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Abstract 
 
We consider an optimal control problem described by a semilinear parabolic partial differential 
equation, with control and state constraints, where the state constraints and cost involve also the state 
gradient. Since this problem may have no classical solutions, it is reformulated in the relaxed form. The 
relaxed control problem is discretized by using a finite element method in space involving numerical 
integration and an implicit theta-scheme in time for space approximation, while the controls are 
approximated by blockwise constant relaxed controls. Under appropriate assumptions, we prove that 
relaxed accumulation points of sequences of optimal (resp. admissible and extremal) discrete relaxed 
controls are optimal (resp. admissible and extremal) for the continuous relaxed problem. We then apply 
a penalized conditional descent method to each discrete problem, and also a progressively refining 
version of this method to the continuous relaxed problem. We prove that accumulation points of 
sequences generated by the first method are extremal for the discrete problem, and that relaxed 
accumulation points of sequences of discrete controls generated by the second method are admissible 
and extremal for the continuous relaxed problem. Finally, numerical examples are given. 
 
Keywords. Optimal control, semilinear parabolic systems, state constraints, relaxed controls, 
discretization, θ -scheme, discrete penalized conditional descent method. 
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1   Introduction 
 
We consider an optimal distributed control problem for systems governed by a 
semilinear parabolic partial differential equation, with control and state constraints, 
where the state constraints and cost involve also the gradient of the state. The problem 
is motivated, for example, by the control of a heat (or other) diffusion process whose 
source is nonlinear in the heat and temperature, with nonconvex cost and control 
constraint set (e.g. on-off type control). Since this problem may have no classical 
solutions, it is reformulated in the relaxed form, using Young measures. The relaxed 
problem is discretized by using a Galerkin finite element method with continuous 
piecewise linear basis functions in space and an implicit theta-scheme in time for 
space approximation, while the controls are approximated by blockwise constant 
Young measures. We first state the necessary conditions for optimality for the 
continuous problems, and then for the discrete relaxed problem. Under appropriate 
assumptions, we prove that relaxed accumulation points of sequences of optimal 
(resp. admissible and extremal) discrete relaxed controls are optimal (resp. admissible 
and extremal) for the continuous relaxed problem. We then apply a penalized 
conditional descent method to each discrete problem, which generates Gamkrelidze 
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controls, and also a corresponding discretization-optimization method to the 
continuous relaxed problem that progressively refines the discretization during the 
iterations, thus reducing computing time and memory. We prove that accumulation 
points of sequences generated by the fixed discretization method are extremal for the 
discrete problem, and that relaxed accumulation points of sequences of discrete 
controls generated by the progressively refining method are admissible and extremal 
for the continuous relaxed problem. Using a standard procedure, the computed 
Gamkrelidze controls can then be approximated by piecewise constant classical ones. 
Finally, numerical examples are given. For approximation of nonconvex optimal 
control and variational problems, and of Young measures, see e.g. [2-9], [12-14] and 
the references there. 
 
 
2   The continuous optimal control problems 
 
Let  be a bounded domain in , with boundary Ω d Γ , and let (0, )I T= , , be 
an interval. Consider the semilinear parabolic state equation 

T < ∞

(2.1)  0( ) ( , ) ( , , ( , ), ( , )) ( , , ( , ), ( , ))T
ty A t y a x t y b x t y x t w x t f x t y x t w x t+ + ∇ + =

(2.2) in  ,Q I= Ω×
(2.3)   in ( , ) 0y x t = ,IΣ = Γ×      in 0( ,0) ( )y x y x= ,Ω  
where  is the formal second order elliptic differential operator  ( )A t

(2.4)  
1 1

( ) : ( / )[ ( , ) / ].
d d

i ij j
j i

A t y x a x t y x
= =

= − ∂ ∂ ∂ ∂∑∑
The constraints on the control are ( , )w x t U∈  in  where U  is a compact, not 
necessarily convex, subset of , the state constraints are 

,Q
'd

(2.5)    ( ) : ( , , , , ) 0,m mQ
G w g x t y y w dxdt= ∇ =∫ 1,..., ,m p=  

(2.6)    ( ) : ( , , , , ) 0,m mQ
G w g x t y y w dxdt= ∇ ≤∫ 1,..., ,m p q= +  

and the cost functional to be minimized is 
(2.7)  0 0( ) ( , , , , ) .

Q
G w g x t y y w dxdt= ∇∫

Defining the set of classical controls 
(2.8) : { : ( , ) ( , ) measurable from to },W w x t w x t w Q U=  
the continuous classical optimal control problem is to minimize  subject to 

 and to the above state constraints. 
0 ( )G w

w W∈
Next, we define the set of relaxed controls (Young measures; for the relevant 

theory, see [20], [17]) 
(2.9) 1

1: { : ( ) weakly measurable} ( , ( )) ( , ( ))*,wR r Q M U r L Q M U L Q C U∞= → ⊂ ≡  
where ( )M U  (resp. 1( )M U ) is the set of Radon (resp. probability) measures on U . 
The set R  is endowed with the relative weak star topology of . The set 1( , ( ))*L Q C U
R  is convex, metrizable and compact. If we identify every classical control  with 
its associated Dirac relaxed control 

( )w ⋅

( )( ) wr δ ⋅⋅ = , then W  may be considered as a subset 

of R , and W  is thus dense in R . For 1 1( , ( )) ( , ( ))L Q C U L Q C Uφ ∈ =  (or 
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( , ; )B Q Uφ ∈ , where ( , ; )B Q U  is the set of Caratheodory functions in the sense of 
Warga [20]) and  (in particular, for ( , ( ))wr L Q M U∞∈ r R∈ ), we shall use the notation 

(2.10) ( , , ( , )) : ( , , ) ( , )( ),
U

x t r x t x t u r x t duφ φ= ∫  

and ( , , ( , ))x t r x tφ  is thus linear (under convex combinations, for r R ) in . A 
sequence (  converges to r  in 

∈ r
)kr R∈ R  iff 

(2.11) lim ( , , ( , )) ( , , ( , ))kQ Qk
x t r x t dxdt x t r x t dxdtφ φ

→∞
=∫ ∫ , 

for every , or 1( ; ( ))L Q C Uφ ∈ ( , ; )B Q Uφ ∈ , or ( )C Q Uφ ∈ × . 
We denote by ⋅  the Euclidean norm in , by n ( , )⋅ ⋅  and ⋅  the inner 

product and norm in , by 2( )L Ω ( , )Q⋅ ⋅  and 
Q

⋅  the inner product and norm in , 

by  and 

2( )L Q

1( , )⋅ ⋅
1

⋅  the inner product and norm in the Sobolev space , and 

by  the duality bracket between the dual 

1
0: (V H= Ω)

),< ⋅ ⋅ > 1* (V H −= Ω  and V . We also define 
the usual bilinear form associated with  and defined on V V( )A t ×  

(2.12) 
1 1

( , , ) : ( , ) .
d d

ij
j i i j

y va t y v a x t dx
x xΩ

= =

∂ ∂
=

∂ ∂∑∑∫  

The relaxed formulation of the above control problem is the following. The 
relaxed state equation, interpreted in weak form, is 
(2.13)  0, ( , , ) ( ( ) , ) ( ( , , ), ) ( ( , , ), ),T

ty v a t y v a t y v b t y w v f t y w v< > + + ∇ + =
,v V∀ ∈  a.e. in ,I  

(2.14)    a.e. in ( )y t V∈ I ,    0(0) ,y y=
(the derivative  is understood here in the sense of V -vector valued distributions), 
the control constraint is , and the state constraints and cost functionals are 

ty
r R∈

(2.15)    ( ) : ( , , , , ( , )) ,m mQ
G r g x t y y r x t dxdt= ∇∫ 0,..., .m q=  

The continuous relaxed optimal control problem is to minimize  subject to the 
constraints 

0 ( )G r

(2.16) ,   , ,   r R∈ ( ) 0mG r ≤ 1,...,m p= ( ) 0mG r = , 1,...,m p q= + . 
In the sequel, we shall make some of the following assumptions. 
 

