
Weighted Iterative Operator-Splitting Methods

for stiff problems and applications

Jürgen Geiser1 and Christos Kravvaritis2

1 Weierstrass Institute of Applied Analysis and Stochastics,
Mohrenstrasse 39, D-10117 Berlin, Germany

geiser@wias-berlin.de
2 Department of Mathematics, University of Athens,

Panepistimiopolis 15784, Athens, Greece
ckrav@math.uoa.gr

Abstract. In this paper we describe advanced operator-splitting meth-
ods for more accurate and exact decoupling of stiff systems. We deal with
2 stiff operators and contribute for both stiff operators a new weighted
iterative operator-splitting method, decribed in [3]. Based on the stabil-
isation theory for stiff systems, given in [?] and [9], we developed our
weighting method. The idea behind is a combination of first order and
higher order operator splitting methods. We discuss our methods in wel-
known test-problems for systems of ordinary-differential equations and
compare with the exact solutions of the sytsems. Finally we present an
application to a convection-reaction equation with stiff reaction-term.
We end with a discuss for modifing our methods for multi-dimensional
and multi-physical problems.

1 Introduction

We motivate our studying on the methods for solving complicate coupled and stiff
equations coming from models for transport-reaction-, bio-remediation- and non-
linear diffusion-reaction-problems. The main advantage of the operator-splitting
methods is decoupling the mixed processes into simpler synchroneous physi-
cal processes. Because of the symmetry we could decouple such processes. To
be more accurate and to come to higher order splitting methods, a effective
a new group of methods is presented, based on higher order splitting meth-
ods. To stabilise the delicate initial process of such higher order methods, we
present a stabilisation with initial presteps and weighting factors for the iter-
ative method. We discuss the weighted splitting method based on higher iter-
ative splitting method and apply the results to stiff systems of reaction- and
convection-reaction-equations.

The paper is organised as follows. The mathematical model is presented in the
section 2. The family of operator-splitting methods are discussed in section 3. In
the section 4 we present the stability analysis of the weighted iterative operator
splitting method. The numerical applications of systems of ODE’s and PDE’s
are discussed in section 5. The conclusions and future works are introduced in
section 6 .

2

2 Mathematical Model

The motivation for the study presented below is coming from a computational
simulation of bio-remediation [1] or radioactive contaminants [5], [4].

The mathematical equations are given by

∂t R c + ∇ · (vc − D∇c) = f(c) , (1)

f(c) = cp , chemical-reaction and p > 0 (2)

f(c) =
c

1 − c
, bio-remediation (3)

The unknown c = c(x, t) is considered in Ω × (0, T) ⊂ IRd × IR, the space-
dimension is given by d . The Parameter R ∈ IR+ is constant and is named
as retardation factor. The other parameters f(c) are nonlinear functions, for
example bio-remediation or chemical reaction. D is the Scheidegger diffusion-
dispersion tensor and v is the velocity.

The aim of this paper is to present a new iterative method based on operator-
splitting methods for partial differential equations. In a first paper, we focus
on ordinary differential equations and discuss the theory and application for a
weighted method.

In the following we describe the Operator-Splitting methods as a basic method
for solving our equation.

3 Operator-Splitting Methods

The operator-splitting methods are used to solve complex models in the geo-
physical and environmental physics, they are developed and applied in [13], [12],
[14] and [15]. The ideas in this article are based on solving simpler equations
with respect to receive higher order discretization methods for the remaining
equations. For this aim we use the operator-splitting method and decouple the
equation as following described.

3.1 Splitting methods of first order for linear equations
(A-B-splitting)

First we describe the simplest operator-splitting, which is called sequential split-
ting, for the following system of ordinary linear differential equations:

∂tc(t) = A c(t) + B c(t) , (4)

where the initial-conditions are cn = c(tn). The operators A and B are bounded
operators in a Banach-space. For example we could also discretised the spatial
variable and get operators (matrices) in an ODE context. Hence, they can be
considered as bounded operators.

The sequential operator-splitting method is introduced as a method which
solves the two sub-problems sequentially, where the different sub-problems are

3

connected via the initial conditions. This means that we replace the original
problem (4) with the sub-problems

∂c∗(t)

∂t
= Ac∗(t) , with c∗(tn) = cn , (5)

∂c∗∗(t)

∂t
= Bc∗∗(t) , with c∗∗(tn) = c∗(tn+1) ,

whereby the splitting time-step is defined as τn = tn+1 − tn. The approximated
split solution is defined as cn+1 = c∗∗(tn+1).

Clearly, the change of the original problems with the sub-problems usually
results some error, called splitting error. Obviously, the splitting error of the
sequential splitting method can be derived as follows (cf. e.g.[6])

ρn =
1

τ
(exp(τn(A + B)) − exp(τnB) exp(τnA)) c(tn)

=
1

2
τn[A, B] c(tn) + O(τ2) . (6)

whereby [A, B] := AB − BA is the commutator of A and B. Consequently, the
splitting error is O(τn) when the operators A and B do not commute, otherwise
the method is exact. Hence, by definition, the sequential splitting is called first
order splitting method .

In the next subsection we present the iterative-splitting method.

3.2 Iterative splitting method

The following algorithm is based on the iteration with fixed splitting discretiza-
tion step-size τ . On the time interval [tn, tn+1] we solve the following sub-
problems consecutively for i = 0, 2, . . .2m. (cf. [11] and [3].)

∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn (7)

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t), with ci+1(t

n) = cn , (8)

where c0(t
n) = cn , c−1 = 0 and cn is the known split approximation at the

time level t = tn. The split approximation at the time-level t = tn+1 is defined
as cn+1 = c2m+1(t

n+1). (Clearly, the function ci+1(t) depends on the interval
[tn, tn+1], too, but, for the sake of simplicity, in our notation we omit the depen-
dence on n.)

In the following we will analyze the convergence and the rate of the con-
vergence of the method (7)–(8) for m tends to infinity for the linear operators
A, B :X → X where we assume that these operators and their sum are genera-
tors of the C0 semigroups. We emphasize that these operators aren’t necessarily
bounded, so, the convergence is examined in general Banach space setting.

4

Theorem 1. Let us consider the abstract Cauchy problem in a Banach space X

∂tc(t) = Ac(t) + Bc(t), 0 < t ≤ T

c(0) = c0

(9)

where A, B, A + B : X → X are given linear operators being generators of the
C0-semigroup and c0 ∈ X is a given element. Then the iteration process (7)–(8)
is convergent and the and the rate of the convergence is of second order.

The proof could be found in [8].

