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Abstract. The idea to this paper is a framework for modifying a standard Discontinuous Galerkin

method for convection-diffusion-reaction-equations. We develop an abstract theory for the stability and

error-estimates in L
2-norms for a mixed formulation. For diverse test-functions we apply our abstract

theory. We apply the theory for the test-functions coming from analytical solutions of the adjoint problem.

With the new test-functions we could improve the approximation. At the end we discuss the application

of the new analytical test-functions.
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1. Introduction

Based on the idea for our future work we present a framework for the analytical test-
functions based on solving the adjoint-problem for the Discontinuous Galerkin method
in a mixed formulation, so called local Discontinuous Galerkin method (LDG-methods),
confer [17].

These local Discontinuous Galerkin methods are done with finite element test-functions,
confer [16]. We introduce the improved test-functions and derive local analytical solutions.
First we derive an abstract theory for the stability and the error-estimates in the L2-norm
for an arbitrary test-function. In a second part we apply our results with respect to the
analytical test-functions and derive the improved results for the approximate solutions.

We explain the new test-functions from the adjoint problem of the convection-diffusion-
reaction-equation. For these new test-functions we could develop an algebra for calculating
the new test-functions for the applications.

The paper is organized as follows. In section 2 we introduce our equation and our
underlying model for the equation. In the next section we describe the weak-formulation
for the mathematical problems. The variational-formulation is introduced in section 3.
In section 4 we introduce the Discontinuous Galerkin method in a mixed form for the
discretization. In section 5 we develop an abstract theory for the stability and error-
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estimates. Further we applied the theory for different test-spaces and introduce a local
analytical test-space in section 6. We discuss the possible applications and the advantages
for the new method.

Finally in section 7 we discuss our future works and the new results.

2. Mathematical model and mathematical equations

The mathematical model is based on a potential waste scenario of radioactive contam-
inants, which are transported and reacted with flowing groundwater in porous media,
confer [5], [6] and applied in our work [21]. The mathematical formulation of such models
are convection-diffusion-reaction-equations. We will concentrate us in our analysis of the
stability and error-estimates to the following convection-diffusion-reaction-equation with
initial- and boundary-values, given as

∂tR u + ∇ · (v u− a ∇u) + λ R u = f in ΩT , (1)

u(0) = u0 on Ω , (2)

where the parameter v is a smooth velocity, with ∇ · v = 0 , a is the diffusion-term,
given as a symmetric positive definite, bounded tensor and λ ≥ 0 is the constant decay-
rate, confer [25]. R ≥ 0 is a constant retardation-factor. The definition for the domains
are ΩT = Ω × [0, T ] where T > 0 and Ω ⊂ IRd and d is the space-dimension. For the
boundaries we have ΓT = Γ× (0, T ] where T > 0, where Γ = Γ1 ∪Γ2 ∪Γ3. The dependent
solution is u(x, t) ∈ C2(ΩT )∩C(ΩT ), where u : ΩT → IR . The initial conditions are given
as u(0) = u0 ∈ L2(Ω) , where u : Ω → IR.
The Dirichlet boundary-conditions are given as

u = g1 on Γ1
T , (3)

where g1 : Γ1
T → IR.

The Neumann boundary-conditions are given as

−a ∇ · n u = g2 on Γ2
T , (4)

where g2 : Γ2
T → IR.

The inflow and outflow conditions are given as :

(v − a ∇) · n u = v · n uΓ = g3 on Γ3,b
T , (5)

where g3 : Γ3
T → IR and b = in , out or no. We define the inflow part Γ3,in of the

boundary Γ2 for n(γ) · v(γ) < 0 for γ ∈ Γ3,in ⊂ Γ, we have the value uΓ(γ, t). The outflow
part is uΓ(γ, t) = u(γ, t) with γ ∈ Γ3,out ⊂ Γ. We set g3 = 0 for no inflow- and outflow
boundary Γ3,no and the boundary is Γ3,in ∪ Γ3,out ∪ Γ3,no = Γ3.

In the next section we describe the weak formulation of our equations, confer [9] and
[18].
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3. Variational formulation for the discretization methods

We use the variational formulation for the discretization methods, confer [18], and
describe our weak formulation. We focus us on the mixed method for our Discontinuous
Galerkin methods. With the weak-formulation we are flexible to introduce our modified
spaces and improve the error-estimates.

3.1. Variational formulation and weak-solutions

For the discretization methods we introduce the variational formulation and derive
the weak-solutions for the underlying convection-diffusion-reaction equation. The weak-
solutions allow us to decrease the derivation order of the solution and for our discretization
methods we could be used less smooth solutions, confer [7].

We applied the weak-formulation for the space variable and multiply with the variable
φ ∈ H1(Ω).

For the notation of the weak formulation we introduce the inner product L2(S), which
is denoted as (·, ·)S, and for S = Ω, we skip the S. We denote it for the scalar-functions

(u, φ)S =

∫

S

u φ ds , (6)

and for the vector-functions we have the inner-product :

(p, q)S =
d
∑

i=1

(pi, qi)S , (7)

where p = (p1, . . . , pd)
t and q = (q1, . . . , qd)

t are vectors. For a simpler notation we use
for the vector-functions also the same bracelets as for the scalar-functions.

We multiply the equation (1) with the test-function φ(x) and find u(x, t) ∈ H1(ΩT )
such that

∫

Ω

R ∂tu φ dx +

∫

Γ

(v · n u) φ ds −

∫

Ω

u (v · ∇φ) dx (8)

−

∫

Γ

(n · a∇u) φ ds +

∫

Ω

(a ∇u) · ∇φ dx +

∫

Ω

R λ u φ dx =

∫

Ω

f φ dx ,

for all φ(x) ∈ H1(Ω) .
We substitute the boundary-conditions in the equation (8). We obtain the following

formulations for the continuous form, confer [26].
Let u0 in H1(ΩT ) and satisfy u0 = g1 on Γ1 × [0, T ] .

Find u ∈ H1(ΩT ) such that :

u− u0 ∈ H1
0 (ΩT ) ,

(∂tu, φ) − (g2, φ)Γ2 − (u, v · ∇φ) + (a∇u,∇φ) + (λu, φ) = (f, φ) , (9)

for all φ(x) ∈ H1(Ω) . The initial conditions u0 = u(x, 0) on Ω are applied in the
time-integration, where we use explicit methods, confer [24]. The right hand side is
defined in f ∈ L2(ΩT ), and the boundaries are defined for g1 ∈ L2(H1/2(Γ1), [0, T ]) and
g2 ∈ L2(H−1/2(Γ2), [0, T ]).
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3.2. Weak formulation for a mixed method

We introduce the weak formulation for the mixed methods. This formulation is done
in the continuous space, we will apply the mixed method later for the discontinuous
space. We use therefore the notation p = a1/2 ∇u and could reformulate in a mixed
method. The diffusion-term is formulated in a mixed method for the further mixed
discretization methods. The solution is given by u(x, t) ∈ C2(Ω)×C1([0, T ]) and p(x, t) ∈

(C2(Ω) × C1([0, T ]))d for the classical formulation

∂tRu+ ∇ · v u−∇ · a1/2 p+Rλ c = f , in Ω , (10)

−a1/2 ∇u+ p = 0 , in Ω , (11)

u = g1 , on Γ1 ,

(v u− a1/2 ∇u) · n = g2 , on Γ2 ,

u(0) = u0 , in Ω .

