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Abstract. In this paper we design higher order time integrators for
systems of stiff ordinary differential equations. We could combine im-
plicit Runge-Kutta- and BDF-methods with iterative operator-splitting
methods to obtain higher order methods. The motivation of decoupling
each complicate operator in simpler operators with an adapted time-
scale allow us to solve more efficiently our problems. We compare our
new methods with the higher order Fractional-Stepping Runge-Kutta
methods, developed for stiff ordinary differential equations. The benefit
will be the individual handling of each operators with adapted standard
higher order time-integrators. The methods are applied to convection-
diffusion-reaction equations and we could obtain higher order results.
Finally we discuss the iterative operator-splitting methods for the appli-
cations to multi-physical problems.

Keywords. Operator Splitting method, Iterative Solver methods, Runge-
Kutta methods, Fractional-Stepping Runge-Kutta methods, Convection-Diffusion-
Reaction-equation.

1 Introduction

We motivate our studying on combining explicit and implicit time-discretization
methods with iterative Operator-Splitting methods as efficient discretization-
and solver-methods.

The iterative operator-splitting methods have their main advantage in com-
bining iterative and splitting behavior. On the one hand the iterative behavior
allows higher order results and on the other hand the splitting behavior allows
to decompose in simpler operator. For these simpler operator-equation one could
use standard implicit and explicit Runge-Kutta or BDF-method for solving the
stiff and non-stiff parts. The stability analysis is discussed for the commuta-
tive and non-commutative case of operators. Based on these contributions we
compare our proposed decoupling method with the explicit-implicit-methods
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(IMEX), that are used without splitting. We present that the results of our pro-
posed iterative operator-splitting method is more efficient and accurate as the
use of complicate combined time-stepping methods.

2 Mathematical Model

Our model equations are coming from a computational simulation of bio-remediation
[2] or radioactive contaminants [9], [8].

The mathematical equations are given by

∂t R c + ∇ · (vc − D∇c) = f(c) , (1)

f(c) = cp , chemical-reaction and p > 0 (2)

f(c) =
c

1 − c
, bio-remediation (3)

The unknown c = c(x, t) is considered in Ω × (0, T ) ⊂ IRd × IR, the space-
dimension is given by d . The Parameter R ∈ IR+ is constant and is named
as retardation factor. The other parameters f(c) are nonlinear functions, for
example bio-remediation or chemical reaction. D is the Scheidegger diffusion-
dispersion tensor and v is the velocity.

The aim of this paper is to present a new iterative method based on operator-
splitting methods for partial differential equations. In a first paper, we focus
on ordinary differential equations and discuss the theory and application for a
weighted method.

3 Iterative splitting method

The following algorithm is based on the iteration with fixed splitting discretiza-
tion step-size τ . On the time interval [tn, tn+1] we solve the following sub-
problems consecutively for i = 1, 3, . . . , 2m + 1. (cf. [15] and [7].)

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn (4)

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t), with ci+1(t

n) = cn , (5)

where c0 ≡ 0 and cn is the known split approximation at the time level t =
tn. The split approximation at the time-level t = tn+1 is defined as cn+1 =
c2m+1(t

n+1). (Clearly, the function ci+1(t) depends on the interval [tn, tn+1],
too, but, for the sake of simplicity, in our notation we omit the dependence on
n.)

In the following we will analyze the convergence and the rate of the con-
vergence of the method (4)–(5) for m tends to infinity for the linear operators
A, B :X → X where we assume that these operators and their sum are genera-
tors of the C0 semigroups. We emphasize that these operators aren’t necessarily
bounded, so, the convergence is examined in general Banach space setting.
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Theorem 1. Let us consider the abstract Cauchy problem in a Banach space X

∂tc(t) = Ac(t) + Bc(t), 0 < t ≤ T

c(0) = c0

(6)

where A, B, A + B : X → X are given linear operators being generators of the
C0-semigroup and c0 ∈ X is a given element. Then the iteration process (4)–(5)
is convergent and the rate of the convergence is of higher order.