Remark 1. When A and B are matrices (i.e. (7)–(8) is a system of ordinary
differential equations), for the growth estimation we can use the concept of the
logarithmic norm. (See e.g.[10].) Hence, for many important classes of matrices
we can prove the validity.

Remark 2. We note that a huge class of important differential operators generate
contractive semigroup. This means that for such problems -assuming the exact
solvability of the split sub-problems- the iterative splitting method is convergent
in second order to the exact solution.

In the next subsection we present a modification of the iterative-splitting
method with weighting of the operators.

3.3 Weighted Iterative splitting method

We assume an improved iterative splitting method with respect to more stable
behaviour in the continuous case.

As a first method the unsammetric weighted iterative splitting method is
introduced. The algorithm is based on the iteration with fixed splitting dis-
cretization step-size τ . On the time interval [tn, tn+1] we solve the following
sub-problems consecutively for i = 0, 2, . . . 2m.

∂ci(t)

∂t
= Aci(t) + ω Bci−1(t), with ci(t

n) = cn (10)

and c0(t
n) = cn , c−1 = 0.0,

∂ci+1(t)

∂t
= ω Aci(t) + Bci+1(t), (11)

with ci+1(t
n) = ω cn + (1 − ω) ci(t

n+1) ,

where cn is the known split approximation at the time level t = tn. The split
approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(t

n+1). Our
parameter ω ∈ [0, 1]. For ω = 0 we have the A-B-splitting and for ω = 1 we have
the iterative splitting method, see [3].

In the same manner the initial conditions of the weighted iterative split-
ting method are weighted between the sequential splitting and iterative splitting
method.

5

4 Stability Theory

In the following we present the stability analysis for the continuous case with
commutative operators. First we apply the recussion for the general case and
then we concentrate us to the commutative case.

4.1 Recursion

We study our stability for the linear system (10) and (11).
We consider the suitable vector norm || · || on IRM , together with its induced

operator norm.
The matrix exponential of Z ∈ IRM×M is denoted by exp(Z).
We assume that
|| exp(τ A) ≤ 1|| and || exp(τ B) ≤ 1|| , for all τ > 0.
It can be shown that the system (4) implies exp(τ (A + B)) ≤ 1 and is ifself

stable.
For the linear problem (10) and (11) it follows be integration that

ci(t) = exp((t − tn)A)cn +

∫ t

tn

exp((t − s)A) ω Bci−1(s) ds , (12)

ci+1(t) = exp((t − tn)B)cn +

∫ t

tn

exp((t − s)B) ω Aci(s) ds , (13)

With the elimination of ci we get

ci+1(t) = exp((t − tn)B)cn + ω

∫ t

tn

exp((t − s)B) A exp((t − s)A) ds cn (14)

+ ω2

∫ t

s=tn

∫ s

s′=tn

exp((t − s)B) A exp((s − s′)A) B ci−1(s
′) ds′ ds ,

For the following commution case we could evaluate the double integral
∫ t

s=tn

∫ s

s′=tn
as

∫ t

s′=tn

∫ t

s=s′
and could derive the weighted stability-theory.

4.2 Commution operators

For more transparency of the formula (14) we consider the eigenvalues λ1 of A
and λ2 of B.

Replacing the operators A and B we obtain after some calculations

ci+1(t) = cn 1

λ1 − λ2
(ωλ1 exp((t − tn)λ1) + ((1 − ω)λ1 − λ2) exp((t − tn)λ2))

+ cn ω2 λ1λ2

λ1 − λ2

∫ t

s=tn

(exp((t − s)λ1) − exp((t − s)λ2)) ds , (15)

We denote that this relation is symmetric in λ1 and λ2.

6

A(α)-stability We define zk = τλk , k = 1, 2. We start with c0(t) = un and we
obtain

c2m(tn+1) = Sm(z1, z2) cn , (16)

where Sm is the stability function of the scheme with m-iterations. We use (15)
and obtain after some calculations

S1(z1, z2) = ω2 cn +
ω z1 + ω2 z2

z1 − z2
exp(z1) cn (17)

+
(1 − ω − ω2) z1 − z2

z1 − z2
exp(z2) cn

S2(z1, z2) = ω4 cn +
ω z1 + ω4 z2

z1 − z2
exp(z1) cn (18)

+
(1 − ω − ω4) z1 − z2

z1 − z2
exp(z2) cn

+
ω2 z1 z2

(z1 − z2)2
((ωz1 + ω2z2) exp(z1)

+(−(1− ω − ω2)z1 + z2) exp(z2)) cn

+
ω2 z1 z2

(z1 − z2)3
((−ωz1 − ω2z2)(exp(z1) − exp(z2))

+((1 − ω − ω2)z1 − z2)(exp(z1) − exp(z2))) cn

Let us consider the A(α)-stability given in the following eigenvalues in a
wedge

W = {ζ ∈ IC : | arg(ζ) ≤ α}
for the A-stability we have |Sm(z1, z2)| ≤ 1 whenever z1, z2 ∈ Wπ/2

The stability of the two iterations is given in the following theorem with A
and A(α)-stability

Theorem 2. We have the following stability :

For S1 we have the A-stability

maxz1≤0,z2∈Wα
|S1(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2] with ω =

√
2

2

For S2 we have the A(α)-stability

maxz1≤0,z2∈Wα
|S2(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2] with ω ≤

(

1
8 tan2(α)+1

)1/8

Proof. We consider a fixed z1 = z and z2 → −∞ . Then we obtain

S1(z,∞) = ω2(1 − ez) (19)

7

and

S2(z,∞) = ω4(1 − (1 − z)ez) (20)

If z = x + iy then :
1.) For S1

|S1(z,∞)|2 = ω4(1 − exp(x)cosy + exp(2x)) ≤ 1 (21)

after some rearrangements

exp(2x) ≤
1

ω4
− 1 + 2 exp(x) cos y (22)

because of x < 0 and y ∈ IR we could estimate −2 ≤ 2 exp(x) cos(y) and
exp(2x) ≤ 1

We could estimate (22) as ω ≤
√

2
2 .

2.) For S2

|S2(z,∞)|2 = ω8(1 − 2 exp(x)((1 − x) cos y + y sin y) (23)

+ exp(2x)((1 − x)2 + y2)) ≤ 1

after some calculations we could follow

exp(x) ≤ (
1

ω8
− 1)

exp(−x)

(1 − x)2 + y2
− 2

|1 − x| + |y|

(1 − x)2 + y2
(24)

we could estimate for x < 0 and y ∈ IR |1−x|+|y|
(1−x)2+y2 ≤ 3/2 and 1

2 tan2(α) < exp(−x)
(1−x)2+y2

where tan(α) = y/x.
And we get the bound for the ω

ω ≤
(

1
8 tan2(α)+1

)1/8

.