We use equation (10) and formulate the weak solutions. We find
u(x, t) ∈ L2(H1(Ω), [0, T ]) and p(x, t) ∈ (L2(H1(Ω), [0, T ]))d for the formulation

∫

Ω

∂tRu φ dx +

∫

Γ

(v · n u) φ ds −

∫

Ω

u (v · ∇ φ) dx (12)

−

∫

Γ

(a1/2 p · n) φ ds +

∫

Ω

a1/2 p · ∇φ dx +

∫

Ω

Rλ u φ dx =

∫

Ω

f φ dx ,

−

∫

Γ

u (n · a1/2 χ) ds +

∫

Ω

u (∇ · a1/2 χ) dx +

∫

Ω

p · χ dx = 0 , (13)
∫

Ω

u(0) φ dx =

∫

Ω

u0 φ dx , (14)

u = g1 , on Γ1
T ,

(v u− a1/2 ∇u) · n = g2 , on Γ2
T ,

for all φ ∈ H1(Ω) and for all χ ∈ (H1(Ω))d .
The continuous situation is given in equation (12) and (13) we could apply the boundary

values for the equations and derive the following formulation

(∂tRu, φ) − (u, (v · ∇ φ)) (15)

+ (a1/2 p,∇φ) + (Rλ u, φ) = (f, φ) − (g2, φ)Γ2 ,

−(u, (∇ · a1/2 χ)) + (p, χ) = (g1, (n · χ))Γ1 , (16)

(u(0), φ) = (u0, φ) . (17)

In the next section we describe the weak-formulation with adequate trial- and test-
space, with respect to the discrete formulations for Discontinuous Galerkin method.

4. Discretization method with Discontinuous Galerkin methods

4.1. Broken sobolev spaces

In the following notation the multi-dimensional case for the Discontinuous Galerkin
methods is introduced.
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We use the triangulation Kh with h > 0 for the domain Ω and h is the cell-width. We
have for each sub-domain K ∈ Kh a Lipschitz boundary. The adjacent elements of Kh

could be lie on an edge or a face. E i
h is the set of all interior boundaries e of Kh and E b

h is the
set of all exterior boundaries e of Γ = ∂Ω, whereby Eh = E i

h∪E b
h . The exterior boundaries

could be imposed as Dirichlet-boundary E1
h on Γ1 or both as Neumann-boundary and as

inflow- and outflow boundaries E2
h on Γ2 .

We define the broken Sobolev-space by:

H l(Kh) = {v ∈ L2(Ω) : v|K ∈ H l(K) ∀K ∈ Kh} . (18)

where l ≥ 0 is the order of the Sobolev-space and we have the H l-norm:

||v||Hl(Ω) =

(

∑

K∈Kh

||v||2Hl(K)

)1/2

. (19)

The function in H l(Kh) are piecewise smooth.
We introduce the jumps across the edge e = ∂K1 ∩ ∂K2

[v] = (v|K2
)|e − (v|K1

)|e , (20)

and the averages on the interfaces are introduced as

{v} =
(v|K2

)|e + (v|K1
)|e

2
. (21)

For the boundary Γ we introduce the notation of the jumps and averages, confer [16]
and [17]

{v} = v|e . (22)

[v] =

{

0 , e ∈ ED
h

v , e ∈ EN
h

(23)

For our further proofs we use the following identity for the jumps:

[u v] = [u]{v} + {u}[u] . (24)

We define the orientation for the normal-vector from element K2 to element K1, see
figure 1.

K

K

1

2
n

Figure 1. The Orientation of the normal vector for the Element K1, K2.

We apply the bilinear-forms for the broken Sobolev-space. We apply the integration over
the elements and boundaries and rewrite the bilinear-forms with the following identities.
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Lemma 1 The identities for the bilinear-forms to the broken Sobolev-spaces over the
elements and boundaries are given as:

∫

Ω

R ∂tu φ dx =
∑

K∈Kh

(R u̇, φ)K , (25)

∫

Γ

(v · n u) φ ds =
∑

e∈Eh

({v · n u}, [φ])e , (26)

∫

Ω

u (v · ∇ φ) dx =
∑

K∈Kh

(u, v · ∇φ)K , (27)

∫

Γ

(a1/2 p · n) φ ds =
∑

e∈Eh

({a1/2 p · n}, [φ])e , (28)

∫

Ω

a1/2 p · ∇φ dx =
∑

K∈Kh

(a1/2 p,∇φ)K , (29)

∫

Ω

R λ u φ dx =
∑

K∈Kh

(R λu, φ)K . (30)

We derive the identities in the following proof.
Proof. The identities (25), (27), (29) and (30) are trivial, we rewrite the integration

over the whole domain in partial integrations over the partitions.
The identity (26) is rewritten by the boundary partitions as

∫

Γ

(v · n u) φ ds =
∑

K∈Kh

∑

e∈Eh∩e⊂∂K

(v · n uh, φ)e , (31)

where e ∈ Eh ∩ e ⊂ ∂K denote the edges of the element K.
We apply the jump-notation for the boundary-integrals with respect to the outer-normal

vector of each K2 element from the boundary e = ∂K2 ∩ ∂K1 such that
∑

K∈Kh

∑

e∈Eh∩e⊂∂K

(v · n u, φ)e (32)

=
∑

e∈Eh

∫

e

(v2 · n2 (u|K2
)|e φ|K2

+ v1 · n1 (u|K1
)|e φ|K1

) ds

=
∑

e∈Eh

([v · n u φ], 1)e ,

where the definition of the normal-vector n1 = −n2 and (u|K2
)|e is the value for the

element K2 in the edge e.
Further we use the definition of the jumps and get
∑

e∈Eh

([v · n u φ], 1) =
∑

e∈Eh

({v · n u}, [φ])e +
∑

e∈Eh

([v · n u], {φ})e . (33)

We now assume to have a smooth trial functions u and p, confer [16], [11], because of the

next step. We introduce the polynomial space where φ ∈ L2(Ω) and χ ∈ (L2(Ω))d and
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apply the Greens-formulation. For the smooth trial functions we defined for the jumps
the zero condition, because of the not defined flux, confer [14].

[u] = 0 , [p] = 0 . (34)

Therefore we rewrite the jumps as
∑

e∈Eh

([v · n u φ], 1)e =
∑

e∈Eh

({v · n u}, [φ])e . (35)

The same result we get with the term p
h

∫

Γ

(a1/2 p · n) φ ds =
∑

e∈Eh

({a1/2 p · n}, [φ])e . (36)

Further we could use the smoothness assumption for the solutions and the result of (34)
and so the fluxes are given by

hconv(u) = {u v n} , (37)

hdiff (w) = (a1/2 n {u}, {a1/2 p · n})t , (38)

where we have w = (u, p)t and we use in formulations the central fluxes. We rewrite the
formulations in the bilinear-forms.

We have to find u(t) ∈ L2(H
l(K), [0, T ]) and p(t) ∈ (L2(H

l(K), [0, T ]))d.
For t > 0

(R ∂tu, φ) −
∑

K∈Kh

(u, v · ∇φ)K +
∑

e∈Eh

(hconv(u), φ)e (39)

+
∑

K∈Kh

(a1/2 p,∇φ)K −
∑

e∈Eh

(hdiff (p), [φ])e + (R λ u, φ)

=
∑

e∈EN
h

(g2, φ)e + (f, φ) , φ ∈ H1(Kh) ,

(p, χ) +
∑

K∈Kh

(u,∇ · a1/2 χ)K −
∑

e∈Eh

(hdiff (u), [χ])e (40)

=
∑

e∈ED
h

(g1, χ · n)e , χ ∈ (H1(Kh))
d ,

and

(u(0), φ) = (u0, φ) , φ ∈ H1(Kh) , t = 0. (41)

We introduce the bilinear forms

A,C : V × V → IR , B : W × V → IR , D : W ×W → IR , (42)

F : V → IR , G : W → IR , (43)

where V = H l(K) and W = (H l(K))d.
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We have the formulation for the time-derivative

(u̇, φ) = (∂tu, φ) , (44)

and the bilinear-forms are given as

A(u, φ) = −
∑

K∈Kh

(u, v · ∇φ)K +
∑

e∈Eh

(hconv(u), [φ])e , (45)

B(p, φ) =
∑

K∈Kh

(a1/2 p,∇φ)K −
∑

e∈Eh

(hdiff (p), [φ])e , (46)

BT (u, χ) =
∑

K∈Kh

(u,∇ · a1/2 χ)K −
∑

e∈Eh

(hdiff (u), [χ])e , (47)

C(u, φ) = (R λ u, φ) , (48)

D(p, χ) = (p, χ) , (49)

F (φ) =
∑

e∈EN
h

(g2, φ)e + (f, φ) , (50)

