. in Ω , 

and up to a subsequence) by a fixed function in sL , Hölder’s inequality, Egorov’s 
theorem, and Lebesgue’s dominated convergence theorem. 
 
Proposition 2.1 For , , let 1,...,i K= 0K ≥ [1, ]is ∈ +∞ , [0, ]i isσ ∈  if , is < +∞ : 0iσ =  

if , with is = +∞
10

1 1
K

i

i is s
σ

=

+ ≤∑ , 1 : 0
is
=  if is = +∞ . Let  be a function defined on 

, measurable for every  fixed, continuous for every 

F

( )N K UΩ× × ,y u x  fixed, and 
satisfying 

(2.25) 
1

( , , ) ( ) ( ) ( )
K

i i
i

F x y u x x yξ
=

≤ Φ +Ψ ∏ , 

for every ( , , ) ( )N Kx y u U∈Ω× × , with i iy C≤  if is = +∞ , 

where 1: ( ,..., )Ky y y= , , 1( )LΦ∈ Ω 0 ( )sLΨ∈ Ω , ( ) : i

i i iy y σξ =  if , is < +∞

( ) :i iyξ =1  if is = +∞ . If (  converges to  in  strongly, , 

with 

)k
iy iy ( ; )is NL Ω 1,...,i K=

k
i iy

∞
≤ C  (for  sufficiently large) if k is = +∞ , and  converges to  in ( )kr r R , 

then 
(2.26) . lim ( , ( ), ( )) ( , ( ), ( ))k k

k
F x y x r x dx F x y x r x dx

Ω Ω→∞
=∫ ∫

 
Theorem 2.2 Under Assumptions 2.1-3, the operator  (resp. ), from rr y ww y
R  (resp. W  with the relative topology of 2 ( ; )L νΩ , hence of ( ; )L ν∞ Ω ) to V , and 
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to 0 ( )C Ω , and the functionals  on ( )mr G r R  (resp.  on W  with the 
same topologies) are continuous. If the relaxed problem has an admissible control (i.e. 
satisfying all the constraints), then it has a solution. 

( )mw G w

Proof. Let  be a sequence that converges to  in W , with the relative topology 
of 

( )kw w
2 ( , )L νΩ . Since the corresponding sequence of states  is bounded in V  and 

in 
( )ky

0 ( )Cα Ω , for some (0,1)α ∈ , and since the injection of 0 ( )Cα Ω  into 0 ( )C Ω  is 
compact, there exists a subsequence (same notation) converging to some  in V  
weakly and in 

y

0 ( )C Ω  strongly. Let any v V∈  be given. By the state equation 

(2.27)  ( , ) ( , ( ), ( )) 0k k ka y v f x y x w x vdx
Ω

+ =∫ .

By the mean value theorem and since 1η  is increasing, we have, for every  with y
y C≤  (  defined in Theorem 2.1), and for some C ( ) [0,1]xµ ∈  

(2.28) ( , , ) ( ,0, ) ( , , ) ( ,0, )f x y u v f x u v f x y u v f x u v≤ + −  

 0 1 1( ,0, ) ( , ( ) , ) ( ) ( ) ( ( ) )yf x u v f x x y u yv x x v x y yµ φ φ η µ= + ≤ +  

 0 1 1( ) ( ) ( )x x v C Cφ φ η≤ + , 

Since 0
sLφ ∈ , 1

sLφ ∈  or , L∞ 2v V L∈ ⊂ , and  in ky → y L∞ , we can apply 
Proposition 2.1 to pass to the limit in the state equation for  and find that . 
Next, we have 

ky wy y=

(2.29) 
2

2 1
( ,n n ny y a y y y yα − ≤ − − )

y

 

  ( ( , ), ) ( , ) ( , ) 0,n n n n nf y w y a y y a y y y= − − − − →
since  in V  weakly and ky → ( ( , ), ) ( ( , ), )n n nf y w y f y w y→  by Proposition 2.1, 
which shows that  in V  strongly. The convergence of the original sequence 
follows from the uniqueness of the limit. The continuity of the functionals  follows 
then from Proposition 2.1. The proofs for  and  are similar. The 
existence of an optimal relaxed control follows from the compactness of 

ny y→

mG

rr y :mG R →
R  and the 

continuity of the functionals  (the set of admissible controls is a closed subset of mG
R ). 
 
 Note that the classical problem may have no classical solution, and since 

, we generally have W R⊂
(2.30) , 0 0constraints on constraints on 

: min ( ) inf ( ) :R Wr w
c G r G w= ≤ c=

where the equality holds, in particular, if there are no state constraints, as W  is dense 
in R . Since usually approximation methods slightly violate the state constraints, 
approximating an optimal relaxed control by a relaxed or a classical control, hence the 
possibly lower relaxed optimal cost , is not a drawback in practice (see [19], p. 
259). 

Rc

 
Lemma 2.1 Under Assumptions 2.1-4, dropping the index m  in , , for 

, the functional G , defined on 
mg mG

, 'r r R∈ R  (resp. W , with U  convex) is l -
differentiable at  (resp. ) for every integer l , i.e. for every  and any choice of l  
controls  (resp. ), 

r w l
ir R∈ iw W∈ 1,...,i l= , we have 
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(2.31) 
1 1

( ( )) ( ) ( , ) (
l l

i i i i i
i i

G r r r G r DG r r r o
1

),
l

i
ε ε ε

= =

+ − − = − +∑ ∑
=
∑  

(resp.  
1 1

( ( )) ( ) ( , ) (
l l

i i i i i
i i

G w w w G w DG w w w o
1

)
l

i
ε ε ε

= =

+ − − = − +∑ ∑
=
∑  ),  

for 0,iε ≥   
1

1,
l

i
i
ε

=

≤∑
with  ( , ) : ( , , , , ( ) ( )) ,i iDG r r r H x y y z r x r x dx

Ω
− = ∇ −∫

(resp.   ), ( , ) : ( , , , , )( ( ) ( ))i u iDG w w w H x y y z w w x w x dx
Ω

− = ∇ −∫
where the Hamiltonian is defined by 
(2.32)  ( , , ', , ) : ( , , ) ( , , ', ),H x y y z u z f y x u g x y y u= − +
and the adjoint state  satisfies the linear adjoint equation : rz z V= ∈
(2.33)  '( , ) ( ( , ) , ) ( ( , , ), ) ( ( , , ), ),y y ya v z f y r z v g y y r v g y y r v+ = ∇ + ∇ ∇

∇(resp.   ), '( , ) ( ( , ) , ) ( ( , , ), ) ( ( , , ), )y y ya v z f y w z v g y y w v g y y w v+ = ∇ + ∇

,v V∀ ∈   with  (resp. : ry y= : wy y= ). 
In particular, the directional derivative of the functional G  defined on R  (resp. W , 
with U  convex) is given by  

(2.34) 
0

( ( )) (( , ) lim G r r r G rDG r r r
α

)α
α+→

+ − −
− =  

( , ( ), ( ), ( ), '( ) ( ))H x y x y x z x r x r x dx
Ω

= ∇ −∫ , 

(resp. 
0

( ( )) (( , ) lim G r w w G wDG r w w
α

)α
α+→

+ − −
− =  

( , ( ), ( ), ( ), ( ))( ( ) ( ))uH x y x y x z x w x w x w x dx
Ω

= ∇ −∫  ). 