In the next section we apply our methods to test-problems.

5 Numerical Results

We deal with some applications in this section to verify our theoretical results,
done in the previous sections.

Our motivation for using the operator splitting in applications is the possibil-
ity to decouple complex operators and handle them in separate equations with
adapted methods. We simplify to a system of first order ordinary differential
equations, which are simpler to compute.

To improve the sensibility and the stability of the iterative higher order split-
ting methods, we apply pre-steps to reach improved initial conditions or weight
our methods between first order splitting and higher order splitting method.

We start with a first example to use the stabile first order splitting as a
pre-step method and then start with the higher order iterative method.

8

5.1 First test-example of an ODE

We deal in the first with an ODE and separate the complex operator in two
simpler operators.

We deal with the following equation :

∂tu1 = −λ1u1 + λ2u2 , (25)

∂tu2 = λ1u1 − λ2u2 , (26)

u1(0) = u10 , u2(0) = u20 (initial conditions) , (27)

where λ1 ∈ IR+ and λ2 ∈ IR+ are the decay factors and u10, u20 ∈ IR+. We have
the time-interval t ∈ [0, T].

We rewrite the equation-system (51)–(53) in operator notation, and end up
with the following equations :

∂tu = Au + Bu , (28)

u(0) = (u10, u20)
T , (29)

where u(t) = (u1(t), u2(t))
T for t ∈ [0, T].

Our spitted operators are

A =

(

−λ1 λ2

0 0

)

, B =

(

0 0
λ1 −λ2

)

. (30)

We chose such an example to have AB 6= BA, and therefore we have a splitting
error of first order for the usual sequential splitting methods, called A-B splitting.

For the complex equation (51)–(53) we could derive the analytical solution
by integrating the system of ODE’s :

u1(t) = u10 + u20 exp(−(λ1 + λ2)t) , (31)

u2(t) =
λ1

λ2
u10 − u20 exp(−(λ1 + λ2)t) , (32)

We apply first the sequential splitting and the iterative operator-splitting,
further we combine them be using the pre-step based methods to see the im-
proved results.

For the time-steps ∆t we have ∆t = 1 for 1 time-partition, ∆t = 0.1 for 10
time-partitions etc.

To validate the various methods and obtain the optimal results we apply all the
methods on this example with parameters λ1 = 0.25, λ2 = 0.5, initial conditions
u10 = u20 = 1, u−1

1 (0) = u−1
2 (0) = 0 and the end-time ∆t = 1. With these values

we get from the analytical solution of our equation: u1,exact = 1 and u2,exact =
0.73618. We compute u2 as an exact solution with Laplace-Transformation, see
[6], [7].

9

The sequential (A-B) splitting method For the sequential (A-B) splitting
method, we define the following splitting equations of our system of ODE’s in
an A- and B-step as following

A-step

∂tu
∗
1 = −λ1u

∗
1 + λ2u

∗
2 ,

∂tu
∗
2 = 0 ,

u∗
1(0) = u10 , u∗

2(0) = u20 ,

B-step

∂tu
∗∗
1 = 0 ,

∂tu
∗∗
2 = λ1u

∗∗
1 − λ2u

∗∗
2 ,

u∗∗
1 (0) = u∗

10(∆t) , u∗∗
2 (0) = u∗

20(∆t) ,

where t ∈ [0, ∆t] and the result of the computation is u(∆t) = (u∗∗
1 (∆t), u∗∗

2 (∆t))t.

For these systems of equations we can derive analytical solutions and apply
them in our numerical scheme, leading to

u∗
1(t) = u10exp(−λ1t) + u20

λ2

λ1

u∗
2(t) = u20,

and

u∗∗
1 (t) = u∗∗

10,

u∗∗
2 (t) = u∗∗

20exp(−λ2t) + u∗∗
10

λ1

λ2
,

and u∗∗
1 (0) = u∗

1(t), u∗∗
2 (0) = u∗

2(t).
We compute with our given scheme and the numerical results are presented in
Table 1.

The iterative splitting method For the iterative splitting method, we have
the following splitting equations of our system of ODE’s. We divide in step i and
i + 1 as following

Step i

10

Number of u1,num u2,num err1 err2

time-partitions

1 1.2211992169 0.8467828848 2.211992 × 10−1 1.105996 × 10−1

5 1.1847412811 0.8285539169 1.847413 × 10−1 9.237064 × 10−2

10 1.1802926209 0.8263295868 1.802926 × 10−1 9.014631 × 10−2

100 1.1763176930 0.8243421229 1.763177 × 10−1 8.815885 × 10−2

Table 1. Numerical results for the first example with the sequential (A-B) splitting
method.

∂tu
i
1 = −λ1u

i
1 + λ2u

i
2 ,

∂tu
i
2 = λ1u

i−1
1 − λ2u

i−1
2 ,

ui
1(0) = u10 , ui

2(0) = u20 ,

Step i + 1

∂tu
i+1
1 = −λ1u

i
1 + λ2u

i
2 ,

∂tu
i+1
2 = λ1u

i+1
1 − λ2u

i+1
2 ,

ui+1
1 (0) = u10 , ui+1

2 (0) = u20 ,

where t ∈ [0, ∆t].

For the steps i and i + 1 we can derive analytical solutions and apply them
in our numerical scheme. The analytical solutions are given as

ui
1(t) = u10exp(−λ1t) + u20

λ2

λ1

+ ui−1
1 (t)(λ2t −

λ2

λ1
) + ui−1

2 (t)(−
λ2

2

λ1
t −

λ2
2

λ2
1

) ,

ui
2(t) = ui−1

1 (t)λ1t − ui−1
2 (t)λ2t + u20,

and

ui+1
1 (t) = −ui

1(t)λ1t + ui
2(t)λ2t + u10,

ui+1
2 (t) = u20exp(−λ2t) + u10

λ1

λ2

+ ui
1(t)(λ1t −

λ1

λ2
) + ui

2(t)(−
λ2

1

λ2
t −

λ2
1

λ2
2

) ,

We compute with our given scheme and the numerical results are presented in
Table 2.