G(χ) =
∑

e∈ED
h

(g1, χ · n)e . (51)

We formulate the equation (39) and (40) with the bilinear-forms (45) - (51).
Find u(t) ∈ V and p(t) ∈ W such that,

(R u̇, φ) + A(u, φ) +B(p, φ) + C(u, φ) = F (φ) , φ ∈ V , t > 0 , (52)

D(p, χ) +BT (u, χ) = G(χ) , χ ∈ W , t > 0 , (53)

(u(0), φ) = (u0, φ) , φ ∈ V , t = 0. (54)

4.2. Discrete formulation for local spaces

To apply the results for concrete spaces, we introduce the following local spaces. For
the following abstract stability and error-indicator we introduce a local space Q(K) with
arbitrary functions such that

Q(Kh) = {v ∈ L2(Ω) : v|K ∈ F(K) ∀K ∈ Kh} , (55)

where F is finite dimensional space (e.g. polynomials, exponential functions, etc.).
We have to find the unknowns p

h
(t) ∈ (L2(Q(Kh), [0, T ]))d

and uh(t) ∈ L2(Q(Kh), [0, T ]) as follows

(R u̇h, φ) + A(uh, φ) +B(p
h
, φ) + C(uh, φ) = F (φ) , φ ∈ Q(Kh) , t > 0 ,

D(p
h
, χ) +BT (uh, χ) = G(χ) , χ ∈ (Q(Kh))

d , t > 0 ,

(u(0), φ) = (u0, φ) , φ ∈ Q(Kh) , t = 0 ,

where the fluxes are defined as

ĥconv(uh) =

{

{uh v n} central differences

{uh v n} −
|v n|

2
[uh] upwind

, (56)

ĥdiff (wh) = (a1/2 n {uh}, {a
1/2 p

h
· n})t + Cdiff [(uh, ph

)t] , (57)
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where the flux-matrix Cdiff is given as

Cdiff =











0 −c1,2 . . . −c1,d+1

c1,2 0 . . . 0
...

... . . .
...

c1,d+1 0 . . . 0











=

(

0 −cT

c 0

)

, (58)

where c = (c1,2, . . . , c1,d+1)
T , and c1,i = c1,i((wh|K2

)|e, (wh|K1
)|e) is locally Lipschitz,

confer [16].
One could rewrite the diffusive-flux

ĥdiff (wh) = ( a1/2 n {uh} + c [uh] , {a
1/2 p

h
· n} − cT · [p

h
])T . (59)

We denote the bilinear forms for the discrete formulation

Â, Ĉ : Vh × Vh → IR , B̂ : Wh × Vh → IR , D̂ : Wh ×Wh → IR , (60)

F̂ : Vh → IR , Ĝ : Wh → IR , (61)

with the spaces Vh = Q(Kh) and Wh = (Q(Kh))
d. We could use the bilinear-forms given in

(44) - (51). The bilinear-form A is modified with the different convective flux, confer (56).

We have the bilinear-forms

Â(uh, φ) = −
∑

K∈Kh

(uh, v · ∇φ)K +
∑

e∈Eh

(ĥconv(uh), [φ])e , (62)

B̂(p
h
, φ) =

∑

K∈Kh

(a1/2 p
h
,∇φ)K −

∑

e∈Eh

(ĥdiff (ph
), [φ])e , (63)

B̂T (uh, χ) =
∑

K∈Kh

(uh,∇ · a1/2 χ)K −
∑

e∈Eh

(ĥdiff (uh), [χ])e , (64)

Ĉ(uh, φ) = (R λuh, φ) , (65)

D̂(p
h
, χ) = (p

h
, χ) , (66)

F̂ (φ) =
∑

e∈EN
h

(g2, φ)e + (f, φ) , (67)

Ĝ(χ) =
∑

e∈ED
h

(g1, χ · n)e , (68)

where the bilinear-forms C = Ĉ, D = D̂, F = F̂ , G = Ĝ are equal and the bilinear-form
Â, B̂ could be different because of using the numerical fluxes, e.g. up-wind.

We define the discrete formulation.
Find uh(t) ∈ Vh and p

h
(t) ∈ Wh such that

(R u̇h, φ) + Â(uh, φ) + B̂(p
h
, φ) + Ĉ(uh, φ) = F̂ (φ) , φ ∈ Vh , t > 0 , (69)

D̂(p
h
, χ) + B̂T (uh, χ) = Ĝ(χ) , χ ∈ Wh , t > 0 , (70)

(u(0), φ) = (u0, φ) , φ ∈ Vh , t = 0 . (71)

For the stability theorem we apply the next lemma for the proof. This lemma denotes
the anti-symmetry for the bilinear-form B̂ and this is used for the stability.
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Lemma 2 We have the bilinear-form B̂(p
h
, uh) as defined in equation (63) and we have

the solutions uh(t) ∈ Vh, ph
(t) ∈ Wh. We assume for the diffusive-flux the central-flux.

For such assumption we could proof the anti-symmetry of the bilinear-form B̂

B̂(p
h
, uh) = −B̂T (uh, ph

) . (72)

We proof the lemma 2 in the next step.
Proof. We have the formulation for the bilinear-form B̂(p

h
, uh)

B̂(p
h
, uh) =

∑

K∈Kh

(a1/2 p
h
,∇uh)K −

∑

e∈Eh

(ĥdiff (ph
), [uh])e ,

we apply the Greens-formula and derive the following results

B̂(p
h
, uh) = −

∑

K∈Kh

(∇ · a1/2 p
h
, uh)K +

∑

K∈Kh

∑

e∈Eh∩e⊂∂K

(a1/2 p
h
, uh)e

−
∑

e∈Eh

(ĥdiff (ph
), [uh])e ,

we use the identity (32) such that

B̂(p
h
, uh) = −

∑

K∈Kh

(∇ · a1/2 p
h
, uh)K +

∑

e∈Eh

([a1/2p
h
· n uh], 1)e

−
∑

e∈Eh

(ĥdiff (ph
), [uh])e ,

and we obtain the following equation and we apply the diffusive flux (57),

B̂(p
h
, uh) = −

∑

K∈Kh

(∇ · a1/2 p
h
, uh)K +

∑

e∈Eh

({a1/2p
h
· n}, [uh])e

+
∑

e∈Eh

([p
h
], {a1/2n uh})e −

∑

e∈Eh

({a1/2 p
h
· n} − cT · [p

h
], [uh])e ,

and we obtain the next equation and multiply and commute the last term.

B̂(p
h
, uh) = −

∑

K∈Kh

(∇ · a1/2 p
h
, uh)K +

∑

e∈Eh

({a1/2p
h
· n}, [uh])e

+
∑

e∈Eh

([p
h
], {a1/2n uh})e (73)

−
∑

e∈Eh

({a1/2 p
h
· n}, [uh])e +

∑

e∈Eh

(c [uh], [ph
])e .

We skip the equal terms and apply the E-fluxes of equation (57). We then obtain the
results for the bilinear-forms

B̂(p
h
, uh) = −

∑

K∈Kh

(∇ · a1/2 p
h
, uh)K +

∑

e∈Eh

< ĥdiff (uh), [ph
] >e

= −B̂T (uh, ph
) , (74)

this is the result of our lemma 2.
The next lemma 3 is used for the proof of lemma 2.
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Lemma 3 We use the Greens-Formula for the multi-dimensional case with uh ∈ Vh and
p

h
∈ Wh and n is the outer-normal vector at the edge e. For the formula we have the

formulation
∑

e∈Eh

(p
h
· n, uh)e =

∑

K∈Kh

(p
h
,∇uh)K +

∑

K∈Kh

(∇ · p
h
, uh)K . (75)

Proof. We use partial integration to proof the result. The proof is done in [8].
In the next section we proof the stability and derive the error-estimator for the new

test-functions.

5. Stability and error-estimates

We proof the stability and the error-estimates for general broken Sobolev spaces and
apply the special test-spaces. We apply the abstract results for different test-spaces,
e.g. the standard test-space (polynomial space) or the new test-space (local exponential-
space).