The proof could be found in [12].

Remark 1. When A and B are matrices (i.e. (4)–(5) is a system of ordinary
differential equations), for the growth estimation we can use the concept of the
logarithmic norm. (See e.g.[14].) Hence, for many important classes of matrices
we can prove the validity.

Remark 2. We note that a huge class of important differential operators generate
contractive semigroup. This means that for such problems -assuming the exact
solvability of the split sub-problems- the iterative splitting method is convergent
in higher order to the exact solution.

4 Stability Theory for the iterative splitting method with

analytical initialization

We consider in the following the linear problem :

∂tc(t) = Ac(t) + Bc(t) , (7)

whereby the initial-conditions are cn = c(tn). The operators A and B are spa-
tially discretised operators, e.g. they correspond to the discretised in space con-
vection and diffusion operators (matrices). Hence, they can be considered as
bounded operators.

We distinguish in the following the 2 cases : commutative and non-commutative
operators.

4.1 Commutative part with continuous equation

In the following we discuss the improved and stable iterative method. One could
stabilize the methods by using initial conditions, that are approximations of the
solutions. One could show that the method alone is not stable enough, see [13].
In that case the improved stability theory is presented as follows.

Theorem 2. Let us consider the iterative method, that starts with the initial-
value c1, done from a A-B splitting method or Strang-Splitting method.

Then we could proof, that holds

ci+3(z,−∞) = 0 ≤ 1 , i = 1, 3, . . . , (8)

where c1 ∈ U .



4

Proof. First the stability of the A-B splitting :
We have the equations :

∂c0

∂t
= Ac0 , c0(0) = cn ,

∂c1

∂t
= Bc1 , c1(0) = c0(τ) , (9)

We insert the operators : A = λ1 and B = λ2

We could derive the analytical solution and get the solution :

c1(t) = exp((λ1 + λ2)t) cn , (10)

We have further the stability, we denote z1 = λ1τ and z2 = λ2τ

c1(z1, z2) = exp(z1 + z2) cn , (11)

For the stiff-case : z2 → −∞
We have :

lim
z2→−∞

c1(z1, z2) = 0 , (12)

and therefore we have the stability :

||c1(z1,−∞)|| ≤ 1 , (13)

is fulfilled.
The value c1 is a start-value of the iterative method.
We have for the iterative method the following stability :

∂ci+1

∂t
= Aci+1 + Bci , ci+1(0) = cn , (14)

∂ci+2

∂t
= Aci+1 + Bci+2 , ci+2(0) = cn , (15)

We insert the operators : A = λ1 and B = λ2

We could derive the analytical solution for ci+1 and get the solution :

ci+1(t) = exp(λ1(t − tn)) (

∫ t

tn

exp(−λ1(s − tn))λ2ci ds + cn) , (16)

ci+2(t) = exp(λ2(t − tn)) (

∫ t

tn

exp(−λ2(s − tn))λ1ci+1 ds + cn) , (17)

If we compute the c2 by inserting c1 we get :

c2(t) = exp(λ1(t − tn)) (

∫ t

tn

exp(−λ1(s − tn))λ2 (18)

exp((λ1 + λ2)(s − tn))cn ds + cn) ,

c2(t) = exp((λ1 + λ2)t)cn , (19)
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We insert the result for the next iteration to compute c3

c3(t) = exp(λ2(t − tn)) (

∫ t

tn

exp(−λ2(s − tn))λ1 (20)

exp((λ1 + λ2)(s − tn))cn ds + cn) ,

c3(t) = exp((λ1 + λ2)t)cn , (21)

The stability result for the c3 is also given as :

c3(z1, z2) = exp(z1 + z2) cn , (22)

For the stiff-case : z2 → −∞
We have :

lim
z2→−∞

c3(z1, z2) = 0 , (23)

and therefore we have the stability :

||c3(z1,−∞)|| ≤ 1 , (24)

is fulfilled.
And also for arbitrary iteration-steps :

||ci+2(z1,∞)|| ≤ 1 , i = 1, 3, . . . (25)

This shows that for arbitrary i = 1, 3, . . . the iterative method is stable.