Moreover, the operator , from rr z R  to V  (resp. , from W  to V ), and the 
functional 

ww z
( , ) ( , )r r DG r r r− , on R R×  (resp. ( , ) ( , )w w DG r w w− , on W ), 

are continuous. 
W×

Proof.  We shall prove the l -differentiability for classical controls only; we could also 
prove the Fréchet differentiability in this case, but the proof will be thus similar to the 
proof for relaxed ones. We first remark that, by our assumptions and since the 
injection V Lρ⊂  is continuous, the functional 
(2.35) '( ( , , ), ) ( ( , , ), )y yv g y y w v g y y w v∇ + ∇ ∇  

belongs to the dual  of V , and *V ( , ) ( )s
yf y w L∈ Ω , 2 s≤ ≤ ∞ , . Hence 

the linear adjoint equation has a unique solution 
( , ) 0yf y w ≥

z V∈ , for every w W∈ , by the Lax-
Milgram theorem (if ), or by Lemma 3.2 in [3] (if s = ∞ s < ∞ , no  in ). Now let 

, , 

'y g

w W∈ iw W∈ (0,1)iε ∈ , , 1,...,i l= 1: ( ,..., )lε ε ε= , with 
1

: 1
l

i
i

ε ε
=

= ≤∑ , and set 

(2.36) , 
1

: ( )
l

i i
i

w w w wε ε
=

= + −∑ :i iw w wδ = − , : wy y= , : wy y
εε = , :y y yε εδ = − .  

From the state equation, we have 
(2.37) ( , ) ( ( , ) ( , ), )a y v f y w f y w vε ε εδ + −  
 ( , ) ( ( , ) ( , ), ) ( ( , ) ( , ), )a y v f y w f y w v f y w f y w vε ε ε ε ε 0δ= + − + − = . 
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Using the mean value theorem, we see that yεδ  satisfies the linear equation 

(2.38) ,   , 
1

( , ) ( ( ) , )) ( ( , ) ,
l

y i u )
i

a y v f y y y v f y w w w vε ε ε εδ µδ δ ε µδ δ
=

+ + = − +∑ v V∀ ∈i

where the functions 

(2.39) : (ya f y y )εµδ= +   (with 0a ≥ ),   
1

: ( , )
l

i u i
i

f f y w w wεε µδ δ
=

= − +∑ , 

belong to  (or ( )L∞ Ω sL ) and ( )sL Ω , respectively, by our assumptions. It then follows 
from Lemma 3.2 in [3] that 
(2.40) 

1
' .sL

y y c f cε εδ δ ε
∞

+ ≤ ≤  

Now, by our assumptions, the functional on the open subset  of 
 

2 ( , ) 'dY L W× Ω ×
2( ) ( , ) ( , )d vL L L∞ ∞Ω × Ω × Ω

(2.41)  ( , ', ) : ( , , ', ) ,y y w g x y y w dx
Ω

Φ = ∫
where 
(2.42) { }: ( ) 'Y L Cφ φ∞

∞
= ∈ Ω < ,   { }' : ( ) : 'Uψ ψ∞= ∈ Ω Ω→W L , 

has the Fréchet derivative defined by 
(2.43) '( , , ', )( , ', )x y y w y y wδ δ δΦ  
 .  '[ ( , , ', ) ( , , ', ) ' ( , , ', ) ]y y ug x y y w y g x y y w y g x y y w w dxδ δ

Ω
= + +∫ δ

This can be shown under our assumptions by using the mean value theorem in max-
form, the Cauchy-Schwartz inequality, and Proposition 2.1. Using then the above 
estimate on yεδ , we have  

(2.44) 
1

( )
l

i i
i

o y y w oε ε ( )δ δ ε δ
∞

= ∞

+ ∇ + =∑ ε

ε

, 

hence 
(2.45)  '( ) ( ) ( , , ) ( , , )y yG w G w g y y w ydx g y y w ydxε εδ δ

Ω Ω
− = ∇ + ∇ ∇∫ ∫

1
( , , ) ( )

l

i u i
i

g y y w w dx oε δ ε
Ω

=

+ ∇ +∑ ∫ . 

Similarly, the state equation, for :v z= , yields by linearization 

(2.46) 
1

( , ) ( ( , ) , ) ( ( , ) , ) ( ) 0
l

y i u i
i

a y z f y w y z f y w w z oε εδ δ ε δ
=

+ + +∑ .ε =  

On the other hand, the adjoint equation, for :v yεδ= , yields 
(2.47) '( , ) ( ( , ) , ) ( ( , ), ) ( ( , ), ).y y ya y z f y w z y g y w y g y w yε ε ε εδ δ δ+ = + δ∇  
Gathering the above results, we obtain 

(2.48) 
1

( ) ( ) [ ( , ) ( , , )] ( )
l

i u u i
i

G w G w z f y w g y y w w dx oε ε δ ε
Ω

=

− = − + ∇ +∑ ∫  

1
( , ( ), ( ), ( ), ( )) ( ).

l

i u i
i

H x y x y x z x w x w dx oε δ ε
Ω

=

= ∇∑ ∫ +  

Finally, the continuity of the operator  is proved by using the continuity of 
, from W  to , the compact injection , and Proposition 2.1. The 

continuity of the functional 

ww z

ww y L∞ 2V L⊂
( , ) ( , )w w DG r w w−  follows from the above 

continuities. The continuity proofs for relaxed controls are similar. 
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The following theorem states various continuous necessary conditions for 

optimality. 
 
Theorem 2.3 Under Assumptions 2.1-4, if r R∈  (resp. w W∈ , with U  convex) is 
optimal for Problem P  or  (resp. Problem ), then  (resp. ) is strongly 
extremal relaxed (resp. weakly extremal classical), i.e. there exist multipliers 

P P r w
mλ ∈ , 

, with  0,...,m = q

(2.49) 0 0λ ≥ , 0mλ ≥ , , 1,...,m p q= +
0

1
q

m
m

λ
=

=∑ , 

such that 

(2.50) 
0

( , ) 0,
q

m m
m

DG r r rλ
=

− ≥∑    r R∀ ∈ , 

(2.51) ( ) 0,m mG rλ =       (relaxed transversality conditions). 1,...,m p q= +
(resp. 

(2.52) 
0

( , ) 0,
q

m m
m

DG w w wλ
=

− ≥∑    w W∀ ∈ , 

(2.53) ( ) 0,m mG wλ =       (classical transversality conditions) ). 1,...,m p q= +
The global condition (2.50) is equivalent to the strong relaxed pointwise minimum 
principle 
(2.54) ( , ( ), ( ), ( ), ( )) min ( , ( ), ( ), ( ), ),

u U
H x y x y x z x r x H x y x y x z x u

∈
∇ = ∇    a.e. in Ω , 

where the complete Hamiltonian and adjoint ,  are defined with  replaced by 

. If U  is convex, then this principle implies the weak relaxed pointwise 

minimum principle 

H z g

0

q

m m
m

gλ
=
∑

(2.55) ( , , , ( )) ( ) min ( , , , ( )) ( , ( )),u uH x y z r x r x H x y z r x x r x
φ

φ=    a.e. in Ω  

where the minimum is taken over the set ( , ; )B U UΩ  of Caratheodory functions (see 
[18]), which in turn implies the global weak relaxed condition 
(2.56) ( , , , ( ))[ ( , ( )) ( )] 0,uH x y z r x x r x r x dxφ

Ω
− ≥∫   ( , ; )B U Uφ∀ ∈ Ω . 