We will concentrate us in the next section to the boundary-values with g1 = 0 and
g2 = 0, these mean the trivial inflow and outflow boundaries.

The abstract theory is formulate in the following section.

5.1. Stability of the scheme

We will concentrate us to the multi-dimensional case and proof the stability for arbitrary
test-functions.

We derive the stability from the given bilinear-forms (69), (70) and (71).
For a simpler notation we define the error bilinear-form Eh for the further assumptions.

We add the equations (69) and (70) and obtain the following results

Eh(wh, ψ) := (R u̇h, φ) + Â(uh, φ) + B̂(p
h
, φ) (76)

+Ĉ(uh, φ) + D̂(p
h
, χ) + B̂T (uh, χ) ,

whereby wh = (uh, ph
)T and ψ = (φ, χ)T .

Applying the results (74) we obtain

Eh(wh, wh) = (R u̇h, uh) + ΘC(wh, wh) + (p
h
, p

h
) +R λ (uh, uh) . (77)

whereby ΘC(wh, wh) is given as

ΘC(wh, wh) =
∑

e∈Eh

([wh] , C [wh])e , (78)

for C we have

C =





c1,1 −cT

c 0



 , (79)

where the convective flux is a central flux for c1,1 = 0 and the upwind scheme is given by

c1,1 = |v·n|
2

. We denote c1,i = 0 for a 5 point central difference scheme for the diffusion
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flux, for i = 2, . . . , d + 1 and c1,i =
a
1/2

i−1

2
for a upwind scheme for the diffusive flux for

i = 2, . . . , d+ 1.
The flux-matrix fulfills the positivity of the bilinear-form ΘC(wh, wh)

Lemma 4 Suppose that C is given in (79) and wh ∈ Vh×Wh. Then we have the positivity
for the bilinear-form ΘC such that

ΘC(wh, wh) =
∑

e∈Eh

([wh] , C [wh])e ≥ 0 . (80)

For the proof we did the following transformation.
Proof. We proof the positivity for each e and such that

([wh] , C [wh])e ≥ 0 , (81)

We therefore apply the matrix C, given in (79), and obtain the results

([wh] , C [wh])e

=

∫

e

( [uh] c1,1 [uh] − uh c
T · p

h
+ pT

h
· c uh ) ds

=

∫

e

c1,1 [uh]
2 ds ≥ 0 , (82)

where c1,1 ≥ 0.
In the following lemma we present the identity between the derivation-notation and

jump-average-notation.

Lemma 5 We have the divergence free velocity ∇ · v = 0 and Dirichlet-boundaries. We
obtain the identity for the following terms

∑

K∈Kh

(uh, v · ∇uh)K =
∑

e∈Eh

(v · n {uh}, [uh])e . (83)

The identity is proofed as follows
Proof. We start with the left-hand side of equation (91) and apply further the Gauss-

theorem, confer [26] and rewrite the results with the jump-average-notation by using the
equation (33), such that

∑

K∈Kh

(uh, v · ∇uh)K =
∑

K∈Kh

(
v

2
· ∇u2

h, 1)K =
∑

K∈Kh

∑

e∈Eh∩e⊂∂K

(
v · n

2
u2

h, 1)e

=
∑

e∈Eh

v · n

2
([u2

h], 1)e =
∑

e∈Eh

(v · n {uh}, [uh])e . (84)

We follow the result for the stability as

Theorem 6 Suppose the bilinear-form Eh given in (77), the lemmas 4, 5 and the boundary-
conditions are given for g1 = 0 and g2 = 0. Then we have for the stability the inequality

Eh(wh, wh) ≥ R
1

2

∂

∂t
||uh(t)||

2
L2(Ω) + ΘC(wh, wh) (85)

+ ||p
h
||2(L2(Ω))d +R λ ||uh||

2
L2(Ω) ,
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The theorem 6 is proofed in the next step.
Proof. We estimate each term and derive the following error-estimates.
For the time-term we obtain the estimation

(R u̇h, uh) =

∫

Ω

R ∂tuh uh dx = R
1

2

∂

∂t
||uh||

2
L2
. (86)

For the convection-term we get the estimation

Â(uh, uh) = −
∑

K∈Kh

(uh, v · ∇uh)K +
∑

e∈Eh

(hconv(uh), [uh])e

= −
∑

e∈Eh

({v · nuh}, [uh])e + (hconv(uh), [uh])e

=

{

0 for central differences (E-Flux)
∑

e∈Eh
([uh],

|v ·n|
2

[uh])e for upwind

=
∑

e∈Eh

([uh], c11[uh])e ≥ 0 ,

where we use lemma 4.
For the mixed terms B̂ for the diffusion we obtain the estimation

B̂(p
h
, uh) + B̂T (uh, ph

) (87)

=
∑

K∈Kh

(a1/2 p
h
,∇uh)K −

∑

e∈Eh

(hdiff (ph
), [uh])e

+
∑

K∈Kh

(uh,∇ · a1/2 p
h
)K −

∑

e∈Eh

(hdiff (uh), [ph
])e

=
∑

K∈Kh

∑

e∈Eh∩e⊂∂K

(∇ · (a1/2 p
h
uh), 1)e

−
∑

e∈Eh

( (hdiff (uh), [uh])e + (hdiff (ph
), [p

h
])e )

=
∑

e∈Eh

( ([a1/2 p
h
uh], 1)e − (hdiff (wh), [wh])e )

=
∑

e∈Eh

( ({a1/2 n · ph} , [uh])e − ({uh} , [a1/2 n · p
h
])e

+({a1/2 n · ph} , [uh])e+ < {a1/2uh n}, [p
h
] >e) + ([wh], Cdiff [wh])e )

=
∑

e∈Eh

([wh], Cdiff [wh])e ≥ 0 ,

For the reaction term we get the estimation

C(uh, uh) = R λ

∫

Ω

uh uhdx = R λ||uh(t)||
2
L2(Ω) , (88)

For the mixed term D we get the estimation

D(p
h
, p

h
) =

∫

Ω

p
h
· p

h
dx = ||ph(t)||

2
(L2(Ω))d , (89)
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We add the terms (86) - (89), such that:

(R u̇h, uh) + Â(uh, uh) + B̂(p
h
, uh) + B̂T (uh, ph

)

+ C(uh, uh) +D(p
h
, p

h
)

≥ R
1

2

∂

∂t
||uh||

2
L2

+ ΘC(wh, wh)

+ R λ||uh(t)||
2
L2(Ω) + ||ph(t)||

2
(L2(Ω))d ≥ 0 , (90)

This is the result for the stability for arbitrary test-functions, confer equation (85) .
For the stability we estimate the right-hand side as follows

∫

Ω

f uh dx ≤ ||f ||2L2(Ω) ||uh||
2
L2(Ω) ≤

1

2 R λ
||f ||2L2(Ω) +

R λ

2
||uh||

2
L2(Ω) ,

where we use the Schwarz and Cronwall’s inequality.
To get the full discrete formulation we integrate over the time-interval (0, T ) such that

∫ T

0

Eh(wh, wh) dt +

∫ T

0

F (uh) dt = 0 , (91)

using the stability result of equation (90) we get the stability result over the time inte-
gration. Therefore we obtain the following corollary.

Corollary 7 We have the stability for the full-discrete form with the solutions uh ∈ V
and p

h
∈ W such that

R
1

2
||uh(T )||2L2(Ω) +

∫ T

0

ΘC(wh, wh) dt+

∫ T

0

||p
h
||2(L2(Ω))d dt

+

∫ T

0

R λ

2
||uh||

2
L2(Ω) dt ≤

1

2
||uh(0)||2L2(Ω) +

∫ T

0

1

2 R λ
||f ||2L2(Ω) dt . (92)

In the next section we derive the abstract error estimates.

5.2. Abstract error-estimates

The error estimates for the multi-dimensional convection-diffusion-reaction equation is
based on our former stability assumptions. We derive an abstract error-estimates for the
equation and apply the results in the next section.