Assumptions 2.1 Γ  is Lipschitz if 0b = ; else, Γ  is  and 1C 3n ≤ . 
Assumptions 2.2 The coefficients  satisfy the ellipticity condition ija

(2.17)    2
0

1 1 1

( , ) ,
d d d

ij i j i
j i i

a x t z z zα
= = =

≥∑∑ ∑ , ,i jz z∀ ∈  ( , ) ,x t Q∈  

with 0 0α > , , which implies that ( )ija L Q∞∈

(2.18) 1 1 1
( , , ) ,a t y v y vα≤    2

2 1
( , , ) ,a t v v vα≥    , ,y v V∀ ∈  t I∈ , 

for some 1 20, 0α α≥ > . 
Assumptions 2.3 , and the functions b ,0 ( )da L Q∞∈ f  are defined on  
measurable for fixed , continuous for fixed 

,Q U× ×
,y u ,x t , and satisfy the conditions 

(2.19) 2( , , , ) ( , ) ,b x t y u x t yφ β≤ +    ,    ( , , , ) 0b x t y u y ≥

(2.20) ( , , , ) ( , ) ,f x t y u x t yψ γ≤ +   
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( , , , ) ,x t y u Q U∀ ∈ × ×  
(2.21) 1 2 1 2( , , , ) ( , , , ) ,f x t y u f x t y u L y y− ≤ 2

1 2( , , , , )−    x t y y u Q U∀ ∈ × × , 

(2.22) 1 2( , , , ) ( , , , )b x t y u b x t y u≤ ,   2
1 2( , , , , )x t y y u Q U∀ ∈ × × , with , 1 2y y≤

where , 2, ( )L Qφ ψ ∈ , 0β γ ≥
U

.  
Assumptions 2.4 The functions  are defined on mg 1 ,dQ +× ×  measurable for fixed 

, continuous for fixed ,y u ,x t , and satisfy 

(2.23) 22( , , , , ) ( , ) ,m m m mg x t y y u x t y yζ δ δ≤ + +    1( , , , , ) ,dx t y y u Q U+∀ ∈ × ×  

with , 1( )m L Qζ ∈ 0mδ ≥ , 0mδ ≥ .  
Assumptions 2.5 The functions  (resp. , ,y yb b f , ,m my myg g g ) are defined on Q U  

(resp. ), measurable on  for fixed (  (resp. 

× ×
1dQ +× ×U Q , )y u U∈ ×

1( , , ) dy y u U+∈ × ) and continuous on U×  (resp. 1d U+ × ) for fixed ( , )x t Q∈ , 
and satisfy 
(2.24) ( , , , ) ( , )yb x t y u x t yξ η≤ + ,    1( , , , ) ,yf x t y u L≤  

( , , , )x t y u Q U∀ ∈ × × , 
(2.25) 1 1 1( , , , , ) ( , ) ,my m m mg x t y y u x t y yζ δ δ≤ + +  

(2.26) 2 2 2( , , , , ) ( , ) ,my m m mg x t y y u x t y yζ δ δ≤ + +  
1( , , , , ) ,dx t y y u Q U+∀ ∈ × ×

m m L Qξ ζ ζ ∈
 

with , 2
1 2, , ( ) 1 1 2 2, , , , 0m m m mη δ δ δ δ ≥ . 

The following theorem can be proved by monotonicity and compactness 
arguments (for continuous  and ,b f 0y V∈ , see also a proof contained in Theorem 
3.1 and Lemma 4.2 below). 
 
Theorem 2.1 Under Assumptions 2.1-3, for every control r R∈  and  (or 

), the relaxed state equation has a unique solution  such that 
, . Moreover,  is essentially equal to a function in 

0 2 ( )y L∈ Ω
0y V∈ : ry y=

2 ( , )y L I V∈ 2 ( , *)ty L I V∈ y
2( , ( ))C I L Ω , and thus the initial condition is well defined. 

 
 The following lemma and theorem can be proved by using the techniques of 
[5], [7], [17]. 
 
Lemma 2.1 Under Assumptions 2.1-3, the operator , from rr y R  to , and 
to  if . Under Assumptions 2.1-4, the functionals , 

, from 

2 ( , )L I V
2 4( , ( ))L I L Ω 0b ≠ ( )mr G r
0,...,m = q R  to , are continuous. 

 
It is well known that, even if the control set U  is convex, the classical 

problem may have no classical solutions. But we have anyway the following theorem 
stating the existence of an optimal relaxed control. 
 
Theorem 2.2 Under Assumptions 2.1-4, if there exists an admissible control (i.e. 
satisfying all the constraints), then there exists an optimal relaxed control. 
 

 4



 Since W , we generally have R⊂
(2.27) , 0 0constraints on constraints on 

: min ( ) inf ( ) :R Wr w
c G r G w= ≤ c=

where the equality holds, in particular, if there are no state constraints, as W  is dense 
in R . Since usually approximation methods slightly violate the state constraints, 
approximating an optimal relaxed control by a relaxed or a classical control, hence the 
possibly lower relaxed optimal cost , is not a drawback in practice (see [20], p. 
259). 

Rc

The following lemma and theorem can be proved by using the techniques of  
[5], [7], [20] (see also [11]). 
 
Lemma 2.2 Under Assumptions 2.1-5, dropping the index  in the functionals, the 
directional derivative of  is given, for 

m
G , 'r r R∈ , by 

(2.28) 
0

( ( ' )) (( , ' ) : lim G r r r G rDG r r r
ε

)ε
ε+→

+ − −
− =  

( , , , , , '( , ) ( , )) ,
Q

H x t y y z r x t r x t dxdt= ∇ −∫  

where the Hamiltonian  is defined by H
(2.29) ( , , , , , ) : [ ( , , , ) ( , , , )] ( , , , , ),H x t y y z u z f x t y u b x t y u g x t y y u= − +  
and the  adjoint state  satisfies the linear adjoint equation rz z=
(2.30)  0, ( , , ) ( , ) ( ( , ), )T

t yz v a t v z a v z zb y r v− < > + + ∇ +

( ( , ) ( , ), ) ( ( , , ), ),y y yzf y r g y r v g y y r v= + + ∇ ∇    ,v V∀ ∈    a.e. in ,I  
(2.31)   a.e. in ( )z t V∈ ,I   ( ) 0z T = , 
with . The mappings , from ry y= rr z R  to , and ( , , 
from 

2 ( )L Q ') ( , ' )r r DG r r r−
R R×  to , are continuous. 

 
Next, we state the relaxed necessary conditions for optimality. 

 
Theorem 2.3 Under Assumptions 2.1-5, if r R∈  is optimal for either the relaxed or 
the classical optimal control problem, then  is extremal, i.e. there exist multipliers r

mλ ∈ , , with 0,...,m = q 0 0λ ≥ , 0mλ ≥ , 1,...,m p q= + , 
0

1
q

m
m

λ
=

=∑ , such that 

(2.32)     
0

( , ' ) 0,
q

m m
m

DG r r rλ
=

− ≥∑ ' ,r R∀ ∈  

(2.33) ( ) 0,m mG rλ =       (transversality conditions). 1,...,m p q= +
The global condition (2.32) is equivalent to the strong relaxed pointwise minimum 
principle 
(2.34)  ( , , ( , ), ( , ), ( , ), ( , )) min ( , , ( , ), ( , ), ( , ), ),

u U
H x t y x t y x t z x t r x t H x t y x t y x t z x t u

∈
∇ = ∇

a.e. in Q , 

where complete Hamiltonian and adjoint  are defined with . ,H z
0

:
q

m m
m

g gλ
=

= ∑
 
Remark. In the absence of equality state constraints, it can be shown that, if the 
optimal control  is regular, i.e. there exists r 'r R∈  such that 
(2.35) ,   ( ) ( , ' ) 0m mG r DG r r r+ − < 1,...,m p q= + , 
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(Slater condition), then 0 0λ ≠  for any set of multipliers as in Theorem 2.2. 
 
 
3   The discrete optimal control problems 
 
Assumptions 3.1 Γ  is appropriately piecewise  if 1C 0b = , Γ  is  and  if 

,  is independent of t  (for simplicity) and symmetric if 
1C 3n ≤

0b ≠ ( , , )a t y v 1θ ≠  in the θ -
scheme below, the functions ,0 , , ,y ua b b b , ,y uf f f ,  are continuous 
(possibly finitely piecewise in t ) on the closure of their domains of definition, and 

. 