A control  satisfying this condition and the above transversality conditions is called 
weakly extremal relaxed. The global condition (2.52) is equivalent to the weak 
classical pointwise minimum principle 

r

(2.57) ( , ( ), ( ), ( ), ( )) ( ) min ( , ( ), ( ), ( ), ( )) ,u uu U
H x y x y x z x w x w x H x y x y x z x w x u

∈
∇ = ∇  

a.e. in Ω .  
Proof. The functionals , mG 0,...,m q= , defined on R  (resp. W ) are continuous 
(Theorem 2.1) and, by Lemma 2.2, ( 1)p + -differentiable (cost and p  equality state 
constraints) at  (resp. ). The global condition (i) (resp. (iii)) and the transversality 
conditions (ii) (resp. (iv)) follow then from the general multiplier theorem V.2.3 (resp. 
V.3.2) in [19] (  depends here on the control only, since  or  is unique for 
every  or ). The equivalence of the global and pointwise conditions is standard, in 
both cases (see e.g. [19]) since U  is closed (it has a dense denumerable subset). Now, 
the strong relaxed pointwise minimum principle can be written, for a.a. , 

r w

mG ry wy
r w

x∈Ω x  
fixed 
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(2.58)  . ( ) ( ) ( ),
U

H u r du H u≤∫ u U∀ ∈

Let ( , ; )B U Uφ ∈ Ω  be any Caratheodory function. Since U  is convex here, we have 

(2.59)    ( ) ( ) ( ( ( ) )),
U

H u r du H u u uε φ≤ + −∫ u U∀ ∈ , [0,1]ε∀ ∈ , 

hence 
(2.60) . ( ) ( ) ( ( ( ) )) ( )

U U
H u r du H u u u r duε φ≤ + −∫ ∫

By the Mean Value Theorem and the uniform continuity of  in  H u

(2.61) ( ( ( ) )) ( )0 (
U

H u u u H u r du)ε φ
ε

+ − −
≤ ∫  

( ( )( ( ) ))( ( ) ) ( )uU
H u u u u u u r duεµ φ φ= + − −∫    ( 0 ( ) 1uµ≤ ≤ ) 

( )( ( ) ) ( ) ( )uU
H u u u r duφ α ε= −∫ + , 

where ( ) 0α ε →  as 0ε → , hence 

(2.62)  ( )( ( ) ) ( ) ' ( )( ( ) ) 0,u uU
H u u u r du H r r rφ φ− = −∫ ≥

for every ( , ; )B U Uφ ∈ Ω , a.e. in Ω , which is the weak relaxed minimum principle. 
By integration, we get the global weak relaxed condition 
(2.63) ,   ( )( ( ) ) 0uH r r r dxdtφ

Ω
− ≥∫ ( , ; )B U Uφ∀ ∈ Ω . 

 
Remark. In the absence of equality state constraints, it can be shown that if the 
optimal control  is regular, i.e. there exists w 'w W∈  such that 
(2.64) ,   m p( ) ( , ' ) 0m mG w DG w w w+ − < 1,...,q= + , 
(Slater condition), then 0 0λ ≠  for any multipliers as in Theorem 2.3. 
 
 
3   Discretizations and behavior in the limit 
 
We suppose in Sections 3 and 4 that Ω  is a polyhedron (for simplicity). For each 
integer , let  be an admissible regular partition of 0n ≥ 1{ }

nn N
i iE = Ω  into elements (e.g. 

-simplices), with  as . Let  be the 
subspace of functions that are continuous on 
d max [diam( )n nh E ] 0i i= n →∞→ nV V⊂

Ω  and linear (or multilinear) on each 
element . The set of discrete controls  is defined as the subset of (not 
necessarily continuous) controls  that are (optionally) constant, or linear, or 
multilinear, on each element , and (optionally) such that 

n
iE nW W⊂

nw
n
iE nw

∞
L∇ ≤ , with  

independent of  (this reduces to a finite number of linear constraints on the 
coefficients defining ). We endow  with the Euclidean topology. 

L

n
nw nW

 
Remark. If Ω  has an appropriately piecewise  boundary 1C Γ , one can approximate 

 by a polyhedral one , with domain Γ nΓ nΩ , up to ; the results of this section 
still hold in this case, with slight modifications in the definitions of  and in the 
proof of Lemma 3.2 (interpolation inside 

( )no h
,nV W n

nΩ  and zero values on nΓ ). 
 

The following assumptions are stronger than Assumptions 2.2-4. 
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Assumptions 3.1 The functions , ,y uf f f  (resp ) are defined on 

'  (resp. on ), with 
', , ,m my my mug g g g

UΩ× × 1 'd U+Ω× × 'U U⊃  open, measurable for fixed  
(resp. ), continuous for fixed 

,y u
, ',y y u x , and satisfy 

(3.1) 1
1( , , ) (1 ),f x y u c y ρ−≤ +  

(3.2) 2
20 ( , , ) (1yf x y u c y ρ−≤ ≤ + ),  

(3.3) 1
3( , , ) (1 ),uf x y u c y ρ−≤ +  

( , , ) ',x y u U∀ ∈Ω× ×  

(3.4) 2
4( , , ', ) (1 ' ),mg x y y u c y yρ≤ + +  

(3.5) 
2( 1)1

5( , , ', ) (1 ' ),myg x y y u c y y
ρρ
ρ
−

−≤ + +  

(3.6) 2
' 6( , , ', ) (1 ' ),myg x y y u c y y

ρ

≤ + +  

(3.7) 2
7( , , ', ) (1 ' ),mug x y y u c y y

ρ

≤ + +  
1( , , ', ) ',dx y y u U+∀ ∈Ω× ×  

where , 0ic ≥ [1, )ρ ∈ ∞  if , 1 or 2n = 2:
2

n
n

ρ σ< =
−

 if . Note that each of the 

above inequalities is also satisfied if it holds for some 

3n ≥

0ic ≥  and [1, )ρ ρ∈ . 
 

For a given discrete control , the discrete state  is the 
solution of the discrete state equation 

nw W∈ n n

n nv V

: n
n n

w
y y V= ∈

(3.8)    ( , ) ( ( , ), ) 0,n n n n na y v f y w v+ = ∀ ∈ . 
The following theorem can be proved by using the techniques in [13] (via Brouwer’s 
fixed point theorem), under our coercivity, monotonicity and continuity assumptions.  
 
Theorem 3.1 Under Assumptions 2.1 and 3.1 (on , yf f ), for every control , 

the discrete state equation has a unique solution 

n nw W∈
n ny V∈ . 

 
The discrete state equation, which is a nonlinear system, can be solved by 

iterative methods. The discrete functionals, defined on , are given by nW
(3.9)    ( ) ( , , ) ,n n n n n

m mG r g y y w dx
Ω

= ∇∫ 0,..., .m q=  

The discrete control constraint is  and the discrete state constraints are either 
of the two following ones 

nw W∈ n

(3.10) Case (a)   ( ) ,n n n
m mG w ε≤ 1,..., ,m p =  

(3.11) Case (b)   ( ) ,n n n
m mG w ε=  1,..., ,m p=  

and 
(3.12) ( ) ,n n n

m mG w ε≤   0,n
mε ≥ 1,..., ,m p q= +  

where the feasibility perturbations n
mε  are chosen numbers converging to zero, to be 

defined later. The discrete relaxed optimal control Problem  (resp. ) is to n
aP n

bP

 10



minimize  subject to  and the above state constraints, Case (a) (resp. 
Case (b)). 