Remark 3. The iterative operator-splitting method is invariant to the analytical
solution and therefore stable. So it is enough to guaranty a prestepping method,
that shift the solution into the exact solution space.

4.2 Non-commutative part with continuous equation

In the following we discuss the improved and stable iterative method.
We discuss the noncommutative part for the operators.

Theorem 3. Let us consider the iterative method, that starts with the initial-
value c1, that is of n-th order exact.

Then we could proof, that holds

ci+3(z,−∞) = 0 ≤ 1 , i = 1, 3, . . . , (26)

where c1 ∈ U .

Proof. We have the stability of an analytical solution, that is exact or have at
least order n and get the solution :

c1(t) = exp((λ1 + λ2)t) cn , (27)

We have further the stability, we denote z1 = λ1τ and z2 = λ2τ
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c1(z1, z2) = exp(z1 + z2) cn , (28)

For the stiff-case : z2 → −∞
We have :

lim
z2→−∞

c1(z1, z2) = 0 , (29)

and therefore we have the stability :

||c1(z1,−∞)|| ≤ 1 , (30)

is fulfilled.
The value c1 is a start-value of the iterative method.
We have for the iterative method the following stability :

∂ci+1

∂t
= Aci+1 + Bci , ci+1(0) = cn , (31)

∂ci+2

∂t
= Aci+1 + Bci+2 , ci+2(0) = cn , (32)

We insert the operators : A = λ1 and B = λ2

We could derive the analytical solution for ci+1 and get the solution :

ci+1(t) = exp(λ1(t − tn)) (

∫ t

tn

exp(−λ1(s − tn))λ2ci ds + cn) , (33)

ci+2(t) = exp(λ2(t − tn)) (

∫ t

tn

exp(−λ2(s − tn))λ1ci+1 ds + cn) , (34)

If we compute the c2 by inserting c1 we get :

c2(t) = exp(λ1(t − tn)) (

∫ t

tn

exp(−λ1(s − tn))λ2 (35)

exp((λ1 + λ2)(s − tn))cn ds + cn) , (36)

Now we compute the noncommutative case let us do it till the order 2 and
we get :

c2(t) = (1 + λ1τ + λ2
1τ

2/2! + O(τ3)) (37)

(1 + λ2τ − λ1λ2τ
2/2! + λ2λ1τ

2/2! + λ2
2τ

2/2! + O(τ3))

= (1 + λ1τ + λ2τ + λ2
1τ

2/2! + λ1λ2τ
2/2! + λ2λ1τ

2/2!

+λ2
2τ

2/2! + O(τ3))

≈ exp((λ1 + λ2)(t − tn)) (38)

with τ = t − tn.
The stability result for the c2 is also given as :

c2(z1, z2) = exp(z1 + z2) cn , (39)
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For the stiff-case : z2 → −∞
We have :

lim
z2→−∞

c2(z1, z2) = 0 , (40)

and therefore we have the stability.

Remark 4. The iterative operator-splitting method is invariant to the analytical
solution and therefore stable. So it is enough to guaranty a prestepping method
exists, that could have a high order of accuracy.

In the next subsection we present the used time-discretization methods.

5 Runge-Kutta, BDF-method and IMEX-methods

For the time-discretization of the splitted equation, the combination of accurate
methods that will fit in the higher order context of the iterative operator splitting
methods are important.

Based on the iterative methods the start-solution for the first iteration-step
is important to obtain higher order results. For the next iteration steps the order
have to increased till the proposed order of the time-discretization.

Therefore we propose the Runge-Kutta and BDF-methods as adapted time-
discretization methods to reach higher order results.

For the time-discretization we use the following higher order discretization
methods.