0 , , , ,ya b b f f y

0y V∈
 

Under Assumptions 3.1, for each integer , let 0n ≥ nΩ  be a subdomain of Ω  
with polyhedral boundary  such that ,  an admissible 
regular quasi-uniform triangulation of 

nΓ dist( , ) ( )n no hΓ Γ = 1{ }
nn M

i iE =
nΩ  into closed d -simplices (elements), with 

 as n , and max [diam( )] 0n n
i ih E= → →∞ 1{ }

nn N
j jI = , a subdivision of the interval I  into 

closed intervals 1[ ,n n n
j j j ]I t t−= , of equal length nt∆ , with 0nt∆ →  as n . We 

define the blocks .  Let  be the subspace of functions that are 

continuous on 

→∞
n n
ij i jQ E I= × n nV V⊂

Ω , are linear (i.e. affine) on each , and vanish on n
iE nΩ−Ω . Let  be 

any given fixed point in U . The set of discrete classical controls  is the 
subset of classical controls that are constant on the interior of each block  and 

equal to  on 

0u
nW W⊂

n
ijQ

0u ( )Q I n− ×Ω . The set of discrete relaxed controls nR R⊂  is the subset 
of relaxed controls that are equal to a constant measure in 1( )M U  on the interior of 
each block  and equal to n

ijQ
0uδ  on ( nQ I )− ×Ω . The set nR  is endowed with the 

relative weak star topology of ( )MNM U . Clearly, we have . For 
implementation reasons, one could alternatively use a coarser partition for the discrete 
controls, that is, use discrete relaxed controls that are constant on hyperblocks 

, where the  are appropriate unions of some elements  and 

nW R⊂ n

'n' ' ' '' 'n n
i j i jQ E I= × ''niE n

iE ''njI  

are appropriate unions of some intervals n
jI .  

For a given discrete control nr Rn∈ , and [1/ 2,1]θ ∈  if 0b = , 1θ =  if , 
the corresponding discrete state  is given by the discrete state 
equation (implicit 

0b ≠

0: ( ,..., )n n n
Ny y y=

θ -scheme) 
(3.1)  1 0(1/ )( , ) ( , ) ( ( ) , ) ( ( , , ), )Tn n n n n n n n

j j j j j j j jt y y v a y v a t y v b t y r vθ θ θ θ θ−∆ − + + ∇ +

( ( , , ), ),n n n
j j jf t y r vθ θ=    for every  ,nv V∈ 1,..., ,j N=  

(3.2)    for every     0
0 1( , )ny y v− = 0, ,nv V∈ ,n n

jy V∈ 1,...,j N= , 
where we set 
(3.3)    1: (1 ) ,n n n

jyj jy yθ θ θ−= − + 1: (1 )n n n
j j jt t tθ θ θ−= − + . 

 
Theorem 3.1 Under Assumptions 2.2-3 and 3.1, if 'nt c∆ ≤  (resp. ), for 
some '  sufficiently small, independent of  and , if 

2'( )nt c h∆ ≤ n

c n nr 0b =  (resp. ), then, for 0b ≠
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every  and every control , the discrete state equation has a unique solution  
such that 

n nr ny
n
jy c≤ , 0,...,j N= , with  independent of n  and . c nr

Proof (sketch). Suppose first that 0b ≠ , 1θ = . Lemma 4.1 below shows that, if the 
solution  exists for every n

jy j , then n
jy c≤ , 0,...,j N= , with c  independent of  

and , for  as in the assumptions. Suppose by induction that  exists for 
. Then the solution  is a fixed point of the mapping 

n
nr nt∆ n

ky
1k j≤ − n

jy ( )z F yθ=  (here with 
1θ = ), where  is the solution, for  given, of the equations z y

(3.4)  1 1 0(1/ )( , ) ( (1 ) , ) ( ( ) ( (1 ) ), )Tn n n n n
j j jt z y v a z y v a t y y vθθ θ θ θ− −∆ − + + − + ∇ + − 1j−

)n n n n n
j j j j jb t y y r v f t y y r vθ θθ θ θ θ− −+ + − = + − nv V∀ ∈

4

1 1( ( , (1 ) , ), ) ( ( , (1 ) , ), ,n
j    , 

which reduce (choosing a basis in ) to a regular linear system in . We then show 
(using our assumptions, the continuous injection , and the inverse inequality, 
see [10]) that 

nV z
1
0H L⊂

( ) 2z F yθ c= ≤ , if 2y c≤ , for nt∆  as above, i.e. Fθ  maps the 

closed ball (0, 2 )B c  of center 0 and radius 2  in  into itself. Moreover, one can 
see (using also the mean value theorem for b ) that 

c nV
Fθ  is also contractive in this ball, 

for  as above. Therefore nt∆ Fθ  has a unique fixed point in (0, 2 )B c , which is the 
solution . If n

jy 0b = , [1/ 2,1]θ ∈ , one can easily see that, by the Lipschitz continuity 

of f  in , the mapping y Fθ  is contractive on the whole space , for  
sufficiently small; hence 

nV nt∆
Fθ  has a unique fixed point in . nV

 
The solution  can be computed by the predictor-corrector method, using the 

linearized semi-implicit predictor scheme, i.e. with  or . 

n
jy

0
1: ( ) (0, 2n

j jy F y Bθ −= ∈ )c
n

nV

The discrete control constraint is nr R∈  and the discrete functionals are 

(3.5)    m q
1

0

( ) : ( , , , ) ,
N

n n n n n n n
m m j j j j

j

G r t g t y y r dxθ θ θ

−

Ω
=

= ∆ ∇∑∫ 0,..., .=  

The discrete state constraints are either of the two following ones 
(3.6) Case (a)   ( ) ,n n n

m mG r ε≤    1,..., ,m p=  

(3.7) Case (b)   ( ) ,n n n
m mG r ε=   1,..., ,m p=  

and 
(3.8) ( ) ,n n n

m mG r ε≤     0,n
mε ≥ 1,..., ,m p q= +  

where the feasibility perturbations n
mε  are given numbers converging to zero, to be 

defined later. The discrete cost functional to be minimized is . 0 ( )n nG r
 
Theorem 3.2 Under Assumptions 2.2-4 and 3.1, the mappings  and 

, defined on 

n
jr ny

n( )n n
mr G r nR , are continuous. If any of the discrete problems is 

feasible, then it has a solution. 
Proof. The continuity of the operators  is easily proved by induction on n

jr yn j  
(or by using the discrete Bellman-Gronwall inequality, see [18]). The continuity of 
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( )n n
mr G r→ n  follows from the continuity of . The existence of an optimal control 

follows then from the compactness of 
mg

nR . 
 

The proofs of the following lemma and theorem parallel the continuous case 
and are omitted. 
 
Lemma 3.2 We drop the index m  in  and . Under Assumptions 2.2-5 and 3.1, 
for , the directional derivative of the functional  is given by 

mg n
mG

, 'n nr r R∈ n nG

(3.9)  
1

,1
0

( , ' ) ( , , , , ' ) ,
N

n n n n n n n n n n n
j j j j j j

j

DG r r r t H t y y z r r dxθ θ θ θ

−

−Ω
=

− = ∆ ∇ −∑∫
where the discrete adjoint  is given by the linear adjoint scheme nz
(3.10)  1 ,1 0 ,1 ,1(1/ )( , ) ( , ) ( , ) ( ( , , ), )Tn n n n n n n n n

j j j j j y j j jt z z v a v z a v z z b t y r vθ θ θ θ θ− − − −− ∆ − + + ∇ +

,1( ( , , ) ( , , , ), ) ( ( , , , ), )n n n n n n n n n n n n
j y j j j y j j j j y j j j jz f t y r g t y y r v g t y y r vθ θ θ θ θ θ θ θ θ−= + ∇ + ∇ ,∇  

,nv V∀ ∈     ,...,1,j N= 0,n
Nz =     ,n n

jz V∈

which has a unique solution  for each 1
n
jz − j , for nt∆  sufficiently small. Moreover, the 

mappings  and  are continuous. nr zn

n

( , ' ) ( , ' )n n n n n nr r DG r r r−
 
Theorem 3.3 Under Assumptions 2.2-5 and 3.1, if nr R∈  is optimal for the discrete 
problem with state constraints, Case (b), then it is extremal, i.e. there exist multipliers 

, , with n
mλ ∈ 0,...,m = q

(3.11) , , , 0n
mλ ≥ 0n

mλ ≥ 1,...,m p q= +
0

1
q

n
m

m

λ
=

=∑ ,  

such that 

(3.12)  ,1
0 1

( , ' ) ( , , , , ' ) 0,
q N

n n n n n n n n n n n n n
m m j j j j j j

m j

DG r r r t H t y y z r r dxθ θ θ θλ −Ω
= =

− = ∆ ∇ − ≥∑ ∑∫
' ,n nr R∀ ∈  

(3.13) [ ( ) ] 0,n n n
m m mG rλ ε− =    1,..., ,m p q= +

where  and  are defined with . The global condition (3.12) is 

equivalent to the strong discrete blockwise minimum principle 

nH nz
0

:
q

n
m m

m
g λ

=

= ∑ g

(3.14)  ,1 ,1( , , , , ) min ( , , , , ) ,n n n n n n n n n n n
j j j j ij j j j ju U

H t y y z r dx H t y y z u dxθ θ θ θ θ θ θ− −Ω Ω∈
∇ = ∇∫ ∫

1,...,i M= ,    1,..., .j N=  
 
 
4   Behavior in the limit 
 
The following control approximation result is proved in [4]. 
 