( )n n
mG w nw W∈ n

The proof of the following theorem parallels that of Theorem 2.1, noting that 
all norms are equivalent in the finite dimensional space . nV
 
Theorem 3.2 Under Assumptions 2.1 and 3.1 (on , yf f ), the operator , from 

 to , are continuous. Under assumptions 2.1 and 3.1 (on 

nw ny
nW nV , ,y mf f g ), the 

functionals , on , are continuous, and for every n , if Problem , 
or , is feasible, then it has a solution. 

( )n n
mw G wn nW n

aP
n

bP
 

The proofs of the following lemma and theorem also parallel the continuous 
case. 
 
Lemma 3.1 Under Assumptions 2.1 and 3.1, dropping  in the functionals,  is l -
differentiable for every l , and its directional derivative is given for 

m nG
,n nw w W∈ n  by 

(3.13) ( , ) ( , , , , )( )n n n n n n n n n n
uDG w w w H x y y z w w w dx

Ω
− = ∇ −∫ ,

n

∇

nz

 

where the discrete adjoint state  satisfies the linear discrete adjoint 
equation 

: nn n
wz z V= ∈

(3.14)  '( , ) ( ( , ), ) ( ( , , ), ) ( ( , , ), ),n n n n n n n n n n n n n n
y y ya z v z f y w v g y y w v g y y w v+ = ∇ + ∇

,n nv V∀ ∈    where . : nn n
wy y=

Moreover, the operator , from  to , and the functional nw nW nV
( , ) ( , )n n n n n nw w DG w w w− , on , are continuous. nW W× n

n

q

 
Theorem 3.3 Under Assumptions 2.1 and 3.1, if  is optimal for Problem , 
then  is weakly discrete extremal classical (or discrete extremal), i.e. there exist 

multipliers , , with , , 

nw W∈ n
bP

nw
n
mλ ∈ 0,...,m = 0n

mλ ≥ 0n
mλ ≥ 1,...,m p q= + , 

0

1
q

n
m

m

λ
=

=∑ , 

such that 

(3.15) 
0

( , ) ( , , , ) 0,
q

n n n n n n n n n n n
m m

m
DG w w w H y y z w w dxλ

Ω
=

− = ∇ − ≥∑ ∫   ,n nw W∀ ∈  

(3.16) ( ( ) ) 0,n n n
m m mG wλ ε− =   1,..., ,m p q= +  

where  and  are defined with  replaced by . The global condition 

(3.17) is equivalent to the strong discrete classical elementwise minimum principle 

nH nz g
0

q
n
m m

m
gλ

=
∑

(3.18)     ( , , , ) min ( , , , )
n n
i i

n n n n n n n n n n n
u uE Eu U

H y y z w w dx H y y z w udx
∈

∇ = ∇∫ ∫ , 1,..., .ni N=

 
Let nW  be the set of elementwise constant discrete controls. Clearly, 

nW W⊂ n  in all cases. The following control approximation result (i) (resp. (ii)) is 
proved similarly to the corresponding result in [8] (resp. [13]). 

 
Proposition 3.2 (i) For every r R∈ , there exists a sequence ( n nw W∈ )  of discrete 
classical controls, considered as relaxed ones, that converges to  in r R . 
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(ii) For every , there exists a sequence w W∈ ( n nw W∈ )  of discrete classical controls, 
considered as relaxed ones, that converges to  in  strongly. w 2L
 

The following key lemma gives consistency results. 
 
Lemma 3.2 We suppose that Assumptions 2.1 and 3.1 are satisfied and drop m  in the 
functionals. 
(i) If the sequence  converges to ( )n nw W∈ r R∈  in R  (resp. to  in  
strongly), then  (resp. ) in V  strongly,  (resp. 

), and  (resp. ) in 

w W∈ 2L
n

ry → y
z z →

n
wy y→ ( ) ( )n nG w G r→

( ) ( )n nG w G w→ n
rz → n

wz ( )Lρ Ω  strongly (and in V  
strongly, if the functionals do not depend on y∇ ). 
(ii) If the sequences (  and )n nw W∈ ( n nw W∈ )  converge to  and w w , respectively, 
in W , then 
(3.19) ( , ) ( , )n n n nDG w w w DG w w w− → − .  
Proof. (i) Suppose that  in nw r→ R . From the discrete state equation, we have 
(3.20)  ( , ) ( ( , ) ( (0, ), 0) ( (0, ), ),n n n n n n n na y y f y w f w y f w y+ − − = −
and since f  is increasing in  y

(3.21) 
2

2 1 1
( , ) ( (0, ), ) (0, ) ,n n n n n n n

s
y a y y f w y f w y c yα ≤ ≤ ≤ ≤ n  

which shows that the sequence  is bounded in V . By Alaoglu’s theorem, there 
exists a subsequence (same notation) that converges weakly in V  to some , and 
since the injection of V  in 

( )ny
y V∈

( )Lρ Ω  is compact (see Ref. 20), we can suppose that 
 in  strongly. For any given ny y→ ( )Lρ Ω 1

0 ( )v C∈ Ω nV, let  be the sequence 
of interpolates of v  at the vertices of the partition of 

( )nv ∈
Ω . This sequence converges to 

 in v 1
0 ( )C Ω  (hence in V ) strongly. We have 

(3.22)  ( , ) ( ( , ), ) 0.n n n n na y v f y w v+ =
Since  in nw → r R  and  in V  strongly, hence in  strongly, by 
Proposition 2.1 and our assumptions, we can pass to the limit in this equation and find 

ny → y ( )Lρ Ω

(3.23)  ( , ) ( ( , ), ) 0,a y v f y r v+ =
which holds also for every sv V L∈ ⊂ , as 1

0 ( )C Ω  is dense in V . Therefore . 
The convergence in  strongly of the initial sequence follows then from the 
uniqueness of the limit. Next, we have 

ry y=

( )Lρ Ω

(3.24) 
2

2 1
( , ) ( ( , ), ) ( , ) ( ,n n n n n n n ny y a y y y y f y w y a y y a y y yα − ≤ − − = − − − − ).

y

 

By Proposition 2.1 and the above convergences of , the last expression converges 
to zero; hence  in V  strongly. The convergence  follows 
from the above convergences and the same proposition. From the adjoint equation, we 
have 

( )ny
ny → ( ) ( )n nG w G r→

(3.25) 
2

2 1
( , ) ( ( , ) , )n n n n n n

yz a z z f y r z zα ≤ + n  

 '( ( , , , ), ) ( ( , , , ), )n n n n n n n n n n
y yg y y z r z g y y z r z≤ ∇ + ∇ ∇  

 
2( 1)1

2
4 5( (1 ), ) ( (1 ), )

p ppn n n n npc y y z c y y z
−

−
≤ + + ∇ + + + ∇ n  
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2( 1)1

2
4 5 1 1
' (1 ) ' (1 ) ,n n n n n n

L L L
c y y z c y y z c zρ ρ ρ

ρ ρρ
ρ
−

−
≤ + + ∇ + + + ∇ ≤ n  

which shows that  is bounded in V . The continuity of  from ( )nz rr z R  to  
is then shown similarly to that of , using also that continuity and Proposition 
2.1. If the functionals do not depend on 

2 ( )L Ω

rr y
y∇ , then the continuity  from rr z R  to V  

is proved similarly to the continuity of  from rr y R  to V . The above proofs are 
similar if  in  strongly. nw w→ 2L
(ii) The convergence here follows from (i) and Proposition 2.1. 
 