The error-estimator for multi-dimensions for the convection-diffusion-reaction term is
given in the following theorem

Theorem 8 The error-estimates is given as follows
If u, p and uh, ph

are respective solutions of (10) and (11) and Ph is the L2-projection
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Ph : L2(V ) → Vh and Ph : L2(W ) →Wh. We get the error-estimates such that

R
1

2
||u(T ) − uh(T )||2L2(Ω) + (1 −

ε

2
)

∫ T

0

||p− p
h
||2L2(Ω)d dt (93)

+(1 −
ε

2
)

∫ T

0

ΘC(w − wh, w − wh) dt

+ (
Rλ

2
−
Rλ ε

2
−
ε

2
−
ε(v · v)

2
)

∫ T

0

||u− uh||
2
L2(Ω) dt

≤
c

2ε

∫ T

0

(

||Ph(u̇(t)) − u̇(t)||2L2(Ω) + ΘC(Ph(w) − w,Ph(w) − w) (94)

+
∑

e∈Eh

||v · n {Ph(u) − u}||2L2(e) +
∑

e∈Eh

||{a1/2n · {Ph(p) − p}||2L2(e)

+
∑

e∈Eh

||{a1/2 n (Ph(u) − u)}||(L2(e))d

+ α1(hK)−2
∑

K∈Kh

||Ph(u) − u||2L2(K) + α2(hK)−2
∑

K∈Kh

||Ph(u) − u||2L2(K)

+ α3(hK)−2
∑

K∈Kh

||Ph(p) − p||2(L2(K))d

)

dt

where c is a constant, independent from t. The functions αi(hK) with i = 1, 2, 3 and γ(he)
depend from the test-spaces and are specified in the application in the next sections.

The functions αi(hK) with i = 1, 2, 3 are used to estimate the derivation, such that one
could skip them to the left-hand-side. For the new test-functions same functions αi will
be vanish.

Lemma 9 We have the local inequality

α1(hK) ||v · ∇(Ph(u) − uh) − R λ (Ph(u) − uh)||L2(K)

≤ c ||P(u) − uh||L2(K) , uh ∈ Vh ,

α2(hK) ||∇(Ph(u) − uh)||(L2(K))d ≤ c ||P(u) − uh||L2(K) , uh ∈ Vh ,

α3(hK) ||a1/2 ∇ · (Ph(p) − p
h
)||L2(K) ≤ c ||P(p) − p

h
||(L2(K))d , p

h
∈ Wh ,

where c is a constant and hK is the diameter of the element K.

Proof. We could apply the equation general introduced in [11]. For the special test-
functions we apply the functions.

We proof the theorem 8 in the following section.
Proof. We have the following error-equation from the orthogonality relation, confer

[34], such that

Eh(w − wh,Ph(w) − wh) = 0 , (95)

where Ph(w) − wh ∈ Vh ×Wh and t ∈ (0, T ) .
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For the application of the error-estimates we reformulate the error-equation by enlarge
it with the projection-terms Ph such that

Eh(Ph(w) − wh,Ph(w) − wh) = Eh(Ph(w) − w,Ph(w) − wh) (96)

For the left-hand side of equation (96) we use the result of the stability in equation (85)
such that

Eh(Ph(w) − wh,Ph(w) − wh) (97)

≥ R
1

2

∂

∂t
||Ph(u(t)) − uh(t)||

2
L2(Ω) + ΘC(Ph(w) − wh,Ph(w) − wh)

+||Ph(p) − p
h
||2L2(Ω)d dt +

R λ

2
||Ph(u) − uh||

2
L2(Ω) ,

For the right-hand side of the equation (96) we get the following formulation using (77)

Eh(Ph(w) − w,Ph(w) − wh) (98)

= (R Ph(u̇) − u̇,Ph(u) − uh) + Â(Ph(u) − u,Ph(u) − uh)

+B̂(Ph(p) − p,Ph(u) − uh) + Ĉ(Ph(u) − u,Ph(u) − uh)

+D̂(Ph(p) − p,Ph(p) − p
h
) + B̂T (Ph(u) − u,Ph(p) − p

h
) ,

We estimate the special terms in the following step.
For the time-term we get

R (Ph(u̇) − u̇,Ph(u) − uh) (99)

≤ R (
1

2ε
||Ph(u̇) − u̇||2L2(Ω) +

ε

2
||Ph(u) − uh||

2
L2(Ω) )

where ε is constant and independent from time.
We estimate the flux-term with the central-fluxes in the terms Â and add the term ΘC

for the different up-winding.
For the flux-term we get the estimation

ΘC(Ph(w) − w,Ph(w) − wh) (100)

≤
1

2ε
ΘC(Ph(w) − w,Ph(w) − w) +

ε

2
ΘC(Ph(w) − wh,Ph(w) − wh)

For the term Â and Ĉ we have :

Â(Ph(u) − u,Ph(u) − uh) + Ĉ(Ph(u) − u,Ph(u) − uh) (101)

= −
∑

K∈Kh

(Ph(u) − u, v · ∇(Ph(u) − uh) − R λ (Ph(u) − uh))K

+
∑

e∈Eh

(v · n {Ph(u) − u},Ph(u) − uh])e ≤
1

2ε

∑

K∈Kh

α1(hK)−2||Ph(u) − u||2L2(K)

+
ε

2

∑

K∈Kh

α1(hK)2|| − v · ∇(Ph(u) − uh) +R λ (Ph(u) − uh)||
2
L2(K)

+
1

2ε

∑

e∈Eh

||v · n {Ph(u) − u}||2L2(e) +
ε

2

∑

e∈Eh

||[Ph(u) − uh]]||
2
L2(e)
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For the terms B̂ and B̂T we obtain

B̂(Ph(p) − p,Ph(u) − uh) (102)

=
∑

K∈Kh

(a1/2 Ph(p) − p,∇(Ph(u) − uh))K

−
∑

e∈Eh

({a1/2 n · Ph(p) − p}, [Ph(u) − uh)])e ,

≤
1

2ε

∑

K∈Kh

α2(hK)−2||a1/2(Ph(p) − p)||2(L2(K))d

+
ε

2

∑

K∈Kh

α2(hK)2||∇(Ph(u) − uh)||
2
(L2(K))d

+
1

2ε

∑

e∈Eh

||{a1/2n · {Ph(p) − p}||2L2(e) +
ε

2

∑

e∈Eh

||[Ph(u) − uh]]||
2
L2(e) ,

where ε is a constant and independent from the time t. We use the Cromwall’s Lemma,
confer [18].

B̂T (Ph(u) − u,Ph(p) − p
h
) (103)

=
∑

K∈Kh

(Ph(u) − u, a1/2∇ · (Ph(p) − p
h
))K

−
∑

e∈Eh

({a1/2 n (Ph(u) − u)}, [Ph(p) − p
h
])e ,

≤
1

2ε

∑

K∈Kh

α3(hK)−2||Ph(u) − u||2L2(Ω)

+
ε

2

∑

K∈Kh

α3(hK)2||a1/2∇ · (Ph(ph
) − p

h
)||2L2(K)

+
1

2ε

∑

e∈Eh

||{a1/2 n (Ph(u) − u)}||2(L2(e))d +
ε

2

∑

e∈Eh

||[Ph(p) − p
h
]||2(L2(e))d ,

where ε is a constant and independent from the time t. We use the Cromwall’s Lemma,
confer [18].