11

Number of Iterative u1,num u2,num err1 err2

time-partitions Steps

1 1 1.1126340828 0.7916998145 1.126341 × 10−1 5.551654 × 10−2

1 2 1.1126340828 0.7916998145 1.126341 × 10−1 5.551654 × 10−2

1 4 0.9499679893 0.7743708882 5.003201 × 10−2 3.818761 × 10−2

1 10 0.9344708685 0.7727199697 6.552913 × 10−2 3.653669 × 10−2

1 50 0.9344606445 0.7727188806 6.553936 × 10−2 3.653560 × 10−2

10 1 1.0005094994 0.8009580357 5.094994 × 10−4 6.477476 × 10−2

10 2 1.0005094994 0.8009580357 5.094994 × 10−4 6.477476 × 10−2

10 4 0.9993139424 0.8005987078 6.860576 × 10−4 6.441543 × 10−2

10 10 0.9993125029 0.8005982751 6.874971 × 10−4 6.441500 × 10−2

10 50 0.9993125029 0.8005982751 6.874971 × 10−4 6.441500 × 10−2

100 1 1.0000055350 0.8030208642 5.534966 × 10−6 6.683759 × 10−2

100 2 1.0000055350 0.8030208642 5.534966 × 10−6 6.683759 × 10−2

100 4 0.9999930886 0.8030171866 6.911412 × 10−6 6.683391 × 10−2

100 10 0.9999930884 0.8030171866 6.911567 × 10−6 6.683391 × 10−2

100 50 0.9999930884 0.8030171866 6.911567 × 10−6 6.683391 × 10−2

Table 2. Numerical results for the first example with the iterative splitting method.

5.2 The pre-stepping method

Further we combine the A-B and iterative splitting method, as proposed in [8].
The new method project the iterative solution into the correct solution-space.
This we called the pre-stepping method. Actually, we perform on the beginning
once the A-B splitting and then we perform on the results the iterative splitting.
For the pre-stepping method we get the results in Table 3.

The weighted splitting method According to the weighted splitting method,
we divide our system of ODE’s in step i and i + 1 as following

Step i

∂tu
i
1 = −λ1u

i
1 + λ2u

i
2 ,

∂tu
i
2 = ωλ1u

i−1
1 − ωλ2u

i−1
2 ,

ui
1(0) = u10 , ui

2(0) = u20 ,

Step i + 1

∂tu
i+1
1 = −ωλ1u

i
1 + ωλ2u

i
2 ,

∂tu
i+1
2 = λ1u

i+1
1 − λ2u

i+1
2 ,

ui+1
1 (0) = u10 , ui+1

2 (0) = u20 ,

12

Number of Iterative u1,num u2,num err1 err2

time-partitions Steps

1 0 1.2211992169 0.8467828848 2.211992 × 10−1 1.105996 × 10−1

1 1 1.0603905271 0.7861342740 6.039053 × 10−2 4.995100 × 10−2

1 2 0.9454209657 0.7738864908 5.457903 × 10−2 3.770321 × 10−2

1 3 0.9345436701 0.7727277253 6.545633 × 10−2 3.654445 × 10−2

1 10 0.9344606449 0.7727188806 6.553936 × 10−2 3.653560 × 10−2

5 0 1.1847412811 0.8285539169 1.847413 × 10−1 9.237064 × 10−2

5 1 1.18432628 0.7988842196 1.843263 × 10−3 6.270094 × 10−2

5 2 1.18448500 0.7986054507 1.844850 × 10−3 6.242217 × 10−2

5 3 0.9972861333 0.7975848110 2.713867 × 10−3 6.140153 × 10−2

5 10 0.9972649862 0.7975800703 2.735014 × 10−3 6.139679 × 10−2

10 0 1.1802926209 0.8263295868 1.802926 × 10−1 9.014631 × 10−2

2 10 1.0005095181 0.8009440338 5.095181 × 10−4 6.476076 × 10−2

10 2 1.0005095627 0.8009105675 5.095627 × 10−4 6.472729 × 10−2

10 3 0.9993139425 0.8005986507 6.860575 × 10−4 6.441537 × 10−2

10 10 0.9993125029 0.8005982751 6.874971 × 10−4 6.441500 × 10−2

100 0 1.1763176930 0.8243421229 1.763177 × 10−1 8.815885 × 10−2

100 1 1.0000055350 0.8030208507 5.534966 × 10−6 6.683757 × 10−2

100 2 1.0000055350 0.8030208183 5.534967 × 10−6 6.683754 × 10−2

100 3 0.9999930886 0.8030171866 6.911412 × 10−6 6.683391 × 10−2

100 10 0.9999930884 0.8030171866 6.911567 × 10−6 6.683391 × 10−2

Table 3. Numerical results for the first example with the pre-stepping method: first
iteration with A-B splitting (denoted with 0 iterative steps) and then iterative splitting.

where t ∈ [0, ∆t].

For the steps i and i + 1 we can derive analytical solutions and apply them
in our numerical scheme. The analytical solutions are given as

ui
1(t) = u10exp(−λ1t) + u20

λ2

λ1

+ ωui−1
1 (t)(λ2t −

λ2

λ1
) + ωui−1

2 (t)(−
λ2

2

λ1
t +

λ2
2

λ2
1

) ,

ui
2(t) = ωui−1

1 (t)λ1t − ωui−1
2 (t)λ2t + u20,

and

ui+1
1 (t) = −ωui

1(t)λ1t + ωui
2(t)λ2t + u10,

ui+1
2 (t) = u20exp(−λ2t) + u10

λ1

λ2

+ ωui
1(t)(λ1t −

λ1

λ2
) + ωui

2(t)(−
λ2

1

λ2
t −

λ2
1

λ2
2

) ,

13

We compute with our given scheme and the numerical results are presented in
Table 8.

A variation of this method is to perform a specific number of iterations for
various values of ω, which until now was considered as fixed. In our application,
we performed 3 iterations: for the first iteration we have chosen ω = 0, for the
second ω = 0.5 and for the third ω = 1. The results are presented in Table 4.

Number of u1,num u2,num err1 err2

time-partitions

1 1.0020344744 0.7799175652 2.034474 × 10−3 2.332271 × 10−2

5 1.0018440081 0.7987533072 1.844008 × 10−3 4.486969 × 10−3

10 1.0005095389 0.8009283936 5.095389 × 10−4 2.311883 × 10−3

100 1.0000055350 0.8030208356 5.534966 × 10−6 2.194407 × 10−4

Table 4. Numerical results for the first example with the weighted splitting method,
for 3 iterations with omega=0,0.5,1.

5.3 Weighted splitting method with pre-stepping

A variation of the traditional weighted splitting method described above, is to
combine it with the A-B splitting, so we have again a pre-stepping method.
The first idea is to apply on the beginning the A-B splitting and then perform
a number of iterations (4 iterations for our example) of the weighted splitting
method. The second idea works like the first one, but after the 4 iterations we
apply again the idea of the A-B splitting and then again 4 iterations of the
weighted splitting method. The second application of A-B splitting is done as
follows: we set as initial approximation for the weighted method the value

ũ =
uAB + ui

2
,

where uAB is the result of the A-B splitting and ui the approximation after the
first 4 iterations with the weighted splitting.