Remark. Suppose that  in  strongly and that Assumptions 2.1, 2.2 (instead 
of 3.1) are satisfied. Under the strong assumptions of [4], it can be shown that 

 uniformly as , for  fixed. On the other hand,  also 

uniformly by Theorem 2.2. Therefore, under all these assumptions,  
uniformly as . Similar remarks hold for the convergence of the functionals, 
adjoints and functional derivatives. 

nw w→ 2L

m
n
w

y y→ mw
yn →∞ m m ww

y →

n
n

ww
y y→

n →∞

 
We suppose in the sequel that the considered continuous Problem  or P P  is 

feasible. The following (theoretical, in the presence of state constraints) theorem 
addresses the behavior in the limit of optimal discrete controls. 
 
Theorem 3.4 In the presence of state constraints, we suppose that the sequences ( )n

mε  
in the discrete state constraints (Case (a)) converge to zero as  and satisfy n →∞
(3.26) ( )n n n

m mG w ,ε≤       1,..., ,m p= ( ) ,n n n
m mG w ε≤     0,n

mε ≥ 1,..., ,m p q= +  

for every , where (  is a sequence converging in n )n nw W R∈ ⊂ R  (resp in  
strongly) to an optimal control 

2L
r R∈  (resp. w W∈ ) of Problem P  (resp. ), which 

always exists (resp. if it exists). For each , let  be optimal for Problem . Then 
every strong relaxed (resp. classical) accumulation point of ( , which always exists 
(resp. if it exists), is optimal for Problem 

P
n nw n

aP
)nw

P  (resp. ). P
Proof. Note that our assumption implies that the discrete problems are feasible for 
every . Let (  be a subsequence (same notation) that converges to some  
(resp. ). Since  is optimal, hence admissible, and  is admissible, for 
Problem , we have 

n )nw r R∈
w W∈ nw nw

n
aP

(3.27)    0 0( ) ( )n n n nG w G w≤ , ( ) ,n n n
m mG w ε≤ 1,..., , m p=    ( ) ,n n n

m mG w ε≤   1,..., .m p q= +

Passing to the limit and using Lemma 3.2, we obtain that  (resp. ) is optimal for 
Problem 

r w
P  (resp. ). If there are no state constraints, by taking a sequence 

converging to some optimal control, we also obtain that the limit control is optimal. 
P

 
Next, we study the behavior in the limit of extremal discrete controls. 

Consider the discrete problems . We shall construct sequences of perturbations n
bP

( )n
mε  that converge to zero and such that the discrete problem is feasible for every n . 

Let nw  be any solution of the following auxiliary minimization problem without state 
constraints 
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(3.28)  2 2

1 1

: min{ [ ( )] [max(0, ( ))] }
n n

p q
n n n n

m m
w W m m p

c G w G w
∈ = = +

= +∑ ∑ ,n

and set 
(3.29) : (n n

m mG wε = )n ,      1,..., ,m p= : max(0, ( ))n n n
m mG wε = 1,..., .m p q,    = +

Let  (resp. v ) be an admissible control for Problem v R∈ W∈ P  (resp. ), and 
 a sequence converging to  in 

P
( n nw W∈ ) v R  (resp. in  strongly), by Proposition 
3.1. We then have 

2L

(3.30) ,   2 2lim[ ( )] [ ( )] 0n n
m mn

G w G v
→∞

= = 1,..., ,m p=  

(3.31) ,   2 2lim[max(0, ( ))] [max(0, ( ))] 0n n
m mn

G w G v
→∞

= = 1,..., ,m p q= +  

which imply a fortiori that , hence , 0nc → 0n
mε → 1,...,m q= . Then clearly Problem 

 is feasible for every , for these n
bP n n

mε . We suppose in the sequel that the 
perturbations n

mε  are chosen as in the above minimum feasibility procedure. Note that 
in practice we usually have , for sufficiently large , due to sufficient discrete 
controllability, in which case the perturbations 

0nc = n
n
mε  vanish, i.e. the discrete problem 

with zero perturbations is feasible. Also, see [11] for a study on how the perturbations 
n
mε  can be practically chosen to be zero, if there are only inequality state constraints. 

 
Theorem 3.5 For each , let  be admissible and extremal for Problem . Then n nw n

bP
(i) Every strong accumulation point of the sequence  in ( )nw 2 ( )L Ω  (if it exists) is 
admissible and weakly extremal classical for Problem . P
(ii) Suppose that nv

∞
L∇ ≤  for every , with  independent of , in the 

definition of . Then every accumulation point of  in 

nv W∈ n L n
nW ( )nw R  is admissible and 

weakly extremal relaxed for Problem P . 
Proof. (i) Suppose that some subsequence (  (same notation) converges to some 

 in  strongly. For each , let  be multipliers as in 

Theorem 3.2. Since 

)nw
w W∈ 2 ( )L Ω n , 0,...,n

m mλ = q

0

1
q

n
m

m

λ
=

=∑ , the sequences ( )n
mλ  are bounded, and by extracting a 

subsequence, we can suppose that n
m mλ λ→ , 0,...,m q= . By Lemma 3.2 and 

Proposition 2.1, we then obtain, for any given w W∈  and nw → w  (Proposition 3.1) 

(3.32) 
0 0

( , ) lim ( , ) 0,
q q

n n n n n
m m m mnm m

DG w w w DG w w wλ λ
→∞

= =

− = − ≥∑ ∑  

(3.33)    ( ) lim [ ( ) ] 0,n n n n
m m m m m

n
G w G wλ λ ε

→∞
= − = 1,..., ,m p q= +

1,..., ,

 

(3.34)    m p( ) lim[ ( ) ] 0,n n n
m m mn

G w G w ε
→∞

= − = =  

(3.35)    ( ) lim[ ( ) ] 0,n n n
m m mn

G w G w ε
→∞

= − ≤ 1,..., ,m p q= +  

where clearly 0 0λ ≥ , 0mλ ≥ , 1,..., ,m p q= +  
0

1
q

m
m

λ
=

=∑ , which show that  is 

admissible and extremal for Problem . 

w

P
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(ii) Since R  is compact and 
0

1
q

n
m

m

λ
=

=∑ , let , ( )nw ( )n
mλ , 0,...,m q= , be subsequences 

such that  in nw → r R  and n
m mλ λ→ , 0,...,m q= , and consider the discrete 

optimality condition in global form, which can be written 
(3.36) ( , , , )( ) 0,n n n n n n

uH x y z w w w dxdt
Ω

−∫ ≥    for every n nw W∈ , 

where  are defined with . Define the elementwise constant vector 

functions 

,n nH z
0

:
q

n
m m

m
g λ

=

= ∑ g

(3.37) ( ) : barycenter of ,n n
ix x E=    for ,

o
n
ix E∈  1,...,i M= , 

(3.38) ,   for ( ) : ( ( ))n n nw x w x x= ,
o

n
ix E∈  1,...,i M= . 