5.1 Runge-Kutta method

We use the implicit trapezoidal rule:

0

1 1

2

1

2
1

2

1

2

(41)

Further more we use the following Gauß Runge-Kutta method :

1

2
−

√
3

6

1

4

1

4
−

√
3

6

1

2
+

√
3

6

1

4
+

√
3

6

1

4
1

2

1

2

(42)

To use this Runge-Kutta methods with our operator-splitting method we
have to take into account that we solve in each iteration step equations of the
form ∂tui = Aui + b. Where b = Bui−1 is a discrete function as we only have a
discrete solution for ui−1.
For the implicit trapezoidal rule this is no problem, because we do not need
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the values at any sub-points. Where on the other hand for the Gauß method
we need to now the values of b at the sub-points t0 + c1h and t0 + c2h with

c = ( 1

2
−

√
3

6
, 1

2
+

√
3

6
)T . Therefor we must interpolate b. To do so we choose the

cubic spline functions.
Numerical experiments show that this works properly with non-stiff problems,
but worth with stiff-problems.

5.2 BDF method

Because the higher order Gauß Runge-Kutta method combined with cubic spline
interpolation does not work properly with stiff problems we use the following
BDF method of order 3 which does not need any sub-points and therefor no
interpolation is needed.

BDF3

1/k(11/6un+2 − 3un+1 + 3/2un − 1/3un−1 = A(un+3) (43)

For the prestepping, i.e. to obtain u1, u2, we use the above implicit trapezoidal
rule.

5.3 Implicit-explicit methods

The implicit-explicit (IMEX) schemes have been widely developed for time inte-
gration of spatial discretised partial differential equations of diffusion-convection
type. These methods are applied to decouple the implicit and explicit terms. So
for example the convection-diffusion equation, one use the explicit part for the
convection term and the implicit part for the diffusion. In our application we
divide between the stiff and nonstiff term, so we apply the implicit part for the
stiff operators and the explicit part for the nonstiff operators.

FS-RK-method We propose the A-stable FSRK-scheme, see [1], of first and
second order for our applications.
The tableau in the Butcher-form is given as

1 1 0

1 1 0 0 1
4

9
− 88

45
0 12

5
0 0 5

9
0

1

3
− 407

75
0 144

25
0 0 − 31

15
0 12

5

order1 1 0 0 0 0 1 0 0

order2 1

10
0 9

10
0 0 1

4
0 3

4

(44)

To obtain second order convergence in numerical examples it is important to
split the operator in the right way as we will show later.
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SBDF-Method We use the following SBDF method which is a modification
of the BDF3 method.
As prestepping method we use again the implicit trapezoidal rule.

1/k(11/6un+1 − 3un + 3/2un−1 − 1/3un−2) (45)

= 3A(un) − 3A(un−1) + A(un−2) + B(un+1) (46)

Again it is important to split the operator in the right way.

6 Numerical Results

We start with a first example of the higher order iterative method.

6.1 First test-example of an ODE

We deal in the first with an ODE and separate the complex operator in two
simpler operators.

We deal with the following equation :

∂tu1 = −λ1u1 + λ2u2 , (47)

∂tu2 = λ1u1 − λ2u2 , (48)

u1(0) = u10 , u2(0) = u20 (initial conditions) , (49)

where λ1 ∈ IR+ and λ2 ∈ IR+ are the decay factors and u10, u20 ∈ IR+. We have
the time-interval t ∈ [0, T ].

We rewrite the equation-system (47)–(49) in operator notation, and end up
with the following equations :

∂tu = Au + Bu , (50)

u(0) = (u10, u20)
T , (51)

where u(t) = (u1(t), u2(t))
T for t ∈ [0, T ].

Our spitted operators are

A =

(

−λ1 λ2

0 0

)

, B =

(

0 0
λ1 −λ2

)

. (52)

We chose such an example to have AB 6= BA, and therefore we have a splitting
error of first order for the usual sequential splitting methods, called A-B splitting.

For a first non-stiff example we chose λ1 = 0.25 and λ2 = 0.5 on the time interval
[0,1].
Our numerical results based on the above described RK-methods of second and
fourth order are presented in the following table 1. We chose a constant time-
stepsize h = 10−4 to make sure that we do not influence the convergence rate of
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our iterative operator-splitting by the Runge-Kutta methods.
The numerical results show that the splitting error decreases as long as the used
Runge-Kutta method allows it. Therefore you can say that more iterations are
only sufficient when you use a method of higher order. You can also see that the
iterative operator-splitting method is of order (i−1) as long as the Runge-Kutta
method is good enough.