The results of these variations are presented in Tables 5 and 6, respectively.
In the following figures we attempt depict graphically the results of our work

on the specific example described in Section 5. Figure 1 shows the behavior of
the error for the solution u1 as a function of the number of time partitions, for
the five methods presented in this article. We see clearly that the A-B splitting
method gives a significantly larger error, while the error of the other methods is
very small, especially if we have 10 or more time partitions. Figure 2 is a zoomed
picture of Figure 1 and shows clearly that the fifth method (the variation of the
weighted splitting method) provides the lowest error for this example, while the
other three methods give still a relative small error of approximately the same
order. Figure 3 shows the behavior of the error for the solution u1 as a function

14

Number of Iterative u1,num u2,num err1 err2

time-partitions Steps

1 0 1.2211992169 0.8467828848 2.211992 × 10−1 1.105996 × 10−1

1 4 0.9322267543 0.7755099753 6.777325 × 10−2 2.773030 × 10−2

5 0 1.1847412811 0.8285539169 1.847413 × 10−1 9.237064 × 10−2

5 4 0.9972633758 0.7980951300 2.736624 × 10−3 5.145146 × 10−3

10 0 1.1802926209 0.8263295868 1.802926 × 10−1 9.014631 × 10−2

10 4 0.9993111141 0.8008502014 6.888859 × 10−4 2.390075 × 10−3

100 0 1.1763176930 0.8243421229 1.763177 × 10−1 8.815885 × 10−2

100 4 0.9999930858 0.8030418451 6.914230 × 10−6 1.984313 × 10−4

Table 5. Numerical results for the first example with the pre-stepped weighted splitting
method: first iteration with A-B splitting (denoted with 0 iterative steps) and then 4
iterative steps with the weighted method, ω = 0.9.

Number of Iterative u1,num u2,num err1 err2

time-partitions Steps

1 0 1.2211992169 0.8467828848 2.211992 × 10−1 1.105996 × 10−1

1 4 0.9322267543 0.7755099753 6.777325 × 10−2 2.773030 × 10−2

1 0 0.5762400752 0.8110953742 4.237599 × 10−1 7.491210 × 10−2

1 4 0.9369903968 0.7760242631 6.300960 × 10−2 2.721601 × 10−2

5 0 1.1847412811 0.8285539169 1.847413 × 10−1 9.237064 × 10−2

5 4 0.9972633758 0.7980951300 2.736624 × 10−3 5.145146 × 10−3

5 0 0.5909917577 0.8133221481 4.090082 × 10−1 7.713887 × 10−2

5 4 0.9972633728 0.7980957754 2.736627 × 10−3 5.144501 × 10−3

10 0 1.1802926209 0.8263295868 1.802926 × 10−1 9.014631 × 10−2

10 4 0.9993111141 0.8008502014 6.888859 × 10−4 2.390075 × 10−3

10 0 0.5898011477 0.8135897061 4.101989 × 10−1 7.740643 × 10−2

10 4 0.9993111141 0.8008502216 6.888859 × 10−4 2.390055 × 10−3

100 0 1.1763176930 0.8243421229 1.763177 × 10−1 8.815885 × 10−2

100 4 0.9999930858 0.8030418451 6.914230 × 10−6 1.984313 × 10−4

100 0 0.5881553893 0.8136919840 4.118446 × 10−1 7.750871 × 10−2

100 4 0.9999930858 0.8030418451 6.914230 × 10−6 1.984313 × 10−4

Table 6. Numerical results for the first example with the pre-stepped weighted splitting
method: first iteration with A-B splitting (denoted with 0 iterative steps) and then 4
iterative steps with the weighted method, ω = 0.9, then again an A-B approximation
and 4 iterations with the weighted method afterwards.

of the number of time partitions, for various numbers of iterations and confirms
that, even if we have a small number of iterations, we obtain a good result,
which means actually an error of small order. Figure 4 is the same as Figure 1,
but the results are taken from application of the five methods on a stiff problem
with λ1 = 1000, λ2 = 0.5. We observe that for a number of 5 time partitions
or more, we have a relatively small error and the variation of the first weighted
splitting method gives generally the smallest error. Figure 5 is the same as Figure
1, but the data are taken from the results for the solution u2. In this case we

15

see again that the A-B splitting method gives a significantly larger error, but
also the iterative and the pre-stepping splitting method give relative high errors.
The best methods for this solution are the weighted methods, and especially the
weighted method with ω = 0.5 fixed and 4 iterations.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25
time partitions vs. error for u1

time partitions

er
ro

r1

A−B
it=4
pre−step:A−B,it=3
it=4, w=0.5
w=0,0.5,1

Fig. 1.

5.4 Second Example

We deal with a first order partial differential-equation given as a transport eqau-
tion in the following:

∂tu1 = −v1∂xu1 − λu1 , (33)

∂tu2 = −v2∂xu2 + λu1 , (34)

u1(x, 0) = 1 , for 0.1 ≤ x ≤ 0.2 , (35)

u1(x, 0) = 0 , for else ,

u2(x, 0) = 0 , for x ∈ [0, 1] , (36)

where λ ∈ IR+ and v ∈ IR+. We have the time-interval t ∈ [0, T] and the space-
interval x ∈ [0, X].

16

1 2 3 4 5 6 7 8 9 10 11 12
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
time partitions vs. error for u1

time partitions

er
ro

r1
A−B
it=4
pre−step:A−B,it=3
it=4, w=0.5
w=0,0.5,1

Fig. 2.

We rewrite the equation-system (47)–(50) in operator notation, and end up
with the following equations :

∂tu = Au + Bu , (37)

u1(x, 0) = 1 , for 0.1 ≤ x ≤ 0.2 , (38)

u1(x, 0) = 0 , for else ,

(39)

where u = (u1, u2)
Our spitted operators are

A =

(

−v1∂x 0
0 −v2∂x

)

, B =

(

−λ1 0
λ1 0

)

. (40)

We use the finite difference method as spatial discretisation method and solve
the time-discretisation analytically.

The spatial discretisation is done as follows, we concentrate us to an interval
x ∈ [0, 1.5] and ∆x = 0.1.