Clearly,  uniformly on 0nx x− → Ω , and by our assumption on  and the mean 
value theorem, 

nW
0n n nw w Lh

∞
− ≤ → . For every function ( ;C U Uφ ∈ Ω× )

≥

, we then 

have 
(3.39)  ( , , , )[ ( , ) ]n n n n n n n

uH x y z w x w w dxφ
Ω

−∫
( , , , )[ ( , ) ]n n n n n n n

uH x y z w x w w dxφ
Ω

= −∫  

( , , , )[ ( , ) ( , )] 0.n n n n n n n n
uH x y z w x w x w dxφ φ

Ω
+ −∫  

Using the above convergences, Lemma 3.2, the uniform continuity of φ , and 
Proposition 2.1 ( (..) cφ ≤  since (..) Uφ ∈ ), we can pass to the limit and obtain 

(3.40)  ( , , , ( ))[ ( , ( )) ( )]uH x y z r x x r x r x dxφ
Ω

−∫
: ( , , , ( ))[ ( , ) )] ( ) 0,uU

H x y z r x x u u r du dxφ
Ω

= − ≥∫ ∫    ( ; )C U Uφ Ω×

g

∀ ∈ , 

where  are defined with , and with multipliers ,H z
0

:
q

m m
m

g λ
=

= ∑ mλ  as in the 

continuous optimality conditions (see (i)). Now let ( , ; )B U Uφ ∈ Ω  be any 
Caratheodory function, or equivalently,  (see [19]), and let 1( , ( ; ))L C U Uφ ∈ Ω ( )kφ  be 
a sequence in ( ; ( ; )) ( ; )C C U U C U UΩ ≡ Ω×  converging to φ  in  
strongly. By Egorof’s theorem, we can suppose that 

1( , ( ; ))L C U UΩ

kφ φ→  a.e. in Ω , with values in 
, hence a.e. in , with values in U . Replacing ( ; )C U U UΩ× φ  by kφ  in the above 

inequality and using Lebesgue’s dominated convergence theorem, we can pass to the 
limit as  and obtain the global weak relaxed condition. Finally, we can pass to 
the limit as  in the transversality conditions and the state constraints similarly 
to (i). Therefore, r  is weakly extremal relaxed and admissible for Problem 

k →∞
n →∞

P . 
 
 
4   Discrete penalized gradient projection methods 
 
Let ( )l

mM , , be positive increasing sequences such that  as 
, and define the penalized discrete functionals 

1,...,m = q l
mM →∞

l →∞
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(4.1)  2 2
0

1 1

( ) : ( ) { [ ( )] [max(0, ( ))] }/ 2.
p q

nl n n n l n n l n n
m m m m

m m p

G w G w M G w M G w
= = +

= + +∑ ∑
Let 0γ ≥ , ', ' (0,1)b c ∈ , and let ( )lβ , ( )kζ  be positive sequences, with ( )lβ  
decreasing and converging to zero, and 1kζ ≤ . The algorithm described below 
contains two options. In the case of the progressively refining version, we suppose 
that each element  is a subset of some element . In this case, we have 

, and thus a control  may be considered also as belonging to 

1
'
n
iE + n

iE
1n nW W +⊂ nw W∈ n 1nW + , 

hence the computation of states, adjoints and cost derivatives for this control, but with 
the possibly finer discretization 1n + , makes sense. (In this version, and if Ω  is not 
polyhedral, one has to modify slightly near the boundary the control , at the end of 
Step 3, before going to Step 2, and if the discretization has been refined). The discrete 
relaxed penalized gradient projection methods are described by the following 
Algorithm. 

nl
kw

  
Algorithm  
Step 1. Set , , choose a value of  and an initial control . : 0k = : 1l = n 1

0
n nw W∈

Step 2. Find  such that nl n
kv W∈

(4.2) 
2

: ( , )
2

nl nl nl nl nl nl
k k k k k ke DG w v w v wγ
= − + −  

2
min[ ( , ) ],

2n n

nl nl n nl n nl
k k k

v W
DG w v w v wγ

∈
= − + −

k

 

and set . : ( , )nl nl nl nl
k k kd DG w v w= −

Step 3. If l
kd β≤ , set , :nl nl

kw w= :nl nl
kv v= , :l

kd d= , :l
ke e= , : 1l l= + , , 

and go to Step 2. 
[ : 1]n n= +

Step 4. (Armijo step search) Find the lowest integer value s∈ , say s , such that 
 and ( ) ' (0,1]s

ks cα ζ= ∈ ( )sα  satisfies the inequality   
(4.3) , ( ( )( )) ( ) ( ) 'nl nl nl nl nl nl

k k k kG w s v w G w s b dα α+ − − ≤ k

and then set : (k s )α α= . 
Step 5. Set , k k1 : ( )nl nl nl nl

k k k k kw w v wα+ = + − 1= +

n
m

, and go to Step 2. 
 

In the above Algorithm, we consider two versions: 
Version A.  is skipped in Step 3:  is a constant integer chosen in Step 1, i.e. 
we choose a fixed discretization, and replace the discrete functionals  by the 
perturbed ones 

1n n= + n
n
mG

n n
m mG G ε= − , in which case the method is applied to Problem . n

bP
Version B.  is not skipped in Step 3: we have a progressively refining discrete 
method, i.e. n  (see proof of Theorem 4.1 below), in which case we can take 

 in Step 1, hence  in the Algorithm. 

1n n= +
→ ∞

1n = n l=
 

The progressively refining version has the advantage of reducing computing 
time and memory, and also of avoiding the computation of minimum feasibility 
perturbations n

mε  (see Section 3). It is justified by the fact that finer discretizations 
become progressively more efficient as the iterate gets closer to an extremal control, 
while coarser ones in the early iterations have not much influence on the final results. 
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If 0γ > , we have a penalized strict gradient projection method, in which case 
one can easily see by “completing the square” that Step 2 amounts to finding, for each 

, the projection  of the function in  1,...,i = M nl
kiv 2 ( )n

iL E
(4.4) , : (1/ ) ( , , , )nl nl n nl nl nl nl

ki ki u ki ki ki kiu w H y y z wγ= − ∇

onto the convex subset of  of constant, or linear, or multilinear, functions , 
with values in U , which reduces to the minimization of a quadratic function of the 
coefficients of the control . The parameter 

2 ( )n
iL E 'nl

iv

'nl
iv γ  is chosen here experimentally to 

yield a good rate of convergence. If 0γ = , the above Algorithm is a penalized 
conditional gradient method, and Step 2 reduces similarly to the minimization of a 
linear function, for each i . On the other hand, by the definition of the directional 
derivative and since , clearly the Armijo step ' (0,1)b ∈ kα  in Step 4 can be found for 
every . k

A (continuous classical or relaxed, or discrete) extremal (or weakly extremal) 
control is called abnormal if there exist multipliers as in the corresponding optimality 
conditions, with 0 0λ =  (or ). A control is admissible and abnormal extremal in 
very exceptional, degenerate, situations (see [19]). 

0 0nλ =

With  defined in Step 3, define the sequences of multipliers nlw
(4.5)       : ( ),nl l n nl

m m mM G wλ = 1,..., ,m p= : max(0, ( )),nl l n nl
m m mM G wλ = 1,..., .m p q= +

 
Theorem 4.1 (i) In Version B, if (  is a subsequence of the sequence generated by 
the Algorithm in Step 3 that converges to some 

)nlw
w W∈  in  strongly, as l  

(hence n ). If the sequences 

2L →∞
→∞ ( )nl

mλ  are bounded, then  is admissible and weakly 
extremal classical for Problem . 

w
P

(ii) Suppose that nv
∞

L∇ ≤  for every , with  independent of , in the 

definition of . In Version B, let  be a subsequence, considered as a sequence 
in 

nv W∈ n L n
nW ( )nlw

R , of the sequence generated by the Algorithm in Step 3 that converges to some  
in the compact set 

r
R , as  (hence ). If the sequences l →∞ n →∞ ( )nl

mλ  are bounded, 
then  is admissible and weakly extremal relaxed for Problem r P . 
(iii) In Version A, let ( ,  fixed, be a subsequence of the sequence generated by 
the Algorithm in Step 3 that converges to some  as . If the sequences 