We estimate the mixed term in the following inequality

(Ph(p) − p,Ph(p) − p
h
) (104)

≤
1

2ε
||Ph(p) − p||2(L2(Ω))d +

ε

2
||Ph(p) − p

h
)||2(L2(Ω))d ,

where ε is a constant.
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We get the result for the right-hand-side

Eh(Ph(w) − w,Ph(w) − wh) (105)

≤ R (
1

2ε
||Ph(u̇(t)) − u̇(t)||2L2(Ω) +

ε

2
||Ph(u) − uh||

2
L2(Ω) )

+
1

2ε
ΘC(Ph(w) − w,Ph(w) − w) +

ε

2
ΘC(Ph(w) − wh,Ph(w) − wh)

+
1

2ε

∑

K∈Kh

α1(hK)−2||Ph(u) − u||2L2(Ω)

+
ε

2

∑

K∈Kh

α1(hK)2|| − v · ∇(Ph(u) − uh) +Rλ(Ph(u) − uh)||
2
L2(K)

+
1

2ε

∑

K∈Kh

α2(hK)−2||Ph(u) − u||2L2(Ω) +
ε

2

∑

K∈Kh

α2(hK)2||a1/2∇ · (Ph(p) − p
h
)||L2(K)

+
1

2ε

∑

K∈Kh

α3(hK)−2||a1/2(Ph(p) − p)||2(L2(Ω))d +
ε

2

∑

K∈Kh

α3(hK)2||∇(Ph(u) − uh)||
2
(L2(K))d

+
1

2ε

∑

e∈Eh

||v · n {Ph(u) − u}||2L2(e) +
ε

2

∑

e∈Eh

||[Ph(u) − uh]]||
2
L2(e)

+
1

2ε

∑

e∈Eh

||{a1/2n · {Ph(p) − p}||2L2(e) +
ε

2

∑

e∈Eh

||[Ph(u) − uh]]||
2
L2(e)

+
1

2ε

∑

e∈Eh

||{a1/2 n (Ph(u) − u)}||2(L2(e))d +
ε

2

∑

e∈Eh

||[Ph(p) − p
h
]||2(L2(e))d

+
1

2ε
||Ph(p) − p||2(L2(Ω))d +

ε

2
||Ph(p) − p

h
)||2(L2(Ω))d .

We set the left-hand-side equal to the right-hand-side. We apply the lemma 9 to move
the new terms Ph(·) − (·h) to the left-hand-side such that:

R
1

2

∂

∂t
||Ph(u(t)) − uh(t)||

2
L2(Ω) + (1 −

ε

2
) ΘC(Ph(w) − wh,Ph(w) − wh) (106)

+(1 −
ε

2
) ||Ph(p) − p

h
||2L2(Ω)d dt + (

Rλ

2
−
Rλ ε

2
−
ε

2
−
ε(v · v)

2
) ||Ph(u) − uh||

2
L2(Ω)

≤
1

2ε

(

R ||Ph(u̇(t)) − u̇(t)||2L2(Ω) + ΘC(Ph(w) − w,Ph(w) − w)

+
∑

K∈Kh

α1(hK)−2 ||Ph(u) − u||2L2(Ω) +
∑

K∈Kh

α2(hK)−2 ||Ph(u) − u||2L2(Ω)

+
∑

K∈Kh

α3(hK)−2||Ph(p) − p||2(L2(Ω))d

+
∑

e∈Eh

||v · n {Ph(u) − u}||2L2(e) +
∑

e∈Eh

||a1/2n · {Ph(p) − p}||2L2(e)

+
∑

e∈Eh

||{a1/2 n (Ph(u) − u)}||2(L2(e))d

)

.
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We use the inequality for the left-hand-side

||Ph(u) − uh||
2
L2(Ω) ≥ ||u− uh||

2
L2(Ω)|| − ||u− Ph(u)||

2
L2(Ω) ,

where we have the similar result for p and the bilinear-form ΘC and get the error-estimates
after skip the terms Ph(·) − (·) to the right-hand-side :

R
1

2

∂

∂t
||u(t) − uh(t)||

2
L2(Ω) + (1 −

ε

2
) ΘC(w − wh, w − wh) (107)

+(1 −
ε

2
) ||p− p

h
||2L2(Ω)d dt + (

Rλ

2
−
Rλ ε

2
−
ε

2
−
ε(v · v)

2
) ||u− uh||

2
L2(Ω)

≤
1

2ε

(

R ||Ph(u̇(t)) − u̇(t)||2L2(Ω) + ΘC(Ph(w) − w,Ph(w) − w)

+
∑

K∈Kh

α1(hK)−2 ||Ph(u) − u||2L2(K) +
∑

K∈Kh

α2(hK)−2 ||Ph(u) − u||2L2(K)

+
∑

K∈Kh

α3(hK)−2 ||Ph(p) − p||2L2(K)

+
∑

e∈Eh

||v · n {Ph(u) − u}||2L2(e) +
∑

e∈Eh

||{a1/2n · {Ph(p) − p}||2L2(e)

+
∑

e∈Eh

||{a1/2 n (Ph(u) − u)}||2(L2(e))d

)

.

We integrate the both side over the time and use the projection-result, confer [11], such
that

u(0) − uh(0) = 0 . (108)

We integrate over the time and use the result of equation (108), such that we get the
error-estimates for the full discretization

R
1

2
||u(T )− uh(T )||2L2(Ω) + (1 −

ε

2
)

∫ T

0

ΘC(w − wh, w − wh) dt (109)

+(1 −
ε

2
)

∫ T

0

||p− p
h
||2L2(Ω)d dt + (

Rλ

2
−
Rλ ε

2
−
ε

2
−
ε(v · v)

2
)

∫ T

0

||u− uh||
2
L2(Ω) dt

≤
1

2ε

(

∫ T

0

||Ph(u̇(t)) − u̇(t)||2L2(Ω) dt

+

∫ T

0

ΘC(Ph(w) − w,Ph(w) − w) dt +

∫ T

0

R λ||Ph(u) − u||2L2(Ω) dt

+

∫ T

0

∑

K∈Kh

α1(hK)−2||Ph(u) − u||2L2(K) dt +

∫ T

0

∑

K∈Kh

α2(hK)−2||Ph(u) − u||L2(K) dt
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+

∫ T

0

∑

K∈Kh

α(hK)−2
3 ||Ph(p) − p||2(L2(K))d dt

+

∫ T

0

∑

e∈Eh

||v · n {Ph(u) − u}||2L2(e) dt +

∫ T

0

∑

e∈Eh

||{a1/2n · {Ph(p) − p}||2L2(e) dt

+

∫ T

0

∑

e∈Eh

||{a1/2 n (Ph(u) − u)}||2(L2(e))d dt
)

where the functions αi are derived for the special test-spaces. We apply the lemma 9 and
integrate over the time t.

In the next section we apply the error-estimates for the special test-spaces.

6. Application of the error-estimates

6.1. Application for standard polynomial-space

In the first application for the discontinuous finite element space we apply the polyno-
mial spaces.

Let Ω ⊂ IRd be a polynomial domain and let Kh be a regular finite element partition
of Ω. We define

Dr(Kh) = {v ∈ L2(Ω) : v|K ∈ Pr(K) ∀K ∈ Kh} , (110)

where Pr is the set of polynomials of degree at most r on K.
We introduce the following projection as an Galerkin-approximation for the L2-norm,

confer [34]

Lemma 10 Let the projection Ph : L2 → Pr be the L2-orthogonal projection-operator. In
the case that Ω is a rectangular domain and Th is a Cartesian product of uniform grids
in each of the coordinate directions and for r even we obtain

||Ph(u) − u||L2(Ω) ≤ c hr+1 ||u||Hr+1(Ω) ,
∑

e∈Eh

||[Ph(u) − u]||L2(e) ≤ c hr+1/2 ||u||Hr+1(Ω) ,

∑

e∈Eh

||{Ph(u) − u}||L2(e) ≤ c hr+3/2 ||u||Hr+2(Ω) ,

where c depending on r. We have be the similar result for p.

Proof. The proof is done in [11] and [16].
For the polynomial test-space we have the following estimates for the functions αi.

Lemma 11 We have the local inequality for the polynomial-space Vh = Pr and Wh =
(Pr)d:

||∇(Ph(u) − u)||(L2(K))d ≤ c h−1 ||P(u) − u||L2(K) , u ∈ Vh , (111)

||[Ph(u) − u]||L2(e) ≤ c h−1/2||Ph(u) − u||L2(K) , u ∈ Vh , (112)

where we get α1(hK) = α2(hK) = α3(hK) = hK .
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Proof. The proof is done in [15].
We derive the error-estimates in the following theorem 12.