Number Iterative err1 err2 err1 err2

of time- Steps (2th order) (2th order) (4th order) (4th order)
partitions

2 1 4.5321e-002 3.6077e-003 4.5321e-002 3.6077e-003
2 10 3.9664e-003 4.7396e-004 3.9664e-003 4.7397e-004
2 100 3.9204e-004 4.8078e-005 3.9204e-004 4.8083e-005

3 1 4.6126e-004 3.6077e-003 4.6126e-004 3.6077e-003
3 10 7.8129e-006 2.9285e-005 7.8069e-006 2.9289e-005
3 100 8.5988e-008 2.8270e-007 8.0050e-008 2.8682e-007

4 1 4.6126e-004 2.2459e-005 4.6126e-004 2.2464e-005
4 10 4.1883e-007 4.2629e-008 4.1321e-007 4.8154e-008
4 100 5.9521e-009 5.4846e-009 4.0839e-010 4.9968e-011

5 1 1.9096e-006 2.2459e-005 1.9040e-006 2.2464e-005
5 10 6.0151e-009 3.7052e-009 4.7929e-010 1.8295e-009
5 100 5.5356e-009 5.5354e-009 5.0404e-014 1.7830e-013

6 1 1.9096e-006 6.1224e-008 1.9040e-006 6.6759e-008
6 10 5.5528e-009 5.5336e-009 1.7198e-011 1.9820e-012
6 100 5.5355e-009 5.5355e-009 2.4425e-015 4.4409e-016

Table 1. Numerical results for the first example with the iterative splitting method
and 2th and 4th order RK method.

As a stiff example we chose λ1 = 1 and λ2 = 104 on the time interval [0,1]. And
test the Implicit-explicit methods.

FS Runge-Kutta

We use the above presented FS Runge-Kutta method of first and second order.
The results are presented in table 2.

time steps err1 (1th order) err2(1th order) err1 (2th order) err2(2th order)

10 9.0883e+002 9.0883e-002 4.6630e+002 4.6631e-002
100 9.8980e+001 9.8980e-003 4.2007e+001 4.2007e-003
1000 9.9870e+000 9.9870e-004 4.0068e+000 4.0068e-004
10000 9.9960e-001 9.9960e-005 3.0767e-001 3.0767e-005

Table 2. Numerical results for the first example with the FS RK method of order 1
and 2.
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Due to the bad results we try another splitting.
Our spitted operators are now

A =

(

−λ1 0
λ1 0

)

, B =

(

0 λ2

0 −λ2

)

. (53)

We then get better results presented in table 3.

time steps err1 (1th order) err2(1th order) err1 (2th order) err2(2th order)

10 1.8178e-005 1.8178e-005 1.1831e-002 1.1831e-002
100 1.9798e-006 1.9798e-006 1.6173e-004 1.6173e-004
1000 1.9976e-007 1.9976e-007 1.8797e-006 1.8797e-006
10000 1.9994e-008 1.9994e-008 3.4345e-008 3.4345e-008

Table 3. Numerical results for the first example with the FS RK method of order 1
and 2.

SBDF

Now we use the described SBDF method. The results are presented in table 4.

time steps err1 err2

10 1.8767e-010 1.8762e-010
100 2.1316e-014 2.1142e-018
1000 8.8818e-016 1.0842e-019
10000 4.8850e-015 5.6921e-019

Table 4. Numerical results for the first example with the SBDF method of 3th order.

In the following we compare this results with our iterative operator splitting
with the described BDF3 method.

BDF3

The advantage of the BDF3 method is that it allows us to use bigger time step
sizes.
We first chose a time step size h = 10−2 for the BDF3 method. The numerical
results are presented in table 5.
We can even get good results when we only chose a time step size h = 10−1 for
the BDF3 method. The results are presented in table 6.