For the transport-term we use an upwind finite difference discretisation given
as :

∂xui =
ui − ui−1

∆x
. (41)

We use for the initial-values are given as impulses as :

17

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

−3 time partitions vs. error for u1,omega=0.6

time partitions

er
ro

r1
it=2
it=4
it=10
it=100

Fig. 3.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
time partitions vs. error for u1,stiff problem

time partitions

er
ro

r1

A−B
it=4
pre−step:A−B,it=3
it=4, w=0.5
w=0,0.5,1

Fig. 4.

18

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12
time partitions vs. error for u2

time partitions

er
ro

r1
A−B
it=4
pre−step:A−B,it=3
it=4, w=0.5
w=0,0.5,1

Fig. 5.

u1(x) =

{

1 , 0.1 ≤ x ≤ 0.3
0 , else

. (42)

and
u2(x) = 0 , x ∈ [0, 1.5] (43)

For the iterative operator-splitting method and the application to our transport-
equaiton we deal for the discretised equation with two indices. The index i is
the index for the spatial discretisation and the index j is for the iteration-steps.

We first solve all the equations with the index i, that means all 15 equation for
each point. Then we did our iterative steps and we have the first time-step. We
are finished for 1 partition and we repeat this 4 times more for the computations
of 5 partitions.

In the following equation we write the discretisation in space and the iterative
operator splitting algorithm. The time-discretisation is solved analytically.

We have the following algorithm :

∂tu1,i,j = −v1/∆x(u1,i,j − u1,i−1,j) − λu1,i,j−1 , (44)

∂tu2,i,j = −v2/∆x(u2,i,j − u2,i−1,j) + λu1,i,j−1 , (45)

∂tu1,i,j+1 = −v1/∆x(u1,i,j − u1,i−1,j) − λu1,i,j+1 , (46)

∂tu2,i,j+1 = −v2/∆x(u2,i,j − u2,i−1,j) + λu1,i,j+1 , (47)

u1,i,j(t
n) = 1 , for i = 1, 2, 3, (48)

u1,i,j(t
n) = 0 , else, (49)

19

u2,i,j(t
n) = 0 , for i = 0, . . . , 15 , (50)

where λ = 0.5 and v1 = 0.5 and v2 = 1.0.
For the time-interval we use t ∈ [0, 1], we deal with 1 and 5 partitions.

The analytical solution of the equation-system (50)–(??) with the given val-
ues of parameters is

u1(x, t) =

{

exp(−λt) , for 0.1 + v1t ≤ x ≤ 0.3 + v1t ,
0 , otherwise

and

u2(x, t) = λ(L1,2 + L2,2 + M12,2)

L1,2 =

{

− 1
λexp(−λt) , for 0.1 + v1t ≤ x ≤ 0.3 + v1t ,

0 , otherwise

L2,2 =

{

1
λ , for 0.1 + v2t ≤ x ≤ 0.3 + v2t ,
0 , otherwise

M12,2 =







1
λexp(−λt) , for 0.1 + v1t ≤ x ≤ 0.1 + v2t ,
− 1

λexp(−λt)exp(−(λ
v1−v2

)(x − v1t − 0.3)) , for 0.3 + v1t ≤ x ≤ 0.3 + v2t ,

0 , otherwise

So, for the end-time tend = 1, we check the results for the 2 end-points :
x1 = v1t + 0.3 and x2 = v2t + 0.3. We get the exact solution of our equation:

u1(x1, tend) = 0.60653 , u2(x1, tend) = 0

u1(x2, tend) = 0 , u2(x2, tend) = 0.632105

For the steps j and j + 1, which are now actually ODE’s, we can derive
analytical solutions and apply them to our numerical scheme. The analytical
solutions are given as

Christos please reset the exact solutions

u1,i,j = u1,i−1,j −
λ∆x

v1
u1,i,j−1 + c2exp(−v1t/∆x)

u2,i,j = u2,i−1,j +
λ∆x

v1
u1,i,j−1 + c1exp(−v2t/∆x),

and

20

u1,i,j+1 =
v1

λ∆x
(u1,i−1,j − u1,i,j) + c2exp(−λt)

u2,i,j+1 =
v2

∆x
(u2,i−1,j − u2,i,j)t +

v1

∆x
(u1,i−1,j − u1,i,j)t + c2exp(−λt),

where c1 and c2 correspond to the initial values.

with the discretised
We have the following algorithm :

u1,i,j(t
n+1) = (1 +

τ v1

∆x
)−1(u1,i,j(t

n) +
τv1

∆x
u1,i−1,j(t

n+1) − τ λu1,i,j−1(t
n+1)) ,

u2,i,j(t
n+1) = (1 +

τ v2

∆x
)−1(u2,i,j(t

n) +
τv2

∆x
u2,i−1,j(t

n+1) + τ λu1,i,j−1(t
n+1)) ,

u1,i,j+1(t
n+1) = (1 + τλ)−1(u1,i,j+1(t

n) −
τv1

∆x
(u1,i,j(t

n+1) − u1,i−1,j(t
n+1))) ,

u2,i,j+1(t
n+1) = u2,i,j+1(t

n) −
τv2

∆x
(u2,i,j(t

n+1) − u2,i−1,j(t
n+1)) + τλu1,i,j+1(t

n+1) ,

j = 1, 3, 5,
u1,i,0(t

n+1) = 1 , for i = 1, 2, 3 ,
u1,i,0(t

n+1) = 0 , else,
u2,i,0(t

n+1) = 0 , for i = 0, . . . , 15,
u1,0,j(t

n+1) = 0 ,
u2,0,j(t

n+1) = 0 ,
In order to implement the algorithm on the computer, we tried to work

similarly to the ODE example. In the implementation of the ODE example we
used in our computer programm a vector a, in which we stored for every time
partition the values of all the appearing ui

1 during the iterations. Similarly, vector
b was used for ui

2. Precisely, vector a was [u10 u−1
1 (0) u0

1 u1
1 u2

1 . . . uiter
1], where

the first two coordinates are the initial values, which for our example were 1 and
0 respectively, and the rest of the coordinates are the solutions calculated during
all the iterations. (total number of iterations=iter)

Now, in the case of a PDE we have two dimensions, so it makes sense to use
a matrix A instead of a vector. Supposing we have a total number of iterations
= iter and since we have 16 points in our spatial partition, the matrix A will be
of the following form:

A =



















∗ u1,0,0 u1,1,0 . . . u1,15,0

u1,−1,1 u1,0,1 u1,1,1 . . . u1,15,1

u1,−1,2 u1,0,2 u1,1,2 . . . u1,15,2

...
...

u1,−1,iter u1,0,iter u1,1,iter . . . u1,15,iter



















,

where the element ∗ does not play any role. The first row represents the given
initial values for the 16 points of the partition (they are 0 or 1, according to x)

21

and they correspond to the initial values u10 and u20 in the ODE example. The
first column also contains initial values, which correspond to the value u−1

1 (0) in
the case of the ODE, and they are equal to 0.