)nlw n
n nw W∈ l →∞

( nl
m )λ  are bounded, then  is admissible and extremal for Problem . nw nP

(iv) In any of the three convergence cases (i), (ii) (with the additional assumption), or 
(iii), suppose that the (discrete  or continuous) limit problem has no admissible, 
abnormal extremal, controls. If the limit control is admissible, then the sequences of 
multipliers are bounded, and this control is extremal for the limit problem as above. 

n
bP

Proof. We shall first show that  in the Algorithm. Suppose, on the contrary, 
that , hence  (in both Versions A, B), remains constant after a finite number of 
iterations in k , and so we drop here the indices l , . Let us show that then . 
Since  is compact, let 

l →∞
l n

n 0kd →
nW ( ) , ( )k k K k k Kw v∈ ∈  be subsequences of the sequences 

generated in Steps 2 and 5 such that   in , as   
Clearly, by Step 2,  for every , hence 

,kw w→ ,kv v→ nW ,k →∞ .k K∈
0k kd e≤ ≤ k
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(4.6) 2

,
: lim ( , ) ( / 2) 0kk k K

e e DG w v w v wγ
→∞ ∈

= = − + − ,≤

≤

 

(4.7)  
, ,

: lim ( , ) lim 0.k kk k K k k K
d d DG w v w e e

→∞ ∈ →∞ ∈
= = − ≤ =

Suppose that . The function 0d < ( ) : ( ( ))G w v wα αΦ = + −  is continuous on [ . 
Since the directional derivative 

0,1]
( , )DG w v w−  is linear w.r.t. ,  is 

differentiable on  and has derivative 
v w− Φ

(0,1)
(4.8) '( ) ( ( ), ).DG w v w v wα αΦ = + − −  
Using the mean value theorem, we have, for each (0,1]α ∈  
(4.9) ( ( )) ( ) ( '( ), ),k k k k k k k k kG w v w G w DG w v w v wα α α+ − − = + − −  
for some ' (0, )α α∈ . Therefore, for [0,1]α ∈ , by Lemma 3 
(4.10) ( ( )) ( ) ( ),k k k k kG w v w G w d αα α ε+ − − = +  
where 0kαε →  as , , and k →∞ k K∈ 0α +→ . Now, we have kd d kη= + , where 

0kη →  as k , k , and since →∞ K∈ (0,1)b∈  
(4.11) ( ) ' ,k kd b d bα kdε η+ ≤ + =  
for [0, ]α α∈ , for some 0α > , and  k k≥ , k K∈ . Hence 
(4.12) ( ( )) ( ) ' ,k k k kG w v w G w b dkα α+ − − ≤  
for [0, ]α α∈ , for some 0α > , and k k≥ , k K∈ . It follows from the choice of the 
Armijo step kα  in Step 4 that k cα α≥ , for k k≥ , k K∈ . Hence 
(4.13) 1( ) ( ) ( ( )) (k k k k k kG w G w G w v w G w )kα+ − = + − −  

' ' 'k k kb d c b d c b d / 2,α α α≤ ≤ ≤  
for k k≥ , . It follows that  as , k K∈ ( )kG w → −∞ k →∞ k K∈ . This contradicts 
the fact that  as , ( ) ( )kG w G w→ k →∞ k K∈ , by Lemma 3.1. Therefore, we must 
have , and , , for the whole sequences, since the limit 0 is 
unique. But Step 3 then implies that , which is a contradiction. Therefore, 

. This shows also that  in Version B. 

0d e= = 0kd → 0ke →
l →∞

l →∞ n →∞
(i) Let  be a subsequence (same notation) of the sequence generated by the 
Algorithm in Step 3 that converges to some w

( )nlw
W∈  in  strongly as . 

Suppose that the sequences (

2L ,l n →∞
)nl

mλ  are bounded and (up to subsequences) that 
nl
m mλ λ→ . By Lemma 3.2, we have 

(4.14) 0 lim lim ( ) ( ),
nl

n nlm
m mll l

m

G w G w
M
λ

→∞ →∞
= = =    1,..., ,m p=  

(4.15) 0 lim lim[max(0, ( ))] max(0, ( )),
nl

n nlm
m mll l

m

G w G w
M
λ

→∞ →∞
= = =    1,..., ,m p q= +  

which show that  is admissible. Now let any w v W∈  and, by Proposition 1, let 
 be a sequence of elementwise constant discrete controls that converges to 

 in  strongly. Set , for every , and let (
( n nv W∈ )
v 2L 0 1nlλ = ,n l )nl

mλ  be subsequences such that 
nl
m mλ λ→ . By Step 2, we have 

(4.16) 
2

0
( , ) ( / 2)

q
nl n nl n nl n nl l
m m

m
DG w v w v w dx eλ γ

Ω
=

− + − ≥∑ ∫ ,  
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where . Since 0 : 1nlλ = 0l ld β≤ →  by Step 3, we have also . By Lemma 3.2, 
we can pass to the limit as  in the above inequality and obtain 

0le →

,l n →∞

(4.17) 2

0
( , ) ( / 2) 0,

q

m m
m

DG w v w v w dxλ γ
Ω

=

− + − ≥∑ ∫    v W∀ ∈ , 

Replacing  by v ( )w v wµ+ − , with (0,1]µ∈ , dividing by µ , and then taking the 
limit as , we get 0µ +→

(4.18)    
0

( , ) 0,
q

m m
m

DG w v wλ
=

− ≥∑ v W∀ ∈ . 

By construction of the nl
mλ , we clearly have 0 1λ = , 0mλ ≥ , , 1,...,m p q= +

0
:

q

m
m

cλ
=

= ≥∑ 1, and we can suppose that 
0

1
q

m
m

λ
=

=∑ , by dividing the above inequality 

by . On the other hand, if c ( ) 0mG w < , for some index [ 1, ]m p q∈ + , then for 
sufficiently large  we have l ( ) 0nl nl

mG w <  and 0l
mλ = , hence 0mλ = , i.e. the 

transversality conditions hold. Therefore,  is also weakly extremal classical. w
(ii) Let (  be a subsequence (same notation), considered as a sequence in )nlw R , of 
the sequence generated in Step 3, that converges to some r R∈  as . The 
admissibility of r  is shown similarly to (i). Suppose that the sequences 

,l n →∞
( )nl

mλ  are 
bounded and (up to subsequences) that nl

m mλ λ→ . Now, by Steps 2 and 3 we have, for 
every  n nv W∈

(4.19) 
2

( , ) ( / 2)nl nl n nl n nlDG w v w v wγ− + −  

0
1 1

( , ) ( , ) ( ,
p q

n nl n nl nl n nl n nl nl n nl n nl
m m m m

m m p

DG w v w DG w v w DG w v wλ λ
= = +

= − + − +∑ ∑ )−  

2
( / 2) n nlv wγ+ −  

2
( , , , )( ) ( / 2) ,nl nl nl nl n nl n nl l

uH x y z w v w dxdt v w dxdt eγ
Ω Ω

= − + −∫ ∫ ≥

g

≥

 

where  are defined with . By an argument similar to the proof of 

Theorem 3.5 (ii), and since  by Step 3, we obtain here 

,nl nlH z
0

:
q

nl
m m

m
g λ

=

= ∑
0le →

(4.20)  ( , , , ( ))[ ( , ( )) ( )]uH x y z r x x r x r x dxφ
Ω

−∫
2( / 2) [ ( , ( )) ( )] 0,x r x r x dxγ φ

Ω
+ −∫     for every ( , ; )B U Uφ ∈ Ω , 

where  are defined with , and with the ,H z
0

:
q

m m
m

g λ
=

= ∑ g mλ  as in the continuous 

optimality conditions (see (i)). Replacing φ  by ( )u uµ φ+ − , with (0,1]µ∈ , dividing 
by µ , and then taking the limit as 0µ +→ , we obtain the global weak relaxed 
condition 
(4.21) ( , , , ( ))[ ( , ( )) ( )] 0,uH x y z r x x r x r x dxφ

Ω
− ≥∫    for every ( , ; )B U Uφ ∈ Ω . 