Proposition 4.1 Under Assumptions 3.1 on Γ , for every r R∈ , there exists a 
sequence (  that converges to r  in)n nw W∈ R . 
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Lemma 4.1 (Stability) Under Assumptions 2.2-3 and 3.1, if t∆  is sufficiently small, 
for every , we have the following inequalities, where the constants c  are 
independent of  and  

nr R∈ n

n nr
(4.1) ,n

ky c≤     0,..., ,k N=

(4.2) 
2

1
1

,
N

n n
j j

j

y y c−
=

− ≤∑  

(4.3) 
2

1
1

,
N

n n
j

j

t y θ
=

∆ ≤∑ c  

(4.4) 
2

1
0

N
n n

j
j

t y
=

∆ ∑ c≤ ,  (under the condition , for some constant C  

independent of , if 

2( )n nt C h∆ ≤

n 1/ 2θ = ), 

(4.5) 
2

1 1
1

N
n

j j
j

t y y −
=

∆ −∑ c≤

y

,   (with the condition ). 2( )n nt C h∆ ≤

Proof. Dropping the index  for simplicity of notation, setting n 2 jv tθ= ∆  in the 
discrete equation, and using our assumptions on , we then have (if , 
then 

0, , ,a a b f 0b ≠
1θ =  and ) ( ) 0j jb y y ≥

(4.6) 
2 2 2

1 1( ) ( (j j j j j j j jy y y y b t y r yθ θθ − −− + − + , , ), )  
2 2

1 1[ ( , ) ( , ) (1 ) ( , )]j j j j j jt a y y a y y a y yθ θ θ θ − −+∆ + − −  

02 ( ( , , ), ) 2j j j j j jt f t y r y t a y yθ θ θθ θ
∞

≤ ∆ + ∆ ∇  

1
(1 )j jc t y y yθ θ≤ ∆ + + j  

2 2

1

1[1 (1 ) ]j jc t y y yθ θβ
β

≤ ∆ + + + +
2

j  

hence, taking 2

2c
αβ ≤ , we get 

(4.7) 
2 2

1 1( )j j j jy y y yθ − −− + −
2

 
2 2 22

1 11
[ ( , ) (1 ) (

2 j j j jt y a y y a y yθ , )]j
α θ θ − −+∆ + − −  

2 2 2

1(1 ) (1 )j j j jc t y y c t y yθ −≤ ∆ + + ≤ ∆ + +
2

  
2 2

1 1(1 ),j j jc t y y y− −≤ ∆ + + −  

and if in addition 
2

t
c
θ

∆ ≤   

(4.8) 
2 2

1 1
1( )
2 j j j jy y y yθ − −− + −

2

 
2 22 22

1 1 11
[ ( , ) (1 ) ( , )] (1

2 j j j j j jt y a y y a y y c t yθ ).α θ θ − − −+∆ + − − ≤ ∆ +  

By summation over 1,...,j k= , we obtain, for 1/ 2θ >  

(4.9) 
2 22 2

1 21 1
1 1

1( )
2 2

k k

j j k j j
j j

y y y t y tc yθ
αθ α−

= =

− + + ∆ + ∆∑ ∑
2

1

'
k

j=
∑  
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22 22
0 1 0 11

1

(1 ) (1 ),
k

j
j

y t y c t yθ α θ −
=

≤ + ∆ − + ∆ +∑    with  ' 0,c >

and for 1/ 2θ =  

(4.10) 
2 22 2

1 1
1 1

1 1( )
2 2 2

k k

j j k j
j j

y y y t y θ
α

−
= =

− + + ∆∑ ∑  

22 2
0 1 0 11

1

1 (1 ).
2 4

k

j
j

ty y c t yα −
=

∆
≤ + + ∆ +∑  

Since 0 1
y , hence 0y , remains bounded, using the discrete Bellman-Gronwall 

inequality (see 18]), we obtain inequality (i). The inequalities (4.2), (4.3), and (4.4) if 
1/ 2θ > , follow. By the inverse inequality (see [10]), the condition , and 

inequality (4.2), we get inequality (4.5) 

2( )nt C h∆ ≤ n

(4.11) 
2 2

1 121
1 1 1

.
N N N

j j j j j j
j j j

tt y y y y C y y c
h− −

= = =

∆
∆ − ≤ − ≤ − ≤∑ ∑ ∑

2

1−  

If 1/ 2θ = , inequality (4.4) follows from inequalities (4.3) and (4.5). 
 

For given values  in a vector space, we define the piecewise constant 
and continuous piecewise linear functions 

0,..., Nv v

(4.12)       1( ) : ,jv t v− −= ( ) : ,jv t v+ = 1( ) : (1 ) ,j jv t v vθ θ θ−= − +     , 1,..., ,
o
n
jt I j N∈ =

(4.13) 1
^ 1 1j( ) : ( ),

n
j

j jn

t t
v t v v v

t
−

− −

−
= + −

∆
, 1,..., .n

j j N∈ =  t I  

If  (resp. 0b = 0b ≠ ), we suppose in the sequel that nt C∆ ≤  (resp. ), 
with  sufficiently small, so as to guarantee the results of Theorem 3.1 and Lemma 
4.1. 

2( )n nt C h∆ ≤
C

 
Lemma 4.2 (Consistency of states and functionals) Under Assumptions 2.2-3 and 3.1, 
if  in nr r→ R , then the corresponding discrete states ^ , , ,n n n ny y y y+ + +  converge to  
in  (resp ) strongly if 

ry
2 4( , ( ))L I L Ω 2 ( )L Q 0b ≠  (resp. 0b = ),  in  

strongly, and 

n
ryθ → y 2 ( , )L I V

(4.14) ,   lim ( ) ( )n n
m mn

G r G r
→∞

= 0,..., .m q=  

Proof. By Lemma 4.1 (inequality (4.2) multiplied by t∆ ), 0n ny y+ −− →  in  
strongly. Since, by inequality (4.3) in Lemma 3.3, 

2 ( )L Q
ny−  and ny+  are bounded in 

, it follows that  is also bounded in . By extracting subsequences, 
we can suppose that  and  in  weakly (hence in  
weakly), for the same . The discrete state equation can be written in the form 

2( , )L I V ^
ny 2 ( , )L I V

^
ny → y ynyθ →

2 ( , )L I V 2 ( )L Q
y

(4.15) ^ 1( ( ), ) ( ( ), )n n n nd y t v t v
dt

ψ= n nv V,   ∀ ∈ , a.e. in (  0, ),T

in the scalar distribution sense, where the piecewise constant function nψ  is defined, 
using Riesz’s representation theorem, by 
(4.16)  1 0( ( ), ) : ( , ) ( ( ) , ) ( ( , , ), )n n n n n T n n n n n

j j j j j jt v a y v a t y v b t y r vθ θ θ θ θψ = − − ∇ − n
j

( ( , , ), ),n n n n
j j jf t y r vθ θ+    in 

o
n
jI , 1,..., .j N=  
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By our assumptions, we have, for 1,...,j N=  

(4.17) 4

2

1 1 1 ( )
( , ) [ (1 ) (1 )n n n n n n n n

j j j jL
v c y v y v y vθ θψ σ

Ω
≤ + + + + ]θ  

2

1 1
(1 ) ,n n n

j jc y y vθ θσ≤ + +
1

 

with 0σ =  if , 0b = 1σ =  if ;  hence 0b ≠
(4.18) 

2 2

1 1 1
(1 ) (1 )n n n

j j jc y y c yθ θ θψ ≤ + + ≤ +
1

n
j . 