Considering the case of 1 time partition (timep=1), we have:
For j = 1, i = 0, the programm calculates u1,0,1 using the initial values u1,−1,1

and u1,0,0.
For j = 1, i = 1, the programm calculates u1,1,1 using the initial value u1,1,0

and the previously calculated value u1,0,1.
For j = 1, i = 2, the programm calculates u1,2,1 using the initial value u1,2,0

and the previously calculated value u1,2,1. etc.

Similarly we obtain the values u1,0,2, u1,1,2, u1,2,2, . . .
For j = 3, i = 0, the programm calculates u1,0,3 using the initial values u1,−1,3

and the previously calculated valueu1,0,0.
For j = 3, i = 1, the programm calculates u1,1,3 using the previously calculated
values u1,0,3 and u1,1,2. etc

In table 8 we give the approximations and errors for the exact solutions at
the end-time t = 1 and end-point x = v2t + 0.3 = 1.3.

Number of Iterative u1,num u2,num err1 err2

time-partitions Steps

1 4 0.0000000000 0.0000000000 6.065307 × 10−1 0
1 10 0.0000000000 0.0000000000 6.065307 × 10−1 0
1 50 0.0000000000 0.0000000000 6.065307 × 10−1 0

5 4 0.0000000000 0.0000000000 6.065307 × 10−1 0
5 10 0.0000000000 0.0000000000 6.065307 × 10−1 0
5 50 0.0000000000 0.0000000000 6.065307 × 10−1 0

Table 7. Numerical results for the second example with the iterative splitting method.

Please start with the third example as a complex nonlinear example
Here it is enough to have only the numerical results in the table, we
could show that we get better results for the more iteration or more
partitions

5.5 Third test-example of an ODE

We deal with an nonlinear ODE and separate the complex operator in two
simpler operators.

We deal with the following nonlinear equation :

∂tu1 = −λ1u1 + λ2u
2
2 , (51)

∂tu2 = λ1u1 − λ2u
2
2 , (52)

22

u1(0) = 1 , u2(0) = 1 (initial conditions) , (53)

where λ1 = 0.04 and λ2 = 1 104 are the decay factors. We have the time-interval
t ∈ [0, 1].

We rewrite the equation-system (51)–(53) in operator notation, and end up
with the following equations :

∂tu = A(u) + B(u) , (54)

u(0) = (u10, u20)
T , (55)

where u(t) = (u1(t), u2(t))
T for t ∈ [0, T].

Our spitted operators are

A(u) =

(

−λ1u1 0
λu1 0

)

, B(u) =

(

0 λ2u
2
2

0 −λ2u
2
2

)

. (56)

We apply our iterative operator-splitting method and get :
Step i

∂tu1,i = −λ1u1,i + λ2u
2
2,i−1 ,

∂tu2,i = λ1u1,i − λ2u
2
2,i−1 ,

ui
1(0) = 1 , ui

2(0) = 1 ,

Step i + 1

∂tu1,i+1 = −λ1u1,i + λ2u
2
2,i+1 ,

∂tu2,i+1 = λ1u1,i − λ2u
2
2,i+1 ,

ui+1
1 (0) = 1 , ui+1

2 (0) = 1 ,

where t ∈ [0, ∆t].

We implement the discretised formular (implicit Euler) :
Step i

u1,i(t
n+1) = (1 + λ1τ)−1(u1,i(t

n) + τλ2u
2
2,i−1(t

n+1)) ,

u2,i(t
n+1) = u2,i(t

n) + τλ1u1,i(t
n+1) − τλ2u

2
2,i−1(t

n+1) ,

u1,i(0) = 1 , u2,i(0) = 1 , τ = tn+1 − tn,

u2
2,0(t

n+1) = u2
2,0(t

n)

Step i + 1

u2,i+1(t
n+1) = (1 + τλ2u2,i+1(t

n))−1(u2,i+1(t
n + τλ1u1,i(t

n+1)) ,

u1,i+1(t
n+1) = u1,i+1(t

n) − τλ1u1,i(t
n+1) + τλ2u

2
2,i(t

n+1) ,

u1,i+1(0) = 1 , u2,i+1(0) = 1 , τ = tn+1 − tn, ,

where t ∈ [0, 1].

23

6 Conclusions and Discussions

We present the new iterative operator-splitting methods with weighting fac-
tors. The mathematical background was the stabilisation of the pure iterative
operator-splitting methods. We could obtain stable methods for linear and com-
mutative operators for 2 iterations-steps. Numerically we could test commuta-
tive operators and enlarge our examples to noncommutative operators with the
same behaviour of stability for many iterative steps. The numerical experiments
show stability for examples in convection-reaction examples. In the future we fo-
cus us on the development of improved operator-splitting methods with respect
to noncommutative and nonlinear operators and applications to stiff nonlinear
parabilic equations.

References

1. R.E. Ewing. Up-scaling of biological processes and multiphase flow in porous
media. IIMA Volumes in Mathematics and its Applications, Springer-Verlag, 295
(2002), 195-215.

2. I. Farago. Splitting methods for abstract Cauchy problems. Lect. Notes Comp.Sci.
3401, Springer Verlag, Berlin, 2005, pp. 35-45

3. I. Farago, J. Geiser. Iterative Operator-Splitting methods for Linear Problems.

Preprint No. 1043 of the Weierstrass Institute for Applied Analysis and Stochastics,
Berlin, Germany, June 2005.

4. P. Frolkovič and J. Geiser. Numerical Simulation of Radionuclides Transport in

Double Porosity Media with Sorption. Proceedings of Algorithmy 2000, Conference
of Scientific Computing, 28-36, 2000.

5. J. Geiser. Numerical Simulation of a Model for Transport and Reaction of Radionu-

clides. Proceedings of the Large Scale Scientific Computations of Engineering and
Environmental Problems, Sozopol, Bulgaria, 2001.

6. J. Geiser. Gekoppelte Diskretisierungsverfahren für Systeme von Konvektions-

Dispersions-Diffusions-Reaktionsgleichungen. Doktor-Arbeit, Universität Heidel-
berg, 2003.

7. J. Geiser. R
3
T : Radioactive-Retardation-Reaction-Transport-Program for the Sim-

ulation of radioactive waste disposals. Proceedings: Computing, Communications
and Control Technologies: CCCT 2004, The University of Texas at Austin and The
International Institute of Informatics and Systemics (IIIS), to appear, 2004.