Finally, the transversality conditions are shown as in (i). Therefore,  is also weakly 
extremal relaxed. 

r
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(iii) The admissibility of the limit control  is proved as in (i). Passing here to the 
limit in the inequality resulting from Step 2, as , for  fixed, and using 
Theorem 3.2, we obtain, similarly to (i) 

nw
l →∞ n

(4.22)      
0 0

( , ' ) ( , ' ) 0,
q q

n n n n n n n n
m m m m

m m
DG w v w DG w v wλ λ

= =

− = − ≥∑ ∑ ' ,n nv W∀ ∈

and the discrete transversality conditions 
(4.23) ( ) [ ( ) ] 0,n n n n n n n

m m m m mG w G wλ λ ε= − =    1,..., ,m p q= +  
with multipliers n

mλ  as in the discrete optimality conditions. 
(iv) In either of the two above convergence cases, suppose that the limit control is 
admissible and that the limit problem has no admissible, abnormal extremal, controls. 
Suppose that the multipliers are not all bounded. Then, dividing the corresponding 
inequality resulting from Step 2 by the greatest multiplier norm and passing to the 
limit for a subsequence, we see that we obtain an optimality inequality where the first 
multiplier is zero, and that the limit control is abnormal extremal, a contradiction. 
Therefore, the sequences of multipliers are bounded, and by (i), (ii) or (iii), this limit 
control is extremal as above. 
 

One can easily see that Theorem 4.1 remains valid if we replace  by  in 
Step 4 of the Algorithm. In practice, by choosing moderately growing sequences 

kd ke

( l
m )M  and a sequence ( )lβ  relatively fast converging to zero, the resulting sequences 

of multipliers ( )nl
mλ  are often kept bounded. We can choose a fixed : (0,1]kζ ζ= ∈  in 

Step 4; a usually faster and adaptive procedure is to set 0 : 1ζ = , and then 1:k kζ α −= , 
for . 1k ≥

When directly applied to nonconvex optimal control problems whose solutions 
are non-classical relaxed controls, the above methods generating classical controls 
often yield poor convergence (highly oscillating optimal controls). If U  is convex, 
one can then reformulate the problem in Gamkrelidze relaxed form (which is 
equivalent to the Young measure formulation), using convex combinations of Dirac 
controls, involving a finite (usually small) number of classical controls. The above 
methods can then be applied to this extended classical control problem, resulting in 
better results, since the problem is thus partially convexified in some sense (for details 
on this approach, see [12]). If U  is not convex, one can use methods generating 
relaxed controls for solving such highly nonconvex problems (see [10]). 
 
 
5   Numerical examples 
 
Let  and consider the following examples. 2: (0,1)Ω =
 
Example 1. Define the reference controls and state 
(5.1) 1 2( ) : ,u x x x=    1 2( ) : 1 ,v x x x= −    1 2 1 2( ) : 8 (1 )(1 ).y x x x x x= − −  
Consider the following optimal control problem, with state equation 
(5.2) 3 / 3 (1 ))y y u u y−∆ + + + −  

3
1 1 2 2/ 3 16[ (1 ) (1 )] ( ) 0y y x x x x v v− − − − + − − − = ,   in Ω ,    

(5.3)    on , ( ) 0y x = Γ
control constraints , 2

1( ( ), ( )) : : [0,1]u x v x U U∈ = = x∈Ω , and cost functional 
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(5.4) 22 2
0 ( , ) : 0.5 [( ) ( ) ( ) ] .G u v y y y y u u v v dx

Ω
= − + ∇ −∇ + − + −∫ 2  

Clearly, the optimal controls are u  and v , the optimal state is y , and the optimal 
cost is zero. The gradient projection method (without penalties) was first applied to 
this problem using triangular elements, which are half squares of edge size , 
and triangle-wise linear discrete controls, with 

1/ 80h =
0.5γ = , Armijo parameters 

, and constant initial controls . After 15 iterations, we 
obtained the results 

' ' 0.b c= = 5 0 0 0.5n nu v= =

(5.5)     4
0 ( , ) 2.963 10 ,n n n

k kG u v −= ⋅ 127.786 10 ,kd −= − ⋅
55.064 10 ,kε
−= ⋅    53.052 10 ,kη

−= ⋅  
where kε  (resp. kη ) is the discrete max error for the state (resp. controls) at the 
vertices of the triangles (resp. midpoints of the triangle edges). Since  and 
the optimal controls are smooth, the corresponding control 

2( )k O hε ≈

L∞ -error is also . 
The computed controls are practically identical to the exact optimal ones and are not 
shown. Using then trianglewise constant discrete controls, we obtained results of 
similar accuracy for the cost, state, and control errors (taken here at the barycenters of 
the triangles), but the control -error is now 

2( )O h≈

L∞ ( )O h≈ . 
 
Example 2. With the same state equation, cost and parameters as in Example 1, 
triangle-wise linear discrete controls, but with the constraint set replaced by the 
strictly active one , we obtained after 15 iterations the 
results 

2: : [0,0.6] [0.4,U U= = × 1]

(5.6) 3
0 ( , ) 2.631766265263325 10 ,n n n

k kG u v −= ⋅     103.526 10 ,kd −= − ⋅
and the controls shown in Figures 1 and 2. 
 
Example 3. With the same state equation and cost and parameters as in Example 2, 
trianglewise linear discrete controls, but with 3: : [0,0.7] [0.3,U U 1]= = ×  and the 
additional state constraint 
(5.7)  1( , ) : ( 0.22) 0,G u v y dx

Ω
= − =∫

and applying the penalized gradient projection method, we obtained after 63 iterations 
in  the results k
(5.8) 3

0 ( , ) 2.441208146866664 10 ,n nl nl
k kG u v −= ⋅     6

1 ( , ) 4.451 10 ,n nl nl
k kG u v −= ⋅

72.262 10 .kd −= − ⋅  
The controls obtained are shown in Figures 3 and 4, and the state in Figure 5. Note 
that the continuous relaxed problem here is feasible, as , 

, where  (resp. ) is the initial (resp. last) control 
pair in Example 2 (note that ), and the function 

1 0 0( , ) 0.014 0n nG u v ≈ − <

1( , ) 0.002 0n n
k kG u v ≈ > 0 0( , )n nu v ( , )n n

k ku v

2U U⊂ 3

(5.9)  1 0 0( ) : ( ( , ) (1 )( , ))n n n n
k kG u v u vφ λ λ λ= + −

is continuous on [ .  0,1]
 

Finally, the progressively refining version of the algorithm was also applied to 
the above problems, with successive step sizes 1/ 20, 1/ 40, 1/ 80h = , in three equal 

 21



periods, and yielded results of similar accuracy, but required here less than half the 
computing time. 
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Figure 1.  Example 2:  Last control u 
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Figure 2.  Example 2:  Last control v 
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Figure 4.  Example 3:  Last control v 
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Figure 5.  Example (c):  Last state y 
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