Therefore, using inequality (4.3) in Lemma 3.3 

(4.19) 
2

1 10 0
( ) (1 ) ,

T Tn nt dt c y dt cθψ ≤ + ≤∫ ∫  

which shows that nψ  belongs to . Now, Let 1( , )L I V nψ  denote the extension of nψ  
by 0 outside [ . We then have, on  0, ]T

(4.20) ^ 1 0 0( ( ), ) ( ( ), ) ( , ) ( , ) ,n n n n n n n n
N T

d y t v t v y v y v
dt

ψ δ δ= + −  

where 0, Tδ δ  are the Dirac distributions at 0 and . Taking the Fourier transforms 
(

T
ˆ nψ  Fourier transform of nψ ), we have 

(4.21) .2
^ 0ˆˆ2 ( , ) ( ( ), ) ( , ) ( , )n n n n n n n n i T

Ni y v v y v y v e πτπτ ψ τ −− = + −  
Setting ^ˆ ( )n nv y τ= , and since  are bounded in 0 ,n n

Ny y 2 ( )L Ω , we get 

(4.22) 
2

^ ^1 1
ˆˆ ˆ2 ( ) ( ) ( ) (n n n ny y c ˆ ) .yπ τ τ ψ τ τ τ≤ +  

By the definition of the Fourier transform, we obtain 

(4.23) 
1 10

ˆ ( ) ( ) .
Tn n t dt cψ τ ψ≤ ≤∫  

Therefore 
(4.24) 

2

^ ^ 1
ˆ ˆ( ) ( ) .n ny c yτ τ τ≤  

For [0,1/ 4)ρ ∈ , the following inequality holds on  

(4.25) 2
1 2

1
.

1
cρ

ρ

τ
τ

τ −

+
≤

+
 

We then have 

(4.26) 
2 22

^ ^1 2

1ˆ ˆ( ) ( )
1

n ny d c yρ
ρ

τ
dτ τ τ τ τ

τ

+∞ +∞

−−∞ −∞

+
≤

+∫ ∫  

2 ^ 1
^ 1 2

ˆ ( )
ˆ ( ) '

1

n
n

y
c y d c dρ

τ
τ τ τ

τ

+∞ +∞

−−∞ −∞
≤ +

+∫ ∫  

2 21/ 2 1/ 2
^ ^1 2 2 1

ˆ ˆ( ) '[ ] ( ( ) ) .
(1 )

n ndc y d c y dρ
ττ τ τ τ

τ

+∞ +∞ +∞

−−∞ −∞ −∞
≤ +

+∫ ∫ ∫  

The constant integral factor here is finite for 1/ 4ρ < . By the Parseval identity 

(4.27) 
2 2

^ ^ ^1 10
ˆ ˆ( ) ( ) ( ) .

Tn n ny d c y d c y t dtτ τ τ τ
+∞ +∞

−∞ −∞
≤ =∫ ∫ ∫

2
c≤  

Therefore, we obtain 
(4.28) 

22
^ˆ ( ) .ny dρτ τ τ

+∞

−∞
≤∫ c  

Let us examine first the case 0b ≠  with its assumptions. By the Compactness 
Theorem 2.2, Ch. III, in [18], and since the injection of 1

0 ( )V H= Ω  into , 1 ( )H ε− Ω

 11



(0,1]ε ∈ , is compact, there exists a subsequence (same notation) such that  in 
 and in  strongly, for some , and we must have , since 

 also in  weakly. Since the injection of 

^
ny y→

2 1( , ( ))L I H ε− Ω 2 ( )L Q y y y=

^ˆ ny → y 2 ( )L Q 1 ( )H ε− Ω  into  is 
continuous for 

4 ( )L Ω
ε  sufficiently small (see [1]),  in ^

ny y→ 2 4( , ( ))L I L Ω  strongly. Since, 
by Lemma 4.1 (v),  in , hence in 0n ny y+ −− → 2 ( , )L I V 2 4( , ( ))L I L Ω , strongly, we get 
also that  in ,n ny y y− + →

2 4( , ( ))L I L Ω  strongly. In the case 0b = , we can use directly 
the compactness of the injection  (between Hilbert spaces) to show the 
strong convergences  in , using inequality (4.2) (instead of 
(4.5)) in Lemma 4.1. Now, to show that 

2 ( )V L⊂ Ω

^ , , ,n n n ny y y y yθ− + → 2 ( )L Q

ry y= , we proceed similarly to the proof of 
Lemma 4.3 in [5], i.e. we pass to the limit in the discrete equation, integrated in t , 
with appropriate interpolating test functions  (with  modified near the 
boundary so as to belong to ); for the passage to the limit in the nonlinear terms 
containing  and 

( ) ( )n nt v xφ nv
nV

b f , we can use a generalization of Proposition 2.1 in [4] for a 
double integral whose integrant involves multiple sequences converging in various 
Lρ  spaces, which can be proved by using the convergence  in nr r→ R , the fact that 
converging sequences of functions in Lρ  are dominated (in norm a.e. in , and up to 
subsequences) by a fixed function in 

Ω
Lρ , Hölder’s inequality, Egorov’s theorem, and 

Lebesgue’s dominated convergence theorem. Next, to prove the strong convergence 
 in , we first remark that, by the discrete and continuous state 

equations, the boundedness of  in 

nyθ → y 2 ( , )L I V
( )n

Ny 2 ( )L Ω  by inequality (4.1) in Lemma 4.1, the 
above convergences, Proposition 2.1 in [4], and taking the sequence (  of 
functions interpolating an arbitrary given 

)n nv V∈
1
0 ( )v C∈ Ω  at the vertices inside  and 

vanishing on  (which converges to v  in V  strongly), we have 

nΩ
nΓ

(4.29)  ( , ) ( , ) ( , )n n n n n
N N Ny v y v v y v= − +

), )
Tn n n n n n n

Ny v v y v f t r v dt= − + + ∫0 0
( , ) ( , ) ( ( , ,n yθ θ  

00 0 0
( ( , , ), ) ( , ) ( , )

T T TTn n n n n n n nb t y r v dt a y v dt a y v dtθ θ θ θ− − ∇ −∫ ∫ ∫  

0
00 0 0 0

( , ) ( ( , ), ) ( ( , ), ) ( , ) ( , )
T T T TTy v f y r v dt b y r v dt a y v dt a y v dt→ + − − ∇ −∫ ∫ ∫ ∫  

( ( ), ),y T v=  
for every 1

0 ( )v C∈ Ω , hence  for every ( , ) ( ( ), )n
Ny v y T v→ 2 ( )v L∈ Ω , since 1

0 ( )C  is 
dense in , i.e.  in 

Ω
2 ( )L Ω ( )n

Ny y T→ 2 ( )L Ω  weakly. We then have 

(4.30) 2

2 2

2 ( , ) 0

1( , ) (
2

Tn n n n
NL I V

y y a y y y y dt y y Tθ θα + − ≤ − − + −∫ )  

2

0
1 1 1( , ( )) ( ( ), ( ))
2 2 2

n n n
N Ny y y T y T y y T= − − −  

00 0 0
( ( , ), ) ( ( , ), ) ( , )

T T T Tn n n n n n n nf y r y dt b y r y dt a y y dtθ θ θ θ θ θ+ − − ∇∫ ∫ ∫  

0 0
( , ) ( , ) 0.

T Tn na y y dt a y y y dtθ θ− − −∫ ∫ →  

Finally, the last convergences of the lemma follow from Proposition 2.1 in [4]. 
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 Note that the condition  imposed (in fact, the inverse inequality 
used to derive inequality (v)) is a worst case one. In practice, the corresponding 
sequences of gradients  constructed by the algorithms are often bounded in 

, or even in , and the above condition is not needed.  

2( )n nt C h∆ ≤

( )ny∇
2 ( )L Q ( )L Q∞

 We suppose in the sequel that the continuous relaxed problem is feasible. 
The following (theoretical, in the presence of state constraints) theorem addresses the 
behavior in the limit of optimal discrete controls. 
  