Theorem 12 Error-Estimates for the polynomial space, where h is the diameter of the
element. We have the estimates for the terms such that

R
1

2
||u(T )− uh(T )||2L2(Ω) + (1 −

ε

2
)

∫ T

0

ΘC(w − wh, w − wh) dt (113)

+(1 −
ε

2
)

∫ T

0

||p− p
h
||2L2(Ω)d dt + (

Rλ

2
−
Rλ ε

2
−
ε

2
−
ε(v · v)

2
)

∫ T

0

||u− uh||
2
L2(Ω) dt

≤
1

2ε

(

h2r ||u||2Hr+1(Ω) + h2r ||p||2(Hr+1(Ω))d

)

.

Proof. We use the lemma 10 and get the equation.
We have a suboptimal error-estimates because we loose one order of the polynoms.

That means we investigate one order more to have the error-estimates of r.
We could improve our results with an approach in the test-spaces, by using analytical

solutions, so that we obtain improved error-estimates. In the next section we get results
of the analytical test-functions.

6.2. Application for special function spaces with respect to local analytical

solutions

In the next subsection we derive the analytical solutions for the new test-functions.

6.2.1. Motivation for the new test-spaces

The motivation for the new test-spaces came from the idea to improve the local behavior
of the test-functions. Standard test-functions like polynomes do not respect the local
character.

To have a local behavior of the solutions we use the ideas of the adjoint-problems. They
are done in the ELLAM-schemes [19]. We use these ideas for the space-terms and solve
the locally adjoint problems for the space dimensions.
We concentrate us on the convection-reaction-equation, given as

−
∑

K∈Kh

(uh, v · ∇φ)K + (uh, R λφ) =
∑

K∈Kh

(uh,−v · ∇φ+R λ φ) = 0 , (114)

where uh, φ ∈ Vh and solve the adjoint local equation for the convection-reaction in space

−v · ∇φ+R λ φ = 0 , (115)

where the initial condition is φ(0) = φ0. We derive the local solution of the equation (115)
the next subsection.

6.2.2. Local test-functions in space for one dimension

We derive the one-dimensional solutions for the local convection-reaction equation,
given as adjoint problem

−v ∂xφ+R λ φ = 0 , (116)
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where by φ(0) = a0 is a constant.
The equation (116) is solved exactly and the solution is denoted with respect to the

velocity v ∈ IR and v 6= 0

φanal,i(x) = a0







exp(−β (xi+1/2 − x)) v > 0

exp(−β (x− xi−1/2)) v < 0
, (117)

where β = R λ
|v|

,

φnew,i = φanal,i(x) , (118)

where xi−1/2 < x < xi+1/2.
The local solution are applied as analytical weight with 0 ≤ φanal,i(x) ≤ 1.
For this test-function we have one freedom-degree, so that we could use only a constant
initial condition.

For linear initial-conditions we use the analytical test-function and multiply it with the
standard-test-function of first order.

Such that

φnew,i = φstand,i(x) φanal,i(x) , (119)

whereby the standard test-functions are given as polynomial-functions
φstand(x) = {1, x, x2, . . .}.

The test-functions are used for the cases of |v| >> λ ≥ 0 for the case v = 0 we use the
standard test-functions, confer [16].

So we improve it for constant cell impulses. To present the test-functions we get the
next figures 2 and 3 for two extreme cases : λ << v and for λ = v.
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Figure 2. Local test-functions constructed with analytical solution and constant initial
condition.
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Figure 3. Local test-functions constructed with analytical solution and linear initial con-
dition.

6.2.3. Local test-functions in space for two dimension

For two dimensions we have the possibilities of the operator splitting methods and the
coupled solutions with Laplacian-Transformation. The solution is given for a rectangular-
grid.

−v1∂xφ− v2∂yφ+Rλφ = 0 , (120)

where by φ(0, 0) = a0.
We get the solution by operator-splitting, confer [28] ,

−v1 ∂xφ = −R
λ

2
φ , φ(0, y) = a

1/2
0 , (121)

−v2 ∂yφ = −R
λ

2
φ , φ(x, 0) = a

1/2
0 , (122)

where by φ(0, 0) = a0.
We get the solutions :

φanal,i(x) =







exp(−β1(xi+1/2 − x)) v1 > 0

exp(−β2(x− xi−1/2)) v1 < 0
, (123)

φanal,i(y) =







exp(−β1(yi+1/2 − y)) v2 > 0

exp(−β2(y − yi−1/2)) v2 < 0
, (124)

where β1 = Rλ
2|v1|

and β2 = Rλ
2|v2|

,

φanal,i(x, y, t) = a0 φanal,i(x) φanal,i(y) , (125)
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where xi−1/2 < x < xi+1/2 and yi−1/2 < y < yi+1/2.

For linear initial-conditions we use the analytical test-function and multiply it with the
standard-test-function of first order.

Such that

φnew,i(x, y) = φstand,i(x, y) φanal,i(x, y) , (126)

where the standard test-functions are the polynomial functions.
In the next section we apply the new test-functions which are analytical for the lo-

cal convection-reaction-equation. For these new functions we could derive a new error-
analysis.

6.2.4. Error-estimates for the new test-functions with analytical test-functions

in one dimension

We derive in the following section the error-estimates for our analytical solutions.
The idea came from the infimum of the error between the exact and the improved

equations.
We use for φ ∈ Vh our new test-space F is as follows

Fi = {exp(−βx), x exp(−βx), . . . , xi exp(−βx)} , (127)

where we assume the one-dimensional problem, and β = Rλ
|v|

and we transform our local
coordinates to 0 < x < h.

We present the following lemma for the exponential test-functions.

Lemma 13 Let the projection Ph : L2 → Fi, with all i ≥ 0, a projection-operator to the
finite space of the exponential-functions.

Such that for F0 = {exp(−βx)}

||Ph(u) − u||L2(K) ≤ c h ||u||H1(K) , (128)

and for F1 = {exp(−βx), x exp(−βx)}

||Ph(u) − u||L2(K) ≤ c h2 ||u||H2(K) , (129)

and for F2 = {exp(−βx), x exp(−βx), x2 exp(−βx)}

||Ph(u) − u||L2(K) ≤ c h3 ||u||H3(K) , (130)

and for Fi = {exp(−βx), x exp(−βx), . . . , xi exp(−βx)}

||Ph(u) − u||L2(K) ≤ c hi+1 ||u||Hi+1(K) , (131)

where i ≥ 2. For the proof we use the result of lemma 15.
We have also the result with p.

For the proof we could use the following lemma introduced in [15] for the projection-
function. We rewrite the expansion with the new basis-function and apply the Taylor
expansion coefficient of the polynomial expansion. Therefore we could estimate our error
in the shape of the derivation of the function u.



Mixed discretization methods 25

Lemma 14 We have the polynomial base 1, x, x2, . . . and the exponential base F =
{1, exp(−βx), x exp(−βx), . . .. The Taylor-expansion based on the polynomial-space is
applied for the exponential space as follows :

The Taylor-expansion with the polynomial-space are given as

u(x) = c01 + c1(x− a) + c2(x− a)2 + . . . , (132)

u(x) = T i
pu+Ri

pu (133)

T i
pu = c01 + c1(x− a) + c2(x− a)2 + . . .+ ci(x− a)i (134)

Ri
pu = c ci+1(x− a)i+1 (135)

ci =
1

i!

∂iu

∂xi
(a) (136)

where c is a constant.
The Taylor-expansion with the exponential-space are given as

u(x) = c̃0 exp(−β(x− a)) + c̃1(x− a) exp(−β(x− a)) (137)

+c̃2(x− a)2 exp(−β(x− a)) + . . . ,

u(x) = T i
eu+Ri

eu , (138)

T i
eu = c̃0 exp(−β(x− a)) + c̃1(x− a) exp(−β(x− a)) (139)

+c̃2(x− a)2 exp(−β(x− a)) + . . .+ c̃i(x− a)i exp(−β(x− a)) ,

Ri
eu = c c̃i+1 exp(−β(x− a))(x− a)i+1 , (140)

c̃i =
1

i!
(βi exp(−βa)u(a) + βi exp(−βa)

∂u

∂x
(a) + . . .+ exp(−βa)

∂iu

∂xi
(a))

whereby c is a constant.