Based on the presented tables our proposed iterative operator-splitting methods
with standard higher order methods have more accurate results and are more
efficient as the complicate IMEX-methods.
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Number of Iterative err1 err2

time-partitions Steps

5 1 3.4434e-001 3.4434e-001
5 10 3.0907e-004 3.0907e-004
10 1 2.2600e-006 2.2600e-006
10 10 1.5397e-011 1.5397e-011
15 1 9.3025e-005 9.3025e-005
15 10 5.3002e-013 5.4205e-013
20 1 1.2262e-010 1.2260e-010
20 10 2.2204e-014 2.2768e-018

Table 5. Numerical results for the first example with the iterative splitting method
and BDF3.

Number of Iterative err1 err2

time-partitions Steps

5 1 3.4433e-001 3.4433e-001
10 1 2.2591e-006 2.2591e-006
15 1 1.0039e-004 1.0039e-004
20 1 6.3926e-010 6.3943e-010
25 1 1.3385e-009 1.3385e-009
30 1 4.8302e-010 4.8307e-010

Table 6. Numerical results for the first example with the iterative splitting method
and BDF3.

6.2 Second Example

We deal with a second order partial differential equation given as:

∂tu = D∂xxu (54)

u(x, 0) = sin(πx) (55)

with vanishing Dirichlet-boundary conditions.
We have the time-interval t ∈ [0, T ] and the space-interval x ∈ [0, X ].
We chose D = 0.025 and T = X = 1.
The analytical solution of the equation is given by

uexact(x, t) = sin(πx) exp(−Dπ2t) . (56)

For the spatial discretization we use an upwind finite difference discretization
given as :

∂−∂+ui =
ui+1 − 2ui + ui−1

∆x2
. (57)
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and we set the space step size to ∆x = 1

100
.

Our operator is then given as

A =
D

∆x2
·















0
1 −2 1

. . .
. . .

. . .

1 −2 1
0















(58)

We split the space-interval into two intervals by splitting the Matrix A into two
Matrixes by setting

(

A1

A2

)

:= A . (59)

We now solve the problem

∂tu = A1u + A2u (60)

(61)

with our iterative operator-splitting together with the BDF3 method with time
step size h = 10−2. As the error occurs mostly at the point where we split the
interval, we present values around this point in table 7.

Number of Iterative error error error
time-partitions Steps x = 0.4 x = 0.5 x = 0.6

1 10 1.0379e-001 2.1866e-001 2.0795e-001
5 10 1.6514e-002 3.4518e-002 1.6514e-002
10 10 2.0856e-003 3.8652e-003 1.8342e-003
15 10 2.6049e-004 6.0690e-004 2.6049e-004
20 10 3.9743e-005 6.4629e-005 3.6828e-005

Table 7. Numerical results for the second example with the iterative splitting method
and BDF3.

6.3 Third example : Convection-diffusion-reaction equation

We consider the one-dimensional convection-diffusion-reaction equation given by

R∂tu + v∂xu − D∂xxu = −λu , on Ω × [t0, tend) (62)

u(x, t0) = uexact(x, t0) , (63)

u(0, t) = uexact(0, t) , u(L, t) = uexact(L, t), (64)

defined over Ω × [t0, tend) with Ω = [0, L], and t0 = 104, tend = 2 · 104 and
L = 30. Further we have λ = 10−5, v = 0.001, D = 0.0001 and R = 1.0.

The analytical solution of the equation (62) considered on IR× (0, tend), with
vanishing Dirichlet-boundary conditions and also using a δ-function as initial
value, can be derived by Laplace-Transformation, and is given by

uexact(x, t) =
ũ0

2
√

Dπt
exp(− (x − vt)2

4Dt
) exp(−λt) , (65)
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Fig. 1. Numerical result for the second example with the iterative splitting method
and BDF3, left figure t = 0, right figure t = 1.

with ũ0 = 1, the restriction of uexact to Ω × (0, tend) is a solution to (62)-(64).
To be out of the singular point of the exact solution, we start from the time-

point t0 = 104.