Theorem 4.1 We suppose that Assumptions 2.2-4 and 3.1 are satisfied. In the 
presence of state constraints, we suppose in addition that the sequences ( )n

mε  in the 
discrete state constraints, Case (a), converge to zero as  and satisfy n →∞

( ) ,n n n
m mG r ε≤    1,..., ,m p=    ( ) ,n n n

m mG r ε≤     0,n
mε ≥ 1,..., ,m p q= +  

for every , where (  is a sequence converging in n )n nr R∈ R  to an optimal control 
 of the relaxed problem. For each , let  be optimal for the discrete problem, 

Case (a). Then every relaxed accumulation point of  is optimal for the continuous 
relaxed problem. 

r R∈ n nr
( )nr

Proof. Note that our assumption implies that the discrete problems are feasible for 
every . Let  be a subsequence (same notation) that converges to some . 
Since  is optimal, hence admissible, and  is admissible, for the discrete problem, 
we have 

n ( )nr r R∈
nr nr

(4.31)    0 0( ) ( ),n n n nG r G r≤ ( ) ,n n n
m mG r ε≤  1,..., ,m p=    ( ) ,n n n

m mG r ε≤   1,..., .m p q= +

Passing to the limit and using Lemma 4.2, we see that  is optimal for the continuous 
relaxed problem. If there are no state constraints, by taking a sequence converging to 
some continuous optimal control, we arrive directly to the same conclusion. 

r

 
Lemma 4.3 (Consistency of adjoints and functional derivatives) Under Assumptions 
2.2-5 and 3.1, if  in nr → r R , then the corresponding discrete adjoint states 

 converge to  in 1, , ,n n n nz z z zθ− + − ^ rz 2 4( , ( ))L I L Ω  (resp. ) strongly if  (resp. 
), and  in  strongly. If  and , then 

2( )L Q 0b ≠
0b = 1

n
rz zθ− → 2 ( , )L I V nr → r r' 'nr →

(4.32)    lim ( , ' ) ( , ' ),n n n n
m mn

DG r r r DG r r r
→∞

− = − 0,..., .m q=  

Proof. The proof is similar to that of Lemma 4.2, using also the consistency of states. 
 

Next, we study the behavior in the limit of extremal discrete controls. 
Consider the discrete problem with state constraints, Case (b). We shall construct 
sequences of perturbations ( )n

mε  converging to zero and such that the discrete problem 
is feasible for every . Let n 'nr Rn∈  be any solution of the problem without state 
constraints 

(4.33)  2 2

1 1

: min{ [ ( )] [max(0, ( ))] },
n n

p q
n n n n

m m
w W m m p

c G r G r
∈ = = +

= +∑ ∑ n

n
m mG rε = 1,..., .m p q

and set 
(4.34) ,      ,   : ( ' )n n

m mG rε = 1,..., ,m p= : max(0, ( ' ))n n n  = +

Let  be an admissible control for the continuous relaxed problem, and (  a 
sequence converging to  in 

r )n nr R∈
r R  (Proposition 4.1). We have 
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(4.35) ,   2 2lim[ ( )] [ ( )] 0n n
m mn

G r G r
→∞

= = 1,..., ,m p=  

(4.36) ,   2 2lim[max(0, ( ))] [max(0, ( ))] 0n n
m mn

G r G r
→∞

= = 1,..., ,m p q= +  

which imply a fortiori that , hence , 0nc → 0n
mε → 1,...,m q= . Then clearly the 

discrete problem, Case (b), is feasible for every n , for these perturbations n
mε . We 

suppose in the sequel that the perturbations n
mε  are chosen as in the above minimum 

feasibility procedure. Note that in practice we usually have 0nc = , for sufficiently 
large , due to sufficient discrete controllability, in which case the perturbations n n

mε  
are equal to zero, i.e. the discrete problem with zero perturbations is feasible. 
 
Theorem 4.2 Under Assumptions 2.2-5 and 3.1, for each , let  be admissible and 
extremal for the discrete problem, Case (b). Then every relaxed accumulation point of 

 is admissible and extremal for the continuous relaxed problem. 

n nr

( )nr

Proof. Since R  is compact and 
0

1
q

n
m

m

λ
=

=∑ , let , ( )nr ( )n
mλ , , be 

subsequences such that  in 

0,...,m = q

rnr → R  and n
m mλ λ→ , 0,...,m q= , and consider the 

discrete principle in global form, which can be written as 
(4.37)     1( , , , , , ' ) 0,n n n n n n n n

Q
H x t y y z r r dxdtθ θ θ θ−∇ − ≥∫ ' .n nr R∀ ∈

Passing to the limit, by Lemmas 4.2, 4.3 and Proposition 2.1 in [4], we obtain 
(4.38) ( , , , , , '( , ) ( , )) 0,

Q
H x t y y z r x t r x t dxdt∇ − ≥∫     ' .n nr R∀ ∈

On the other hand, we have similarly 
(4.39)    ( ) lim [ ( ) ] 0,n n n n

m m m m m
n

G r G rλ λ ε
→∞

= − = 1,..., ,m p q= +

1,..., ,

 

(4.40)    m p( ) lim[ ( ) ] 0,n n n
m m mn

G r G r ε
→∞

= − = =  

(4.41)    m p( ) lim[ ( ) ] 0,n n n
m m mn

G r G r ε
→∞

= − ≤ 1,..., ,q= +  

and 0 0λ ≥ , 0mλ ≥ ,  1,..., ,m p q= +
0

1
q

m
m

λ
=

=∑ , which show that  is admissible and 

extremal for the continuous relaxed problem. 

r

 
 
5   Discrete penalized conditional descent methods 
 
Let ( )l

mM , , be positive increasing sequences such that  as 
, and define the penalized discrete functionals 

1,...,m = q l
mM →∞

l →∞

(5.1)  2 2
0

1 1

( ) : ( ) { [ ( )] [max(0, ( ))] }/ 2.
p q

nl n n n l n n l n n
m m m m

m m p

G r G r M G r M G r
= = +

= + +∑ ∑
Let , and let (', ' (0,1)b c ∈ )lβ , ( )kζ  be positive sequences, with ( )lβ  decreasing and 
converging to zero, and 1kζ ≤ . The algorithm described below contains two versions. 
In the case of the progressively refining version, we shall make the following 
assumptions. 
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Assumptions 5.1 The (possibly) finer discretization for 1n +  is defined by 
subdividing the elements  into subelements (e.g. triangles into 4 triangles) and by 
slightly (up to , as Γ  is  or piecewise ) transforming the resulting 
boundary elements so as to fit 

n
iE

( )no h 1C 1C
1n+Γ , and then by setting , for some integer 

. The discrete penalized conditional descent methods are described in the 
following algorithm. 

1nN κ+ = nN
2κ ≥

  
Algorithm 
Step 1. Set , , choose a value of  and an initial control . : 0k = : 1l = n 0

n nr R∈

Step 2. Find  such that nl n
kr R∈

(5.2) 
'

: ( , ) min ( , '
n n

nl nl nl nl nl nl n nl
k k k k k

r R
d DG r r r DG r r r

∈
= − = ).k−  

Step 3. If l
kd β≤ , set , :nl nl

kr r= :nl nl
kr r= , :l

kd d= ; [if the discretization for  is 

finer, set first  on , and then define 

1n +

: nl
k kr r= Ω 1, 1n l

kr
+ +  as the modified control resulting 

from  after the slight transformation in the construction of the new boundary 
elements ; set ;] set 

kr
1n

iE + :n n= +1 1:l l= +  and  go to Step 2. If l
kd β> , go to Step 4. 

Step 4. (Armijo step search) Find the lowest integer value s∈ , say s , such that 
 and ( ) : ' (0,1]s

ks cα ζ= ∈ ( )sα  satisfies the inequality   
(5.3) , ( ( )( )) ( ) ( ) 'n n n n n n

k k k kG w s v w G w s b dα α+ − − ≤ k

and then set : (k s )α α= . 
Step 5. Choose any  such that 1

nl n
kr R+ ∈

(5.4) 1( ) ( ( )( )),nl nl nl nl nl nl
k k kG r G r s r rα+ ≤ + − k

1

1

n
m

 
set , and go to Step 2. :k k= +
 

In the above Algorithm, we consider two versions: 
Version A. [  etc.] is skipped in Step 3: n  is a constant integer chosen in Step 
1, i.e. we choose a fixed discretization and replace the discrete functionals  by the 

perturbed ones 

:n n= +
n
mG

:n n
m mG G ε= − . 