Proof. We use the following application of the Taylor-expansion

exp(β(x− a))u(x) = c̃01 + c̃1x + c̃2x
2 + . . . , (141)

We use the term-wise expansion such that :

c̃0 = u(a) , (142)

c̃1 = βu(a) +
∂u

∂x
(a) , (143)

. . .

c̃i = βiu(a) + βi−1∂u

∂x
(a) + . . .+

∂iu

∂xi
(a) . (144)

We could proof the lemma 15 by using the idea described in [15].
In the following we use the exponential functions and set T = Te and Re = R

Lemma 15

||Ph(u) − u||2L2(K) ≤ c ||R(u)||2L2(K), (145)

where R(u) is the remainder of the Taylor-formula for the solution u and c is a constant.

||R(u)||2L2(K) ≤ c h2(i+1) ||u||2Hi+1(K) , (146)

where i ≥ 0 is the order of the test-space Fi.
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We proof the lemma with introducing the Taylor-expansion.
Proof. We use the Taylor-expansion for the error-estimate to derive the remainder and

use the projection result Ph(T (u)) = T (u) such that

||Ph(u) − u||2L2(K) = ||Ph(T (u)) − T (u) + Ph(T (R)) − T (R)||2L2(K) (147)

= ||Ph(T (R)) − T (R)||2L2(K) ≤ ||R(u)||2L2(K) , (148)

where we use the projection of the exact solution
The remainder is given as

||R(u)||2L2(K) = c ||c̃i+1||
2
L2(K)|| exp(−βx)xi+1||2L2(K) , (149)

where c is a constant.

||c̃i+1||
2
L2(K) = ||c̃i+1(u,

∂u

∂x
, . . . ,

∂i+1u

∂xi+1
)||2L2(K) = ||u||2Hi+1(K) , (150)

|| exp(−βx)xi+1||2L2(K) ≤ h2(i+1) , (151)

We use the results such that we have the estimates

||Ph(u) − u||2L2(K) ≤ c h2(i+1) ||u||2Hi+1(K) , (152)

The jumps and averages are estimated with the next lemmas.
We derive the estimate for the jump :

Lemma 16 Let the projection Ph : L2 → Fi, with i ≥ 0, a projection-operator to the
finite space of the exponential-functions.

||[Ph(u) − u]||L2(e) ≤ hi+1/2 ||u||Hi+1(K) , (153)

Proof. Confer the proof in [15].
We have the estimation between the jump value [Ph(u)] and the original value Ph(u)

with the equation :

||[Ph(u) − u]||2L2(e) = ||Ph((u|K2
)|e) − (u|K2

)|e − Ph((u|K1
)|e) + (u|K1

)|e||
2
L2(e)

≤ c h−1
K

∫ hK

0

||Ph((u|K)|e) − u||2L2(K) dx

≤ c h−1
K ||Ph(u) − u||2L2(K) ≤ h2i+1

K ||u||Hi+1(K) (154)

where we for the next results hK = h.
We derive the estimate for the average :

Lemma 17 Let the projection Ph : L2 → Fi, with i ≥ 0, a projection-operator to the
finite space of the exponential-functions.

||{Ph(u) − u}||2L2(e) ≤ h2i+1||u||2Hi+1(K) , (155)
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Proof. Confer the proof-idea in lemma 16.
For the derivations we could use the results for the analytical test-function to skip the

derivation of the convection-term.

Lemma 18 We use the local solution of the test-function such that

α1(hK) ||v
∂

∂x
(Ph(u) − uh) +R λ (Ph(u) − u)||2L2(K) = 0 , uh ∈ Vh (156)

where we have α1(hK) = 0. We have fulfill the equation for the case r = 1 .

Proof.
We use our analytical solution of the test-functions φ for the solution u and get :
We use the analytical function for the test-functions given in 116 and fulfill our equation

−v
∂

∂x
ũ+ R λ ũ = 0 (157)

where ũ = Ph(u) − uh.
Therefore we could skip the derivation such that we have an improved error-estimates for
the convection-term.

We use the inequality or the next terms of coming from the diffusion-term.

Lemma 19 We apply the inequality for the derivation and get

α2(hK) ||
∂

∂x
(Ph(u) − uh)||

2
L2(K) ≤ ||Ph(u) − uh||

2
L2(K) , uh ∈ Vh (158)

where we have α2(hK) = hk and increase the order of the solution p. One could balance
the order of the error-estimates between uh and ph.

We obtain then the result

α3(he) ||a
1/2 ∂

∂x
(Ph(p) − ph)||

2
L2(K) ≤ ||Ph(p) − ph||

2
H1(K) , ph ∈ Wh (159)

where we have α3(hK) = 1.
The idea is to increase the order for the ph solutions to obtain an optimal error-estimate

for the uh solutions.

Proof.
The proof is done in [34].

We could the use the results and derive the error-estimates for the new test-space.
The sub-optimal error-estimates is given as: Error-Estimates for the polynomial space,

where h is the diameter of the element. We have the estimates for the terms such that

Theorem 20 We denote the error-estimates for the one-dimensional convection-diffusion-
reaction-equation as

R
1

2
||u(T ) − uh(T )||2L2(Ω) + (1 −

ε

2
)

∫ T

0

ΘC(w − wh, w − wh) dt (160)

+(1 −
ε

2
)

∫ T

0

||p− ph||
2
L2(Ω) dt + (

Rλ

2
−
Rλ ε

2
−
ε

2
−
ε v2

2
)

∫ T

0

||u− uh||
2
L2(Ω) dt

≤
c

2ε

∫ T

0

h2r+1
(

||u||2Hr+1(Ω) + ||p||2Hr+2(Ω)

)

dt .
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where c and ε are constants independent from h and t. We present the proof for r = 1.

Proof.
We use the lemmas 18 and 19 and get the reduced order by balancing between uh and

ph and skip the inequality of the derivatives uh.

We obtain sub-optimal results for the error-estimates and could improve the order by
1/2. In the application we could balance between the smoothness of u and p and derive
sub-optimal error-estimates.

We could reach higher order results with this error-estimates for our applications.
Through the adequate test-functions we approximate the different scales for the con-
vection and reaction term. The improvement of this new approach are applications in our
large scale problems with less artifical errors.

In the next section we discuss our next works in this context.

7. Conclusions

We discuss a new discretization method based on the local Discontinuous Galerkin
method (LDG) with improved test-functions. We derive the stability and the error-
estimates for the new discretization method. The new test-functions are derived from
the adjoint problem with respect to the standard test-functions. We introduce the error-
estimates for the new test-functions and obtain sub-optimal results.

In future works we would generalize our results for the different Discontinuous Galerkin
methods and apply our results for different test-cases.
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22. P. Frolkovič and J. Geiser. Discretization methods with discrete minimum and max-
imum property for convection dominated transport in porous media. Proceeding of
NMA 2002, Bulgaria, 2002.

23. J. Geiser. Numerical Simulation of a Model for Transport and Reaction of Radionu-
clides. Proceedings of the Large Scale Scientific Computations of Engineering and
Environmental Problems, Sozopol, Bulgaria, 2001.

24. J. Geiser. Gekoppelte Diskretisierungsverfahren für Systeme von Konvektions-
Dispersions-Diffusions-Reaktionsgleichungen. Doktor-Arbeit, Universität Heidelberg,
2004.

25. J. Geiser. R3T : Radioactive-Retardation-Reaction-Transport-Program for the Simu-
lation of radioactive waste disposals. Technical report, Institute for scientific compu-



30 Jürgen Geiser

tation, Texas A&M University, College Station, April 2004.
26. V. Girault, P.A. Raviart. Finite Element Methods for Navier-Stokes Equations.

Springer Series in computational mathematics 5, Springer-Verlag, Berlin, Heidelberg,
1986.

27. M.J. Johnson. The L2-Approximation Order of Surface Spline Interpolation. Mathe-
matics and Computations, Volume 70, Number 234, 719–737, 2000.

28. W.A. Jury, K. Roth. Transfer Functions and Solute Movement through Soil.
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