Our spitted operators are

A =
D

R
∂xxu , B = − 1

R
(λ + v)∂xu . (66)

For the spatial discretization we use the finite difference discretization method.
For the operator A we use as above an upwind difference and for the operator
B we use an backward difference and we set the space step size to ∆x = 1

300
.

We solve the problem with our iterative operator-splitting together with the
BDF3 method with time step size h = 10−2. Our numerical results are presented
in table 8 and in figure 2.

Number of Iterative error error error
time-partitions Steps x = 18 x = 20 x = 22

1 10 9.8993e-002 1.6331e-001 9.9054e-002
2 10 9.5011e-003 1.6800e-002 8.0857e-003
3 10 9.6209e-004 1.9782e-002 2.2922e-004
4 10 8.7208e-004 1.7100e-002 1.5168e-003

Table 8. Numerical results for the third example with the iterative splitting method
and BDF3.

7 Conclusions and Discussions

We present the application of the iterative Operator-Splitting methods with
combination of adequate explicit or implicit methods on each operator-equation.
The stability of such methods are shown and their consistency. The benefit of
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Fig. 2. Numerical result for the third example with the iterative splitting method and
BDF3, left figure t = 0, right figure t = T .

such combination in comparing with pure time-discretization methods but with
more complicate setting of the method is presented and efficiency is shown. The
iterative operator-splitting methods are applied to multi-physics and the results
are presented. We could apply such methods also for multi-dimensional problems,
while splitting in simpler one-dimensional problems. In the future we focus us
on the development of improved operator-splitting methods with respect to the
application in nonlinear parabolic equations.
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8. P. Frolkovič and J. Geiser. Numerical Simulation of Radionuclides Transport in

Double Porosity Media with Sorption. Proceedings of Algorithmy 2000, Conference
of Scientific Computing, 28-36, 2000.

9. J. Geiser. Numerical Simulation of a Model for Transport and Reaction of Radionu-

clides. Proceedings of the Large Scale Scientific Computations of Engineering and
Environmental Problems, Sozopol, Bulgaria, 2001.



16

10. J. Geiser. Gekoppelte Diskretisierungsverfahren für Systeme von Konvektions-

Dispersions-Diffusions-Reaktionsgleichungen. Doktor-Arbeit, Universität Heidel-
berg, 2003.

11. J. Geiser. R
3
T : Radioactive-Retardation-Reaction-Transport-Program for the Sim-

ulation of radioactive waste disposals. Proceedings: Computing, Communications
and Control Technologies: CCCT 2004, The University of Texas at Austin and The
International Institute of Informatics and Systemics (IIIS), to appear, 2004.

12. J. Geiser. Iterative Operator-Splitting methods for Parabolic Differential Equations

: Convergence theory. Humboldt-Preprint, to be submitted, February 2006.
13. W. Hundsdorfer, L. Portero. A Note on Iterated Splitting Schemes. CWI Report

MAS-E0404, Amsterdam, Netherlands, 2005.
14. W.H. Hundsdorfer, J. Verwer W. Numerical solution of time-dependent advection-

diffusion-reaction equations, Springer, Berlin, (2003).
15. J. Kanney, C. Miller and C. Kelley. Convergence of iterative split-operator ap-

proaches for approximating nonlinear reactive transport problems. Advances in
Water Resources, 26:247–261, 2003.

16. R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts
in Applied Mathematics ,

17. G.I Marchuk. Some applications of splitting-up methods to the solution of problems

in mathematical physics. Aplikace Matematiky, 1 (1968) 103-132.
18. G. Strang. On the construction and comparision of difference schemes. SIAM J.

Numer. Anal., 5:506–517, 1968.
19. J.,G. Verwer and B. Sportisse. A note on operator splitting in a stiff linear case.

MAS-R9830, ISSN 1386-3703, 1998.
20. Z. Zlatev. Computer Treatment of Large Air Pollution Models. Kluwer Academic

Publishers, 1995.