Version B. [  etc.] is not skipped in Step 3: we have a progressively refining 
discrete method, i.e.  (see proof of Theorem 5.1 below), in which case we can 
take  in Step 1, hence  in the Algorithm. This version has the advantage of 
reducing computing time and memory, and also of avoiding the computation of the 
minimum feasibility perturbations 

:n n= +1
n →∞

1n = n l=

n
mε . It is justified by the fact that finer 

discretizations become more efficient as the iterate gets closer to an extremal control, 
while coarser ones in the early iterations have not much influence on the final results. 

One can easily see that a classical control nl
kr  in Step 2 can be found for every 

 by minimizing in  the numerical integral on  k u U∈ n
iE

(5.5)  
1

( ) ( , , ( ), ( ), )
s

n n nl n nl n
i j i j i j iE C H t x y x y x uν ν ν ν

θ θ θ
ν

µ
=

∇∑
independently for each , 1,...,i M= 1,...,j N= . On the other hand, since clearly 

 and , by the definition of the directional derivative the Armijo step 0kd ≤ ' (0,1)b ∈

kα  in Step 4 can be found for every , if k 0kd ≠ . 
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A continuous or discrete extremal control is called abnormal if there exist 
multipliers as in the corresponding optimality conditions, with 0 0λ =  (or ). A 
control is admissible and abnormal extremal in exceptional, degenerate, situations 
(see [20]). 

0 0nλ =

With  defined in Step 3, define the sequences of multipliers nlw
(5.6) : ( ),nl l n nl

m m mM G rλ =       1,..., ,m p= : max(0, ( )),nl l n nl
m m mM G rλ = 1,..., ,m p q= +

 
Theorem 5.1 We suppose that Assumptions 2.2-5, 3.1, and 5.1 (progressively 
refining case) are satisfied. 
(i) In Version B, let  be a subsequence, considered as a sequence in ( )nlr R , of the 
sequence generated by the Algorithm in Step 3 that converges to some  in r R , as 

 (hence ). If the sequences l →∞ n →∞ ( )nl
mλ  are bounded, then  is admissible and 

extremal for the continuous relaxed problem. 
r

(ii) In Version A, let ( ,  fixed, be a subsequence of the sequence generated by 
the Algorithm in Step 3 that converges to some 

)nlr n
nr Rn∈  as . If the sequences l →∞

( nl
m )λ  are bounded, then  is admissible and extremal for the fixed discrete problem. nr

(iii) In any of the two above convergence cases (i), (ii), suppose that the (discrete or 
continuous) limit problem has no admissible, abnormal extremal, controls. If the limit 
control is admissible, then the sequences of multipliers are bounded, and this control 
is extremal as above. 
Proof. We shall first show that  in the Algorithm. Suppose, on the contrary, 
that , hence  (in both Versions A, B), remains constant after a finite number of 
iterations in , and so we drop here the indices  and n . Let us show that then 

. Since 

l →∞
l n

k l
0kd → R  is compact, let ( ) , ( )k k K k k Kr r∈ ∈  be subsequences of the sequences 

generated in Steps 2 and 5 such that  ,kr r→ ,kr r→  in R , as   
Clearly, by Step 2,  for every , hence 

,k →∞ .k K∈
0kd ≤ k

(5.7) 
,

: lim ( , ) 0kk k K
d d DG r r r

→∞ ∈
= = − .≤  

Suppose that . The function 0d < ( ) : ( ( ' ))G r r rα αΦ = + −  is continuous on [ . 
Since the directional derivative 

0,1]
( , ' )DG r r r−  is linear w.r.t. 'r r− , Φ  is differentiable 

on  and has derivative (0,1) '( ) ( ( ' ), ' )DG r r r r rα αΦ = + − − . Using the mean value 
theorem, we have, for each (0,1]α ∈  
(5.8) ( ( )) ( ) ( '( ),k k k k k k k k kG r r w G r DG r r r r r ),α α α+ − − = + − −  
for some ' (0, )α α∈ . Therefore, for [0,1]α ∈ , by the continuity of  (Lemma 3.1) DG
(5.9) ( ( )) ( ) (k k k k kG r r r G r d α ),α α ε+ − − = +  
where 0kαε →  as , , and k →∞ k K∈ 0α +→ . Now, we have kd d kη= + , where 

0kη →  as k , k , and since →∞ K∈ ' (0,1)b ∈  
(5.10) ( ) ' ,k kd b d bα kdε η+ ≤ + =  
for [0, ]α α∈ , for some 0α > , and  k k≥ , k K∈ . Hence 
(5.11) ( ( )) ( ) 'k k k kG r r r G r b d ,kα α+ − − ≤  
for [0, ]α α∈ , for some 0α > , and k k≥ , k K∈ . It follows from the choice of the 
Armijo step kα  in Step 4 that k cα α≥ , for k k≥ , k K∈ . Hence 
(5.12) 1( ) ( ) ( ( )) ( ) ' ' ' / 2k k k k k k k k k kG r G r G r r r G r b d c b d c b d ,α α α α+ − ≤ + − − ≤ ≤ ≤  
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for k k≥ , . It follows that  as , k K∈ ( )kG r →−∞ k →∞ k K∈ , which contradicts 
the fact that  as k , ( ) ( )kG r G r→ →∞ k K∈ , by the continuity of the discrete 
functional (Lemma 3.1). Therefore, we must have 0d = , and , for the 
whole sequence, since the limit 0 is unique. But Step 3 then implies that l , 
which is a contradiction. Therefore, . This shows also that  in Version 
B. 

0kd d→ =
→∞

l →∞ n →∞

(i) Let  be a subsequence (same notation) of the sequence generated in Step 3, 
that converges to some accumulation point 

( )nlr
r R∈  as . Suppose that the 

sequences 
,l n →∞

( )nl
mλ  are bounded and (up to subsequences) that nl

m mλ λ→ . By Lemma 
4.2, we have 

(5.13) 0 lim lim ( ) ( ),
nl

n nlm
m mll l

m

G r G r
M
λ

→∞ →∞
= = =    1,..., ,m p=  

(5.14) 0 lim lim[max(0, ( ))] max(0, ( )),
nl

n nlm
m mll l

m

G r G r
M
λ

→∞ →∞
= = =    1,..., ,m p q= +  

which show that  is admissible. Now, by Steps 2 and 3 we have, for every  r 'n nv W∈
(5.15)  ( , ' )nl nl n nlDG r r r−

0
1 1

( , ' ) ( , ' ) ( , ' )
p q

n nl n nl nl n nl n nl nl n nl n nl
m m m m

m m p

DG r r r DG r r r DG r r rλ λ
= = +

= − + − +∑ ∑ −

 . ld≥
Using Lemmas 4.2, 4.3 and Proposition 2.1 in [4], we can pass to the limit in this 
inequality as  and obtain ,l n →∞

(5.16)  0
1 1

( , ' ) ( , ' ) ( , ' ) 0.
p q

m m m m
m m p

DG r r r DG r r r DG r r rλ λ
= = +

− + − + − ≥∑ ∑
By construction of the nl

mλ , we clearly have in the limit 0 1λ = , 0mλ ≥ , 

, 1,...,m p q= +
0

:
q

m
m

cλ
=

= ≥∑ 1, and we can suppose that 
0

1
q

m
m

λ
=

=∑  by dividing the 

above inequality by c . On the other hand, if ( ) 0mG r < , for some index , 
then for sufficiently large l  we have 

[ 1, ]m p q∈ +

( ) 0nl nl
mG r <  and 0l

mλ = , hence 0mλ = , i.e. the 
transversality conditions hold. Therefore,  is also extremal. r
(ii) The admissibility of the limit control  is proved as in (i). Passing here to the 
limit in the inequality resulting from Step 2 as l , for n  fixed, and using Lemmas 
3.1 and 3.2, we obtain, similarly to (i) (with 

nr
→∞

0 1λ = ) 

(5.17)      
0 0

( , ' ) ( , ' ) 0,
q q

n n n n n n n n
m m m m

m m
DG r r r DG r r rλ λ

= =

− = − ≥∑ ∑ ' ,n nr R∀ ∈

with multipliers as in the optimality conditions, and the discrete transversality 
conditions 
(5.18) ( ) [ ( ) ] 0,n n n n n n n

m m m m mG r G rλ λ ε= − =    1,..., ,m p q= +  
(iii) In either of the above convergence cases (i) or (ii), suppose that the limit control 
is admissible and that the limit problem has no admissible, abnormal extremal, 
controls. Suppose that the multipliers are not all bounded. Then, dividing the 
corresponding inequality resulting from Step 2 by the greatest multiplier norm and 
passing to the limit for a subsequence, we see that we obtain an optimality inequality 
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where the first multiplier is zero, and that the limit control is abnormal extremal, a 
contradiction. Therefore, the sequences of multipliers are bounded, and by (i) or (ii), 
this limit control is extremal as above. 
 