8. J. Geiser. Iterative Operator-Splitting methods for Parabolic Differential Equations

: Convergence theory. Humboldt-Preprint, to be submitted, February 2006.
9. W. Hundsdorfer, L. Portero. A Note on Iterated Splitting Schemes. CWI Report

MAS-E0404, Amsterdam, Netherlands, 2005.
10. W.H. Hundsdorfer, J. Verwer W. Numerical solution of time-dependent advection-

diffusion-reaction equations, Springer, Berlin, (2003).
11. J. Kanney, C. Miller and C. Kelley. Convergence of iterative split-operator ap-

proaches for approximating nonlinear reactive transport problems. Advances in
Water Resources, 26:247–261, 2003.

12. G.I Marchuk. Some applicatons of splitting-up methods to the solution of problems

in mathematical physics. Aplikace Matematiky, 1 (1968) 103-132.
13. G. Strang. On the construction and comparision of difference schemes. SIAM J.

Numer. Anal., 5:506–517, 1968.

24

14. J.,G. Verwer and B. Sportisse. A note on operator splitting in a stiff linear case.

MAS-R9830, ISSN 1386-3703, 1998.
15. Z. Zlatev. Computer Treatment of Large Air Pollution Models. Kluwer Academic

Publishers, 1995.

25

Number of Iterative u1,num u2,num err1 err2 Omega
time-partitions Steps

1 2 1.1126340828 0.8160926567 1.126341 × 10−1 1.285238 × 10−2 0.25
1 2 1.1126340828 0.8079617093 1.126341 × 10−1 4.721433 × 10−3 0.5
1 2 1.1126340828 0.7998307619 1.126341 × 10−1 3.409514 × 10−3 0.75
1 2 1.1126340828 0.7949521935 1.126341 × 10−1 8.288083 × 10−3 0.9
1 4 0.9269442310 0.7959711040 7.305577 × 10−2 7.269172 × 10−3 0.25
1 4 0.9347359059 0.7884767539 6.526409 × 10−2 1.476352 × 10−2 0.5
1 4 0.9424104920 0.7812798004 5.758951 × 10−2 2.196048 × 10−2 0.75
1 4 0.9469590410 0.7771004869 5.304096 × 10−2 2.613979 × 10−2 0.9
1 10 0.9099112376 0.7939361815 9.008876 × 10−2 9.304095 × 10−3 0.25
1 10 0.9182845299 0.7865915672 8.171547 × 10−2 1.664871 × 10−2 0.5
1 10 0.9264682761 0.7795217846 7.353172 × 10−2 2.371849 × 10−2 0.75
1 10 0.9312910481 0.7754089555 6.870895 × 10−2 2.783132 × 10−2 0.9

5 2 1.0016709203 0.8028737927 1.670920 × 10−3 3.664837 × 10−4 0.25
5 2 1.0017282892 0.8015806799 1.728289 × 10−3 1.659596 × 10−3 0.5
5 2 1.0017855141 0.8002898909 1.785514 × 10−3 2.950385 × 10−3 0.75
5 2 1.0018197801 0.7995165304 1.819780 × 10−3 3.723746 × 10−3 0.9
5 4 0.9971147643 0.8014244641 2.885236 × 10−3 1.815812 × 10−3 0.25
5 4 0.9971720588 0.8001425295 2.827941 × 10−3 3.097747 × 10−3 0.5
5 4 0.9972291787 0.7988632567 2.770821 × 10−3 4.377020 × 10−3 0.75
5 4 0.9972633672 0.7980969674 2.736633 × 10−3 5.143309 × 10−3 0.9
5 10 0.9970936697 0.8014177382 2.906330 × 10−3 1.822538 × 10−3 0.25
5 10 0.9971509493 0.8001358573 2.849051 × 10−3 3.104419 × 10−3 0.5
5 10 0.9972080546 0.7988566373 2.791945 × 10−3 4.383639 × 10−3 0.75
5 10 0.9972422344 0.7980903793 2.757766 × 10−3 5.149897 × 10−3 0.9

10 2 1.0004882380 0.8028498596 4.882380 × 10−4 3.904168 × 10−4 0.25
10 2 1.0004953345 0.8022189267 4.953345 × 10−4 1.021350 × 10−3 0.5
10 2 1.0005024217 0.8015883188 5.024217 × 10−4 1.651958 × 10−3 0.75
10 2 1.0005066695 0.8012101100 5.066695 × 10−4 2.030166 × 10−3 0.9
10 4 0.9992926895 0.8024866900 7.073105 × 10−4 7.535864 × 10−4 0.25
10 4 0.9992997841 0.8018570159 7.002159 × 10−4 1.383260 × 10−3 0.5
10 4 0.9993111140 0.8008502586 6.888860 × 10−4 2.390018 × 10−3 0.9
10 10 0.9992912507 0.8024862527 7.087493 × 10−4 7.540236 × 10−4 0.25
10 10 0.9992983450 0.8018565802 7.016550 × 10−4 1.383696 × 10−3 0.5
10 10 0.9993054290 0.8012272545 6.945710 × 10−4 2.013022 × 10−3 0.75
10 10 0.9993096746 0.8008498253 6.903254 × 10−4 2.390451 × 10−3 0.9

100 2 1.0000055138 0.8032058078 5.513824 × 10−6 3.446860 × 10−5 0.25
100 2 1.0000055209 0.8031441595 5.520872 × 10−6 9.611682 × 10−5 0.5
100 2 1.0000055279 0.8030825117 5.527920 × 10−6 1.577647 × 10−4 0.75
100 2 1.0000055321 0.8030455231 5.532148 × 10−6 1.947532 × 10−4 0.9
100 4 0.9999930674 0.8032021267 6.932554 × 10−6 3.814965 × 10−5 0.25
100 4 0.9999930745 0.8031404797 6.925506 × 10−6 9.979671 × 10−5 0.5
100 4 0.9999930815 0.8030788330 6.918458 × 10−6 1.614434 × 10−4 0.75
100 4 0.9999930858 0.8030418451 6.914230 × 10−6 1.984313 × 10−4 0.9
100 10 0.9999930673 0.8032021267 6.932709 × 10−6 3.814970 × 10−5 0.25
100 10 0.9999930743 0.8031404796 6.925661 × 10−6 9.979676 × 10−5 0.5
100 10 0.9999930814 0.8030788329 6.918613 × 10−6 1.614435 × 10−4 0.75
100 10 0.9999930856 0.8030418451 6.914385 × 10−6 1.984313 × 10−4 0.9

Table 8. Numerical results for the first example with the weighted splitting method,
for various values of omega fixed.