 In practice, by choosing moderately growing sequences ( )l

mM  and a sequence 
( )lβ  relatively fast converging to zero, the resulting sequences of multipliers ( )nl

mλ  
are often kept bounded. One can choose a fixed : (0,1]kζ ζ= ∈  in Step 4; a usually 
faster and adaptive procedure is to set 0 : 1ζ =  and 1:k kζ α −= , for . 1k ≥
 

The Algorithm can be implemented as follows. Suppose that the integrals on 
 involved in the discrete state equation and the functionals are calculated with 

sufficient accuracy by using an integration rule of the form 
Ω

(5.19) . 
1 1

( ) [meas( ) ( )]
M s

n n
i i

i
x dx E C xν ν

ν

φ φ
Ω

= =

≈∑ ∑∫
We first choose the initial discrete control in Step 1 to be of Gamkrelidze type, i.e. 
equal on each block  to a convex combination of (n

ijQ 1) 1s q+ + +  ( s  integration 
nodes) Dirac measures on U  concentrated at ( 1) 1s q+ + +  points of U . Suppose, by 
induction, that the control  computed in the Algorithm is of Gamkrelidze type. 
Since the control 

nl
kr

nl
kr  in Step 2 is chosen to be classical, i.e. blockwise Dirac (see 

above), the control : (1k k= − )nl nl nl
k k kr r rα α+  in Step 5 is blockwise equal to a convex 

combination of ( 1) 2s q+ + +  Dirac measures. Using now a known property of convex 
hulls of finite vector sets, we can construct a Gamkrelidze control  equivalent to 

, i.e. , i.e. such that the following 
1

nl
kr +

nl
kr

nl
kr 1s q+ +  equalities (i.e. equality in 1s q+ + ) 

hold 
(5.20) 1,( , , ( ), ) ( , , ( ), )n n nl n nl n n nl n nl

i i k i i i kif t x y x r f t x y x rν ν ν ν
θ θ θ θ+ = ,   1,..., ,sν =  

(5.21)  1,
1

( ) ( , , ( ), ( ),
s

n n n nl n nl n
i m i i i kE C g t x y x y x rν ν ν ν

θ θ θ
ν

µ +
=

∇∑ )nl
i

)i m i i i kE C g t x y x y x rν ν ν ν
θ θ θ

ν

µ
=

= ∇∑ 0,...,m q
1

( ) ( , , ( ), ( ),
s

n n n nl n nl n nl
i ,   = , 

for each , 1,...,i M= 1,...,j N= , where  corresponds to , by selecting only 
 appropriate points in U  among the 

nly nl
kr

( 1)s q+ + +1 ( 1) 2s q+ + +  ones defining .  
Then the control 

nl
kr

1
nl

kr +  clearly yields the same discrete state and functionals as  and 
thus satisfies Step 5. Therefore, the constructed control  is of Gamkrelidze type for 
every  (note also that by the construction of the control 

nl
kr

nl
kr

k 1, 1n l
kr
+ +  in Step 3 if the 

discretization is refined, this control is still of Gamkrelidze type, but w.r.t. to the new 
elements ). Finally, discrete Gamkrelidze controls computed as above can then be 
approximated by subblockwise (w.r.t. t ) constant classical controls using a standard 
procedure (see [8]). 

1n
iE +

 
 
6   Numerical examples 
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Let  and consider the following examples. : : (0,1)IΩ = =
 
Example 1. Define the reference control and state 

(6.1) 
1, if 0 0.5,

( ) :
1 2( 0.5)(0.2 0.4), if 0.5 1,

t
w x

t x t
≤ ≤⎧

= ⎨ − − + <⎩ ≤
 ( ) : (1 ) ,ty x x x e−= −  

and consider the following optimal control problem, with state equation 
(6.2) 0.5 (1 )t xxy y y y w w y− + + + −  

0.5 [ (1 ) 2] sin sin 3( ),ty y y x x e y y w w−= + + − − + + − + −  
(6.3)    on Σ ,   ( , ) 0y x t = (0, ) (1 )y x x x= −    in Ω , 
nonconvex control constraint set 
(6.4)   (or : [0,0.25] [0.75,1]U = ∪ : {0,1}U = , on/off type control), 
and nonconvex cost functional to be minimized 
(6.5) 22 2

0 ( ) : {0.5[( ) ] ( 0.5) 0.25}
Q

G u y y y y w dxdt= − + ∇ −∇ − − +∫  

One can easily verify that the unique optimal relaxed control  is given by r
(6.6) ( , ){1}: ( , )r x t w x t= , ( , ){0}: 1 ( , ){1},r x t r x t= −  
for x Q∈ , with optimal state y  and cost , and we see that  is concentrated at the 
two points 1 and ;  is classical (

0 r
0 r 1≡ ) if  0 0t .5≤ ≤ , and non-classical otherwise. 

Note also that the optimal cost value 0  can be approximated as closely as possible by 
using a classical control, as W  is dense in R , but cannot be attained for such a 
control because the control values (0.25,0.75)u∈ , or (0,1)u∈ , (of w ) do not belong 
to U . 

The Algorithm, without penalties, was applied to this problem using the 
midpoint integration rule on each interval , with step sizes , n

iE ⊂Ω 1/100h t= ∆ = θ -
scheme parameter 1θ =  (implicit Euler method), Armijo parameters , and 
constant initial control 

' ' 0.b c= = 5
( , ) : 0.5( )nr x t0 0 1δ δ= + ( , )x t Q∈, , where 0δ , 1δ  are the Dirac 

measures at 0 and 1. After 90 iterations in k , we obtained the results: 
(6.7)    5

0 ( ) 3.471 10 ,n n
kG r −= ⋅ 41.480 10kd −= − ⋅ ,   35.722 10kη

−= ⋅ , 
where  was defined in the Algorithm and kd kη  is the discrete max state error at the 
points . Figure 1 shows the last control probability function, for  
(cross-section), and we have 

( , )ih j t∆ 0.5x =

0 ( , ) : ( , ){1} 1 ( , )n
k 1p x t r x t p x t= = − ; the other cross-

sections are similar. Figure 2 shows the last computed state ( y≈ ). 
 
Example 2. We introduce the equality state constraint 
(6.8)  1( ) : 0,

Q
G w ydxdt= =∫

in Example 1. The continuous relaxed problem is feasible, as , 
, where 

1 1( ) 0.125 0G r ≈ >

1 0( ) 0.103 0G r ≈ − < 1 1( , ) :r x t δ= , 0 0( , ) :r x t δ= , ( , )x t Q∈ , and the function 

1 1 0( ) : ( (1 ) )G r rφ λ λ λ= + −  is continuous on [ . Applying here the penalized 
Algorithm and the same parameters as in Example 1, we obtained after 147 iterations 
in  the results: 

0,1]

k
(6.9) 2

0 ( ) 7.526070032039354 10 ,n nl
kG r −= ⋅    5

1 ( ) 6.667 10 ,n nl
kG r −= ⋅  

32.058 10 .kd −= − ⋅  
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Figure 3 shows the last control probability function 1( , ) : ( , ){1}nl
kp x t r x t= , for , 

and we have also 
0.5x =

0 ( , ) : ( , ){1} 1 ( , )nl
k 1p x t r x t p x t= = − . Figure 4 shows the last computed 

state. 
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Figure 1.  Example 1:  Last relaxed control probability , for 1p 0.5x =
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Figure 2.  Example 1:  Last state.
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Figure 3.  Example 2:  Last relaxed control probability , for 1p 0.5x =  
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Figure 4.  Example 2:  Last state.

 
Finally, the progressively refining version of the algorithm was also applied to 

the above problems, with successive step sizes 1/ 25, 1/ 50, 1/100h t= ∆ = , in three 
equal iteration periods, and yielded results of similar accuracy, but required here less 
than half the computing time. 
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